1
|
Arnaboldi S, Righi F, Mangeri L, Galuppini E, Bertasi B, Finazzi G, Varisco G, Ongaro S, Gandolfi C, Lamera R, Amboni P, Rota E, Balbino D, Colombo C, Gelmi M, Boffelli A, Gasparri S, Filipello V, Losio MN. Contamination source identification for the prompt management of a gastroenteritis outbreak caused by norovirus in drinking water in Northern Italy. Heliyon 2024; 10:e32767. [PMID: 38975098 PMCID: PMC11225738 DOI: 10.1016/j.heliyon.2024.e32767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
In June 2022, a gastroenteritis outbreak occurred in a town in Northern Italy, possibly associated with the ingestion of norovirus from public drinking water. Noroviruses are highly infectious RNA viruses, with high stability in the environment. They are the primary cause of non-bacterial gastroenteritis worldwide, and despite the fact that the disease is mainly self-limiting, norovirus infection can lead to severe illness in the immunocompromised, the elderly and children. Immediately after the notification of the suspected norovirus outbreak, faecal specimens were collected from hospitalised patients, and water samples were collected from public drinking fountains in the affected area, to confirm the presence of norovirus. Norovirus was detected in 80 % (95 % CI 0.58-0.91) of the faecal specimens, and in 50 % (95 % CI 0.28-0.72) of the water samples using RT (reverse transcription) Real-time PCR. The identification of GII genotype in all samples confirmed public drinking water as the source of norovirus contamination. In addition, in one faeces and one water sample, the co-presence of genotypes GI and GII was detected. The strains were typed by sequencing, with most of them belonging to the genotype GII.3. Immediately after the confirmation of norovirus contamination in public drinking water, the local competent authorities applied safety measures, resulting in a decline in number of cases. Moreover, after the application of disinfection protocols in the water plant, the sampling was repeated with negative results for norovirus in the affected area. However, positive samples were found in the neighbouring area (prevalence 10.00 %, 95 % CI 0.02-0.40) and in the water spring (prevalence 50.00 %, 95 % CI 0.21-0.78), suggesting norovirus persistence and spread from the water source. The prompt identification of the source of contamination, and collaboration with the local authorities guided the implementation of proper procedures to control viral spread, resulting in the successful control of the outbreak.
Collapse
Affiliation(s)
- Sara Arnaboldi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Francesco Righi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Lucia Mangeri
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Elisa Galuppini
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Barbara Bertasi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Giorgio Varisco
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Stefania Ongaro
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Camillo Gandolfi
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Rossella Lamera
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Paolo Amboni
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Elena Rota
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Deborah Balbino
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Constanza Colombo
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Martina Gelmi
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Alessandra Boffelli
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Serena Gasparri
- Department of Hygiene and Health, Agenzia di Tutela della Salute (ATS), Via Borgo Palazzo 130, 24100, Bergamo, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Marina-Nadia Losio
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| |
Collapse
|
2
|
Ossio A, Flores-Rodríguez F, Heredia N, García S, Merino-Mascorro JA. Foodborne Viruses and Somatic Coliphages Occurrence in Fresh Produce at Retail from Northern Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:109-119. [PMID: 38198031 DOI: 10.1007/s12560-023-09578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Foodborne disease outbreaks linked to consumption of vegetables have been often attributed to human enteric viruses, such as Norovirus (NoV), Hepatitis A virus (HAV), and Rotavirus (RoV). Information about the occurrence of these viruses is scarce in many fresh-producing countries. Viral contamination detection of indicators, such as somatic coliphages, could indirectly reflect the presence of viral pathogens, being a valuable tool for better viral risk assessment in food industry. This study aimed to establish the occurrence and correlation of foodborne viruses and somatic coliphages in leafy greens in northern Mexico. A total of 320 vegetable samples were collected, resulting in 80 composite rinses, 40 of lettuce and 40 of parsley. Somatic coliphages were determined using the EPA 1602 method, while foodborne viruses (HAV, RoV, NoV GI, and GII) were determined by qPCR. The occurrence of RoV was 22.5% (9/40, mean 2.11 log gc/g) in lettuce and 20% (8/40, mean 1.91 log gc/g) in parsley. NoV and HAV were not detected in any samples. Somatic coliphages were present in all lettuce and parsley samples, with mean levels of 1.85 log PFU/100 ml and 2.28 log PFU/100 ml, respectively. Spearman analysis established the correlation of somatic coliphages and genomic copies of RoV, resulting in an r2 value of - 0.026 in lettuce and 0.349 in parsley. Although NoV or HAV were undetected in the samples, the presence of RoV is a matter of concern as leafy greens are usually eaten raw, which poses a potential risk of infection.
Collapse
Affiliation(s)
- Axel Ossio
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Fernanda Flores-Rodríguez
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Norma Heredia
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Santos García
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Jose Angel Merino-Mascorro
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico.
| |
Collapse
|
3
|
Wang Z, Yeo D, Kwon H, Zhang Y, Yoon D, Jung S, Hossain MI, Jeong MI, Choi C. Disinfection efficiency of chlorine dioxide and peracetic acid against MNV-1 and HAV in simulated soil-rich wash water. Food Res Int 2024; 175:113772. [PMID: 38129061 DOI: 10.1016/j.foodres.2023.113772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Wash water from fresh vegetables and root vegetables is an important vehicle for foodborne virus transmission. However, there is lack of assessing rapid viral inactivation strategies in wash water characterized by a high soil content at the post-harvest stage. Considering the significance of food safety during the washing stage for fresh and root vegetable produce prior to marketing, we assessed the inactivation efficacy by using chlorine dioxide (ClO2) and peracetic acid (PAA) against a surrogate of human norovirus (murine norovirus 1, MNV-1) and hepatitis A virus (HAV), in wash water containing black soil and clay loam. The results indicated that MNV-1 and HAV were reduced to the process limit of detection (PLOD), with reductions ranging from 4.89 to 6.35 log10 PFU, and 4.63 to 4.96 log10 PFU when treated with ClO2 at 2.5 ppm for 10 mins. Comparatively, when treated with 500 ppm of PAA for 10 mins, MNV-1 and HAV were maximum reduced to 1.75 ± 0.23 log10 PFU (4.50 log10 PFU reduction) and 2.13 ± 0.12 log10 PFU (2.72 log10 PFU reduction). This demonstrated the efficacy of ClO2 in eliminating foodborne viruses in soil-rich wash water. When we validated the recovery of the virus from two types of wash water, the pH (9.24 ± 0.33 and 5.95 ± 0.05) had no impact on the recovery of MNV-1, while the recovery of HAV was less than 1 %. By adjusting the pH to a neutral level, recovery of HAV and its RNA levels was increased to 15.94 and 3.89 %. Thus, this study emphasized the critical role of pH in the recovery of HAV from the complex soil-rich aqueous environment, and the efficacy of ClO2 serving as a pivotal reference for the development of control strategies against foodborne viruses in the supply chain of fresh and root vegetables.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Yuan Zhang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Danbi Yoon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Md Iqbal Hossain
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Myeong-In Jeong
- National Institute of Agricultural Sciences, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
4
|
Neetoo H, Juggoo K, Johaheer H, Ranghoo-Sanmukhiya M, Manoga Z, Gurib N. A study on the occurrence of human enteric viruses in salad vegetables and seafood and associated health risks for consumers in Mauritius. Ital J Food Saf 2023; 12:11447. [PMID: 38116372 PMCID: PMC10726392 DOI: 10.4081/ijfs.2023.11447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/29/2023] [Indexed: 12/21/2023] Open
Abstract
Norovirus (NOV) and hepatitis A virus (HAV) are human enteric viruses of major concern worldwide. Salad vegetables and molluscan shellfish are highly susceptible to contamination by NOV and HAV and can pose a health threat when consumed raw. The objective of this study was to determine the occurrence of NOV and HAV in lettuce, watercress, tomatoes, and oysters using the enzyme-linked immunosorbent assay and assess the health risks associated with the consumption of these commodities by semiquantitative risk assessment. The occurrence of NOV in vegetables ranked in the following decreasing order: lettuce (36%) > watercress (16%) > tomatoes (4%). However, HAV was more frequently detected in watercress (56%), compared to lettuce or tomatoes (12%). Additionally, NOV was detected in oysters (60%). The risk assessment exercise pointed to a medium-risk score of contracting a foodborne illness of viral origin for consumers eating fresh watercress or oysters. Future research will ascertain the presence of these enteric viruses in a broader range of food commodities.
