1
|
Wang Z, Arnold JC. Cannabinoids and healthy ageing: the potential for extending healthspan and lifespan in preclinical models with an emphasis on Caenorhabditis elegans. GeroScience 2024; 46:5643-5661. [PMID: 38696056 PMCID: PMC11493940 DOI: 10.1007/s11357-024-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 10/23/2024] Open
Abstract
There is a significant global upsurge in the number and proportion of older persons in the population. With this comes an increasing prevalence of age-related conditions which pose a major challenge to healthcare systems. The development of anti-ageing treatments may help meet this challenge by targeting the ageing process which is a common denominator to many health problems. Cannabis-like compounds (cannabinoids) are reported to improve quality of life and general well-being in human trials, and there is increasing preclinical research highlighting that they have anti-ageing activity. Moreover, preclinical evidence suggests that endogenous cannabinoids regulate ageing processes. Here, we review the anti-ageing effects of the cannabinoids in various model systems, including the most extensively studied nematode model, Caenorhabditis elegans. These studies highlight that the cannabinoids lengthen healthspan and lifespan, with emerging evidence that they may also hinder the development of cellular senescence. The non-psychoactive cannabinoid cannabidiol (CBD) shows particular promise, with mechanistic studies demonstrating it may work through autophagy induction and activation of antioxidative systems. Furthermore, CBD improves healthspan parameters such as diminishing age-related behavioural dysfunction in models of both healthy and accelerated ageing. Translation into mammalian systems provides an important next step. Moreover, looking beyond CBD, future studies could probe the multitude of other cannabis constituents for their anti-ageing activity.
Collapse
Affiliation(s)
- Zhizhen Wang
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Yu ZZ, Tu JJ, Ou ML, Cen JX, Xue K, Li SJ, Zhou J, Lu GD. A mechanistic analysis of metformin's biphasic effects on lifespan and healthspan in C. elegans: Elixir in youth, poison in elder. Mech Ageing Dev 2024; 221:111963. [PMID: 38986790 DOI: 10.1016/j.mad.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aging, a complex biological process influenced by genetic, environmental, and pharmacological factors, presents a significant challenge in understanding its underlying mechanisms. In this study, we explored the divergent impacts of metformin treatment on the lifespan and healthspan of young and old C. elegans, demonstrating a intriguing "elixir in youth, poison in elder" phenomenon. By scrutinizing the gene expression changes in response to metformin in young (day 1 of adulthood) and old (days 8) groups, we identified nhr-57 and C46G7.1 as potential modulators of age-specific responses. Notably, nhr-57 and C46G7.1 exhibit contrasting regulation patterns, being up-regulated in young worms but down-regulated in old counterparts following metformin treatment. Functional studies employing knockdown approaches targeting nhr-57, a gene under the control of hif-1 with a documented protective function against pore-forming toxins in C. elegans, and C46G7.1, unveiled their critical roles in modulating lifespan and healthspan, as well as in mediating the biphasic effects of metformin. Furthermore, deletion of hif-1 retarded the influence of metformin, implicating the involvement of hif-1/nhr-57 in age-specific drug responses. These findings underscored the necessity of deciphering the mechanisms governing age-related susceptibility to pharmacological agents to tailor interventions for promoting successful aging.
Collapse
Affiliation(s)
- Zhen-Zhen Yu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jia-Jun Tu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Mei-Ling Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jin-Xiong Cen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| |
Collapse
|
3
|
Zhang B, Cao Y, Qu Z, Sun Y, Tian X. The impact of metformin on mortality in patients with type 2 diabetes mellitus: a prospective cohort study. Endocrine 2024:10.1007/s12020-024-04012-x. [PMID: 39190051 DOI: 10.1007/s12020-024-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metformin, a widely used antihyperglycemic drug, has shown efficacy in treating type 2 diabetes mellitus (T2DM) and is associated with potential benefits beyond glycemic control. This study investigates the impact of metformin on mortality in T2DM patients using a prospective cohort design utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS In NHANES 1999-2014, a total of 5813 representative participants aged 20 and above with T2DM were included in the analysis. We utilized Kaplan-Meier survival curves and multivariate Cox regression analysis to investigate the impact of metformin on both all-cause mortality and cause-specific mortality among patients with T2DM. RESULTS Kaplan-Meier analysis showed a significant reduction in all-cause and cause-specific mortality in metformin users compared to non-users (p < 0.05). Multivariate Cox regression confirmed these findings, indicating that metformin use was associated with a 18% reduction in all-cause mortality (HR = 0.82, 95% CI = 0.73-0.92, p < 0.001) and 25% reduction in cardiovascular mortality (HR = 0.75, 95% CI = 0.60-0.94, p = 0.01). CONCLUSION Our results suggest that metformin significantly reduces all-cause and cardiovascular mortality in T2DM patients, highlighting its potential benefits beyond glycemic control. These results contribute to the existing literature by providing robust evidence from a large prospective cohort study. However, further research is needed to validate these findings and elucidate the underlying mechanisms controlling the effects of metformin on mortality outcomes in individuals with T2DM.
