1
|
O'Hora KP, Amir CM, Chiem E, Schleifer CH, Grigoryan V, Kushan-Wells L, Chiang JJ, Cole S, Irwin MR, Bearden CE. Differential inflammatory profiles in carriers of reciprocal 22q11.2 copy number variants. Psychoneuroendocrinology 2024; 169:107135. [PMID: 39116521 DOI: 10.1016/j.psyneuen.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Genetic copy number variants (CNVs; i.e., a deletion or duplication) at the 22q11.2 locus confer increased risk of neuropsychiatric disorders and immune dysfunction. Inflammatory profiles of 22q11.2 CNV carriers can shed light on gene-immune relationships that may be related to neuropsychiatric symptoms. However, little is known about inflammation and its relationship to clinical phenotypes in 22q11.2 CNV carriers. Here, we investigate differences in peripheral inflammatory markers in 22q11.2 CNV carriers and explore their relationship with psychosis risk symptoms and sleep disturbance. METHODS Blood samples and clinical assessments were collected from 22q11.2 deletion (22qDel) carriers (n=45), 22q11.2 duplication (22qDup) carriers (n=29), and typically developing (TD) control participants (n=92). Blood plasma levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and anti-inflammatory cytokine interleukin-10 (IL-10) were measured using a MesoScale Discovery multiplex immunoassay. Plasma levels of C-reactive protein (CRP) were measured using Enzyme-linked Immunosorbent Assay (ELISA). Linear mixed effects models controlling for age, sex, and body mass index were used to: a) examine group differences in inflammatory markers between 22qDel, 22qDup, and TD controls, b) test differences in inflammatory markers between 22qDel carriers with psychosis risk symptoms (22qDelPS+) and those without (22qDelPS-), and c) conduct an exploratory analysis testing the effect of sleep disturbance on inflammation in 22qDel and 22qDup carriers. A false discovery rate correction was used to correct for multiple comparisons. RESULTS 22qDup carriers exhibited significantly elevated levels of IL-8 relative to TD controls (q<0.001) and marginally elevated IL-8 levels relative to 22qDel carriers (q=0.08). There were no other significant differences in inflammatory markers between the three groups (q>0.13). 22qDelPS+ exhibited increased levels of IL-8 relative to both 22qDelPS- (q=0.02) and TD controls (p=0.002). There were no relationships between sleep and inflammatory markers that survived FDR correction (q>0.14). CONCLUSION Our results suggest that CNVs at the 22q11.2 locus may have differential effects on inflammatory processes related to IL-8, a key mediator of inflammation produced by macrophages and microglia. Further, these IL-8-mediated inflammatory processes may be related to psychosis risk symptoms in 22qDel carriers. Additional research is required to understand the mechanisms contributing to these differential levels of IL-8 between 22q11.2 CNV carriers and IL-8's association with psychosis risk.
Collapse
Affiliation(s)
- Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Emily Chiem
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | | | - Steven Cole
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Guo X, Kong L, Wen Y, Chen L, Hu S. Impact of second-generation antipsychotics monotherapy or combined therapy in cytokine, lymphocyte subtype, and thyroid antibodies for schizophrenia: a retrospective study. BMC Psychiatry 2024; 24:695. [PMID: 39415112 PMCID: PMC11481721 DOI: 10.1186/s12888-024-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) shares high clinical relevance with the immune system, and the potential interactions of psychopharmacological drugs with the immune system are still an overlooked area. Here, we aimed to identify whether the second-generation antipsychotics (SGA) monotherapy or combined therapy of SGA with other psychiatric medications influence the routine blood immunity biomarkers of patients with SCZ. METHODS Medical records of inpatients with SCZ from January 2019 to June 2023 were retrospectively screened from June 2023 to August 2023. The demographic data and peripheral levels of cytokines (IL-2, IL-4, IL-6, TNF-α, INF-γ, and IL-17 A), lymphocyte subtype proportions (CD3+, CD4+, CD8 + T-cell, and natural killer (NK) cells), and thyroid autoimmune antibodies (thyroid peroxidase antibody (TPOAb), and antithyroglobulin antibody (TGAb)) were collected and analyzed. RESULTS 30 drug-naïve patients, 64 SGA monotherapy (20 for first-episode SCZ, 44 for recurrent SCZ) for at least one week, 39 combined therapies for recurrent SCZ (18 with antidepressant, 10 with benzodiazepine, and 11 with mood stabilizer) for at least two weeks, and 23 used to receive SGA monotherapy (had withdrawn for at least two weeks) were included despite specific medication. No difference in cytokines was found between the SGA monotherapy sub-groups (p > 0.05). Of note, SGA monotherapy appeared to induce a down-regulation of IFN-γ in both first (mean [95% confidence interval]: 1.08 [0.14-2.01] vs. 4.60 [2.11-7.08], p = 0.020) and recurrent (1.88 [0.71-3.05] vs. 4.60 [2.11-7.08], p = 0.027) episodes compared to drug-naïve patients. However, the lymphocyte proportions and thyroid autoimmune antibodies remained unchanged after at least two weeks of SGA monotherapy (p > 0.05). In combined therapy groups, results mainly resembled the SGA monotherapy for recurrent SCZ (p > 0.05). CONCLUSION The study demonstrated that SGA monotherapy possibly achieved its comfort role via modulating IFN-γ, and SGA combined therapy showed an overall resemblance to monotherapy.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yalan Wen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lizichen Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Zhang TH, Chen X, Wei YY, Tang XC, Xu LH, Cui HR, Liu HC, Wang ZX, Chen T, Li CB, Wang JJ. Associations between cytokine levels and cognitive function among individuals at clinical high risk for psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111166. [PMID: 39383934 DOI: 10.1016/j.pnpbp.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis. METHOD We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS). RESULTS Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels. CONCLUSIONS Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.
Collapse
Affiliation(s)
- Tian Hong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| | - Xing Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China
| | - Yan Yan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiao Chen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Li Hua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hui Ru Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hai Chun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi Xuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - Chun Bo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Ji Jun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
4
|
Sæther LS, Ueland T, Haatveit B, Vaskinn A, Bärthel Flaaten C, Mohn C, E.G. Ormerod MB, Aukrust P, Melle I, Steen NE, Andreassen OA, Ueland T. Longitudinal course of inflammatory-cognitive subgroups across first treatment severe mental illness and healthy controls. Psychol Med 2024; 54:1-11. [PMID: 39354711 PMCID: PMC11496234 DOI: 10.1017/s003329172400206x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND While inflammation is associated with cognitive impairment in severe mental illnesses (SMI), there is substantial heterogeneity and evidence of transdiagnostic subgroups across schizophrenia (SZ) and bipolar (BD) spectrum disorders. There is however, limited knowledge about the longitudinal course of this relationship. METHODS Systemic inflammation (C-Reactive Protein, CRP) and cognition (nine cognitive domains) was measured from baseline to 1 year follow-up in first treatment SZ and BD (n = 221), and healthy controls (HC, n = 220). Linear mixed models were used to evaluate longitudinal changes separately in CRP and cognitive domains specific to diagnostic status (SZ, BD, HC). Hierarchical clustering was applied on the entire sample to investigate the longitudinal course of transdiagnostic inflammatory-cognitive subgroups. RESULTS There were no case-control differences or change in CRP from baseline to follow-up. We confirm previous observations of case-control differences in cognition at both time-points and domain specific stability/improvement over time regardless of diagnostic status. We identified transdiagnostic inflammatory-cognitive subgroups at baseline with differing demographics and clinical severity. Despite improvement in cognition, symptoms and functioning, the higher inflammation - lower cognition subgroup (75% SZ; 48% BD; 38% HC) had sustained inflammation and lower cognition, more symptoms, and lower functioning (SMI only) at follow-up. This was in comparison to a lower inflammation - higher cognition subgroup (25% SZ, 52% BD, 62% HC), where SMI participants showed cognitive functioning at HC level with a positive clinical course. CONCLUSIONS Our findings support heterogenous and transdiagnostic inflammatory-cognitive subgroups that are stable over time, and may benefit from targeted interventions.