Collapse
Affiliation(s)
- Hudaa Neetoo
- Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Moka, Mauritius
| | | | | | | | | | | |
Collapse
|
5
|
Bai W, Tang R, Wu G, Wang W, Yuan S, Xiao L, Zhan X, Hu ZH. Role of suspended solids on the co-precipitation of pathogenic indicators and antibiotic resistance genes with struvite from digested swine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132235. [PMID: 37562349 DOI: 10.1016/j.jhazmat.2023.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Struvite recovered from wastewater contains high concentration of fecal indicator bacteria (FIB), porcine adenoviruses (PAdV) and antibiotic resistance genes (ARGs), becoming potential resources of these microbial hazards. Understanding the precipitation behavior of pathogenic indicators and ARGs with suspended solids (SS) will provide the possible strategy for the control of co-precipitation. In this study, SS was divided into high-density SS (separated by centrifugation) and low-density SS (further separated by filtration), and the role of SS on the co-precipitation of FIB, PAdV and ARGs was investigated. The distribution analysis showed that 35.5-73.0% FIB, 79.6% PAdV and 64.5-94.8% ARGs existed in high-density SS, while the corresponding values were 26.9-64.4%, 11.7% and 3.5-24.3% in low-density SS. During struvite generation, 82.7-96.9% FIB, 75.5% PAdV and 56.3-86.5% ARGs were co-precipitated into struvite. High-density SS contributed 20.7-68.5% FIB, 63.9% PAdV and 38.7-87.2% ARGs co-precipitation, and the corresponding contribution of low-density SS was 31.4-79.2%, 3.9% and 6.2-54.7%. Moreover, the precipitated SS in struvite obviously decreased inactivation efficiency of FIB and ARGs in drying process. These results provide a potential way to control the co-precipitation and inactivation of FIB, PAdV and ARGs in struvite through removing high-density SS prior to struvite recovery.
Collapse
Affiliation(s)
- Wenjing Bai
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guangxue Wu
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Wei Wang
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, College of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Zhen-Hu Hu
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Tan MTH, Gong Z, Li D. Use of Zebrafish Embryos To Reproduce Human Norovirus and To Evaluate Human Norovirus Infectivity Decay after UV Treatment. Appl Environ Microbiol 2023; 89:e0011523. [PMID: 36943055 PMCID: PMC10132098 DOI: 10.1128/aem.00115-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
This study reports an essential improvement of the method for replication of human norovirus (HNoV) with the use of zebrafish (Danio rerio) embryos. With three HNoV genotypes and P-types GII.2[P16], GII.4[P16], and GII.17[P31], we demonstrated that this tool had higher efficiency and robustness than the zebrafish larvae as reported previously. When zebrafish larvae were injected with virus (1.6 ± 0.3 log genome copies/10 larvae), a significant increase of virus genome copies was detected at 2 days postinfection (dpi; 4.4 ± 0.8 log genome copies/10 larvae, P < 0.05) and the viral loads started to decrease gradually from 3 dpi. In comparison, when the viruses were injected into the zebrafish embryos, significant virus replication was noticed from 1 dpi and lasted to 6 dpi (P < 0.05). The virus levels detected at 3 dpi had the highest mean value and the smallest variation (7.7 ± 0.2 log genome copies/10 larvae). The high levels of virus replication enabled continuous passaging for all three strains up to four passages. The zebrafish embryo-generated HNoVs showed clear patterns of binding to human histo-blood group antigens (HBGAs) in human saliva by a simple saliva-binding reverse transcription-quantitative PCR (RT-qPCR). Last, in a disinfection study, it was shown that a dose of 6 mJ/cm2 UV254 was able induce a >2-log reduction in HNoV infectivity for all three HNoV strains tested, suggesting that HNoVs were more UV susceptible than multiple enteric viruses and commonly used HNoV surrogates as tested before. IMPORTANCE HNoVs are a leading cause of gastroenteritis outbreaks worldwide. The zebrafish embryo tool as developed in this study serves as an efficient way to generate viruses with high titers and clean background and a straightforward platform to evaluate HNoV inactivation efficacies. It is expected that this tool will not only benefit epidemiological research on HNoV but also be used to generate HNoV inactivation parameters which are highly needed by the water treatment and food industries.
Collapse
Affiliation(s)
- Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Optimization of an approach to detect low-concentration MNV-1 and HAV from soil-rich or non-soil post-washing water containing various PCR inhibitory substances. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Larocque É, Lévesque V, Lambert D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int J Food Microbiol 2022; 380:109884. [PMID: 36055105 DOI: 10.1016/j.ijfoodmicro.2022.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
Berries are important vehicles for norovirus (NoV) and hepatitis A virus (HAV) foodborne outbreaks. Sensitive and quantitative detection of these viruses in food samples currently relies on RT-qPCR, but remains challenging due to their low concentration and the presence of RT-qPCR inhibitors. Moreover, quantification requires a standard curve. In this study, crystal digital RT-PCR (RT-cdPCR) assays were adapted from RT-qPCR sets of primers and probe currently used in our diagnostic laboratory for the detection and precise quantification of norovirus genogroups I and II (NoV GI, GII) and hepatitis A virus (HAV) RNA in frozen raspberry samples. We selected assay conditions based on optimal separation of positive and negative droplets, and peak resolution. Using virus-specific in vitro RNA transcripts diluted in raspberry RNA extracts, we showed that all three RT-cdPCR assays were sensitive, and we estimated the 95 % detection limit at 9 copies per RT-cdPCR reaction for NoV GI, 3 for NoV GII, and 14 for HAV. Serial dilutions of the RNA transcripts showed excellent linearity over a range of four orders of magnitude. We achieved precise quantification (CV ≤ 35 %) of the RNA transcripts between runs down to 15-145 copies per reaction for NoV GI, <20 for NoV GII, and < 15 for HAV. The three RT-cdPCR assays also proved to be tolerant to inhibitors from frozen raspberries, although not as tolerant as the RT-qPCR assays in the case of NoV GI and HAV. We further evaluated the assays with inoculated frozen raspberry samples and compared their performance to that of the RT-qPCR assays. As compared to the corresponding RT-qPCR assays, the NoV GI and HAV RT-cdPCR assays showed a decreased qualitative sensitivity, while the NoV GII RT-cdPCR assay had an increased sensitivity. As for quantification, the NoV GI and NoV GII RT-cdPCR assays produced similar estimates of RNA copy number than their respective RT-qPCR assays, whereas for HAV, the RT-cdPCR assay produced lower estimates than the RT-qPCR assay. However, all the RT-cdPCR assays provided more precise quantitative measurements at low levels of contamination than the RT-qPCR assays. In conclusion, the potential of the RT-cdPCR assays in this study to detect viral RNA from frozen raspberries varied according to assay, but these RT-cdPCR assays should be considered for precise absolute quantification in difficult matrices such as frozen raspberries.
