1
|
Crehan O, Davy SK, Grover R, Ferrier-Pagès C. Nutrient depletion and heat stress impair the assimilation of nitrogen compounds in a scleractinian coral. J Exp Biol 2024; 227:jeb246466. [PMID: 38563292 DOI: 10.1242/jeb.246466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.
Collapse
Affiliation(s)
- Oscar Crehan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, MC 98000 Monaco, Principality of Monaco
| | | |
Collapse
|
2
|
Prioux C, Tignat-Perrier R, Gervais O, Estaque T, Schull Q, Reynaud S, Béraud E, Mérigot B, Beauvieux A, Marcus MI, Richaume J, Bianchimani O, Cheminée A, Allemand D, Ferrier-Pagès C. Unveiling microbiome changes in Mediterranean octocorals during the 2022 marine heatwaves: quantifying key bacterial symbionts and potential pathogens. MICROBIOME 2023; 11:271. [PMID: 38053218 PMCID: PMC10696765 DOI: 10.1186/s40168-023-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Climate change has accelerated the occurrence and severity of heatwaves in the Mediterranean Sea and poses a significant threat to the octocoral species that form the foundation of marine animal forests (MAFs). As coral health intricately relies on the symbiotic relationships established between corals and microbial communities, our goal was to gain a deeper understanding of the role of bacteria in the observed tissue loss of key octocoral species following the unprecedented heatwaves in 2022. RESULTS Using amplicon sequencing and taxon-specific qPCR analyses, we unexpectedly found that the absolute abundance of the major bacterial symbionts, Spirochaetaceae (C. rubrum) and Endozoicomonas (P. clavata), remained, in most cases, unchanged between colonies with 0% and 90% tissue loss. These results suggest that the impairment of coral health was not due to the loss of the main bacterial symbionts. However, we observed a significant increase in the total abundance of bacterial opportunists, including putative pathogens such as Vibrio, which was not evident when only their relative abundance was considered. In addition, there was no clear relation between bacterial symbiont loss and the intensity of thermal stress, suggesting that factors other than temperature may have influenced the differential response of octocoral microbiomes at different sampling sites. CONCLUSIONS Our results indicate that tissue loss in octocorals is not directly caused by the decline of the main bacterial symbionts but by the proliferation of opportunistic and pathogenic bacteria. Our findings thus underscore the significance of considering both relative and absolute quantification approaches when evaluating the impact of stressors on coral microbiome as the relative quantification does not accurately depict the actual changes in the microbiome. Consequently, this research enhances our comprehension of the intricate interplay between host organisms, their microbiomes, and environmental stressors, while offering valuable insights into the ecological implications of heatwaves on marine animal forests. Video Abstract.
Collapse
Affiliation(s)
- Camille Prioux
- Collège Doctoral, Sorbonne Université, Paris, France
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Romie Tignat-Perrier
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Ophélie Gervais
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Tristan Estaque
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | - Quentin Schull
- MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Sète, France
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Eric Béraud
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | | | | | - Maria-Isabelle Marcus
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Justine Richaume
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | | | - Adrien Cheminée
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Christine Ferrier-Pagès
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco.