Collapse
Affiliation(s)
- Bocheng Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Cao
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenan Qu
- Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| | - Yulan Sun
- Anshan Central Hospital, Anshan, Liaoning, China
| | - Xiaoyuan Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
6
|
Yang W, Yang Y, Wang Y, Gao Z, Zhang J, Gao W, Chen Y, Lu Y, Wang H, Zhou L, Wang Y, Li J, Tao H. Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). Int J Mol Med 2024; 54:71. [PMID: 38963023 PMCID: PMC11232665 DOI: 10.3892/ijmm.2024.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingtang Zhang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weimin Gao
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanjun Chen
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - You Lu
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyu Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lingyan Zhou
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yifan Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
7
|
Natarajan D, Ekambaram S, Tarantini S, Yelahanka Nagaraja R, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves brain microvascular endothelial function and cognition in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602747. [PMID: 39026792 PMCID: PMC11257558 DOI: 10.1101/2024.07.09.602747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old old C57BL/6J mice were treated with saline or CL (β3-adrenergic agonist) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex of aged animals. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in radial arm water maze and Y-maze tests. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of brain microvascular endothelial function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
|
8
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Ding M, Yan J, Chen Y, Liu J, Chao G, Zhang S. Changes in M6A methylation: A key factor in the vicious cycle of flora -gut aging. Ageing Res Rev 2024; 98:102351. [PMID: 38820855 DOI: 10.1016/j.arr.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The aging process significantly impacts the gastrointestinal tract and various bodily systems, exacerbating age-related diseases. Research suggests a correlation between an imbalance in intestinal flora and gut aging, yet the precise mechanism remains incompletely elucidated. Epigenetic modifications, particularly m6A methylation, play a pivotal role in driving aging and are closely associated with gut aging. Maintaining a healthy balance of intestinal microbes is contingent upon m6A methylation, which is believed to be crucial in the vicious cycle of gut aging and intestinal flora. This article highlights the importance of m6A methylation in the nexus between gut aging and flora. It proposes the potential for targeted m6A methylation to break the vicious cycle of gut aging and flora imbalance, offering novel perspectives on attenuating or reversing gut aging.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Yuxuan Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Jinguo Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Guanqun Chao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| |
Collapse
|
10
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Barinda AJ, Hardi H, Louisa M, Khatimah NG, Marliau RM, Felix I, Fadhillah MR, Jamal AK. Repurposing effect of cardiovascular-metabolic drug to increase lifespan: a systematic review of animal studies and current clinical trial progress. Front Pharmacol 2024; 15:1373458. [PMID: 38966557 PMCID: PMC11223003 DOI: 10.3389/fphar.2024.1373458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
With the increase in life expectancy, aging has emerged as a significant health concern. Due to its various mechanisms of action, cardiometabolic drugs are often repurposed for other indications, including aging. This systematic review analyzed and highlighted the repositioning potential of cardiometabolic drugs to increase lifespan as an aging parameter in animal studies and supplemented by information from current clinical trial registries. Systematic searching in animal studies was performed based on PICO: "animal," "cardiometabolic drug," and "lifespan." All clinical trial registries were also searched from the WHO International Clinical Trial Registry Platform (ICTRP). Analysis of 49 animal trials and 10 clinical trial registries show that various cardiovascular and metabolic drugs have the potential to target lifespan. Metformin, acarbose, and aspirin are the three most studied drugs in animal trials. Aspirin and acarbose are the promising ones, whereas metformin exhibits various results. In clinical trial registries, metformin, omega-3 fatty acid, acarbose, and atorvastatin are currently cardiometabolic drugs that are repurposed to target aging. Published clinical trial results show great potential for omega-3 and metformin in healthspan. Systematic Review Registration: crd.york.ac.uk/prospero/display_record.php?RecordID=457358, identifier: CRD42023457358.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurul Gusti Khatimah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rheza Meida Marliau
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Immanuel Felix
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Muhamad Rizqy Fadhillah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Arief Kurniawan Jamal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
13
|
Cui W, Lv C, Geng P, Fu M, Zhou W, Xiong M, Li T. Novel targets and therapies of metformin in dementia: old drug, new insights. Front Pharmacol 2024; 15:1415740. [PMID: 38881878 PMCID: PMC11176471 DOI: 10.3389/fphar.2024.1415740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Dementia is a devastating disorder characterized by progressive and persistent cognitive decline, imposing a heavy public health burden on the individual and society. Despite numerous efforts by researchers in the field of dementia, pharmacological treatments are limited to relieving symptoms and fail to prevent disease progression. Therefore, studies exploring novel therapeutics or repurposing classical drugs indicated for other diseases are urgently needed. Metformin, a first-line antihyperglycemic drug used to treat type 2 diabetes, has been shown to be beneficial in neurodegenerative diseases including dementia. This review discusses and evaluates the neuroprotective role of metformin in dementia, from the perspective of basic and clinical studies. Mechanistically, metformin has been shown to improve insulin resistance, reduce neuronal apoptosis, and decrease oxidative stress and neuroinflammation in the brain. Collectively, the current data presented here support the future potential of metformin as a potential therapeutic strategy for dementia. This study also inspires a new field for future translational studies and clinical research to discover novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Wenxing Cui
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Lv
- Hangzhou Simo Co., Ltd., Hangzhou, China
| | - Panling Geng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Mingdi Fu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjing Zhou
- College of Life Sciences, Northwest University, Xi'an, China
| | - Mingxiang Xiong
- College of Life Sciences, Northwest University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
15
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Balducci L, Falandry C, Silvio Monfardini. Senotherapy, cancer, and aging. J Geriatr Oncol 2024; 15:101671. [PMID: 37977898 DOI: 10.1016/j.jgo.2023.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION We aimed to highlight the effects of senotherapy on the prevention and treatment of cancer in older individuals. The aim of senotherapy is to eliminate senescent cells. These cells express the senescence-associated secretory phenotype (SASP). With production of inflammatory cytokines, growth factors, and different type of proteases, the SASP is responsible for aging-associated disability and diseases. All mammalian cells experience senescence. The main agents of aging include fibroblasts and adipose cells. Senescent tumor cells may undergo genomic reprogramming and re-enter cell cycle with a stem cell phenotype. MATERIALS AND METHODS We conducted a Medline search for the following key words: senotherapy, senolysis, senomorphic agents. We provide a narrative review of the finding. RESULTS Different agents may eliminate senescent cells from cell cultures and murine models. These include metformin, rapamycin, desatinib, quercitin, fisetin, ruloxitinib, and BCL2 inhibitors. A randomized controlled study of metformin in 3,000 patients aged 65-79 without glucose intolerance aiming to establish whether senotherapy may prevent or reverse disability and aging associated diseases, including cancer, is ongoing. Senotherapy prolongs the life span and decreases the incidence of cancer in experimental animal models, as well as delays and reverses disability. Senescent tumor cells are found prior to treatment and after chemotherapy and radiation. These elements may be responsible for tumor recurrence and treatment refractoriness. DISCUSSION Senotherapy may have substantial effects on cancer management including decreased incidence and aggressiveness of cancer, improved tolerance of antineoplastic treatment, and prevention of relapse after primary treatment. Senotherapy may ameliorate several complications of cancer chemotherapy.