Collapse
Affiliation(s)
- Émilie Larocque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada.
| | - Valérie Lévesque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Dominic Lambert
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
9
|
Elmahdy EM, Shaheen MNF, Mahmoud LHI, Hammad IA, Soliman ERS. Detection of Norovirus and Hepatitis A Virus in Strawberry and Green Leafy Vegetables by Using RT-qPCR in Egypt. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:178-189. [PMID: 35246828 DOI: 10.1007/s12560-022-09516-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
There is an upward trend of consumption of organic fresh vegetables due to consumer demand for healthy foods without chemical additives. On the other hand, the number of food borne outbreaks associated with contaminated fresh produce has raised, being human norovirus genogroup I (GI), GII and hepatitis A virus (HAV) the most commonly reported causative agents. This study aimed to detect the presence of these viruses in green leafy vegetables (watercress, leek, coriander, and parsley) and strawberry using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were collected from the Egyptian regions of Kalubia, Giza, and Mansoura. Overall HAV average occurrence in fresh strawberry was 48% with a mean concentration of 6.1 × 103 GC/g; Also NoV GI overall average occurrence was 25% with a mean concentration of 9.7 × 102 genome copies (GC)/g, while NoV GII was 40% with a mean concentration of 2.4 × 103 GC/g. For strawberry collected directly from Kalubia farms, neither HAV nor HNoV GI & GII were detected. In green leafy vegetable samples, the occurrence of HAV was 31.2% with a mean concentration of 9.2 × 104 GC/g, while occurrence of NoV GI and NoV GII were 20% and 30% with a mean concentrations of 1.1 × 104 and 2.03 × 103 GC/g, respectively. In conclusion, the importance of a virus surveillance program for soft fruits and fresh vegetables is highlighted by the outcomes of this study. Our findings should help with the management and control of microbial concerns in fresh foods, reducing the danger of consuming contaminated foods.
Collapse
Affiliation(s)
- Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Lamiaa H I Mahmoud
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Genetics and Molecular Biology Unit, Botany and Microbiology Department, Faculty of Science Helwan University, Helwan University, Helwan, Egypt
| | - Ibtisam A Hammad
- Genetics and Molecular Biology Unit, Botany and Microbiology Department, Faculty of Science Helwan University, Helwan University, Helwan, Egypt
| | - Elham R S Soliman
- Genetics and Molecular Biology Unit, Botany and Microbiology Department, Faculty of Science Helwan University, Helwan University, Helwan, Egypt
| |
Collapse
|
10
|
Escudero-Abarca BI, Goulter RM, Manuel CS, Leslie RA, Green K, Arbogast JW, Jaykus LA. Comparative Assessment of the Efficacy of Commercial Hand Sanitizers Against Human Norovirus Evaluated by an in vivo Fingerpad Method. Front Microbiol 2022; 13:869087. [PMID: 35464915 PMCID: PMC9021954 DOI: 10.3389/fmicb.2022.869087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (hNoV) are the leading cause of acute non-bacterial gastroenteritis worldwide and contaminated hands play a significant role in the spread of disease. Some hand sanitizers claim to interrupt hNoV transmission, but their antiviral efficacy on human hands is poorly characterized. The purpose of this work was to characterize the efficacy of representative commercial hand sanitizers against hNoV using an in vivo fingerpad method (ASTM E1838-17). Eight products [seven ethanol-based and one benzalkonium chloride (BAK)-based], and a benchmark 60% ethanol solution, were each evaluated on 10 human volunteers using the epidemic GII.4 hNoV strain. Virus titers before and after treatment were evaluated by RT-qPCR preceded by RNase treatment; product efficacy was characterized by log10 reduction (LR) in hNoV genome equivalent copies after treatment. The benchmark treatment produced a 1.7 ± 0.5 LR, compared with Product A (containing 85% ethanol) which produced a 3.3 ± 0.3 LR and was the most efficacious (p < 0.05). Product B (containing 70% ethanol), while less efficacious than Product A (p < 0.05), performed better than the benchmark with a LR of 2.4 ± 0.4. Five of the other ethanol-based products (labeled ethanol concentration ranges of 62–80%) showed similar efficacy to the 60% ethanol benchmark with LR ranging from 1.3 to 2.0 (p > 0.05). Product H (0.1% BAK) was less effective than the benchmark with a LR of 0.3 ± 0.2 (p < 0.05). None of the products screened were able to completely eliminate hNoV (maximum assay resolution 5.0 LR). Product performance was variable and appears driven by overall formulation. There remains a need for more hand sanitizer formulations having greater activity against hNoV, a virus that is comparatively recalcitrant relative to other pathogens of concern in community, healthcare, and food preparation environments.
Collapse
Affiliation(s)
- Blanca I. Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rebecca M. Goulter
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Rebecca M. Goulter,
| | | | | | | | | | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
11
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
12
|
Ortiz-Solà J, Viñas I, Aguiló-Aguayo I, Bobo G, Abadias M. An innovative water-assisted UV-C disinfection system to improve the safety of strawberries frozen under cryogenic conditions. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Summerlin HN, Pola CC, Chamakura KR, Young R, Gentry T, McLamore ES, Karthikeyan R, Gomes CL. Fate of enteric viruses during leafy greens (romaine lettuce) production using treated municipal wastewater and AP205 bacteriophage as a surrogate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1138-1144. [PMID: 34427159 DOI: 10.1080/10934529.2021.1968231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Water reuse programs are being explored to close the gap between supply and demand for irrigation in agriculture. However, these sources could contain hazardous microbial contaminants, and pose risks to public health. This study aimed to grow and irrigate romaine lettuce with inoculated wastewater effluent to track AP205 bacteriophage prevalence through cultivation and post-harvest storage. AP205 is a bacteriophage and was used as a surrogate for enteric viruses. Low and high dosages (mean ± standard deviation) of AP205 at 4.8 ± 0.4 log PFU/mL and 6.6 ± 0.2 log PFU/mL; respectively, were prepared to examine viral load influence on contamination levels. Foliage, leachate, and soil contamination levels were directly related to AP205 concentrations in the effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 °C), there was a significant decrease in AP205 concentration on the foliage. Results show that wastewater effluents usage for leafy greens cultivation can pose risks to humans and additional steps are required to safely apply wastewater effluents to soils and crops.