| |
Collapse
|
3
|
Zhang J, Huang Z, Li Y, Fu D, Li Q, Pei L, Song Y, Chen L, Zhao H, Kao SJ. Synergistic/antagonistic effects of nitrate/ammonium enrichment on fatty acid biosynthesis and translocation in coral under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162834. [PMID: 36924962 DOI: 10.1016/j.scitotenv.2023.162834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Superimposed on ocean warming, nitrogen enrichment caused by human activity puts corals under even greater pressure. Biosynthesis of fatty acids (FA) is crucial for coral holobiont survival. However, the responses of FA biosynthesis pathways to nitrogen enrichment under heat stress in coral hosts and Symbiodiniaceae remain unknown, as do FA translocation mechanisms in corals. Herein, we used the thermosensitive coral species Acropora hyacinthus to investigate changes in FA biosynthesis pathways and polyunsaturated FA translocation of coral hosts and Symbiodiniaceae with respect to nitrate and ammonium enrichment under heat stress. Heat stress promoted pro-inflammatory FA biosynthesis in coral hosts and inhibited FA biosynthesis in Symbiodiniaceae. Nitrate enrichment inhibited anti-inflammatory FA biosynthesis in Symbiodiniaceae, and promoted pro-inflammatory FA biosynthesis in coral hosts and translocation to Symbiodiniaceae, leading to bleaching after 14 days of culture. Intriguingly, ammonium enrichment promoted anti-inflammatory FA biosynthesis in Symbiodiniaceae and translocation to hosts, allowing corals to better endure heat stress. We constructed schematic diagrams of the shift in FA biosynthesis and translocation in and between A. hyacinthus and its Symbiodiniaceae under heat stress, heat and nitrate co-stress, and heat and ammonium co-stress. The findings provide insight into the mechanisms of coral bleaching under environmental stress from a fatty acid perspective.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yuanchao Li
- Hainan Academy of Marine and Fishery Sciences, Haikou 571126, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Qipei Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
4
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
5
|
Tong H, Zhang F, Sun J, McIlroy SE, Zhang W, Wang Y, Huang H, Zhou G, Qian PY. Meta-organism gene expression reveals that the impact of nitrate enrichment on coral larvae is mediated by their associated Symbiodiniaceae and prokaryotic assemblages. MICROBIOME 2023; 11:89. [PMID: 37101227 PMCID: PMC10131396 DOI: 10.1186/s40168-023-01495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Coral meta-organisms consist of the coral, and its associated Symbiodiniaceae (dinoflagellate algae), bacteria, and other microbes. Corals can acquire photosynthates from Symbiodiniaceae, whilst Symbiodiniaceae uses metabolites from corals. Prokaryotic microbes provide Symbiodiniaceae with nutrients and support the resilience of corals as meta-organisms. Eutrophication is a major cause of coral reef degradation; however, its effects on the transcriptomic response of coral meta-organisms remain unclear, particularly for prokaryotic microbes associated with corals in the larval stage. To understand acclimation of the coral meta-organism to elevated nitrate conditions, we analyzed the physiological and transcriptomic responses of Pocillopora damicornis larvae, an ecologically important scleractinian coral, after 5 days of exposure to elevated nitrate levels (5, 10, 20, and 40 µM). RESULTS The major differentially expressed transcripts in coral, Symbiodiniaceae, and prokaryotic microbes included those related to development, stress response, and transport. The development of Symbiodiniaceae was not affected in the 5 and 20 µM groups but was downregulated in the 10 and 40 µM groups. In contrast, prokaryotic microbe development was upregulated in the 10 and 40 µM groups and downregulated in the 5 and 20 µM groups. Meanwhile, coral larval development was less downregulated in the 10 and 40 µM groups than in the 5 and 20 µM groups. In addition, multiple larval, Symbiodiniaceae, and prokaryotic transcripts were significantly correlated with each other. The core transcripts in correlation networks were related to development, nutrient metabolism, and transport. A generalized linear mixed model, using least absolute shrinkage and selection operator, demonstrated that the Symbiodiniaceae could both benefit and cost coral larval development. Furthermore, the most significantly correlated prokaryotic transcripts maintained negative correlations with the physiological functions of Symbiodiniaceae. CONCLUSIONS Results suggested that Symbiodiniaceae tended to retain more nutrients under elevated nitrate concentrations, thereby shifting the coral-algal association from mutualism towards parasitism. Prokaryotic microbes provided Symbiodiniaceae with essential nutrients and may control Symbiodiniaceae growth through competition, whereby prokaryotes can also restore coral larval development inhibited by Symbiodiniaceae overgrowth. Video Abstract.