Collapse
Affiliation(s)
| | - Claire Falandry
- Service de Gériatrie, Centre Hospitaliser Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Laboratoire CarMeN, Inserm U1060, INRA U1397, Université Claude Bernard Lyon, France.
| | - Silvio Monfardini
- Director Oncopaedia Project European School of Oncology. Director Emeritus Division of Medical Oncology Istituto Oncologico Veneto, Padova., Italy.
| |
Collapse
|
17
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
18
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
20
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
21
|
Wu Z, Zhang W, Qu J, Liu GH. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol Sci 2024; 45:157-172. [PMID: 38216430 DOI: 10.1016/j.tips.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
22
|
Barbera M, Lehtisalo J, Perera D, Aspö M, Cross M, De Jager Loots CA, Falaschetti E, Friel N, Luchsinger JA, Gavelin HM, Peltonen M, Price G, Neely AS, Thunborg C, Tuomilehto J, Mangialasche F, Middleton L, Ngandu T, Solomon A, Kivipelto M. A multimodal precision-prevention approach combining lifestyle intervention with metformin repurposing to prevent cognitive impairment and disability: the MET-FINGER randomised controlled trial protocol. Alzheimers Res Ther 2024; 16:23. [PMID: 38297399 PMCID: PMC10829308 DOI: 10.1186/s13195-023-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Combining multimodal lifestyle interventions and disease-modifying drugs (novel or repurposed) could provide novel precision approaches to prevent cognitive impairment. Metformin is a promising candidate in view of the well-established link between type 2 diabetes (T2D) and Alzheimer's Disease and emerging evidence of its potential neuro-protective effects (e.g. vascular, metabolic, anti-senescence). MET-FINGER aims to test a FINGER 2.0 multimodal intervention, combining an updated FINGER multidomain lifestyle intervention with metformin, where appropriate, in an APOE ε4-enriched population of older adults (60-79 years) at increased risk of dementia. METHODS MET-FINGER is an international randomised, controlled, parallel-group, phase-IIb proof-of-concept clinical trial, where metformin is included through a trial-within-trial design. 600 participants will be recruited at three sites (UK, Finland, Sweden). Participants at increased risk of dementia based on vascular risk factors and cognitive screening, will be first randomised to the FINGER 2.0 intervention (lifestyle + metformin if eligible; active arm) or to receive regular health advice (control arm). Participants allocated to the FINGER 2.0 intervention group at risk indicators of T2D will be additionally randomised to receive metformin (2000 mg/day or 1000 mg/day) or placebo. The study duration is 2 years. The changes in global cognition (primary outcome, using a Neuropsychological Test Battery), memory, executive function, and processing speed cognitive domains; functional status; lifestyle, vascular, metabolic, and other dementia-related risk factors (secondary outcomes), will be compared between the FINGER 2.0 intervention and the control arm. The feasibility, potential interaction (between-groups differences in healthy lifestyle changes), and disease-modifying effects of the lifestyle-metformin combination will be exploratory outcomes. The lifestyle intervention is adapted from the original FINGER trial (diet, physical activity, cognitive training, monitoring of cardiovascular/metabolic risk factors, social interaction) to be consistently delivered in three countries. Metformin is administered as Glucophage®XR/SR 500, (500 mg oral tablets). The metformin/placebo treatment will be double blinded. CONCLUSION MET-FINGER is the first trial combining a multimodal lifestyle intervention with a putative repurposed disease-modifying drug for cognitive impairment prevention. Although preliminary, its findings will provide crucial information for innovative precision prevention strategies and form the basis for a larger phase-III trial design and future research in this field. TRIAL REGISTRATION ClinicalTrials.gov (NCT05109169).
Collapse
Affiliation(s)
- Mariagnese Barbera
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK.
| | - Jenni Lehtisalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, P.O. Box 30, Helsinki, Finland
| | - Dinithi Perera
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
- FINGERS Brain Health Institute, C/O Stockholms Sjukhem, Box 122 30, SE-102 26, Stockholm, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Karolinska Vägen 37A, 171 76, Solna, Sweden
| | - Mary Cross
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, Imperial College London, Stadium House, 68 Wood Lane, London, W12 7RH, UK
| | - Celeste A De Jager Loots
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
| | - Emanuela Falaschetti
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, Imperial College London, Stadium House, 68 Wood Lane, London, W12 7RH, UK
| | - Naomi Friel
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, 622 W 168Th St, New York, NY, USA
| | | | - Markku Peltonen
- Population Health Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, P.O. Box 30, Helsinki, Finland
- FINGERS Brain Health Institute, C/O Stockholms Sjukhem, Box 122 30, SE-102 26, Stockholm, Sweden
| | - Geraint Price
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
| | - Anna Stigsdotter Neely
- Department of Social and Psychological Studies, Karlstad University, 651 88, Karlstad, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Charlotta Thunborg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Karolinska Vägen 37A, 171 76, Solna, Sweden
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, P.O. Box 30, Helsinki, Finland
- Department of Public Health, University of Helsinki, PO BOX 20, 00014, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Francesca Mangialasche
- FINGERS Brain Health Institute, C/O Stockholms Sjukhem, Box 122 30, SE-102 26, Stockholm, Sweden
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Karolinska Vägen 37A, 171 76, Solna, Sweden
| | - Lefkos Middleton
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
- Directorate of Public Health, Imperial College NHS Healthcare Trust Hospitals, Praed Street, London, W2 1NY, UK
| | - Tiia Ngandu
- Population Health Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, P.O. Box 30, Helsinki, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK.