Collapse
Affiliation(s)
- Linn Sofie Sæther
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Norway
- Thrombosis Research Center (TREC), Division of internal medicine, University hospital of North Norway, Tromsø Norway
| | - Beathe Haatveit
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anja Vaskinn
- Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla Bärthel Flaaten
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christine Mohn
- National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Monica B. E.G. Ormerod
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ingrid Melle
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo Norway
| | - Nils Eiel Steen
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Torill Ueland
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Lalousis PA, Malaviya A, Khatibi A, Saberi M, Kambeitz-Ilankovic L, Haas SS, Wood SJ, Barnes NM, Rogers J, Chisholm K, Bertolino A, Borgwardt S, Brambilla P, Kambeitz J, Lencer R, Pantelis C, Ruhrmann S, Salokangas RKR, Schultze-Lutter F, Schmidt A, Meisenzahl E, Dwyer D, Koutsouleris N, Upthegrove R, Griffiths SL. Anhedonia as a Potential Transdiagnostic Phenotype With Immune-Related Changes in Recent-Onset Mental Health Disorders. Biol Psychiatry 2024; 96:615-622. [PMID: 38823495 DOI: 10.1016/j.biopsych.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Chronic low-grade inflammation is observed across mental disorders and is associated with difficult-to-treat-symptoms of anhedonia and functional brain changes, reflecting a potential transdiagnostic dimension. Previous investigations have focused on distinct illness categories in people with enduring illness, but few have explored inflammatory changes. We sought to identify an inflammatory signal and the associated brain function underlying anhedonia among young people with recent-onset psychosis and recent-onset depression. METHODS Resting-state functional magnetic resonance imaging, inflammatory markers, and anhedonia symptoms were collected from 108 (mean [SD] age = 26.2 [6.2] years; female = 50) participants with recent-onset psychosis (n = 53) and recent-onset depression (n = 55) from the European Union/Seventh Framework Programme-funded PRONIA (Personalised Prognostic Tools for Early Psychosis Management) study. Time series were extracted using the Schaefer atlas, defining 100 cortical regions of interest. Using advanced multimodal machine learning, an inflammatory marker model and a functional connectivity model were developed to classify participants into an anhedonic group or a normal hedonic group. RESULTS A repeated nested cross-validation model using inflammatory markers classified normal hedonic and anhedonic recent-onset psychosis/recent-onset depression groups with a balanced accuracy of 63.9% and an area under the curve of 0.61. The functional connectivity model produced a balanced accuracy of 55.2% and an area under the curve of 0.57. Anhedonic group assignment was driven by higher levels of interleukin 6, S100B, and interleukin 1 receptor antagonist and lower levels of interferon gamma, in addition to connectivity within the precuneus and posterior cingulate. CONCLUSIONS We identified a potential transdiagnostic anhedonic subtype that was accounted for by an inflammatory profile and functional connectivity. Results have implications for anhedonia as an emerging transdiagnostic target across emerging mental disorders.
Collapse
Affiliation(s)
- Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Aanya Malaviya
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Ali Khatibi
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Majid Saberi
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stephen J Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Orygen, the National Centre of Excellence in Youth Mental Health; Melbourne, Australia
| | - Nicholas M Barnes
- Institute for Clinical Sciences, University of Birmingham, United Kingdom
| | - Jack Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Katharine Chisholm
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | | | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
| | - Andre Schmidt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany
| | - Dominic Dwyer
- Orygen, the National Centre of Excellence in Youth Mental Health; Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Early Interventions Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom.
| | - Siân Lowri Griffiths
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Westacott LJ, Severance EG. The plasma proteome and prognosis for psychiatric symptoms in psychosis: A focus on function, not factors. Brain Behav Immun 2024; 121:26-27. [PMID: 39025415 DOI: 10.1016/j.bbi.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Laura J Westacott
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, United Kingdom.
| | - Emily G Severance
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Stanley Division of Developmental Neurovirology, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD, USA.
| |
Collapse
|
7
|
Tsang RSM, Timpson NJ, Khandaker GM. Inflammation proteomic profiling of psychosis in young adults: Findings from the ALSPAC birth cohort. Psychoneuroendocrinology 2024; 171:107188. [PMID: 39442229 DOI: 10.1016/j.psyneuen.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Psychotic disorder is associated with altered levels of various inflammatory markers in blood, but existing studies have typically focused on a few selected biomarkers, have not examined specific symptom domains notably negative symptoms, and are based on individuals with established/chronic illness. Based on data from young people aged 24 years from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK birth cohort, we have examined the associations of 67 plasma immune/inflammatory proteins assayed using the Olink Target 96 Inflammation panel with psychotic disorder, positive (any psychotic experiences and definite psychotic experiences) and negative symptoms, using linear models with empirical Bayes estimation. The analyses included between 2317 and 2854 individuals. After adjustment for age, sex, body mass index and smoking and correction for multiple testing, positive symptoms and psychotic disorder were consistently associated with upregulation of CDCP1 and IL-6, and psychotic disorder was additionally associated with upregulation of MMP-10. Negative symptoms were associated with upregulation of CDCP1 and TRAIL. CDCP1 and MMP-10 are novel markers of psychosis identified in this study, and are involved in immune regulation, immune cell activation/migration, blood-brain barrier disruption, and extracellular matrix abnormalities. Our findings highlight psychosis symptom domains have overlapping and distinct immune associations, and support a role of inflammation and immune dysfunction in the pathogenesis of psychosis.
Collapse
Affiliation(s)
- Ruby S M Tsang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK.
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
8
|
Cao Y, Lizano P, Li M, Chand T, Sun H, Zhou X, Deng G, Long X, Mu J, Gong Q, Walter M, Qiu C, Jia Z. White matter microstructural and inflammation-based subgroups in bipolar disorder II depression differentiate in depressive and psychotic symptoms. J Affect Disord 2024; 368:493-502. [PMID: 39299597 DOI: 10.1016/j.jad.2024.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Elevated inflammation and impaired white matter (WM) microstructure have been observed in bipolar disorder (BD). The link between inflammation, WM integrity, and psychiatric symptoms in BD-II depression (BDII-D) remains unknown. We aimed to define BDII-D subgroups through the interplay of inflammation and WM microstructure, and to explore differences in psychiatric symptoms between subgroups, thus offering insight into elucidating the explanatory measures linked to BDII-D. METHODS WM differences were compared between 146 BDII-D individuals and 151 health controls (HCs) by Tract-Based Spatial Statistics. Partial correlation with multiple comparison corrections was used to explore associations between WM, inflammation, and psychiatric symptoms. The canonical correlation analysis metrics of WM and inflammation followed by k-means clustering were used to define WM microstructural-inflammation subgroups of BDII-D. The differences in clinical profiles were compared between the subgroups. RESULTS Compared with HCs, BDII-D showed significant WM alterations in the anterior thalamic radiation (ATR), cingulum, forceps, and inferior fronto-occipital fasciculus. In BDII-D, lower fraction anisotropy (FA) within the right ATR and cingulum were significantly associated with higher interleukin-6, while lower FA in the cingulum and lower axial diffusivity in the forceps major exhibited significant links with higher C-reactive protein. Among the subgroups identified, subgroup II characterized by elevated inflammation and impaired WM integrity displayed greater psychiatric symptoms. CONCLUSIONS WM alterations are concentrated in emotional neurocircuits and are linked to inflammation in BDII-D. WM-inflammation subgroups exhibit distinct variations in psychiatric symptoms. Thus, WM alterations and inflammation might be an explanatory process in the pathophysiology of BDII-D.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743 Jena, Germany; Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana 131029, India
| | - Huan Sun
- Department of Psychiatry, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Liu Z, Lv D, Li J, Li F, Zhang Y, Liu Y, Gao C, Qiu Y, Ma J, Zhang R. The potential predictive value and relationship of blood-based inflammatory markers with the clinical symptoms of Han Chinese patients with first-episode adolescent-onset schizophrenia. Front Psychiatry 2024; 15:1431350. [PMID: 39290303 PMCID: PMC11405196 DOI: 10.3389/fpsyt.2024.1431350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Inflammation is associated with the pathophysiology of schizophrenia. The blood markers for systemic inflammation include neutrophil-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), lymphocyte-monocyte ratio (LMR), system inflammation response index (SIRI), and platelet-lymphocyte ratio (PLR). However, these inflammation markers and their relationships with clinical phenotypes among Han Chinese patients with first-episode adolescent-onset schizophrenia (AOS) is unclear. This investigation aimed to elucidate the impact of inflammation on Han Chinese AOS patients as well as the association of blood-based inflammation markers with clinical symptoms. Methods Altogether, 203 Han Chinese individuals participated in this study, 102 first-episode AOS patients and 101 healthy controls. The assessment of inflammatory indices was based on complete blood cell count. Furthermore, schizophrenia-related clinical symptoms were evaluated using the five-factor model of the Positive and Negative Syndrome Scale (PANSS). Results In Han Chinese first-episode AOS patients, levels of SIRI, PLR, SII, and NLR were significantly increased (p < 0.001), while LMR decreased (p < 0.001) compared to healthy controls. Furthermore, multivariate logistic regression showed that LMR, NLR, SII, and SIRI (all p < 0.05) were independently associated with AOS. Moreover, Receiver operating characteristics assessment indicated that NLR, SIRI, LMR, and SII could effectively distinguish AOS patients from healthy controls. Their areas under the curves were 0.734, 0.701, 0.715, and 0.730 (all p < 0.001). In addition, Correlation analysis revealed that LMR was negatively correlated with the PANSS total, negative, and cognitive factor scores (all p < 0.05); NLR was positively correlated with the cognitive factor score (p < 0.01); SII was negatively correlated with the positive factor score and positively with the negative and cognitive factor scores (all p < 0.05); SIRI was positively correlated with the PANSS total and cognitive factor scores (all p < 0.01). Conclusions This research established the involvement of peripheral blood inflammatory markers (LMR, NLR, SII, and SIRI) with the clinical manifestations and pathophysiology of schizophrenia, and these can serve as screening tools or potential indices of the inflammatory state and AOS symptoms severity.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Dali Lv
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Jianfeng Li
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Fuwei Li
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yanhua Zhang
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yongjie Liu
- Department of Psychiatry, The Fifth People's Hospital of Luoyang, Luoyang, Henan, China
| | - Chao Gao
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Yafeng Qiu
- Department of Psychiatry, The Fourth People's Hospital of Nanyang, Nanyang, Henan, China
| | - Jun Ma
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
| | - Ruiling Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
10
|
Desmeules C, Corbeil O, Huot-Lavoie M, Béchard L, Brodeur S, Demers MF, Roy MA, Deslauriers J. Psychotic Disorders and exosomes: An overview of current evidence and future directions. Psychiatry Res 2024; 339:116066. [PMID: 38996632 DOI: 10.1016/j.psychres.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Due to its reliance on heterogeneous symptomatology, the accurate diagnosis of psychotic disorders remains a challenging task in clinical practice. Precise and early diagnosis of psychotic disorders facilitates early intervention, which has been shown to have substantial benefits for long-term outcomes. Still, the lack of specific biomarkers is an important limitation in early diagnosis and intervention. Exosomes, which act as messengers between cells, including brain cells, contain a vast array of molecules that hold promise for unveiling disorder-specific abnormalities. In this review, we discuss recent evidence highlighting the potential of circulating exosomes and brain-derived exosomes as valuable tools for the identification of accessible, non-invasive, and blood-based biomarkers of psychotic symptomatology and risk. We discuss current limitations in biomarker discovery studies focusing on exosomes. To enhance diagnosis specificity and treatment response, we also provide guidance for future investigations that need to target biomarkers of risk and relapse, as well as consider duration of untreated psychosis, biological sex, and other factors in the multifactorial biosignature of psychosis.