Collapse
Affiliation(s)
- Haoya Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shelby E. McIlroy
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
6
|
Travesso M, Missionário M, Cruz S, Calado R, Madeira D. Combined effect of marine heatwaves and light intensity on the cellular stress response and photophysiology of the leather coral Sarcophyton cf. glaucum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160460. [PMID: 36435249 DOI: 10.1016/j.scitotenv.2022.160460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Marine heatwaves (MHW) are threatening tropical coral reef ecosystems, leading to mass bleaching events worldwide. The combination of heat stress with high irradiance is known to shape the health and redox status of corals, but research is biased toward scleractinian corals, while much less is known on tropical symbiotic soft corals. Here, we evaluated the cellular stress response and the photophysiological performance of the soft coral Sarcophyton cf. glaucum, popularly termed as leather coral, under different global change scenarios. Corals were exposed to different light intensities (high light, low light, ∼662 and 253 μmol photons m-2 s-1) for 30 days (time-point 1) and a subsequent MHW simulation was carried out for 10 days (control 26 vs 32 °C) (time-point 2). Subsequently, corals were returned to control temperature and allowed to recover for 30 days (time-point 3). Photophysiological performance (maximum quantum yield of photosystem II (Fv/Fm), a measure of photosynthetic activity; dark-level fluorescence (F0), as a proxy of chlorophyll a content (Chl a); and zooxanthellae density) and stress biomarkers (total protein, antioxidants, lipid peroxidation, ubiquitin, and heat shock protein 70) were assessed in corals at these three time-points. Corals were especially sensitive to the combination of heat and high light stress, experiencing a decrease in their photosynthetic efficiency under these conditions. Heat stress resulted in bleaching via zooxanthellae loss while high light stress led to pigment (Chl a) loss. This species' antioxidant defenses, and protein degradation were particularly enhanced under heat stress. A recovery was clear for molecular parameters after 30 days of recovery, whereby photophysiological performance required more time to return to basal levels. We conclude that soft corals distributed along intertidal areas, where the light intensity is high, could be especially vulnerable to marine heatwave events, highlighting the need to direct conservation efforts toward these organisms.
Collapse
Affiliation(s)
- Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
7
|
Blanckaert ACA, Biscéré T, Grover R, Ferrier-Pagès C. Species-Specific Response of Corals to Imbalanced Ratios of Inorganic Nutrients. Int J Mol Sci 2023; 24:3119. [PMID: 36834529 PMCID: PMC9962417 DOI: 10.3390/ijms24043119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Dissolved inorganic phosphorus (DIP) is a limiting nutrient in the physiology of scleractinian corals. Anthropogenic addition of dissolved inorganic nitrogen (DIN) to coastal reefs increases the seawater DIN:DIP ratio and further increases P limitation, which is detrimental to coral health. The effects of imbalanced DIN:DIP ratios on coral physiology require further investigation in coral species other than the most studied branching corals. Here we investigated the nutrient uptake rates, elemental tissue composition and physiology of a foliose stony coral, Turbinaria reniformis, and a soft coral, Sarcophyton glaucum, exposed to four different DIN: DIP ratios (0.5:0.2, 0.5:1, 3:0.2, 3:1). The results show that T. reniformis had high uptake rates of DIN and DIP, proportional to the seawater nutrient concentrations. DIN enrichment alone led to an increase in tissue N content, shifting the tissue N:P ratio towards P limitation. However, S. glaucum had 5 times lower uptake rates and only took up DIN when the seawater was simultaneously enriched with DIP. This double uptake of N and P did not alter tissue stoichiometry. This study allows us to better understand the susceptibility of corals to changes in the DIN:DIP ratio and predict how coral species will respond under eutrophic conditions in the reef.