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden.
| | - Miia Kivipelto
- The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, LondonLondon, W6 8RP, UK
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska Vägen 37A, 171 64, Solna, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Karolinska Vägen 37A, 171 76, Solna, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| |
Collapse
|
23
|
Mas-Parés B, Xargay-Torrent S, Carreras-Badosa G, Gómez-Vilarrubla A, Niubó-Pallàs M, Tibau J, Reixach J, Prats-Puig A, de Zegher F, Ibañez L, Bassols J, López-Bermejo A. Gestational Caloric Restriction Alters Adipose Tissue Methylome and Offspring's Metabolic Profile in a Swine Model. Int J Mol Sci 2024; 25:1128. [PMID: 38256201 PMCID: PMC10816194 DOI: 10.3390/ijms25021128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the effects of gestational caloric restriction and early postnatal metformin administration on offspring's adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows were either underfed (30% restriction of total food) or kept under standard diet during gestation, and piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment (n = 16 per group) throughout lactation. DNA methylation and gene expression were assessed in the retroperitoneal adipose tissue of piglets at weaning. Results showed that gestational caloric restriction had a negative effect on the metabolic profile of the piglets, increased the expression of inflammatory markers in the adipose tissue, and changed the methylation of several genes related to metabolism. Metformin treatment resulted in positive changes in the adipocyte morphology and regulated the methylation of several genes related to atherosclerosis, insulin, and fatty acids signaling pathways. The methylation and gene expression of the differentially methylated FASN, SLC5A10, COL5A1, and PRKCZ genes in adipose tissue associated with the metabolic profile in the piglets born to underfed sows. In conclusion, our swine model showed that caloric restriction during pregnancy was associated with impaired inflammatory and DNA methylation markers in the offspring's adipose tissue that could predispose the offspring to later metabolic abnormalities. Early metformin administration could modulate the size of adipocytes and the DNA methylation changes.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Sílvia Xargay-Torrent
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Gemma Carreras-Badosa
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Maria Niubó-Pallàs
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Joan Tibau
- Benestar Animal, Institut de Recerca i Tecnología Agroalimentàries (IRTA), 17121 Monells, Spain;
| | | | - Anna Prats-Puig
- Department of Physical Therapy, EUSES, University of Girona, 17190 Salt, Spain;
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Fundació Sant Joan de Déu, University of Barcelona, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Abel López-Bermejo
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
- Pediatrics, Hospital Dr. Josep Trueta, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17820 Girona, Spain
| |
Collapse
|
24
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
25
|
Yu B, Wang D, Zhou J, Huang R, Cai T, Hu Y, Zhou Y, Ma J. Diabetes Pharmacotherapy and its effects on the Skeletal Muscle Energy Metabolism. Mini Rev Med Chem 2024; 24:1470-1480. [PMID: 38549524 DOI: 10.2174/0113895575299439240216081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 08/07/2024]
Abstract
The disorders of skeletal muscle metabolism in patients with Type 2 diabetes mellitus (T2DM), such as mitochondrial defection and glucose transporters (GLUTs) translocation dysfunctions, are not uncommon. Therefore, when anti-diabetic drugs were used in various chronic diseases associated with hyperglycemia, the impact on skeletal muscle should not be ignored. However, current studies mainly focus on muscle mass rather than metabolism or functions. Anti-diabetic drugs might have a harmful or beneficial impact on skeletal muscle. In this review, we summarize the upto- date studies on the effects of anti-diabetic drugs and some natural compounds on skeletal muscle metabolism, focusing primarily on emerging data from pre-clinical to clinical studies. Given the extensive use of anti-diabetic drugs and the common sarcopenia, a better understanding of energy metabolism in skeletal muscle deserves attention in future studies.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wang
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yonghui Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
27
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
28
|
Cui Y, Wang K, Jiang D, Jiang Y, Shi D, DeGregori J, Waxman S, Ren R. Promoting longevity with less cancer: The 2022 International Conference on Aging and Cancer. AGING AND CANCER 2023; 4:111-120. [DOI: 10.1002/aac2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2024]
Abstract
AbstractAging and cancer are increasingly becoming big challenges for public health worldwide due to increased human life expectancy. Meanwhile, aging is one of the major risk factors for cancer. In December 2019, the first International Conference on Aging and Cancer was held in Haikou, Hainan province (island), China, preluding the establishment of the International Center for Aging and Cancer (ICAC) at Hainan, an institute dedicated to the research at the intersection of aging and cancer. Since then, the ICAC has hosted the annual conference each December in Hainan. The 2022 ICAC conference, with the theme of “promoting longevity with less cancer,” invited 17 internationally renowned scientists to share their new research and insights. Topics included DNA methylation in rejuvenation, development, and cellular senescence; lifespan regulation and longevity manipulation; metabolism and aging; cellular senescence and diseases; and novel therapeutics for cancer and antiaging/anticancer drug discovery. The forum highlighted the interconnectedness of aging and senescence with cancer evolution and risk. Although there is hope for preventing diseases like cancer by modulating systems that also control lifespan, attention has to be paid to the conflicting needs and competing demands in human biology.