Collapse
Affiliation(s)
- Charles Desmeules
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Québec, QC G1V 4G2, Canada; CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Olivier Corbeil
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; CIUSSS-CN, Quebec Mental Health University Institute, Québec, QC G1J 2G3, Canada
| | - Maxime Huot-Lavoie
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurent Béchard
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; CIUSSS-CN, Quebec Mental Health University Institute, Québec, QC G1J 2G3, Canada
| | - Sébastien Brodeur
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; CIUSSS-CN, Quebec Mental Health University Institute, Québec, QC G1J 2G3, Canada
| | - Marie-France Demers
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; CIUSSS-CN, Quebec Mental Health University Institute, Québec, QC G1J 2G3, Canada
| | - Marc-André Roy
- CERVO Brain Research Centre, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; CIUSSS-CN, Quebec Mental Health University Institute, Québec, QC G1J 2G3, Canada
| | - Jessica Deslauriers
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
11
|
Sun X, Luo G, Li X, Wang J, Qiu Y, Li M, Li J. The relationship between inflammatory markers, clinical characteristics, and cognitive performance in drug-naïve patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1365-1374. [PMID: 37902865 DOI: 10.1007/s00406-023-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/08/2023] [Indexed: 11/01/2023]
Abstract
Increasing evidence implicates that inflammatory factors do play a crucial role in the pathophysiology of schizophrenia. However, the association between inflammatory markers and different symptom dimensions and cognitive function of schizophrenia remains unclear. A total of 140 drug-naïve patients with schizophrenia and 69 healthy controls matched for age and gender were enrolled. Peripheral blood plasma concentrations of S-100 calcium-binding protein B (S100B), neutrophil gelatinase-associated lipocalin (NGAL), and interferon-γ (IFN-γ) were detected by enzyme-linked immunosorbent assay (ELISA). Psychotic symptoms were measured using the Positive and Negative Syndrome Scale (PANSS), and cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Compared with healthy controls, patients with schizophrenia had significantly worse cognitive function and lower levels of NGAL and IFN-γ (P < 0.001). In schizophrenia, plasma NGAL and IFN-γ levels negatively correlated with positive symptom scores (all P < 0.05). There was a positive correlation between plasma levels of NGAL and IFN-γ with visual learning, neurocognition, and MCCB total score (all P < 0.05). We found that NGAL levels (β = 0.352, t = 5.553, 95% CI 0.228-0.477, P < 0.001) and negative symptoms subscale scores (β = - 0.321, OR = 0.725, 95% CI 648-0.811, P < 0.001) were independently associated with the MCCB total score. Further, binary logistic regression analysis indicated that the concentrations of NGAL (β = - 0.246, OR = 0.782, 95% CI 0.651-0.939, P = 0.008) were independently associated with the diagnosis of schizophrenia. There was a positive correlation between NGAL and IFN-γ levels and MCCB total score in schizophrenia. NGAL level was an independent protective factor for cognitive function and an independent risk factor for the diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Guoshuai Luo
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xue Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jiayue Wang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
12
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
15
|
Zeng J, Zhang W, Lu X, Zhou H, Huang J, Xu Z, Liao H, Liang J, Liang M, Ye C, Sun T, Hu Y, She Q, Chen H, Guo Q, Yan L, Wu R, Li Z. The association of SOD and HsCRP with the efficacy of sulforaphane in schizophrenia patients with residual negative symptoms. Eur Arch Psychiatry Clin Neurosci 2024; 274:1083-1092. [PMID: 37728803 PMCID: PMC11226471 DOI: 10.1007/s00406-023-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES Emerging evidence indicates a connection between oxidative stress, immune-inflammatory processes, and the negative symptoms of schizophrenia. In addition to possessing potent antioxidant and anti-inflammatory properties, sulforaphane (SFN) has shown promise in enhancing cognitive function among individuals with schizophrenia. This study aims to investigate the efficacy of combined treatment with SFN in patients with schizophrenia who experience negative symptoms and its effect on the levels of superoxide dismutase (SOD) and the inflammatory marker, high-sensitivity C-reactive protein (HsCRP). DESIGN Forty-five patients with schizophrenia were recruited, who mainly experienced negative symptoms during a stable period. In addition to the original treatments, the patients received SFN tablets at a daily dose of 90 mg for 24 weeks. At baseline, 12 weeks, and 24 weeks, the participants were interviewed and evaluated. The reduction rate of the Positive and Negative Syndrome Scale (PANSS) was used to assess each participant. The side effects scale of Treatment Emergent Symptom Scale (TESS) was applied to assess the adverse reactions. Additionally, the levels of the SOD, HsCRP, and other indicators were examined. RESULTS The study findings revealed a significant decrease in PANSS negative subscale scores (P < 0.001). Furthermore, there was a significant increase in SOD activity and HsCRP levels (P < 0.001 and P < 0.05). Notably, the group of participants who exhibited a reduction in PANSS negative subscale scores demonstrated a significant improvement in HsCRP levels (P < 0.05). CONCLUSIONS Our study suggests that SFN may potentially serve as a safe adjunctive intervention to improve the negative symptoms of schizophrenia. The potential mechanism by which SFN improves negative symptoms in schizophrenia patients may involve its anti-inflammatory properties, specifically its ability to reduce HsCRP levels. Trial registration ClinicalTrial.gov (ID: NCT03451734).
Collapse
Affiliation(s)
- Jianfei Zeng
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, China
| | - Weizhi Zhang
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
| | - Xiaobing Lu
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Hui Zhou
- Shiyan People's Hospital of Baoan District, Shenzhen, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenyu Xu
- Ganzhou People's Hospital of Jiangxi Province, Ganzhou, China
| | - Hairong Liao
- The Third People's Hospital of Foshan, Foshan, China
| | - Jiaquan Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Meihong Liang
- The Third People's Hospital of Foshan, Foshan, China
| | - Chan Ye
- University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Ting Sun
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Yutong Hu
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Qi She
- Zhuhai Center for Chronic Disease Control/The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Haixia Chen
- Zhongshan Third People's Hospital, Zhongshan, China
| | - Qian Guo
- Zhaoqing Third People's Hospital, Zhaoqing, China
| | - LiuJiao Yan
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Dunleavy C, Elsworthy RJ, Wood SJ, Allott K, Spencer F, Upthegrove R, Aldred S. Exercise4Psychosis: A randomised control trial assessing the effect of moderate-to-vigorous exercise on inflammatory biomarkers and negative symptom profiles in men with first-episode psychosis. Brain Behav Immun 2024; 120:379-390. [PMID: 38906488 DOI: 10.1016/j.bbi.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION First-Episode Psychosis (FEP) is a devastating mental health condition that commonly emerges during early adulthood, and is characterised by a disconnect in perceptions of reality. Current evidence suggests that inflammation and perturbed immune responses are involved in the pathology of FEP and may be associated specifically with negative symptoms. Exercise training is a potent anti-inflammatory stimulus that can reduce persistent inflammation, and can improve mood profiles in general populations. Therefore, exercise may represent a novel adjunct therapy for FEP. The aim of this study was to assess the effect of exercise on biomarkers of inflammation, negative symptoms of psychosis, and physiological health markers in FEP. METHODS Seventeen young males (26.67 ± 6.64 years) were recruited from Birmingham Early Intervention in Psychosis Services and randomised to a 6-week exercise programme consisting of two-to-three sessions per week that targeted 60-70 % heart-rate max (HRMax), or a treatment as usual (TAU) condition. Immune T-helper (Th-) cell phenotypes and cytokines, symptom severity, functional wellbeing, and cognition were assessed before and after 6-weeks of regular exercise. RESULTS Participants in the exercise group (n = 10) achieved 81.11 % attendance to the intervention, with an average exercise intensity of 67.54 % ± 7.75 % HRMax. This led to favourable changes in immune cell phenotypes, and a significant reduction in the Th1:Th2 ratio (-3.86 %) compared to the TAU group (p = 0.014). After the exercise intervention, there was also a significant reduction in plasma IL-6 concentration (-22.17 %) when compared to the TAU group (p = 0.006). IL-8, and IL-10 did not show statistically significant differences between the groups after exercise. Symptomatically, there was a significant reduction in negative symptoms after exercise (-13.54 %, Positive and Negative Syndrome Scale, (PANSS) Negative) when compared to the TAU group (p = 0.008). There were no significant change in positive or general symptoms, functional outcomes, or cognition (all p > 0.05). DISCUSSION Regular moderate-to-vigorous physical activity is feasible and attainable in clinical populations. Exercise represents a physiological tool that is capable of causing significant inflammatory biomarker change and concomitant symptom improvements in FEP cohorts, and may be useful for treatment of symptom profiles that are not targeted by currently prescribed antipsychotic medication.