Collapse
Affiliation(s)
- Alice C. A. Blanckaert
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
- IFD-ED 129, Sorbonne Université Sciences (Formerly UPMC Université Paris VI), CEDEX 05, 75005 Paris, France
| | - Tom Biscéré
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| | - Renaud Grover
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| |
Collapse
|
8
|
Blanckaert ACA, Grover R, Marcus MI, Ferrier-Pagès C. Nutrient starvation and nitrate pollution impairs the assimilation of dissolved organic phosphorus in coral-Symbiodiniaceae symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159944. [PMID: 36351498 DOI: 10.1016/j.scitotenv.2022.159944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential but limiting nutrient for coral growth due to low concentrations of dissolved inorganic concentrations (DIP) in reef waters. P limitation is often exacerbated when concentrations of dissolved inorganic nitrogen (DIN) increase in the reef. To increase their access to phosphorus, corals can use organic P dissolved in seawater (DOP). They possess phosphatase enzymes that transform DOP into DIP, which can then be taken up by coral symbionts. Although the concentration of DOP in reef waters is much higher than DIP, the dependence of corals on this P source is still poorly understood, especially with different concentrations of DIN in seawater. As efforts to predict the future of corals increase, improved knowledge of the P requirements of corals living under different DIN concentrations may be key to predicting coral health. In this study, we investigated P content and phosphatase activities (PAs) in Stylophora pistillata maintained under nutrient starvation, long-term nitrogen enrichment (nitrate or ammonium at 2 μM) and short-term (few hours) nitrogen pulses. Results show that under nutrient depletion and ammonium-enriched conditions, a significant increase in PAs was observed compared to control conditions, with no change in the N:P ratio of the coral tissue. On the contrary, under nitrate enrichment, there was no increase in PAs compared to control conditions, but an increase in the N:P ratio of the coral tissue. These results suggest that under nitrate enrichment, corals were unable to increase their ability to rely on DOP and replenish their cellular P content. An increase in cellular N:P ratio is detrimental to coral health as it increases the susceptibility of coral bleaching under thermal stress. These results provide an overall view of the P requirements of corals exposed to different nutrient conditions and improve our understanding of the effects of nitrogen enrichment on corals.
Collapse
Affiliation(s)
- Alice C A Blanckaert
- Sorbonne Université, UPMC Université Paris VI, IFD-ED 129, Paris Cedex 05, France; Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco.
| | - Renaud Grover
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| | - Maria-Isabelle Marcus
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| | - Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| |
Collapse
|
9
|
Nalley EM, Tuttle LJ, Conklin EE, Barkman AL, Wulstein DM, Schmidbauer MC, Donahue MJ. A systematic review and meta-analysis of the direct effects of nutrients on corals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159093. [PMID: 36183766 DOI: 10.1016/j.scitotenv.2022.159093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure of coral reefs to elevated nutrient conditions can modify the performance of the coral holobiont and shift the competitive interactions of reef organisms. Many studies have now quantified the links between nutrients and coral performance, but few have translated these studies to directly address coastal water quality standards. To address this management need, we conducted a systematic review of peer-reviewed studies, public reports, and gray literature that examined the impacts of dissolved inorganic nitrogen (DIN: nitrate, nitrite, and ammonium) and dissolved inorganic phosphorus (DIP: phosphate) on scleractinian corals. The systematic review resulted in 47 studies with comparable data on coral holobiont responses to nutrients: symbiont density, chlorophyll a (chl-a) concentration, photosynthesis, photosynthetic efficiency, growth, calcification, adult survival, juvenile survival, and fertilization. Mixed-effects meta-regression meta-analyses were used to determine the magnitude of the positive or negative effects of DIN and DIP on coral responses. Zooxanthellae density (DIN & DIP), chl-a concentration (DIN), photosynthetic rate (DIN), and growth (DIP) all exhibited positive responses to nutrient addition; maximum quantum yield (DIP), growth (DIN), larval survival (DIN), and fertilization (DIN) exhibited negative responses. In lieu of developing specific thresholds for the management of nutrients as a stressor on coral reefs, we highlight important inflection points in the magnitude and direction of the effects of inorganic nutrients and identify trends among coral responses. The responses of corals to nutrients are complex, warranting conservative guidelines for elevated nutrient concentrations on coral reefs.