Collapse
Affiliation(s)
- Harvey N Summerlin
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Karthikeyan R Chamakura
- Center for Phage Technology, Texas A&M AgriLife, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ry Young
- Center for Phage Technology, Texas A&M AgriLife, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Terry Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Carmen L Gomes
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, Texas, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
14
|
Effectiveness of water and sanitizer washing solutions for removing enteric viruses from blueberries. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review. WATER 2021. [DOI: 10.3390/w13060764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The novel coronavirus disease (COVID-19), originating from China, has rapidly crossed borders, infecting people worldwide. While its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of other routes of contagion via the environment necessitates considerable scientific consideration. SARS-CoV-2 viral RNA has been detected in the feces of infected persons, and studies also have reported its occurrence in wastewater and surface water bodies. Therefore, water may be a possible route of virus outbreaks. Agricultural irrigation is the largest use of water globally, accounting for 70% of water use worldwide. Ensuring adequate water quality within irrigation practices is fundamental to prevent harm to plants and soils, maintain food safety, and protect public health. This review aims to gather information on possible SARS-CoV-2 transmission routes within urban and rural water environments, looking into the detection, persistence, and fate of SARS-CoV-2. Based on published literature, the effect of current treatment technologies in wastewater treatment plants (WWTPs) on SARS-CoV-2 inactivation has also been investigated. Preliminary research efforts that concentrated on SARS-CoV-2 indicate that the risk of virus transmission from the aquatic environment may currently be non-existent, although a few studies have reported the presence of SARS-CoV RNA in soils, whereas there are still no studies on the detection of SARS-CoV-2 in crops.
Collapse
|
16
|
Bonanno Ferraro G, Suffredini E, Mancini P, Veneri C, Iaconelli M, Bonadonna L, Montagna MT, De Giglio O, La Rosa G. Pepper Mild Mottle Virus as Indicator of Pollution: Assessment of Prevalence and Concentration in Different Water Environments in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:117-125. [PMID: 33432501 DOI: 10.1007/s12560-020-09458-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Pepper mild mottle virus (PMMoV), a plant pathogenic virus belonging to the family Virgoviridae, has been proposed as a potential viral indicator for human faecal pollution in aquatic environments. The present study investigated the occurrence, amount and diversity of PMMoV in water environments in Italy. A total of 254 water samples, collected between 2017 and 2019 from different types of water, were analysed. In detail, 92 raw sewage, 32 treated sewage, 16 river samples, 9 estuarine waters, 20 bathing waters, 67 groundwater samples and 18 drinking waters were tested. PMMoV was detected in 79% and 75% of untreated and treated sewage samples, respectively, 75% of river samples, 67% and 25% of estuarine and bathing waters and 13% of groundwater samples. No positive was detected in drinking water. The geometric mean of viral concentrations (genome copies/L) was ranked as follows: raw sewage (2.2 × 106) > treated sewage (2.9 × 105) > river waters (6.1 × 102) > estuarine waters (4.8 × 102) > bathing waters (8.5 × 101) > groundwater (5.9 × 101). A statistically significant variation of viral loads could be observed between raw and treated sewage and between these and all the other water matrices. PMMoV occurrence and viral loads did not display seasonal variation in raw sewage nor correlation with faecal indicator bacteria in marine waters and groundwater. This study represents the first report on the occurrence and quantification PMMoV in different water environments in Italy. Further studies are required to evaluate the suitability of PMMoV as a viral indicator for human faecal pollution and for viral pathogens in waters.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M T Montagna
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, Bari, Italy
| | - O De Giglio
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, Bari, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Rowell CER, Dobrovolny HM. Energy Requirements for Loss of Viral Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:281-294. [PMID: 32757142 PMCID: PMC7405386 DOI: 10.1007/s12560-020-09439-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Outside the host, viruses will eventually lose their ability to infect cells due to conformational changes that occur to proteins on the viral capsid. In order to undergo a conformational change, these proteins require energy to activate the chemical reaction that leads to the conformational change. In this study, data from the literature is used to calculate the energy required for viral inactivation for a variety of different viruses by means of the Arrhenius equation. We find that some viruses (rhinovirus, poliovirus, human immunodeficiency virus, Alkhumra hemorrhagic fever virus, and hepatitis A virus) have high inactivation energies, indicative of breaking of a chemical double bond. We also find that several viruses (respiratory syncytial virus, poliovirus, and norovirus) have nonlinear Arrhenius plots, suggesting that there is more than a single pathway for inactivation of these viruses.
Collapse
Affiliation(s)
- Caroline E R Rowell
- Department of Chemistry, Wingate University, Hendersonville, NC, USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
18
|
Fuzawa M, Bai H, Shisler JL, Nguyen TH. The Basis of Peracetic Acid Inactivation Mechanisms for Rotavirus and Tulane Virus under Conditions Relevant for Vegetable Sanitation. Appl Environ Microbiol 2020; 86:e01095-20. [PMID: 32709728 PMCID: PMC7499037 DOI: 10.1128/aem.01095-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
We determined the disinfection efficacy and inactivation mechanisms of peracetic acid (PAA)-based sanitizer using pH values relevant for vegetable sanitation against rotavirus (RV) and Tulane virus (TV; a human norovirus surrogate). TV was significantly more resistant to PAA disinfection than RV: for a 2-log10 reduction of virus titer, RV required 1 mg/liter PAA for 3.5 min of exposure, while TV required 10 mg/liter PAA for 30 min. The higher resistance of TV can be explained, in part, by significantly more aggregation of TV in PAA solutions. The PAA mechanisms of virus inactivation were explored by quantifying (i) viral genome integrity and replication using reverse transcription-quantitative PCR (RT-qPCR) and (ii) virus-host receptor interactions using a cell-free binding assay with porcine gastric mucin conjugated with magnetic beads (PGM-MBs). We observed that PAA induced damage to both RV and TV genomes and also decreased virus-receptor interactions, with the latter suggesting that PAA damages viral proteins important for binding its host cell receptors. Importantly, the levels of genome-versus-protein damage induced by PAA were different for each virus. PAA inactivation correlated with higher levels of RV genome damage than of RV-receptor interactions. For PAA-treated TV, the opposite trends were observed. Thus, PAA inactivates each of these viruses via different molecular mechanisms. The findings presented here potentially contribute to the design of a robust sanitation strategy for RV and TV using PAA to prevent foodborne disease.IMPORTANCE In this study, we examined the inactivation mechanisms of peracetic acid (PAA), a sanitizer commonly used for postharvest vegetable washing, for two enteric viruses: Tulane virus (TV) as a human norovirus surrogate and rotavirus (RV). PAA disinfection mechanisms for RV were mainly due to genome damage. In contrast, PAA disinfection in TV was due to damage of the proteins important for binding to its host receptor. We also observed that PAA triggered aggregation of TV to a much greater extent than RV. These studies demonstrate that different viruses are inactivated via different PAA mechanisms. This information is important for designing an optimal sanitation practice for postharvest vegetable washing to minimize foodborne viral diseases.