Collapse
Affiliation(s)
- Yan Cui
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Kai Wang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Danli Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Yizhou Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Dawei Shi
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado USA
| | - Samuel Waxman
- Department of Hematology/Oncology Icahn School of Medicine at Mount Sinai New York City New York USA
| | - Ruibao Ren
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| |
Collapse
|
29
|
Scisciola L, Olivieri F, Ambrosino C, Barbieri M, Rizzo MR, Paolisso G. On the wake of metformin: Do anti-diabetic SGLT2 inhibitors exert anti-aging effects? Ageing Res Rev 2023; 92:102131. [PMID: 37984626 DOI: 10.1016/j.arr.2023.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Here we propose that SGLT2 inhibitors (SGLT2i), a class of drugs primarily used to treat type 2 diabetes, could also be repositioned as anti-aging senomorphic drugs (agents that prevent the extrinsic harmful effects of senescent cells). As observed for metformin, another anti-diabetic drug with established anti-aging potential, increasing evidence suggests that SGLT2i can modulate some relevant pathways associated with the aging process, such as free radical production, cellular energy regulation through AMP-activated protein kinase (AMPK), autophagy, and the activation of nuclear factor (NF)-kB/inflammasome. Some interesting pro-healthy effects were also observed on human microbiota. All these mechanisms converge on fueling a systemic proinflammatory condition called inflammaging, now recognized as the main risk factor for accelerated aging and increased risk of age-related disease development and progression. Inflammaging can be worsened by cellular senescence and immunosenescence, which contributes to the increased burden of senescent cells during aging, perpetuating the proinflammatory condition. Interestingly, increasing evidence suggested the direct effects of SGLT-2i against senescent cells, chronic activation of immune cells, and metabolic alterations induced by overnutrition (meta-inflammation). In this framework, we analyzed and discussed the multifaceted impact of SGLT2i, compared with metformin effects, as a potential anti-aging drug beyond diabetes management. Despite promising results in experimental studies, rigorous investigations with well-designed cellular and clinical investigations will need to validate SGLT2 inhibitors' anti-aging effects.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
30
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
31
|
Maurer J, Zhao X, Irmler M, Gudiksen A, Pilmark NS, Li Q, Goj T, Beckers J, Hrabě de Angelis M, Birkenfeld AL, Peter A, Lehmann R, Pilegaard H, Karstoft K, Xu G, Weigert C. Redox state and altered pyruvate metabolism contribute to a dose-dependent metformin-induced lactate production of human myotubes. Am J Physiol Cell Physiol 2023; 325:C1131-C1143. [PMID: 37694284 PMCID: PMC10635655 DOI: 10.1152/ajpcell.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Metformin-induced glycolysis and lactate production can lead to acidosis as a life-threatening side effect, but slight increases in blood lactate levels in a physiological range were also reported in metformin-treated patients. However, how metformin increases systemic lactate concentrations is only partly understood. Because human skeletal muscle has a high capacity to produce lactate, the aim was to elucidate the dose-dependent regulation of metformin-induced lactate production and the potential contribution of skeletal muscle to blood lactate levels under metformin treatment. This was examined by using metformin treatment (16-776 μM) of primary human myotubes and by 17 days of metformin treatment in humans. As from 78 µM, metformin induced lactate production and secretion and glucose consumption. Investigating the cellular redox state by mitochondrial respirometry, we found metformin to inhibit the respiratory chain complex I (776 µM, P < 0.01) along with decreasing the [NAD+]:[NADH] ratio (776 µM, P < 0.001). RNA sequencing and phospho-immunoblot data indicate inhibition of pyruvate oxidation mediated through phosphorylation of the pyruvate dehydrogenase (PDH) complex (39 µM, P < 0.01). On the other hand, in human skeletal muscle, phosphorylation of PDH was not altered by metformin. Nonetheless, blood lactate levels were increased under metformin treatment (P < 0.05). In conclusion, the findings suggest that metformin-induced inhibition of pyruvate oxidation combined with altered cellular redox state shifts the equilibrium of the lactate dehydrogenase (LDH) reaction leading to a dose-dependent lactate production in primary human myotubes.NEW & NOTEWORTHY Metformin shifts the equilibrium of lactate dehydrogenase (LDH) reaction by low dose-induced phosphorylation of pyruvate dehydrogenase (PDH) resulting in inhibition of pyruvate oxidation and high dose-induced increase in NADH, which explains the dose-dependent lactate production of differentiated human skeletal muscle cells.
Collapse
Affiliation(s)
- Jennifer Maurer
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, China
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nanna S Pilmark
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Qi Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, China
| | - Thomas Goj
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, Freising, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, Freising, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich, University of Tübingen, Tübingen, Germany
| | - Rainer Lehmann
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich, University of Tübingen, Tübingen, Germany
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Fredriksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, China
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Ya J, Bayraktutan U. Vascular Ageing: Mechanisms, Risk Factors, and Treatment Strategies. Int J Mol Sci 2023; 24:11538. [PMID: 37511296 PMCID: PMC10380571 DOI: 10.3390/ijms241411538] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Ageing constitutes the biggest risk factor for poor health and adversely affects the integrity and function of all the cells, tissues, and organs in the human body. Vascular ageing, characterised by vascular stiffness, endothelial dysfunction, increased oxidative stress, chronic low-grade inflammation, and early-stage atherosclerosis, may trigger or exacerbate the development of age-related vascular diseases, which each year contribute to more than 3.8 million deaths in Europe alone and necessitate a better understanding of the mechanisms involved. To this end, a large number of recent preclinical and clinical studies have focused on the exponential accumulation of senescent cells in the vascular system and paid particular attention to the specific roles of senescence-associated secretory phenotype, proteostasis dysfunction, age-mediated modulation of certain microRNA (miRNAs), and the contribution of other major vascular risk factors, notably diabetes, hypertension, or smoking, to vascular ageing in the elderly. The data generated paved the way for the development of various senotherapeutic interventions, ranging from the application of synthetic or natural senolytics and senomorphics to attempt to modify lifestyle, control diet, and restrict calorie intake. However, specific guidelines, considering the severity and characteristics of vascular ageing, need to be established before widespread use of these agents. This review briefly discusses the molecular and cellular mechanisms of vascular ageing and summarises the efficacy of widely studied senotherapeutics in the context of vascular ageing.