Collapse
Affiliation(s)
- Eileen M Nalley
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA.
| | - Lillian J Tuttle
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA; U.S. Geological Survey, Hawai'i Cooperative Fishery Unit, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - Emily E Conklin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - Alexandria L Barkman
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 41 Ahui Street, Honolulu, HI 96813, USA
| | - Devynn M Wulstein
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - Madeline C Schmidbauer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| |
Collapse
|
10
|
Morrow KM, Pankey MS, Lesser MP. Community structure of coral microbiomes is dependent on host morphology. MICROBIOME 2022; 10:113. [PMID: 35902906 PMCID: PMC9331152 DOI: 10.1186/s40168-022-01308-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. RESULTS The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. CONCLUSIONS The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
- Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
11
|
Han JHJ, Stefanak MP, Rodgers KS. Low-level nutrient enrichment during thermal stress delays bleaching and ameliorates calcification in three Hawaiian reef coral species. PeerJ 2022; 10:e13707. [PMID: 35855432 PMCID: PMC9288827 DOI: 10.7717/peerj.13707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Terrestrial-based nutrient pollution has emerged as one of the most detrimental factors to coral health in many reef habitats. Recent studies have shown that excessive dissolved inorganic nutrients can reduce coral thermal tolerance thresholds and even exacerbate bleaching during thermal stress, yet the effects of minor nutrient enrichment under heat stress have not been extensively studied. In this study, Lobactis scutaria, Montipora capitata, and Pocillopora acuta colonies under heated conditions (~30.5 °C) were exposed to low and balanced nitrogen and phosphorous concentrations over a 31-day heating period. Coral colonies were collected from Kāne'ohe Bay, O'ahu, which has a unique history of nutrient pollution, and held in mesocosms that allowed for environmental manipulation yet are also influenced by local field conditions. Principal findings included delays in the bleaching of nutrient-enriched heated colonies as compared to heated-only colonies, in addition to relatively greater calcification rates and lower proportions of early-stage paling. Species-specific outcomes were prevalent, with L. scutaria demonstrating no difference in calcification with enrichment under heat stress. By the end of the heating stage, however, many heated colonies were at least partially impacted by bleaching or mortality. Despite this, our findings suggest that low levels of balanced nutrient enrichment may serve as a mitigative force during thermal events. Further field-based studies will be required to assess these results in different reef habitats.
Collapse
Affiliation(s)
- Ji Hoon J. Han
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| | - Matthew P. Stefanak
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| | - Ku‘ulei S. Rodgers
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| |
Collapse
|
12
|
Meziere Z, Rich WA, Carvalho S, Benzoni F, Morán XAG, Berumen ML. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151639. [PMID: 34780827 DOI: 10.1016/j.scitotenv.2021.151639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Sometimes called the "lab rat" of coral research, Stylophora pistillata (Esper, 1797) has been extensively used in coral biology in studies ranging from reef ecology to coral metabolic processes, and has been used as a model for investigations into molecular and cellular biology. Previously thought to be a common species spanning a wide distribution through the Indo-Pacific region, "S. pistillata" is in fact four genetically distinct lineages (clades) with different evolutionary histories and geographical distributions. Here, we review the studies of stress responses of S. pistillatasensulato (clades 1-4) and highlight research trends and knowledge gaps. We identify 126 studies on stress responses including effects of temperature, acidification, eutrophication, pollutants and other local impacts. We find that most studies have focused on the effect of single stressors, especially increased temperature, and have neglected the combined effects of multiple stressors. Roughly 61% of studies on S. pistillata come from the northern Red Sea (clade 4), at the extreme limit of its current distribution; clades 2 and 3 are virtually unstudied. The overwhelming majority of studies were conducted in laboratory or mesocosm conditions, with field experiments constituting only 2% of studies. We also note that a variety of experimental designs and treatment conditions makes it difficult to draw general conclusions about the effects of particular stressors on S. pistillata. Given those knowledge gaps and limitations in the published research, we suggest a more standardized approach to compare responses across geographically disparate populations and more accurately anticipate responses to predicted future climate conditions.