Collapse
Affiliation(s)
- Miyu Fuzawa
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hezi Bai
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
19
|
Effects of Weather and Environmental Factors on the Seasonal Prevalence of Foodborne Viruses in Irrigation Waters in Gyeonggi Province, Korea. Microorganisms 2020; 8:microorganisms8081224. [PMID: 32796772 PMCID: PMC7465913 DOI: 10.3390/microorganisms8081224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
This study aimed to investigate the prevalence of foodborne viruses in reservoirs (an important resource of irrigation water) and its correlation with environmental and weather factors. From May 2017 to November 2018, we visited ten reservoirs and a river in the Anseong region of South Korea and collected a total of 192 samples in accordance with the environment protection agency guidelines. We recorded the weather factors (temperature, humidity, and accumulated precipitation) and investigated the surrounding environment factors (livestock, fishing site, the catchment area of reservoirs, etc.). Our research results show that from the river and reservoirs, the detection rates of human norovirus GII, adenovirus, rotavirus, human norovirus GI, and astrovirus were 27.1, 10.4, 10.4, 4.16, and 3.1%, respectively. Their viral load ranged from -1.48 to 1.55 log10 genome copies/l. However, hepatitis A virus was not detected in any irrigation water sample. Although no sampling was performed in winter, foodborne viruses and male-specific coliphages were frequently found during spring (40.78%) and autumn (39.47%). Interestingly, the significant correlation between the accumulative precipitation and the number of detected norovirus and adenovirus was confirmed by linear regression analysis. Furthermore, when the accumulative precipitation ranged from 20 to 60 mm, it significantly affected the viral load and prevalence. Among the environmental factors, recreational facilities such as fishing sites and bungalow fishing spots were identified as contamination sources by correlation analysis. Our research results confirmed the correlations between environmental contamination factors in the reservoir and weather factors with the prevalence of foodborne viruses in the reservoir. These facilitates the assessment of potential foodborne virus contamination during crop irrigation. In addition, predictive models including environmental and weather factors should be developed for monitoring and controlling the safety of irrigation waters in reservoirs.
Collapse
|
20
|
Abstract
Water is an essential component of food structures and biological materials. The importance of water as a parameter affecting virion stability and inactivation has been recognized across disciplinary areas. The large number of virus species, differences in spreading, likelihood of foodborne infections, unknown infective doses, and difficulties of infective virus quantification are often limiting experimental approaches to establish accurate data required for detailed understanding of virions’ stability and inactivation kinetics in various foods. Furthermore, non-foodborne viruses, as shown by the SARS-CoV-2 (Covid-19) pandemic, may spread within the food chain. Traditional food engineering benefits from kinetic data on effects of relative humidity (RH) and temperature on virion inactivation. The stability of enteric viruses, human norovirus (HuNoV), and hepatitis A (HAV) virions in food materials and their resistance against inactivation in traditional food processing and preservation is well recognized. It appears that temperature-dependence of virus inactivation is less affected by virus strains than differences in temperature and RH sensitivity of individual virus species. Pathogenic viruses are stable at low temperatures typical of food storage conditions. A significant change in activation energy above typical protein denaturation temperatures suggests a rapid inactivation of virions. Furthermore, virus inactivation mechanisms seem to vary according to temperature. Although little is known on the effects of water on virions’ resistance during food processing and storage, dehydration, low RH conditions, and freezing stabilize virions. Enveloped virions tend to have a high stability at low RH, but low temperature and high RH may also stabilize such virions on metal and other surfaces for several days. Food engineering has contributed to significant developments in stabilization of nutrients, flavors, and sensitive components in food materials which provides a knowledge base for development of technologies to inactivate virions in foods and environment. Novel food processing, particularly high pressure processing (HPP) and cold plasma technologies, seem to provide efficient means for virion inactivation and food quality retention prior to packaging or food preservation by traditional technologies.
Collapse
Affiliation(s)
- Yrjö H. Roos
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Bozkurt H, Phan-Thien KY, van Ogtrop F, Bell T, McConchie R. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Crit Rev Food Sci Nutr 2020; 61:116-138. [PMID: 32008374 DOI: 10.1080/10408398.2020.1719383] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Foodborne enteric viruses, in particular HuNoV and HAV, are the most common cause of the berry-linked viral diseases, and outbreaks around the world, and have become an important concern for health authorities. Despite the increased importance of berry fruits as a vehicle for foodborne viruses, there is limited information concerning the fate of foodborne viruses in the berry supply chain from farm to consumer. A comprehensive understanding of berry-associated viral outbreaks - with a focus on contamination sources, persistence, survival, and the effects of current postharvest and processing interventions and practices - is essential for the development of effective preventative strategies to reduce risk of illness. The purpose of this paper is twofold; (i) to critically review the published literature on the current state of knowledge regarding berry-associated foodborne viral outbreaks and the efficiency of berry processing practices and (ii) to identify and prioritize research gaps regarding practical and effective mechanism to reduce viral contamination of berries. The review found that fecally infected food handlers were the predominant source of preharvest and postharvest pathogenic viral contamination. Current industrial practices applied to fresh and frozen berries demonstrated limited efficacy for reducing the viral load. While maintaining best practice personal and environmental hygiene is a key intervention, the optimization of processing parameters (i.e., freezing, frozen storage, and washing) and/or development of alternative processing technologies to induce sufficient viral inactivation in berries along with retaining sensory and nutritional quality, is also an important direction for further research.
Collapse
Affiliation(s)
- Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Floris van Ogtrop
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Tina Bell
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Fuzawa M, Araud E, Li J, Shisler JL, Nguyen TH. Free Chlorine Disinfection Mechanisms of Rotaviruses and Human Norovirus Surrogate Tulane Virus Attached to Fresh Produce Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11999-12006. [PMID: 31517478 DOI: 10.1021/acs.est.9b03461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To fill the knowledge gap on how effective free chlorine is against viral-contaminated produce, we inoculated the surfaces of outdoor- or greenhouse-grown kale and mustard with Rotavirus (RV) or a human norovirus surrogate (Tulane virus, TV) and then disinfected the leaves with free chlorine. Disinfection efficacies for RV strain OSU and Wa were approximately 1-log10 higher when attached to mustard than to kale. Similar disinfection efficacies were observed for TV attached to mustard or kale. When examining TV and RV OSU in suspension (not attached to leaf surfaces), TV was more resistant to free chlorine than RV OSU. Inactivation efficacies were higher for these viruses in suspension versus viruses attached to produce the surface. We also found that free chlorine damaged viral capsids, allowing free chlorine access to viral RNA to damage viral genomes. Exposure to free chlorine at 1.7 ppm over 1 min caused VP8* of RV OSU to lose its ability to bind to its host receptors. TV lost its ability to bind to its receptor only after exposure to free chlorine at 29 ppm over 1 min. Thus, to reduce foodborne viral infections, it is important to consider the differences in virus' reactivity and inactivation mechanisms with free chlorine.