Collapse
Affiliation(s)
- Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
33
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Luo S, Wong ICK, Chui CSL, Zheng J, Huang Y, Schooling CM, Yeung SLA. Effects of putative metformin targets on phenotypic age and leukocyte telomere length: a mendelian randomisation study using data from the UK Biobank. THE LANCET. HEALTHY LONGEVITY 2023; 4:e337-e344. [PMID: 37421961 DOI: 10.1016/s2666-7568(23)00085-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Metformin, a first-line medication for type 2 diabetes, might also have a protective effect against ageing-related diseases, but so far little experimental evidence is available. We sought to assess the target-specific effect of metformin on biomarkers of ageing in the UK Biobank. METHODS In this drug target mendelian randomisation study, we assessed the target-specific effect of four putative targets of metformin (AMPK, ETFDH, GPD1, and PEN2), involving ten genes. Genetic variants with evidence of causation of gene expression, glycated haemoglobin A1c (HbA1c), and colocalisation were used as instruments mimicking the target-specific effect of metformin via HbA1c lowering. The biomarkers of ageing considered were phenotypic age (PhenoAge) and leukocyte telomere length. To triangulate the evidence, we also assessed the effect of HbA1c on the outcomes using a polygenic mendelian randomisation design and assessed the effect of metformin use on these outcomes using a cross-sectional observational design. FINDINGS GPD1-induced HbA1c lowering was associated with younger PhenoAge (β -5·26, 95% CI -6·69 to -3·83) and longer leukocyte telomere length (β 0·28, 0·03 to 0·53), and AMPKγ2 (PRKAG2)-induced HbA1c lowering was associated with younger PhenoAge (β -4·88, -7·14 to -2·62) but not with longer leukocyte telomere length. Genetically predicted HbA1c lowering was associated with younger PhenoAge (β -0·96 per SD lowering of HbA1c, 95% CI -1·19 to -0·74) but not associated with leukocyte telomere length. In the propensity score matched analysis, metformin use was associated with younger PhenoAge (β -0·36, 95% CI -0·59 to -0·13) but not with leukocyte telomere length. INTERPRETATION This study provides genetic validation evidence that metformin might promote healthy ageing via targets GPD1 and AMPKγ2 (PRKAG2), and the effect could be in part due to its glycaemic property. Our findings support further clinical research into metformin and longevity. FUNDING Healthy Longevity Catalyst Award, National Academy of Medicine, and Seed Fund for Basic Research, The University of Hong Kong.
Collapse
Affiliation(s)
- Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Celine Sze Ling Chui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yuan Huang
- Hong Kong Quantum AI Lab, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
35
|
Arendash G, Cao C. Transcranial Electromagnetic Wave Treatment: A Fountain of Healthy Longevity? Int J Mol Sci 2023; 24:ijms24119652. [PMID: 37298603 DOI: 10.3390/ijms24119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Most diseases of older age have as their common denominator a dysfunctional immune system, wherein a low, chronic level of inflammation is present due to an imbalance of pro-inflammatory cytokines over anti-inflammatory cytokines that develops during aging ("inflamm-aging"). A gerotherapeutic that can restore the immune balance to that shared by young/middle-aged adults and many centenarians could reduce the risk of those age-related diseases and increase healthy longevity. In this perspectives paper, we discuss potential longevity interventions that are being evaluated and compare them to a novel gerotherapeutic currently being evaluated in humans-Transcranial Electromagnetic Wave Treatment (TEMT). TEMT is provided non-invasively and safety through a novel bioengineered medical device-the MemorEM-that allows for near complete mobility during in-home treatments. Daily TEMT to mild/moderate Alzheimer's Disease (AD) patients over a 2-month period rebalanced 11 of 12 cytokines in blood back to that of normal aged adults. A very similar TEMT-induced rebalancing of cytokines occurred in the CSF/brain for essentially all seven measurable cytokines. Overall inflammation in both blood and brain was dramatically reduced by TEMT over a 14-27 month period, as measured by C-Reactive Protein. In these same AD patients, a reversal of cognitive impairment was observed at 2 months into treatment, while cognitive decline was stopped over a 2½ year period of TEMT. Since most age-related diseases have the commonality of immune imbalance, it is reasonable to postulate that TEMT could rebalance the immune system in many age-related diseases as it appears to do in AD. We propose that TEMT has the potential to reduce the risk/severity of age-related diseases by rejuvenating the immune system to a younger age, resulting in reduced brain/body inflammation and a substantial increase in healthy longevity.