Collapse
Affiliation(s)
- Zoe Meziere
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Walter A Rich
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Spain
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Zhou Z, Ni X, Wu Z, Tang J. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113074. [PMID: 34915224 DOI: 10.1016/j.ecoenv.2021.113074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The amino acid metabolism-related herbicides glufosinate and glyphosate are used worldwide and have flowed into the oceans, threatening the marine organisms. In the present study, physiological activities and transcriptomic profiles of the scleractinian coral Pocillopora damicornis and symbiotic Symbiodiniaceae were determined during a 48 h-exposure to the two herbicides with the final concentration of 10 μmol L-1. Coral samples were collected at 0, 12, 24, and 48 h after exposure to determine symbiont density, chlorophyll content, as well as activities of superoxide dismutase (SOD), catalase (CAT), nitric oxide synthetase (NOS) and phenoloxidase (PO), and the caspase-3 levels, and the samples collected at 24 h were employed in the transcriptomic analysis. Specifically, the symbiont densities did not change significantly in response to the two herbicides, while the chlorophyll content increased significantly at 24 h post glufosinate exposure. SOD and CAT activities in the coral host increased significantly at 12 h after glufosinate and glyphosate exposure, while the activity of NOS in symbionts decreased significantly at 48 h after glufosinate exposure. Caspase-3 levels in the coral host declined significantly at 24 h after exposure to the two herbicides. In the transcriptomic analysis, glufosinate triggered the expression of genes related to the response to stimuli and immunoregulation in the coral host, and suppressed the expression of genes related to coral nitrogen-related metabolism, symbiont cell cycle, and response to nutrient levels. Furthermore, glyphosate activated the expression of genes involved in coral calcification and symbiont nutrient export and suppressed the expression of genes involved in coral meiosis and symbiont cell communication. These results suggest that although the coral-Symbiodiniaceae symbiosis is not disrupted, short-term glufosinate and glyphosate exposures alter several essential physiological processes including metabolism, calcification, and meiosis in the coral host, as well as the cell cycle and nutrient export in the symbiont. SUMMARY: Glufosinate and glyphosate herbicide exposures can disturb several essential physiological processes, including metabolism, calcification, and meiosis in the coral host as well as the cell cycle and nutrient export in the symbiont, threating the survival of scleractinian corals.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Xingzhen Ni
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. DIVERSITY 2021. [DOI: 10.3390/d13120632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Collapse
|
15
|
van der Zande RM, Mulders YR, Bender-Champ D, Hoegh-Guldberg O, Dove S. Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients. Sci Rep 2021; 11:13165. [PMID: 34162916 PMCID: PMC8222273 DOI: 10.1038/s41598-021-92276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coral reefs, especially those located near-shore, are increasingly exposed to anthropogenic, eutrophic conditions that are often chronic. Yet, corals under unperturbed conditions may frequently receive natural and usually temporary nutrient supplementation through biological sources such as fishes. We compared physiological parameters indicative of long- and short-term coral health (day and night calcification, fragment surface area, productivity, energy reserves, and tissue stoichiometry) under continuous and temporary nutrient enrichment. The symbiotic coral Acropora intermedia was grown for 7 weeks under continuously elevated (press) levels of ammonium (14 µmol L-1) and phosphate (10 µmol L-1) as separate and combined treatments, to discern the individual and interactive nutrient effects. Another treatment exposed A. intermedia twice-daily to an ammonium and phosphate pulse of the same concentrations as the press treatments to simulate natural biotic supplementation. Press exposure to elevated ammonium or phosphate produced mixed effects on physiological responses, with little interaction between the nutrients in the combined treatment. Overall, corals under press exposure transitioned resources away from calcification. However, exposure to nutrient pulses often enhanced physiological responses. Our findings indicate that while continuous nutrient enrichment may pose a threat to coral health, episodic nutrient pulses that resemble natural nutrient supplementation may significantly benefit coral health and physiology.