Collapse
Affiliation(s)
- Connor Dunleavy
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Richard J Elsworthy
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom
| | - Stephen J Wood
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom; Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly Allott
- Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Felicity Spencer
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Rachel Upthegrove
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Women and Children's NHS Foundation Trust, Early Intervention in Psychosis Service, Birmingham, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom.
| |
Collapse
|
17
|
Murphy J, Zierotin A, Mongan D, Healy C, Susai SR, O'Donoghue B, Clarke M, O'Connor K, Cannon M, Cotter DR. Associations between soluble urokinase plasminogen activator receptor (suPAR) concentration and psychiatric disorders - A systematic review and meta-analysis. Brain Behav Immun 2024; 120:327-338. [PMID: 38857636 DOI: 10.1016/j.bbi.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND There is some evidence of an association between inflammation in the pathogenesis of mental disorders. Soluble urokinase plasminogen activator receptor (suPAR) is a biomarker of chronic inflammation, which provides a more stable index of systemic inflammation than more widely used biomarkers. This review aims to synthesise studies that measured suPAR concentrations in individuals with a psychiatric disorder, to determine if these concentrations are altered in comparison to healthy participants. METHOD Comprehensive literature searches from inception to October 2023 were conducted of five relevant databases (PubMed, Web of Science, Embase, Scopus, APA PsychInfo). Random-effects meta-analyses were performed to compare the standardised mean difference of blood suPAR levels (i.e. plasma or serum) for individuals with any psychiatric disorder relative to controls. Separate meta-analyses of suPAR levels were conducted for individuals with schizophrenia or other psychotic disorder and depressive disorder. Risk of bias was assessed using the Newcastle Ottawa Scale. Post-hoc sensitivity analyses included excluding studies at high risk of bias, and analyses of studies that measured suPAR concentrations either in serum or in plasma separately. RESULTS The literature search identified 149 records. Ten full-text studies were screened for eligibility and 9 studies were included for review. Primary analyses revealed no significant difference in suPAR levels between individuals with any psychiatric disorder compared to controls (k = 7, SMD = 0.42, 95 % CI [-0.20, 1.04]). However, those with depressive disorder had elevated suPAR levels relative to controls (k = 3, SMD = 0.61, 95 % CI [0.34, 0.87]). Similarly, secondary analyses showed no evidence of a significant difference in suPAR levels in individuals with any psychiatric disorder when studies at high risk of bias were excluded (k = 6, SMD = 0.54, 95 % CI [-0.14, 1.22]), but elevated suPAR concentrations for those with schizophrenia or other psychotic disorder were found (k = 3, SMD = 0.98, 95 % CI [0.39, 1.58]). Furthermore, studies that analysed plasma suPAR concentrations found elevated plasma suPAR levels in individuals with any psychiatric disorder relative to controls (k = 5, SMD = 0.84, 95 % CI [0.38, 1.29]), while studies measuring serum suPAR levels in any psychiatric disorder did not find a difference (k = 2, SMD = -0.61, 95 % CI [-1.27, 0.04]). For plasma, elevated suPAR concentrations were also identified for those with schizophrenia or other psychotic disorder (k = 3, SMD = 0.98, 95 % CI [0.39, 1.58]). DISCUSSION When studies measuring either only serum or only plasma suPAR were considered, no significant difference in suPAR levels were observed between psychiatric disorder groups, although significantly elevated suPAR levels were detected in those with moderate to severe depressive disorder. However, plasma suPAR levels were significantly elevated in those with any psychiatric disorder relative to controls, while no difference in serum samples was found. A similar finding was reported for schizophrenia or other psychotic disorder. The plasma findings suggest that chronic inflammatory dysregulation may contribute to the pathology of schizophrenia and depressive disorder. Future longitudinal studies are required to fully elucidate the role of this marker in the psychopathology of these disorders.
Collapse
Affiliation(s)
- Jennifer Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Anna Zierotin
- Department of Psychiatry, University College Dublin, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Public Health, Queen's University Belfast, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Subash R Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian O'Donoghue
- Department of Psychiatry, University College Dublin, Ireland; Department of Psychiatry, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Mary Clarke
- Department of Psychiatry, University College Dublin, Ireland; DETECT Early Intervention for Psychosis Service, Blackrock, Co. Dublin, Ireland
| | - Karen O'Connor
- RISE, Early Intervention in Psychosis Team, South Lee Mental Health Services, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Hatzimanolis A, Foteli S, Xenaki LA, Selakovic M, Dimitrakopoulos S, Vlachos I, Kosteletos I, Soldatos RF, Gazouli M, Chatzipanagiotou S, Stefanis N. Elevated serum kynurenic acid in individuals with first-episode psychosis and insufficient response to antipsychotics. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:61. [PMID: 38987245 PMCID: PMC11237022 DOI: 10.1038/s41537-024-00483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
The tryptophan-metabolizing kynurenine pathway (KP) can be activated by enhanced inflammatory responses and has been implicated in the pathophysiology of schizophrenia. However, there is little evidence for KP dysregulation in the early course of psychotic illness. We aimed to investigate the potential immune-mediated hyperactivity of KP in individuals with first-episode psychosis (FEP) and the relationship with symptom severity and treatment response outcomes. Serum immunoassays were performed to measure peripheral levels of inflammatory cytokines (IL-1β, IL-10, TNF-a), KP rate-limiting enzymes (IDO/TDO), and kynurenic acid (KYNA) metabolite in 104 antipsychotic-naïve patients with FEP and 80 healthy controls (HC). The Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning Scale (GAF) were administered to assess psychopathology and functioning status at admission and following 4-week treatment with antipsychotics. Cytokine and KP components levels were substantially increased in FEP patients compared to HC, before and after antipsychotic treatment. A significant positive correlation between pro-inflammatory IL-1β and KYNA levels was observed among FEP patients, but not in HC. Importantly, within-patient analysis revealed that those with higher baseline KYNA experienced more severe negative symptoms and poorer clinical improvement at follow-up. These findings suggest that KP is upregulated in early psychosis, likely through the induction of IL-1β-dependent pathways, and raised peripheral KYNA might represent a promising indicator of non-response to antipsychotic medication in patients with FEP.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece.
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece.
| | - Stefania Foteli
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- Department of Medical Biopathology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Lida-Alkisti Xenaki
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Mirjana Selakovic
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Stefanos Dimitrakopoulos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Ilias Vlachos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Ioannis Kosteletos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Rigas-Filippos Soldatos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Nikos Stefanis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece
- World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany
| |
Collapse
|
19
|
Kim E, Redwood S, Liu F, Roche DJO, Chen S, Bentley WE, Eaton WW, Čiháková D, Talor MV, Kelly DL, Payne GF. Pilot study indicates that a gluten-free diet lowers oxidative stress for gluten-sensitive persons with schizophrenia. Schizophr Res 2024; 269:71-78. [PMID: 38749320 PMCID: PMC11215979 DOI: 10.1016/j.schres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
One-third of people with schizophrenia have elevated levels of anti-gliadin antibodies (AGA IgG). A 5-week randomized double-blind pilot study was performed in 2014-2017 in an inpatient setting to test the effect of a gluten-free diet (GFD) on participants with schizophrenia or schizoaffective disorder who also had elevated AGA IgG (≥ 20 U) but were negative for celiac disease. This earlier pilot study reported that the GFD-group showed improved gastrointestinal and psychiatric symptoms, and also improvements in TNF-α and the inflammatory cytokine IL-23. Here, we performed measurements of these banked plasma samples to detect levels of oxidative stress (OxSt) using a recently developed iridium (Ir)-reducing capacity assay. Triplicate measurements of these samples showed an Intraclass Correlation Coefficient of 0.84 which indicates good reproducibility. Further, a comparison of the OxSt measurements at the baseline and 5-week end-point for this small sample size shows that the GFD-group (N = 7) had lowered OxSt levels compared to the gluten-containing diet group (GCD; N = 9; p = 0.05). Finally, we showed that improvements in OxSt over these 5 weeks were correlated to improvements in gastrointestinal (r = +0.64, p = 0.0073) and psychiatric (r = +0.52, p = 0.039) symptoms. Also, we showed a possible association between the decrease in OxSt and the lowered levels of IL-23 (r = +0.44, p = 0.087), although without statistical significance. Thus, the Ir-reducing capacity assay provides a simple, objective measure of OxSt with the results providing further evidence that inflammation, redox dysregulation and OxSt may mediate interactions between the gut and brain.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
| | - Sidney Redwood
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Fang Liu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Daniel J O Roche
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Daniela Čiháková
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Monica V Talor
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States.