Collapse
Affiliation(s)
- Gary Arendash
- NeuroEM Therapeutics, Inc., 501 E. Kennedy Blvd., Suite 650, Tampa, FL 33602, USA
| | - Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- MegaNano Biotech, 3802 Spectrum Blvd., Suite 122, Tampa, FL 33612, USA
| |
Collapse
|
36
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
37
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
38
|
Abdelgawad IY, Agostinucci K, Sadaf B, Grant MKO, Zordoky BN. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. FRONTIERS IN AGING 2023; 4:1170434. [PMID: 37168843 PMCID: PMC10164964 DOI: 10.3389/fragi.2023.1170434] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Introduction: Doxorubicin (DOX), a chemotherapeutic drug, induces senescence and increases the secretion of senescence-associated secretory phenotype (SASP) in endothelial cells (ECs), which contributes to DOX-induced inflammaging. Metformin, an anti-diabetic drug, demonstrates senomorphic effects on different models of senescence. However, the effects of metformin on DOX-induced endothelial senescence have not been reported before. Senescent ECs exhibit a hyper-inflammatory response to lipopolysachharide (LPS). Therefore, in our current work, we identified the effects of metformin on DOX-induced endothelial senescence and LPS-induced hyper-inflammation in senescent ECs. Methods: ECs were treated with DOX ± metformin for 24 h followed by 72 h incubation without DOX to establish senescence. Effects of metformin on senescence markers expression, SA-β-gal activity, and SASP secretion were assessed. To delineate the molecular mechanisms, the effects of metformin on major signaling pathways were determined. The effect of LPS ± metformin was determined by stimulating both senescent and non-senescent ECs with LPS for an additional 24 h. Results: Metformin corrected DOX-induced upregulation of senescence markers and decreased the secretion of SASP factors and adhesion molecules. These effects were associated with a significant inhibition of the JNK and NF-κB pathway. A significant hyper-inflammatory response to LPS was observed in DOX-induced senescent ECs compared to non-senescent ECs. Metformin blunted LPS-induced upregulation of pro-inflammatory SASP factors. Conclusion: Our study demonstrates that metformin mitigates DOX-induced endothelial senescence phenotype and ameliorates the hyper-inflammatory response to LPS. These findings suggest that metformin may protect against DOX-induced vascular aging and endothelial dysfunction and ameliorate infection-induced hyper-inflammation in DOX-treated cancer survivors.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
39
|
Mone P, Martinelli G, Lucariello A, Leo AL, Marro A, De Gennaro S, Marzocco S, Moriello D, Frullone S, Cobellis L, Santulli G. Extended-release metformin improves cognitive impairment in frail older women with hypertension and diabetes: preliminary results from the LEOPARDESS Study. Cardiovasc Diabetol 2023; 22:94. [PMID: 37085892 PMCID: PMC10122301 DOI: 10.1186/s12933-023-01817-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Women have a high risk of frailty independently of age and menopause state. Diabetes and hypertension increase the risk of frailty and cognitive impairment. Metformin has been employed in post-menopausal women and some reports have shown encouraging effects in terms of attenuated frailty. However, the impact on cognitive performance of a recently introduced extended-release formulation of metformin has never been explored. METHODS We studied consecutive frail hypertensive and diabetic older women presenting at the ASL (local health authority of the Italian Ministry of Health) Avellino, Italy, from June 2021 to August 2022, who were treated or not with extended-release metformin. We included a control group of frail older males with diabetes and hypertension treated with extended-release metformin and a control group of frail older women with diabetes and hypertension treated with regular metformin. RESULTS A total of 145 patients successfully completed the study. At the end of the 6-month follow-up, we observed a significantly different cognitive performance compared to baseline in the group of frail women treated with extended-release metformin (p: 0.007). Then, we compared the follow-up groups and we observed significant differences between frail women treated vs. untreated (p: 0.041), between treated frail women and treated frail men (p: 0.016), and between women treated with extended-release metformin vs. women treated with regular metformin (p: 0.048). We confirmed the crucial role of extended-release metformin applying a multivariable logistic analysis to adjust for potential confounders. CONCLUSIONS We evidenced, for the first time to the best of our knowledge, the favorable effects on cognitive impairment of extended-release metformin in frail women with diabetes and hypertension.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA.
- ASL Avellino, Avellino, Italy.
- University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | | | | | | | | | | | | | | | | | - Luigi Cobellis
- University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA.
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
40
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
41
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
42
|
Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol Rep 2023; 75:189-198. [PMID: 36334247 DOI: 10.1007/s43440-022-00427-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND It has been suggested that the anti-hyperglycemic effect of metformin could be associated with its impact on long non-coding RNA (lncRNA) expression levels. Accordingly, in the current study, we evaluated the effect of metformin on the expression of H19, MEG3, MALAT1, and GAS5 in in vitro and in vivo situations. METHODS The effect of hyperglycemia and metformin treatment on the lncRNAs expression level was evaluated in HepG2 cells. A total of 179 age- and sex-matched subjects, including 88 newly diagnosed patients with type 2 diabetes (T2D) and 91 healthy volunteers, were included in the case-control phase of the study. Moreover, 40 newly diagnosed patients participated in the study's open-labeled non-controlled clinical trial phase. The expression levels of lncRNA in HepG2 cells and whole blood samples were determined using QRT-PCR. RESULTS In vitro results showed that hyperglycemia induced H19 and MALAT1 and decreased GAS5 expression levels. Moreover, metformin decreased H19 and increased GAS5 expression in high glucose-treated cells. Case-control study findings revealed that the circulating levels of H19, MALAT1, and MEG3 were significantly elevated in T2D patients compared to the control subjects. Finally, results showed that the level of circulating H19 levels decreased while GAS5 increased in T2D patients after taking metformin for 2 months. CONCLUSION The results of the current study provided evidence that metformin could exert its effect in the treatment of T2D by altering the expression levels of H19 and GAS5.