Collapse
Affiliation(s)
- Rene M. van der Zande
- grid.1003.20000 0000 9320 7537Coral Reef Ecosystems Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Global Change Institute, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Yannick R. Mulders
- grid.1003.20000 0000 9320 7537Coral Reef Ecosystems Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Dorothea Bender-Champ
- grid.1003.20000 0000 9320 7537Coral Reef Ecosystems Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Global Change Institute, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Ove Hoegh-Guldberg
- grid.1003.20000 0000 9320 7537Coral Reef Ecosystems Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Global Change Institute, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Sophie Dove
- grid.1003.20000 0000 9320 7537Coral Reef Ecosystems Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
16
|
Reich HG, Tu WC, Rodriguez IB, Chou Y, Keister EF, Kemp DW, LaJeunesse TC, Ho TY. Iron Availability Modulates the Response of Endosymbiotic Dinoflagellates to Heat Stress. JOURNAL OF PHYCOLOGY 2021; 57:3-13. [PMID: 32996595 DOI: 10.1111/jpy.13078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe') to limiting (50 pM Fe') under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe' at 26-28°C vs. 250 pM Fe' at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga's response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wan-Chen Tu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Yalan Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Elise F Keister
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Dustin W Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Maher RL, Schmeltzer ER, Meiling S, McMinds R, Ezzat L, Shantz AA, Adam TC, Schmitt RJ, Holbrook SJ, Burkepile DE, Vega Thurber R. Coral Microbiomes Demonstrate Flexibility and Resilience Through a Reduction in Community Diversity Following a Thermal Stress Event. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.555698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Li X, Zhang Y, Fu S. Effects of short-term fasting on spontaneous activity and excess post-exercise oxygen consumption in four juvenile fish species with different foraging strategies. Biol Open 2020; 9:9/9/bio051755. [PMID: 32994283 PMCID: PMC7541337 DOI: 10.1242/bio.051755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effects of short-term fasting on spontaneous activity and excess post-exercise oxygen consumption (EPOC) in sit-and-wait carnivorous southern catfish (Silurus meridionalis), active carnivorous black carp (Mylopharyngodon piceus), active herbivorous grass carp (Ctenopharyngodon idellus) and active filter-feeding silver carp (Hypophthalmichthys molitrix), each species was divided into a control group and a fasting group (deprived of food for 14 days). Both groups were maintained at 25°C and, at the end of the experimental period, the total movement distance (TMD), percent time spent moving (PTM), ventilation frequency (Vf), pre-exercise oxygen consumption (M(•)O2) and EPOC response of the experimental fish were measured. The TMD and PTM obtained for the control group of southern catfish were lower than those found for the control groups of the three active species. Short-term fasting resulted in decreases in the TMD and PTM of the southern catfish and black carp and increases in the TMD of grass carp and silver carp. The Vf of southern catfish was significantly higher than those of grass carp and silver carp, whereas the latter was also significantly higher than that of black carp. Short-term fasting resulted in significant increases in the Vf and decreases in the pre-exercise M(•)O2 of southern catfish and silver carp. Southern catfish and black carp exhibited lower peak post-exercise M(•)O2 and recovery rates, and relatively higher EPOC magnitudes than grass carp and silver carp. Short-term fasting exerted no significant effects on the peak post-exercise M(•)O2, but resulted in relatively higher EPOC magnitudes in the four fish species. These results suggest that (1) different fish species exhibit significantly different levels of spontaneous activity and post-exercise M(•)O2 profiles with different characteristics and that (2) short-term fasting exerts different effects on the level of spontaneous activity in four fish species with different foraging strategies. Summary: This study compares the spontaneous behavior and exhaustive exercise of four warm-water fish.