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
20
|
Li YT, Zeng X. Circulating inflammatory cytokines influencing schizophrenia: a Mendelian randomization study. Front Psychiatry 2024; 15:1417213. [PMID: 38979494 PMCID: PMC11228335 DOI: 10.3389/fpsyt.2024.1417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Schizophrenia (SCZ) is a severe psychiatric disorder whose pathophysiology remains elusive. Recent investigations have underscored the significance of systemic inflammation, particularly the impact of circulating inflammatory proteins, in SCZ. Methods This study explores the potential causal association between certain inflammatory proteins and SCZ. Bidirectional Mendelian randomization (MR) analyses were conducted utilizing data from expansive genome-wide association studies (GWAS). Data regarding circulating inflammatory proteins were sourced from the GWAS Catalog database, encompassing 91 inflammatory cytokines. SCZ-related data were derived from the Finngen database, incorporating 47,696 cases and 359,290 controls. Analytical methods such as inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted mode were employed to evaluate the association between inflammatory cytokines and SCZ. Sensitivity analyses were also performed to affirm the robustness of the results. Results Following FDR adjustment, significant associations were observed between levels of inflammatory cytokines, including Fibroblast Growth Factor 5 (OR = 1.140, 95%CI = 1.045, 1.243, p = 0.003, FDR=0.015), C-C Motif Chemokine 4 (OR = 0.888, 95%CI = 0.816, 0.967, p = 0.006, FDR = 0.015), C-X-C Motif Chemokine 1 (OR = 0.833, 95%CI = 0.721, 0.962, p = 0.013, FDR = 0.064), and C-X-C Motif Chemokine 5 (OR = 0.870, 95%CI = 0.778, 0.973, p = 0.015, FDR = 0.074), and the risk of SCZ. Conclusion Our results from MR analysis suggest a potential causal link between circulating inflammatory cytokines and SCZ, thereby enriching our understanding of the interactions between inflammation and SCZ. Furthermore, these insights provide a valuable foundation for devising therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- Yao-Ting Li
- Department of Forensic Science, Guangdong Police College, Guangzhou, Guangdong, China
| | - Xuezhen Zeng
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Ma H, Deng J, Liu J, Jin X, Yang J. Daytime aspartame intake results in larger influences on body weight, serum corticosterone level, serum/cerebral cytokines levels and depressive-like behaviors in mice than nighttime intake. Neurotoxicology 2024; 102:37-47. [PMID: 38499183 DOI: 10.1016/j.neuro.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Aspartame (APM) is one of the most widely used artificial sweeteners worldwide. Studies have revealed that consuming APM may negatively affect the body, causing oxidative stress damage to multiple organs and leading to various neurophysiological symptoms. However, it's still unclear if consuming APM and one's daily biological rhythm have an interactive effect on health. In this study, healthy adult C57BL/6 mice were randomly divided into four groups: Control group (CON), oral gavage sham group (OGS), daytime APM intragastric group (DAI) and nighttime APM intragastric group (NAI). DAI and NAI groups were given 80 mg/kg body weight daily for 4 weeks. We found that DAI and NAI groups had significantly increased mean body weight, higher serum corticosterone levels, up-regulated pro-inflammatory responses in serum and brain, and exacerbated depressive-like behaviors than the CON and the two APM intake groups. Moreover, all these changes induced by APM intake were more significant in the DAI group than in the NAI group. The present study, for the first time, revealed that the intake of APM and daily biological rhythm have an interactive effect on health. This suggests that more attention should be paid to the timing of APM intake in human beings, and this study also provides an intriguing clue to the circadian rhythms of experimental animals that researchers should consider more when conducting animal experiments.
Collapse
Affiliation(s)
- Haiyuan Ma
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiapeng Deng
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Lu X, Sun Q, Wu L, Liao M, Yao J, Xiu M. The neutrophil-lymphocyte ratio in first-episode medication-naïve patients with schizophrenia: A 12-week longitudinal follow-up study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110959. [PMID: 38311095 DOI: 10.1016/j.pnpbp.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Inflammation has been related to schizophrenia (SZ). The neutrophil-to-lymphocyte ratio (NLR) is an inexpensive inflammatory marker, however, its potential predictive value in patients with SZ has not been extensively investigated. This study aimed to examine whether NLR could predict the clinical response to antipsychotics in this population. One hundred and ninety-five medication-naïve first-episode schizophrenia (MNFES) patients were recruited and received treatment with risperidone for 12 weeks in the present study. Clinical symptoms were evaluated at week 0 and the end of 12 weeks of treatment using the PANSS scales. Complete blood counts were determined at baseline. We found that baseline NEU counts and NLR were positively associated with improvements in clinical symptoms in patients. In addition, MNFES patients with higher baseline NLR values showed a better treatment response to antipsychotics. Linear regression analysis revealed a predictive role of baseline NLR for the improvements of clinical symptoms in SZ patients. Our findings demonstrate that higher NLR was related to better improvements in symptoms after 12 weeks of treatment with antipsychotics, which renders it a promising biomarker of the response to antipsychotics in clinical practice.
Collapse
Affiliation(s)
- Xiaobing Lu
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | | | - Ling Wu
- Qingdao Mental Health Center, Qingdao, China
| | - Meisi Liao
- North University of China, Taiyuan, China
| | - Jing Yao
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| |
Collapse
|
23
|
Michaelovsky E, Carmel M, Gothelf D, Weizman A. Lymphoblast transcriptome analysis in 22q11.2 deletion syndrome individuals with schizophrenia-spectrum disorder. World J Biol Psychiatry 2024; 25:242-254. [PMID: 38493364 DOI: 10.1080/15622975.2024.2327030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES 22q11.2 deletion is the most prominent risk factor for schizophrenia (SZ). The aim of the present study was to identify unique transcriptome profile for 22q11.2 deletion syndrome (DS)-related SZ-spectrum disorder (SZ-SD). METHODS We performed RNA-Seq screening in lymphoblasts collected from 20 individuals with 22q11.2DS (10 men and 10 women, four of each sex with SZ-SD and six with no psychotic disorders (Np)). RESULTS Sex effect in RNA-Seq descriptive analysis led to separating the analyses between men and women. In women, only one differentially expressed gene (DEG), HLA-DQA2, was associated with SZ-SD. In men, 48 DEGs (adjp < 0.05) were found to be associated with SZ-SD. Ingenuity pathway analysis of top 85 DEGs (p < 4.66E - 04) indicated significant enrichment for immune-inflammatory response (IIR) and neuro-inflammatory signalling pathways. Additionally, NFATC2, IFNG, IFN-alpha, STAT1 and IL-4 were identified as upstream regulators. Co-expression network analysis revealed the contribution of endoplasmic reticulum protein processing and N-Glycan biosynthesis. These findings indicate dysregulation of IIR and post-translational protein modification processes in individuals with 22q11.2DS-related SZ-SD. CONCLUSIONS Candidate pathways and upstream regulators may serve as novel biomarkers and treatment targets for SZ. Future transcriptome studies, including larger samples and proteomic analysis, are needed to substantiate our findings.
Collapse
Affiliation(s)
- Elena Michaelovsky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Miri Carmel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Doron Gothelf
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Behavioral Neurogenetics Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Abraham Weizman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| |
Collapse
|
24
|
Slováková A, Kúdelka J, Škoch A, Jakob L, Fialová M, Fürstová P, Bakštein E, Bankovská Motlová L, Knytl P, Španiel F. Time is the enemy: Negative symptoms are related to even slight differences in the duration of untreated psychosis. Compr Psychiatry 2024; 130:152450. [PMID: 38241816 DOI: 10.1016/j.comppsych.2024.152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Negative symptoms (NS) represent a detrimental symptomatic domain in schizophrenia affecting social and occupational outcomes. AIMS We aimed to identify factors from the baseline visit (V1) - with a mean illness duration of 0.47 years (SD = 0.45) - that predict the magnitude of NS at the follow-up visit (V3), occurring 4.4 years later (mean +/- 0.45). METHOD Using longitudinal data from 77 first-episode schizophrenia spectrum patients, we analysed eight predictors of NS severity at V3: (1) the age at disease onset, (2) age at V1, (3) sex, (4) diagnosis, (5) NS severity at V1, (6) the dose of antipsychotic medication at V3, (7) hospitalisation days before V1 and; (8) the duration of untreated psychosis /DUP/). Secondly, using a multiple linear regression model, we studied the longitudinal relationship between such identified predictors and NS severity at V3 using a multiple linear regression model. RESULTS DUP (Pearson's r = 0.37, p = 0.001) and NS severity at V1 (Pearson's r = 0.49, p < 0.001) survived correction for multiple comparisons. The logarithmic-like relationship between DUP and NS was responsible for the initial stunning incremental contribution of DUP to the severity of NS. For DUP < 6 months, with the sharpest DUP/NS correlation, prolonging DUP by five days resulted in a measurable one-point increase in the 6-item negative symptoms PANSS domain assessed 4.9 (+/- 0.6) years after the illness onset. Prolongation of DUP to 14.7 days doubled this NS gain, whereas 39 days longer DUP tripled NS increase. CONCLUSION The results suggest the petrification of NS during the early stages of the schizophrenia spectrum and a crucial dependence of this symptom domain on DUP. These findings are clinically significant and highlight the need for primary preventive actions.