Collapse
Affiliation(s)
| | | | - Jianrong Li
- Department of Veterinary Biosciences , The Ohio State University , Columbus 43210 , Ohio , United States
| | | | | |
Collapse
|
23
|
Yee RA, Leifels M, Scott C, Ashbolt NJ, Liu Y. Evaluating Microbial and Chemical Hazards in Commercial Struvite Recovered from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5378-5386. [PMID: 30964655 DOI: 10.1021/acs.est.8b03683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlled struvite (NH4MgPO4·6H2O) precipitation has become a well-known process for nutrient recovery from wastewater treatment systems to alleviate the pressures of diminishing, finite rock phosphate reservoirs. Nonetheless, coprecipitation of potential microbial and chemical hazards is poorly understood. On the other hand, antimicrobial resistance (AMR) is a major global public health concern and wastewater is thought to disseminate resistance genes within bacteria. Fecal indicator bacteria (FIB) are typically used as measures of treatment quality, and with multiresistant E. coli and Enterococcus spp. rising in concern, the quantification of FIB can be used as a preliminary method to assess the risk of AMR. Focusing on struvite produced from full-scale operations, culture and qPCR methods were utilized to identify FIB, antibiotic resistance genes, and human enteric viruses in the final product. Detection of these hazards occurred in both wet and dry struvite samples indicating that there is a potential risk that needs further consideration. Chemical and biological analyses support the idea that the presence of other wastewater components can impact struvite formation through ion and microbial interference. While heavy metal concentrations met current fertilizer standards, the presence of K, Na, Ca, and Fe ions can impact struvite purity yet provide benefit for agricultural uses. Additionally, the quantified hazards detected varied among struvite samples produced from different methods and sources, thus indicating that production methods could be a large factor in the risk associated with wastewater-recovered struvite. In all, coprecipitation of metals, fecal indicator bacteria, antimicrobial resistance genes, and human enteric viruses with struvite was shown to be likely, and future engineered wastewater systems producing struvite may require additional step(s) to manage these newly identified public health risks.
Collapse
Affiliation(s)
- Rachel A Yee
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Mats Leifels
- Centre for Water and Environmental Research (ZWU) , University Duisburg-Essen , Essen , 47057 , Germany
- School of Public Health , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Candis Scott
- School of Public Health , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Nicholas J Ashbolt
- School of Public Health , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| |
Collapse
|
24
|
Kaczmarek M, Avery SV, Singleton I. Microbes associated with fresh produce: Sources, types and methods to reduce spoilage and contamination. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:29-82. [PMID: 31128748 DOI: 10.1016/bs.aambs.2019.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Global food security remains one of the most important challenges that needs to be addressed to ensure the increasing demand for food of the fast growing human population is satisfied. Fruits and vegetables comprise an essential component of a healthy balanced diet as they are the major source of both macro- and micronutrients. They are particularly important for communities in developing countries whose nutrition often relies solely on a plant-based diet. Recent advances in agriculture and food processing technologies have facilitated production of fresh, nutritious and safe food for consumers. However, despite the development of sophisticated chemical and physical methods of food and equipment disinfection, fresh-cut produce and fruit juice industry still faces significant economic losses due to microbial spoilage. Furthermore, fresh produce remains an important source of pathogens that have been causing outbreaks of human illness worldwide. This chapter characterizes common spoilage and human pathogenic microorganisms associated with fresh-cut produce and fruit juice products, and discusses the methods and technology that have been developed and utilized over the years to combat them. Substantial attention is given to highlight advantages and disadvantages of using these methods to reduce microbial spoilage and their efficacy to eliminate human pathogenic microbes associated with consumption of fresh-cut produce and fruit juice products.
Collapse
Affiliation(s)
- Maciej Kaczmarek
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, United Kingdom.
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, United Kingdom.
| |
Collapse
|
25
|
Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 2018; 285:110-128. [PMID: 30075465 PMCID: PMC7132524 DOI: 10.1016/j.ijfoodmicro.2018.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
In a recent report by risk assessment experts on the identification of food safety priorities using the Delphi technique, foodborne viruses were recognized among the top rated food safety priorities and have become a greater concern to the food industry over the past few years. Food safety experts agreed that control measures for viruses throughout the food chain are required. However, much still needs to be understood with regard to the effectiveness of these controls and how to properly validate their performance, whether it is personal hygiene of food handlers or the effects of processing of at risk foods or the interpretation and action required on positive virus test result. This manuscript provides a description of foodborne viruses and their characteristics, their responses to stress and technologies developed for viral detection and control. In addition, the gaps in knowledge and understanding, and future perspectives on the application of viral detection and control strategies for the food industry, along with suggestions on how the food industry could implement effective control strategies for viruses in foods. The current state of the science on epidemiology, public health burden, risk assessment and management options for viruses in food processing environments will be highlighted in this review.
Collapse
Affiliation(s)
- Albert Bosch
- University of Barcelona, Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, and Institute of Nutrition and Food Safety, Diagonal 643, 8028 Barcelona, Spain.
| | - Elissavet Gkogka
- Arla Innovation Centre, Arla R&D, Agro Food Park 19, 8200 Aarhus N, Denmark,.
| | - Françoise S Le Guyader
- IFREMER, Environment and Microbiology Laboratory, Rue de l'Ile d'Yeu, BP 21103, 44311 Nantes, France.
| | - Fabienne Loisy-Hamon
- bioMérieux, Centre Christophe Mérieux, 5 rue des berges, 38025 Grenoble, France.
| | - Alvin Lee
- Illinois Institute of Technology, Moffett Campus, 6502 South Archer Road, 60501-1957 Bedford Park, IL, United States.
| | - Lilou van Lieshout
- The International Life Sciences Institute, Av. E. Mounier 83/B.6, 1200 Brussels, Belgium.
| | - Balkumar Marthi
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands; DaQsh Consultancy Services, 203, Laxmi Residency, Kothasalipeta, Visakhapatnam 530 002, India
| | - Mette Myrmel
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146, 0033 Oslo, Norway.
| | - Annette Sansom
- Campden BRI Group, Station Road, Chipping Campden, GL55 6LD Gloucestershire, United Kingdom.
| | - Anna Charlotte Schultz
- National Food Institute Technical University of Denmark, Mørkhøj Bygade 19, Building H, Room 204, 2860 Søborg, Denmark.
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809 Krefeld, Germany.
| | - Sophie Zuber
- Nestlé Research Centre, Institute of Food Safety and Analytical Science, Vers-chez-les-Blanc, Box 44, 1000 Lausanne, Switzerland.
| | - Trevor Phister
- PepsiCo Europe, Beaumont Park 4, Leycroft Road, LE4 1ET Leicester, United Kingdom.
| |
Collapse
|
26
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|
27
|
Yeargin T, Gibson KE. Key characteristics of foods with an elevated risk for viral enteropathogen contamination. J Appl Microbiol 2018; 126:996-1010. [PMID: 30244501 DOI: 10.1111/jam.14113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
Viral enteropathogens are one of the leading causative agents of foodborne illnesses in both the United States and the European Union. While human noroviruses and hepatitis A virus cause the vast majority of outbreaks and illnesses, there are handful of human enteric viruses that contribute to sporadic outbreaks worldwide including astrovirus, sapovirus, rotavirus, enterovirus and Aichi virus. In addition, hepatitis E virus is increasingly being recognized as an emerging zoonotic threat within the food supply. This review aims to briefly describe the primary human enteric viruses of concern with respect to foodborne transmission. Next, we focus on the contamination and persistence of these viruses within three high-risk food commodities-leafy greens, soft red fruits and bivalve mollusks. As opposed to detailing the specific routes by which these foods can be contaminated with enteric viruses, we have chosen to focus on their persistence and specific interactions within the food itself. Therefore, the processes of attachment and internalization of the viruses in foods have been emphasized. Looking forward, the implications of these specific interactions of human enteric viruses with leafy greens, soft red fruits and bivalve mollusks are briefly considered within the context of future prevention and control strategies.