Collapse
|
43
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
44
|
Dharmaratne M, Kulkarni AS, Taherian Fard A, Mar JC. scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data. Gigascience 2022; 12:giac126. [PMID: 36691728 PMCID: PMC9871437 DOI: 10.1093/gigascience/giac126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/27/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) methods have been advantageous for quantifying cell-to-cell variation by profiling the transcriptomes of individual cells. For scRNA-seq data, variability in gene expression reflects the degree of variation in gene expression from one cell to another. Analyses that focus on cell-cell variability therefore are useful for going beyond changes based on average expression and, instead, identifying genes with homogeneous expression versus those that vary widely from cell to cell. RESULTS We present a novel statistical framework, scShapes, for identifying differential distributions in single-cell RNA-sequencing data using generalized linear models. Most approaches for differential gene expression detect shifts in the mean value. However, as single-cell data are driven by overdispersion and dropouts, moving beyond means and using distributions that can handle excess zeros is critical. scShapes quantifies gene-specific cell-to-cell variability by testing for differences in the expression distribution while flexibly adjusting for covariates if required. We demonstrate that scShapes identifies subtle variations that are independent of altered mean expression and detects biologically relevant genes that were not discovered through standard approaches. CONCLUSIONS This analysis also draws attention to genes that switch distribution shapes from a unimodal distribution to a zero-inflated distribution and raises open questions about the plausible biological mechanisms that may give rise to this, such as transcriptional bursting. Overall, the results from scShapes help to expand our understanding of the role that gene expression plays in the transcriptional regulation of a specific perturbation or cellular phenotype. Our framework scShapes is incorporated into a Bioconductor R package (https://www.bioconductor.org/packages/release/bioc/html/scShapes.html).
Collapse
Affiliation(s)
- Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
45
|
Charpignon ML, Vakulenko-Lagun B, Zheng B, Magdamo C, Su B, Evans K, Rodriguez S, Sokolov A, Boswell S, Sheu YH, Somai M, Middleton L, Hyman BT, Betensky RA, Finkelstein SN, Welsch RE, Tzoulaki I, Blacker D, Das S, Albers MW. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun 2022; 13:7652. [PMID: 36496454 PMCID: PMC9741618 DOI: 10.1038/s41467-022-35157-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.
Collapse
Affiliation(s)
- Marie-Laure Charpignon
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bowen Su
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Steve Rodriguez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Yi-Han Sheu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melek Somai
- Inception Labs, Collaborative for Health Delivery Sciences, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College London NHS Healthcare Trust, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
| | - Stan N Finkelstein
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy E Welsch
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Dementia Research Institute, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
48
|
Arnason TG, MacDonald-Dickinson V, Gaunt MC, Davies GF, Lobanova L, Trost B, Gillespie ZE, Waldner M, Baldwin P, Borrowman D, Marwood H, Vizeacoumar FS, Vizeacoumar FJ, Eskiw CH, Kusalik A, Harkness TAA. Activation of the Anaphase Promoting Complex Reverses Multiple Drug Resistant Cancer in a Canine Model of Multiple Drug Resistant Lymphoma. Cancers (Basel) 2022; 14:cancers14174215. [PMID: 36077749 PMCID: PMC9454423 DOI: 10.3390/cancers14174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple drug resistant cancers develop all too soon in patients who received successful cancer treatment. A lack of treatment options often leaves palliative care as the last resort. We tested whether the insulin sensitizer, metformin, known to have anti-cancer activity, could impact canines with drug resistant lymphoma when added to chemotherapy. All canines in the study expressed protein markers of drug resistance and within weeks of receiving metformin, the markers were decreased. A microarray was performed, and from four canines assessed, a common set of 290 elevated genes were discovered in tumor cells compared to control cells. This cluster was enriched with genes that stall the cell cycle, with a large component representing substrates of the Anaphase Promoting Complex (APC), which degrades proteins. One canine entered partial remission. RNAs from this canine showed that APC substrates were decreased during remission and elevated again during relapse, suggesting that the APC was impaired in drug resistant canines and restored when remission occurred. We validated our results in cell lines using APC inhibitors and activators. We conclude that the APC may be a vital guardian of the genome and could delay the onset of multiple drug resistance when activated. Abstract Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.
Collapse
Affiliation(s)
- Terra G. Arnason
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| | - Valerie MacDonald-Dickinson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Matthew Casey Gaunt
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Gerald F. Davies
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
| | - Liubov Lobanova
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
| | - Brett Trost
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Zoe E. Gillespie
- Department of Food and Bioproduct Sciences, Saskatoon, SK S7N 5A8, Canada
| | - Matthew Waldner
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Paige Baldwin
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Devon Borrowman
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Hailey Marwood
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Franco J. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Troy A. A. Harkness
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| |
Collapse
|
49
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
50
|
Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022; 11:cells11152359. [PMID: 35954203 PMCID: PMC9367570 DOI: 10.3390/cells11152359] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Sarcopenia is generally an age-related condition that directly impacts the quality of life. It is also related to chronic diseases such as metabolic dysfunction associated with diabetes and obesity. This means that everyone will be vulnerable to sarcopenia at some point in their life. Research to find the precise molecular mechanisms implicated in this condition can increase knowledge for the better prevention, diagnosis, and treatment of sarcopenia. Our work gathered the most recent research regarding inflammation in sarcopenia and new therapeutic agents proposed to target its consequences in pyroptosis and cellular senescence. Finally, we compared dual X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and ultrasound (US) as imaging techniques to diagnose and follow up on sarcopenia, indicating their respective advantages and disadvantages. Our goal is for the scientific evidence presented here to help guide future research to understand the molecular mechanisms involved in sarcopenia, new treatment strategies, and their translation into clinical practice.
Collapse
|