Collapse
Affiliation(s)
- Andrea Slováková
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jan Kúdelka
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonín Škoch
- National Institute of Mental Health, Klecany, Czech Republic; Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Prague, Czech Republic.
| | - Lea Jakob
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Markéta Fialová
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petra Fürstová
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Eduard Bakštein
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | - Pavel Knytl
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
25
|
Ergun P, Kipcak S, Selvi Gunel N, Yildirim Sozmen E, Bor S. Inflammatory responses in esophageal mucosa before and after laparoscopic antireflux surgery. World J Gastrointest Surg 2024; 16:871-881. [PMID: 38577078 PMCID: PMC10989346 DOI: 10.4240/wjgs.v16.i3.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Currently, the primary treatment for gastroesophageal reflux is acid suppression with proton pump inhibitors, but they are not a cure, and some patients don't respond well or refuse long-term use. Therefore, alternative therapies are needed to understand the disease and develop better treatments. Laparoscopic anti-reflux surgery (LARS) can resolve symptoms of these patients and plays a significant role in evaluating esophageal healing after preventing harmful effects. Successful LARS improves typical gastroesophageal reflux symptoms in most patients, mainly by reducing the exposure time to gastric contents in the esophagus. Amelioration of the inflammatory response and a recovery response in the esophageal epithelium is expected following the cessation of the noxious attack. AIM To explore the role of inflammatory biomolecules in LARS and assess the time required for esophageal epithelial recovery. METHODS Of 22 patients with LARS (pre- and post/5.8 ± 3.8 months after LARS) and 25 healthy controls (HCs) were included. All subjects underwent 24-h multichannel intraluminal impedance-pH monitoring and upper gastrointestinal endoscopy, during which esophageal biopsy samples were collected using endoscopic techniques. Inflammatory molecules in esophageal biopsies were investigated by reverse transcription-polymerase chain reaction and multiplex-enzyme-linked immunosorbent assay. RESULTS Post-LARS samples showed significant increases in proinflammatory cytokines [interleukin (IL)-1β, interferon-γ, C-X-C chemokine ligand 2 (CXCL2)], anti-inflammatory cytokines [CC chemokine ligand (CCL) 11, CCL13, CCL17, CCL26, CCL1, CCL7, CCL8, CCL24, IL-4, IL-10], and homeostatic cytokines (CCL27, CCL20, CCL19, CCL23, CCL25, CXCL12, migration inhibitory factor) compared to both HCs and pre-LARS samples. CCL17 and CCL21 levels were higher in pre-LARS than in HCs (P < 0.05). The mRNA expression levels of AKT1, fibroblast growth factor 2, HRAS, and mitogen-activated protein kinase 4 were significantly decreased post-LARS vs pre-LARS. CCL2 and epidermal growth factor gene levels were significantly increased in the pre-LARS compared to the HCs (P < 0.05). CONCLUSION The presence of proinflammatory proteins post-LARS suggests ongoing inflammation in the epithelium. Elevated homeostatic cytokine levels indicate cell balance is maintained for about 6 months after LARS. The anti-inflammatory response post-LARS shows suppression of inflammatory damage and ongoing postoperative recovery.
Collapse
Affiliation(s)
- Pelin Ergun
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
- Division of Gastroenterology, Ege University, Faculty of Medicine, Ege Reflux Group, Izmir 35100, Turkiye
| | - Sezgi Kipcak
- Division of Gastroenterology, Ege University, Faculty of Medicine, Ege Reflux Group, Izmir 35100, Turkiye
- Department of Medical Biology, Ege University, Faculty of Medicine, Izmir 35100, Turkiye
| | - Nur Selvi Gunel
- Department of Medical Biology, Ege University, Faculty of Medicine, Izmir 35100, Turkiye
| | - Eser Yildirim Sozmen
- Department of Medical Biochemistry, Ege University, Faculty of Medicine, Izmir 35100, Turkiye
| | - Serhat Bor
- Division of Gastroenterology, Ege University, Faculty of Medicine, Ege Reflux Group, Izmir 35100, Turkiye
| |
Collapse
|
26
|
Mojadadi MS, Mahjour M, Fahimi H, Raoofi A, Shobeiri SS. Relationship between blood-based inflammatory indices and clinical score of schizophrenia patients: A cross-sectional study. Behav Brain Res 2024; 460:114807. [PMID: 38092259 DOI: 10.1016/j.bbr.2023.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Schizophrenia is a severe mental disorder that may involve inflammation. Inflammatory indices, such as the neutrophil to lymphocyte ratio (NLR), the monocyte to lymphocyte ratio (MLR), the platelet to lymphocyte ratio (PLR), and the systemic inflammation index (SII), are simple and inexpensive measures of inflammation that have been associated with various diseases. However, few studies have compared these indices and their relationships with clinical symptoms in schizophrenia. We conducted a cross-sectional study of 121 schizophrenia patients (101 males, 20 females). We measured the blood-based inflammatory indices (NLR, MLR, PLR, and SII) and assessed the clinical symptoms of schizophrenia using the Positive and Negative Syndrome Scale (PANSS). Statistical analyses were performed to examine the correlations and effects of the inflammatory indices on PANSS scores. We found that NLR, MLR, PLR, and SII were positively correlated with PANSS total score, PANSS positive score, PANSS negative score, and general psychopathology score (adjusted P < 0.02 for all correlations). Subgroup analysis showed that correlations between inflammatory indices and the clinical scores differed by gender. In males, all inflammatory indices were positively correlated with all clinical scores. On the other hand, in females, only NLR and SII were positively correlated with all clinical scores. After adjusting for confounders, we also found that NLR was a predictor of PANSS total score (β = 23, adjusted P < 0.02), PANSS positive score (β = 2.6, adjusted P = 0.03), PANSS negative score (β = 6.8, adjusted P < 0.02), and PANSS general psychopathology score (β = 13.6, adjusted P < 0.02), while SII was only a predictor for PANSS total score (β = -0.00003, adjusted P = 0.01) and general psychopathology scores (β = -0.00002, adjusted P < 0.02). These findings suggest that inflammation is involved in the pathophysiology and clinical manifestations of schizophrenia, and that blood-based inflammatory indices may serve as screening tools or indicators for the inflammatory status and severity of symptoms of schizophrenia patients.
Collapse
Affiliation(s)
- Mohammad-Shafi Mojadadi
- Department of Immunology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mojtaba Mahjour
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Fahimi
- Department of Psychiatry, School of Medicine, Vasei Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Amir Raoofi
- Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saeideh Sadat Shobeiri
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
27
|
Misiak B, Pawlak E, Rembacz K, Kotas M, Żebrowska-Różańska P, Kujawa D, Łaczmański Ł, Piotrowski P, Bielawski T, Samochowiec J, Samochowiec A, Karpiński P. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J Psychiatr Res 2024; 171:152-160. [PMID: 38281465 DOI: 10.1016/j.jpsychires.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The present study had the following aims: 1) to compare gut microbiota composition in patients with schizophrenia and controls and 2) to investigate the association of differentially abundant bacterial taxa with markers of inflammation, intestinal permeability, lipid metabolism, and glucose homeostasis as well as clinical manifestation. A total of 115 patients with schizophrenia during remission of positive and disorganization symptoms, and 119 controls were enrolled. Altogether, 32 peripheral blood markers were assessed. A higher abundance of Eisenbergiella, Family XIII AD3011 group, Eggerthella, Hungatella, Lactobacillus, Olsenella, Coprobacillus, Methanobrevibacter, Ligilactobacillus, Eubacterium fissicatena group, and Clostridium innocuum group in patients with schizophrenia was found. The abundance of Paraprevotella and Bacteroides was decreased in patients with schizophrenia. Differentially abundant genera were associated with altered levels of immune-inflammatory markers, zonulin, lipid profile components, and insulin resistance. Moreover, several correlations of differentially abundant genera with cognitive impairment, higher severity of negative symptoms, and worse social functioning were observed. The association of Methanobrevibacter abundance with the level of negative symptoms, cognition, and social functioning appeared to be mediated by the levels of interleukin-6 and RANTES. In turn, the association of Hungatella with the performance of attention was mediated by the levels of zonulin. The findings indicate that compositional alterations of gut microbiota observed in patients with schizophrenia correspond with clinical manifestation, intestinal permeability, subclinical inflammation, lipid profile alterations, and impaired glucose homeostasis. Subclinical inflammation and impaired gut permeability might mediate the association of gut microbiota alterations with psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| | - Edyta Pawlak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Rembacz
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Kotas
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Poland
| | - Paweł Karpiński
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
28
|
Jeppesen R, Borbye-Lorenzen N, Christensen RHB, Sørensen NV, Köhler-Forsberg O, Skogstrand K, Benros ME. Levels of cytokines in the cerebrospinal fluid of patients with psychotic disorders compared to individually matched healthy controls. Brain Behav Immun 2024; 117:167-174. [PMID: 38160934 DOI: 10.1016/j.bbi.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Increased peripheral cytokine levels have been observed in patients with psychotic disorders; however, large high-quality studies with individually matched healthy controls have been lacking regarding cytokines in cerebrospinal fluid (CSF) of individuals with psychotic disorders. METHODS Patients diagnosed with a non-organic, non-affective psychotic disorder (ICD-10: F20/22-29) within a year prior to inclusion and individually age- and sex-matched healthy controls were included by identical in- and exclusion criteria's except for the psychiatric diagnoses. All participants were aged 18-50 years and individuals with neurological or immunological disorders were excluded. CSF cytokines were analyzed with MesoScale V-PLEX neuroinflammation panel. Co-primary outcomes were CSF interleukin-6 (IL-6) and IL-8. RESULTS We included 104 patients and 104 healthy controls, matching on age, sex and BMI. No significant differences were found for the primary outcomes IL-6 (relative mean difference (MD): 0.97, 95 %CI: 0.84-1.11, p = 0.637) or IL-8 (MD: 1.01, 95 %CI: 0.93-1.09, p = 0.895). Secondary analyses found patients to have higher IL-4 (MD: 1.30, 95 %CI: 1.04-1.61, p = 0.018), a trend towards higher IFN-γ (MD: 1.26, 95 %CI: 0.99-1.59, p = 0.056), and lower IL-16 (MD: 0.83, 95 %CI: 0.74-0.94, p = 0.004) than healthy controls, though not significant after correction for multiple testing. IL-8 and IL-16 were found positively associated with CSF white blood cells and CSF/serum albumin ratio. The study was limited by 77.9 % of the patients being on antipsychotic treatment at time of intervention, and that levels of nine of the 26 cytokines were below lower limit of detection (LLOD) in >50 % of samples; however, for the primary outcomes IL-6 and IL-8 more than 99.5 % of the samples were above LLOD and for IL-8 all samples exceeded the lower limit of quantification (LLOQ). CONCLUSIONS We found no evidence of increased IL-6 and IL-8 in patients with recent-onset psychotic disorders in contrary to previous findings in meta-analyses of CSF cytokines. Secondary analyses found indication of higher IL-4, decreased IL-16, and borderline increased IFN-γ in patients, neither of which have previously been reported on in CSF analyses of individuals with psychotic disorders.