Collapse
Affiliation(s)
- T Yeargin
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - K E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
28
|
López-Gálvez F, Randazzo W, Vásquez A, Sánchez G, Decol LT, Aznar R, Gil MI, Allende A. Irrigating Lettuce with Wastewater Effluent: Does Disinfection with Chlorine Dioxide Inactivate Viruses? JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1139-1145. [PMID: 30272803 DOI: 10.2134/jeq2017.12.0485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reclaimed water obtained from urban wastewater is currently being used as irrigation water in water-scarce regions in Spain. However, wastewater can contain enteric viruses that water reclamation treatment cannot remove or inactivate completely. In the present study, greenhouse-grown baby lettuce ( L.) was irrigated with secondary treatment effluent from a wastewater treatment plant untreated and treated using chlorine dioxide (ClO). The effect of ClO treatment on the physicochemical characteristics and the presence of enteric viruses in irrigation water and lettuce was assessed. The presence of human noroviruses genogroups I and II (NoV GI and NoV GII), and human astroviruses (HAstV), was analyzed by real-time polymerase chain reaction (RT-qPCR). Additionally, to check for the loss of infectivity induced by the disinfection treatment, positive samples were re-analyzed after pretreatment with the intercalating dye PMAxx before RNA extraction and RT-qPCR. There were no significant differences in the proportion of positive samples and the concentration of enteric viruses between treated and untreated reclaimed water without PMAxx pretreatment ( > 0.05). A significantly lower concentration of NoV GI was detected in ClO-treated water when samples were pretreated with PMAxx ( < 0.05), indicating that inactivation was due to the disinfection treatment. Laboratory-scale validation tests indicated the suitability of PMAxx-RT-qPCR for discrimination between potentially infectious and ClO-damaged viruses. Although the applied ClO treatment was not able to significantly reduce the enteric virus load of the secondary effluent from the wastewater treatment plant, none of the lettuce samples analyzed ( = 36) was positive for the presence of NoV or HAstV.
Collapse
|
29
|
Shearer AEH, Kniel KE. Enhanced Removal of Norovirus Surrogates, Murine Norovirus and Tulane Virus, from Aqueous Systems by Zero-Valent Iron. J Food Prot 2018; 81:1432-1438. [PMID: 30080120 DOI: 10.4315/0362-028x.jfp-18-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viral contamination can compromise the safety of water utilized for direct consumption, produce irrigation, and postharvest washing of produce. Zero-valent iron (ZVI) is used commercially for chemical remediation of water and has been demonstrated to remove some biological contaminants from water in laboratory and field studies. This study investigated the efficacy of ZVI to remove human norovirus surrogates, Tulane virus (TV) and murine norovirus (MNV), from water and to characterize the reversibility and nature of viral association with ZVI. Genomic material of TV and MNV recovered from the effluent of inoculated water treatment columns containing a 1:1 mixture of ZVI and sand was 2 and 3 log, respectively, less than that recovered from the effluent of treatment columns containing only sand. Elution buffers (citrate buffers, pH 4 and 7, and virus elution buffer, pH 9.5, with and without added 1 M NaCl) did not increase recovery of infectious TV and MNV from ZVI as compared with elution with water alone. TV-inoculated lettuce washed with water in the presence of ZVI yielded 1.5 to 2 log fewer infectious TV from washwater as compared with lettuce washed with water alone or in the presence of sand. These data demonstrate the enhanced removal of human norovirus surrogates, TV and MNV, from water by ZVI and provide indications that unrecovered viruses are not readily disassociated from ZVI by buffers of various pH and ionic strength. These findings warrant further investigation into larger-scale simulations of water remediation of viral contaminants for potential application in the treatment of water used for drinking, irrigation, and food processing.
Collapse
Affiliation(s)
- Adrienne E H Shearer
- Department of Animal and Food Sciences, University of Delaware, 531 South College Avenue, 044 Townsend Hall, Newark, Delaware 19716, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, 531 South College Avenue, 044 Townsend Hall, Newark, Delaware 19716, USA
| |
Collapse
|
30
|
Zhou Z, Zuber S, Cantergiani F, Sampers I, Devlieghere F, Uyttendaele M. Inactivation of Foodborne Pathogens and Their Surrogates on Fresh and Frozen Strawberries Using Gaseous Ozone. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Li D, Uyttendaele M. Potential of Human Norovirus Surrogates and Salmonella enterica Contamination of Pre-harvest Basil ( Ocimum basilicum) via Leaf Surface and Plant Substrate. Front Microbiol 2018; 9:1728. [PMID: 30105013 PMCID: PMC6077253 DOI: 10.3389/fmicb.2018.01728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Fresh produce has been identified as an important vehicle for foodborne pathogen transmission and fresh culinary herbs have occasionally been associated with human pathogens and illness. In this study, the fate of human NoV surrogates [murine norovirus 1 (MNV-1) and Tulane virus (TV)] and three strains of Salmonella enterica on pre-harvest basil (Ocimum basilicum) was investigated. The persistence after contamination via either leaf surface or plant substrate was tested respectively. After 3 days, both MNV-1 and TV on pre-harvest leaves were at non-detectable levels (>5.5-log reduction for MNV-1 and >3.3-log reduction for TV). The three Salmonella strains showed consistent reductions of 3- to 4-log. At day 6 and 9, all the tested samples showed low levels of infectivity which were close or below the detection limits (1.7-log PFU/sample leaf for MNV-1 and TV, 0.7-log CFU/sample leaf for Salmonella) except for S. Thompson FMFP 899, one out of three samples showed to maintain present at exceptional high levels (day 6: 5.5-log CFU/sample leaf; day 9: 6.7-log CFU/sample leaf). Possibilities of microbial internalization into the edible parts of basil via the roots was demonstrated with both MNV-1 and S. enterica Thompson FMFP 899. The infectivity of internalized MNV-1 and S. enterica both decreased to non-detectable levels within 9 days after inoculation. Moreover, it should be noticed that very high microbial inoculation was used in the experimental set-up (8.46-log PFU/ml of MNV-1, 8.60-log CFU/ml of S. enterica), which is abnormal in the real-life expected contamination scenario. Within the tested scenarios in this study, S. enterica contaminated on the adaxial leaf surface of basil plants while in growth, and remained/reached a high population of over 6-log CFU/sample leaf after 9 days in one out of three samples, thus showed the highest potential for causing foodborne infection.