Collapse
Affiliation(s)
- Xiuming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 400047, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Education Ministry), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
19
|
Karcher DB, Roth F, Carvalho S, El-Khaled YC, Tilstra A, Kürten B, Struck U, Jones BH, Wild C. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020; 8:e8737. [PMID: 32274261 PMCID: PMC7130110 DOI: 10.7717/peerj.8737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
While various sources increasingly release nutrients to the Red Sea, knowledge about their effects on benthic coral reef communities is scarce. Here, we provide the first comparative assessment of the response of all major benthic groups (hard and soft corals, turf algae and reef sands—together accounting for 80% of the benthic reef community) to in-situ eutrophication in a central Red Sea coral reef. For 8 weeks, dissolved inorganic nitrogen (DIN) concentrations were experimentally increased 3-fold above environmental background concentrations around natural benthic reef communities using a slow release fertilizer with 15% total nitrogen (N) content. We investigated which major functional groups took up the available N, and how this changed organic carbon (Corg) and N contents using elemental and stable isotope measurements. Findings revealed that hard corals (in their tissue), soft corals and turf algae incorporated fertilizer N as indicated by significant increases in δ15N by 8%, 27% and 28%, respectively. Among the investigated groups, Corg content significantly increased in sediments (+24%) and in turf algae (+33%). Altogether, this suggests that among the benthic organisms only turf algae were limited by N availability and thus benefited most from N addition. Thereby, based on higher Corg content, turf algae potentially gained competitive advantage over, for example, hard corals. Local management should, thus, particularly address DIN eutrophication by coastal development and consider the role of turf algae as potential bioindicator for eutrophication.
Collapse
Affiliation(s)
- Denis B Karcher
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yusuf C El-Khaled
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Benjamin Kürten
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Project Management Jülich, Jülich Research Centre, Rostock, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
20
|
Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc Natl Acad Sci U S A 2020; 117:5351-5357. [PMID: 32094188 DOI: 10.1073/pnas.1915395117] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Climate change is increasing the frequency and magnitude of temperature anomalies that cause coral bleaching, leading to widespread mortality of stony corals that can fundamentally alter reef structure and function. However, bleaching often is spatially variable for a given heat stress event, and drivers of this heterogeneity are not well resolved. While small-scale experiments have shown that excess nitrogen can increase the susceptibility of a coral colony to bleaching, we lack evidence that heterogeneity in nitrogen pollution can shape spatial patterns of coral bleaching across a seascape. Using island-wide surveys of coral bleaching and nitrogen availability within a Bayesian hierarchical modeling framework, we tested the hypothesis that excess nitrogen interacts with temperature anomalies to alter coral bleaching for the two dominant genera of branching corals in Moorea, French Polynesia. For both coral genera, Pocillopora and Acropora, heat stress primarily drove bleaching prevalence (i.e., the proportion of colonies on a reef that bleached). In contrast, the severity of bleaching (i.e., the proportion of an individual colony that bleached) was positively associated with both heat stress and nitrogen availability for both genera. Importantly, nitrogen interacted with heat stress to increase bleaching severity up to twofold when nitrogen was high and heat stress was relatively low. Our finding that excess nitrogen can trigger severe bleaching even under relatively low heat stress implies that mitigating nutrient pollution may enhance the resilience of coral communities in the face of mounting stresses from global climate change.
Collapse
|
21
|
Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient Availability and Metabolism Affect the Stability of Coral-Symbiodiniaceae Symbioses. Trends Microbiol 2019; 27:678-689. [PMID: 30987816 DOI: 10.1016/j.tim.2019.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Coral reefs rely upon the highly optimized coral-Symbiodiniaceae symbiosis, making them sensitive to environmental change and susceptible to anthropogenic stress. Coral bleaching is predominantly attributed to photo-oxidative stress, yet nutrient availability and metabolism underpin the stability of symbioses. Recent studies link symbiont proliferation under nutrient enrichment to bleaching; however, the interactions between nutrients and symbiotic stability are nuanced. Here, we demonstrate how bleaching is regulated by the forms and ratios of available nutrients and their impacts on autotrophic carbon metabolism, rather than algal symbiont growth. By extension, historical nutrient conditions mediate host-symbiont compatibility and bleaching tolerance over proximate and evolutionary timescales. Renewed investigations into the coral nutrient metabolism will be required to truly elucidate the cellular mechanisms leading to coral bleaching.
Collapse
Affiliation(s)
- Luke A Morris
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia. https://twitter.com/ReefLuke
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. https://twitter.com/reefgenomics
| | - Kate M Quigley
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia. https://twitter.com/la__cientifica
| | - David G Bourne
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia.
| |
Collapse
|