Collapse
Affiliation(s)
- Rose Jeppesen
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Rune Haubo Bojesen Christensen
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nina Vindegaard Sørensen
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Chaves C, Dursun SM, Tusconi M, Hallak JEC. Neuroinflammation and schizophrenia - is there a link? Front Psychiatry 2024; 15:1356975. [PMID: 38389990 PMCID: PMC10881867 DOI: 10.3389/fpsyt.2024.1356975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Center (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Wang X, Chen X, Guan X, Li Z. The neutrophil-to-Lymphocyte ratio is associated with clinical symptoms in first-episode medication-naïve patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:13. [PMID: 38310098 PMCID: PMC10851699 DOI: 10.1038/s41537-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Innate immunity has been shown to be associated with schizophrenia (Sch). This study explored the relationship between symptoms and neutrophil-to-lymphocyte ratio (NLR) (a marker of innate immunity) in patients with Sch. Ninety-seven first-episode medication-naïve (FEMN) patients with Sch and 65 healthy controls were recruited in this study. We measured the complete blood count and assessed the clinical symptoms using the PANSS scales. We found higher NEU counts and NLR in patients with Sch compared with control subjects. Male patients showed a higher NEU count than female patients. In addition, FEMN patients with higher NLR and NEU values showed higher PANSS-p, PANSS-g, and PANSS-total scores (all p < 0.05). Regression analysis revealed that NLR was a predictor for PANSS total scores in patients with Sch. Higher NLR value was observed in patients with Sch and the significant associations between NLR and psychotic symptoms indicate that an imbalance in inflammation and innate immune system may be involved in the pathophysiology of Sch.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiaofang Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Cadenhead KS, Mirzakhanian H, Achim C, Reyes-Madrigal F, de la Fuente-Sandoval C. Peripheral and central biomarkers associated with inflammation in antipsychotic naïve first episode psychosis: Pilot studies. Schizophr Res 2024; 264:39-48. [PMID: 38091871 DOI: 10.1016/j.schres.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Elevated serum pro-inflammatory molecules have been reported in early psychosis. What is not known is whether peripheral inflammatory biomarkers are associated with CNS biomarkers. In the brain, release of pro-inflammatory molecules by microglial hyperactivity may lead to neuronal apoptosis seen in neurodegenerative disorders and account for loss of brain tissue observed in psychotic disorders. Neurochemical changes, including elevated glutamate levels, are also associated with neuroinflammation, present in early psychosis and change with antipsychotic treatment. METHODS Antipsychotic naïve patients with first episode psychosis (FEP) were studied as part of a collaborative project of neuroinflammation. In Study 1 we explored associations between plasma inflammatory molecules and neurometabolites in the dorsal caudate using magnetic resonance spectroscopy (1H-MRS) in N = 13 FEP participants. Study 2 examined the relationship between inflammatory molecules in the Plasma and CSF in N = 20 FEP participants. RESULTS In Study 1, the proinflammatory chemokine MDC/CCL22 and IL10 were significantly positively correlated with Glutamate and Glx (glutamate + glutamine) levels in the dorsal caudate. In Study 2, plasma inflammatory molecules (MIP1β/CCL4, MCP1/CCL2, Eotaxin-1/CCL11 and TNFα) were significantly correlated with CSF MIP1β/CCL4, IL10, MCP1/CCL2 and Fractalkine/CX3CL1 and symptoms ratings. DISCUSSION Plasma inflammatory biomarkers are elevated in early psychosis, associated with neurochemical markers as well as CSF inflammatory molecules found in neurodegenerative disorders. Future studies are needed that combine both peripheral and central biomarkers in both FEP and HC to better understand a potential neuroinflammatory subtype of psychosis likely to respond to targeted interventions.
Collapse
Affiliation(s)
- Kristin S Cadenhead
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Heline Mirzakhanian
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Cristian Achim
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Francisco Reyes-Madrigal
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| | - Camilo de la Fuente-Sandoval
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| |
Collapse
|
32
|
Wei Y, Gao H, Luo Y, Feng J, Li G, Wang T, Xu H, Yin L, Ma J, Chen J. Systemic inflammation and oxidative stress markers in patients with unipolar and bipolar depression: A large-scale study. J Affect Disord 2024; 346:154-166. [PMID: 37924985 DOI: 10.1016/j.jad.2023.10.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE Numerous studies have demonstrated that neutrophil/HDL ratio (NHR), lymphocyte/HDL ratio (LHR), monocyte/HDL (MHR) ratio, platelet/HDL ratio (PHR), neutrophil/ALB ratio (NAR) and platelet/ALB ratio (PAR) can serve as systemic inflammation and oxidative stress markers in a variety of diseases. However, few studies have estimated the associations of these markers with unipolar depression (UD) and bipolar depression (BD), as well as psychotic symptoms in UD and BD. METHODS 6297 UD patients, 1828 BD patients and 7630 healthy subjects were recruited. The differences in these indicators among different groups were compared, and the influencing factors for the occurrence of UD or BD and psychotic symptoms were analyzed. RESULTS These ratios displayed unique variation patterns across different diagnostic groups. BD group exhibited higher NHR, LHR, MHR, NAR and lower PAR than UD and HC groups, UD group showed higher MHR than HC group. The psychotic UD group had higher NHR, LHR, MHR and NAR than non-psychotic UD group. Higher LHR, MHR, NAR and lower PAR were risk factors in BD when compared to UD group. CONCLUSIONS Our study demonstrated differences in inflammation and oxidative stress profile between UD and BD patients, as well as between subjects with or without psychotic symptom exist, highlighting the role of inflammation and oxidative stress in the pathophysiology of UD and BD.
Collapse
Affiliation(s)
- Yanyan Wei
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| | - Huanqin Gao
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Yanhong Luo
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Junhui Feng
- Jining Psychiatric Hospital, Jidai Road 1#, Jining 272000, Shandong, China
| | - Guoguang Li
- The Fourth People's Hospital of Liaocheng, Liaocheng, Shandong 252000, China
| | - Tingting Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Haiting Xu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Lu Yin
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Jinbao Ma
- Beijing Tongren Hospital, Dongjiaomin Road 1#, Beijing 100000, China.