Collapse
Affiliation(s)
- Dan Li
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Food Science and Technology Programme, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Marti E, Ferrary-Américo M, Barardi CRM. Detection of Potential Infectious Enteric Viruses in Fresh Produce by (RT)-qPCR Preceded by Nuclease Treatment. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:444-452. [PMID: 28452009 DOI: 10.1007/s12560-017-9300-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Foodborne illnesses associated with contaminated fresh produce are a common public health problem and there is an upward trend of outbreaks caused by enteric viruses, especially human noroviruses (HNoVs) and hepatitis A virus (HAV). This study aimed to assess the use of DNase and RNase coupled to qPCR and RT-qPCR, respectively, to detect intact particles of human adenoviruses (HAdVs), HNoV GI and GII and HAV in fresh produce. Different concentrations of DNase and RNase were tested to optimize the degradation of free DNA and RNA from inactivated HAdV and murine norovirus (MNV), respectively. Results indicated that 10 µg/ml of RNase was able to degrade more than 4 log10 (99.99%) of free RNA, and 1 U of DNase degraded the range of 0.84-2.5 log10 of free DNA depending on the fresh produce analysed. The treatment with nucleases coupled to (RT)-qPCR was applied to detect potential infectious virus in organic lettuce, green onions and strawberries collected in different seasons. As a result, no intact particles of HNoV GI and GII were detected in the 36 samples analysed, HAdV was found in one sample and HAV was present in 33.3% of the samples, without any reasonable distribution pattern among seasons. In conclusion, RT-qPCR preceded by RNase treatment of eluted samples from fresh produce is a good alternative to detect undamaged RNA viruses and therefore, potential infectious viruses. Moreover, this study provides data about the prevalence of enteric viruses in organic fresh produce from Brazil.
Collapse
Affiliation(s)
- Elisabet Marti
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brazil.
| | - Monique Ferrary-Américo
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brazil
| | - Célia Regina Monte Barardi
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brazil
| |
Collapse
|
33
|
Dunkin N, Weng S, Jacangelo JG, Schwab KJ. Inactivation of Human Norovirus Genogroups I and II and Surrogates by Free Chlorine in Postharvest Leafy Green Wash Water. Appl Environ Microbiol 2017; 83:e01457-17. [PMID: 28887415 PMCID: PMC5666131 DOI: 10.1128/aem.01457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period. A suite of kinetic inactivation models was fit to the viral reduction data to aid in quantification of concentration-time (CT) values. Results indicate that 3-log10 infectivity reduction was achieved at CT values of less than 0.2 mg · min/liter for MNV and 2.5 mg · min/liter for MS2 in all wash water types. CT values for 2-log10 molecular reduction of hNoV GI in whole leaf and chopped romaine wash waters were 1.5 and 0.9 mg · min/liter, respectively. For hNoV GII, CT values were 13.0 and 7.5 mg · min/liter, respectively. In shredded iceberg wash water, 3-log10 molecular reduction was not observed for any virus over the time course of experiments. These findings demonstrate that noroviruses may exhibit genogroup-dependent resistance to free chlorine and emphasize the importance of distinguishing between genogroups in hNoV persistence studies.IMPORTANCE Postharvest washing of millions of pounds of leafy greens is performed daily in industrial processing facilities with the intention of removing dirt, debris, and pathogenic microorganisms prior to packaging. Modest inactivation of pathogenic microorganisms (less than 2 log10) is known to occur on the surfaces of leafy greens during washing. Therefore, the primary purpose of the sanitizing agent is to maintain microbial quality of postharvest processing water in order to limit cross-contamination. This study modeled viral inactivation data and quantified the free-chlorine CT values that processing facilities must meet in order to achieve the desired level of hNoV GI and GII reduction. Disinfection experiments were conducted in industrial leafy green wash water collected from a full-scale fresh produce processing facility in the United States, and hNoV GI and GII results were compared with surrogate molecular and infectivity data.
Collapse
Affiliation(s)
- Nathan Dunkin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - ShihChi Weng
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph G Jacangelo
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
- MWH-Stantec, Pasadena, California, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- JHU/MWH-Stantec Alliance, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Rajkovic A, Smigic N, Djekic I, Popovic D, Tomic N, Krupezevic N, Uyttendaele M, Jacxsens L. The performance of food safety management systems in the raspberries chain. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Marti E, Ferrary-Américo M, Barardi CR. Viral disinfection of organic fresh produce comparing Polyphenon 60 from green tea with chlorine. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Wadamori Y, Gooneratne R, Hussain MA. Outbreaks and factors influencing microbiological contamination of fresh produce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1396-1403. [PMID: 27807844 DOI: 10.1002/jsfa.8125] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Fresh fruits and vegetables are nutritionally well-recognised as healthy components in diets. The microbiological foodborne outbreaks associated with the consumption of fresh produce have been increasing. Salmonella spp., Escherichia coli O157:H7, Staphylococcus aureus, Campylobacter spp. and Listeria monocytogenes are the most common pathogens that contaminate fresh produce. This review discusses recent foodborne outbreaks linked to fresh produce, factors that affect microbiological contamination and measures that could be adopted to reduce the foodborne illnesses. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yukiko Wadamori
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Malik A Hussain
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
38
|
Ramesh T, Nayak B, Amirbahman A, Tripp CP, Mukhopadhyay S. Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
López-Gálvez F, Truchado P, Sánchez G, Aznar R, Gil M, Allende A. Occurrence of enteric viruses in reclaimed and surface irrigation water: relationship with microbiological and physicochemical indicators. J Appl Microbiol 2016; 121:1180-8. [DOI: 10.1111/jam.13224] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- F. López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - P. Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - G. Sánchez
- Department of Biotechnology; IATA-CSIC; Valencia Spain
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
| | - R. Aznar
- Department of Biotechnology; IATA-CSIC; Valencia Spain
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
| | - M.I. Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - A. Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
40
|
Marti E, Barardi CRM. Detection of human adenoviruses in organic fresh produce using molecular and cell culture-based methods. Int J Food Microbiol 2016; 230:40-4. [PMID: 27127838 DOI: 10.1016/j.ijfoodmicro.2016.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 01/06/2023]
Abstract
The consumption of organic fresh produce has increased in recent years due to consumer demand for healthy foods without chemical additives. However, the number of foodborne outbreaks associated with fresh produce has also increased. Contamination of food with enteric viruses is a major concern because the viruses have a low infectious dose and high persistence in the environment. Human adenovirus (HAdV) has been proposed as a good marker of faecal contamination. Therefore, the aim of this study was to evaluate the efficiency of the plaque assay (PA), real time PCR (qPCR) and integrated cell culture-RT-qPCR (ICC-RT-qPCR) for the recovery of HAdV from artificially and naturally contaminated fresh produce. Organic lettuce, strawberries and green onions were selected because these fresh products are frequently associated with foodborne outbreaks. The virus extraction efficiencies from artificially contaminated samples varied from 2.8% to 32.8% depending on the food matrix and the quantification method used. Although the HAdV recoveries determined by qPCR were higher than those determined by PA and ICC-RT-qPCR, PA was defined as the most reproducible method. The qPCR assays were more sensitive than the PA and ICC-RT-qPCR assays; however, this technique alone did not provide information about the viability of the pathogen. ICC-RT-qPCR was more sensitive than PA for detecting infectious particles in fresh produce samples. HAdV genome copies were detected in 93.3% of the analysed naturally contaminated samples, attesting to the common faecal contamination of the fresh produce tested. However, only 33.3% of the total samples were positive for infectious HAdV particles based on ICC-RT-qPCR. In conclusion, this study reported that HAdV can be an efficient viral marker for fresh produce contamination. Good detection of infectious HAdV was obtained with the ICC-RT-qPCR and PA assays. Thus, we suggest that the ICC-RT-qPCR and PA assays should be considered when quantitative microbial risk assessment (QMRA) studies are required and to establish reliable food safety guidelines.
Collapse
Affiliation(s)
- Elisabet Marti
- Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| | - Célia Regina Monte Barardi
- Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| |
Collapse
|