| | - Jingxu Chen
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
33
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
34
|
Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, Bishop JR, Xiao L, Lui S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav Immun 2024; 115:557-564. [PMID: 37972880 DOI: 10.1016/j.bbi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1β (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1β level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1β levels, peripheral IL-1β was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Qi Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Li Xiao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
36
|
Gou M, Chen W, Li Y, Chen S, Feng W, Pan S, Luo X, Tan S, Tian B, Li W, Tong J, Zhou Y, Li H, Yu T, Wang Z, Zhang P, Huang J, Kochunov P, Tian L, Li CSR, Hong LE, Tan Y. Immune-Inflammatory Response And Compensatory Immune-Regulatory Reflex Systems And White Matter Integrity in Schizophrenia. Schizophr Bull 2024; 50:199-209. [PMID: 37540273 PMCID: PMC10754202 DOI: 10.1093/schbul/sbad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Low-grade neural and peripheral inflammation are among the proposed pathophysiological mechanisms of schizophrenia. White matter impairment is one of the more consistent findings in schizophrenia but the underlying mechanism remains obscure. Many cerebral white matter components are sensitive to neuroinflammatory conditions that can result in demyelination, altered oligodendrocyte differentiation, and other changes. We tested the hypothesis that altered immune-inflammatory response system (IRS) and compensatory immune-regulatory reflex system (IRS/CIRS) dynamics are associated with reduced white matter integrity in patients with schizophrenia. STUDY DESIGN Patients with schizophrenia (SCZ, 70M/50F, age = 40.76 ± 13.10) and healthy controls (HCs, 38M/27F, age = 37.48 ± 12.31) underwent neuroimaging and plasma collection. A panel of cytokines were assessed using enzyme-linked immunosorbent assay. White matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging using a 3-T Prisma MRI scanner. The cytokines were used to generate 3 composite scores: IRS, CIRS, and IRS/CIRS ratio. STUDY RESULTS The IRS/CIRS ratio in SCZ was significantly higher than that in HCs (P = .009). SCZ had a significantly lower whole-brain white matter average FA (P < .001), and genu of corpus callosum (GCC) was the most affected white matter tract and its FA was significantly associated with IRS/CIRS (r = 0.29, P = .002). FA of GCC was negatively associated with negative symptom scores in SCZ (r = -0.23, P = .016). There was no mediation effect taking FA of GCC as mediator, for that IRS/CIRS was not associated with negative symptom score significantly (P = .217) in SCZ. CONCLUSIONS Elevated IRS/CIRS might partly account for the severity of negative symptoms through targeting the integrity of GCC.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
37
|
Zhang Y, Tao S, Coid J, Wei W, Wang Q, Yue W, Yan H, Tan L, Chen Q, Yang G, Lu T, Wang L, Zhang F, Yang J, Li K, Lv L, Tan Q, Zhang H, Ma X, Yang F, Li L, Wang C, Zhao L, Deng W, Guo W, Ma X, Zhang D, Li T. The Role of Total White Blood Cell Count in Antipsychotic Treatment for Patients with Schizophrenia. Curr Neuropharmacol 2024; 22:159-167. [PMID: 36600620 PMCID: PMC10716888 DOI: 10.2174/1570159x21666230104090046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Total white blood cell count (TWBCc), an index of chronic and low-grade inflammation, is associated with clinical symptoms and metabolic alterations in patients with schizophrenia. The effect of antipsychotics on TWBCc, predictive values of TWBCc for drug response, and role of metabolic alterations require further study. METHODS Patients with schizophrenia were randomized to monotherapy with risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone, perphenazine or haloperidol in a 6-week pharmacological trial. We repeatedly measured clinical symptoms, TWBCc, and metabolic measures (body mass index, blood pressure, waist circumference, fasting blood lipids and glucose). We used mixed-effect linear regression models to test whether TWBCc can predict drug response. Mediation analysis to investigate metabolic alteration effects on drug response. RESULTS At baseline, TWBCc was higher among patients previously medicated. After treatment with risperidone, olanzapine, quetiapine, perphenazine, and haloperidol, TWBCc decreased significantly (p < 0.05). Lower baseline TWBCc predicted greater reductions in Positive and Negative Syndrome Scale (PANSS) total and negative scores over time (p < 0.05). We found significant mediation of TWBCc for effects of waist circumference, fasting low-density lipoprotein cholesterol, and glucose on reductions in PANSS total scores and PANSS negative subscale scores (p < 0.05). CONCLUSION TWBCc is affected by certain antipsychotics among patients with schizophrenia, with decreases observed following short-term, but increases following long-term treatment. TWBCc is predictive of drug response, with lower TWBCc predicting better responses to antipsychotics. It also mediates the effects of certain metabolic measures on improvement of negative symptoms. This indicates that the metabolic state may affect clinical manifestations through inflammation.
Collapse
Affiliation(s)
- Yamin Zhang
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jeremy Coid
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Liwen Tan
- Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chen
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guigang Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangshu, China
| | - Jianli Yang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Keqing Li
- Hebei Mental Health Center, Baoding, Hebei, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hongyan Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xin Ma
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Lingjiang Li
- Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuanyue Wang
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dai Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tao Li
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
39
|
Matuleviciute R, Akinluyi ET, Muntslag TAO, Dewing JM, Long KR, Vernon AC, Tremblay ME, Menassa DA. Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathol 2023; 146:663-683. [PMID: 37656188 PMCID: PMC10564830 DOI: 10.1007/s00401-023-02629-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elizabeth T Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado Ekiti, Nigeria
| | - Tim A O Muntslag
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Katherine R Long
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - David A Menassa
- Department of Neuropathology & The Queen's College, University of Oxford, Oxford, UK.
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
40
|
Loonen AJ. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav Immun Health 2023; 33:100687. [PMID: 37810262 PMCID: PMC10550815 DOI: 10.1016/j.bbih.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The term extrapyramidal disorders is most often used for conditions such as Parkinson's disease or Huntington's disease, but also refers to a group of extrapyramidal side effects of antipsychotics (EPS), such as tardive dyskinesia (TD). After a brief description of some clinical features of TD, this article summarizes the relatively scarce results of research on a possible link between mainly cytokine levels and TD. This data was found by systematically searching Pubmed and Embase. The limitations of these types of studies are a major obstacle to interpretation. After describing relevant aspects of the neuroinflammatory response and the neuroanatomical backgrounds of EPS, a new hypothesis for the origin of TD is presented with emphasis on dysfunctions in the striosomal compartment of the striatum and the dorsal diencephalic connection system (DDCS). It is postulated that (partly immunologically-induced) increase in oxidative stress and the dopamine-dependent immune response in classic TD proceed primarily via the DDCS, which itself is activated from evolutionarily older parts of the forebrain. Neuroinflammatory responses in the choroid plexus of the third ventricle may contribute due to its proximity to the habenula. It is concluded that direct evidence for a possible role of inflammatory processes in the mechanism of TD is still lacking because research on this is still too much of a niche, but there are indications that warrant further investigation.
Collapse
Affiliation(s)
- Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| |
Collapse
|
41
|
Korhonen L, Paul ER, Wåhlén K, Haring L, Vasar E, Vaheri A, Lindholm D. Multivariate analyses of immune markers reveal increases in plasma EN-RAGE in first-episode psychosis patients. Transl Psychiatry 2023; 13:326. [PMID: 37863883 PMCID: PMC10589203 DOI: 10.1038/s41398-023-02627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Immune cells and cytokines are largely recognized as significant factors in the pathophysiology of neuropsychiatric disorders. The possible role of other blood cells such as leukocytes in events of acute psychosis is in contrast only emerging. To study blood-born markers in acute psychosis we here evaluated plasma proteins in drug-naive first-episode psychosis (FEP) patients and healthy controls using a multiplex proximity extension assay technique. We analyzed a panel of 92 immune markers and plasma samples from 60 FEP patients and 50 controls and evaluated the changes obtained using multivariate statistical methods followed by protein pathway analyses. Data showed that 11 proteins are significantly different between FEP patients and healthy controls We observed increases in pro-inflammatory proteins such as interleukin-6, oncostatin-M, and transforming growth factor-alpha in FEP patients compared with controls. Likewise, the extracellular newly identified RAGE-binding protein (EN-RAGE) that regulates the expression of various cytokines was also elevated in the plasma of FEP patients. The results indicate that neutrophil-derived EN-RAGE could play an important role during the early phase of acute psychosis by stimulating cytokines and the immune response targeting thereby likely also the brain vasculature.
Collapse
Affiliation(s)
- Laura Korhonen
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden Region Östergötland, Linköping, Sweden
| | - Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Wåhlén
- Pain and Rehabilitation Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Liina Haring
- Institute of Clinical Medicine University of Tartu; Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu, 50411, Estonia
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
- Department of Biochemistry and Developmental Biology, Medicum, University of Helsinki, PO Box 63, FI-00014, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, FI-00290, Helsinki, Finland.
| |
Collapse
|
42
|
Zhuo C, Hu S, Chen G, Yang L, Cai Z, Tian H, Jiang D, Chen C, Wang L, Ma X, Li R. Low-dose lithium adjunct to atypical antipsychotic treatment nearly improved cognitive impairment, deteriorated the gray-matter volume, and decreased the interleukin-6 level in drug-naive patients with first schizophrenia symptoms: a follow-up pilot study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:71. [PMID: 37838729 PMCID: PMC10576794 DOI: 10.1038/s41537-023-00400-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
This study was conducted to investigate the effects of long-term low-dose lithium adjunct to antipsychotic agent use on the cognitive performance, whole-brain gray-matter volume (GMV), and interleukin-6 (IL-6) level in drug-naive patients with first-episode schizophrenia, and to examine relationships among these factors. In this double-blind randomized controlled study, 50 drug-naive patients with first-episode schizophrenia each took low-dose (250 mg/day) lithium and placebo (of the same shape and taste) adjunct to antipsychotic agents (mean, 644.70 ± 105.58 and 677.00 ± 143.33 mg/day chlorpromazine equivalent, respectively) for 24 weeks. At baseline and after treatment completion, the MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognitive performance, 3-T magnetic resonance imaging was performed to assess structural brain alterations, and serum IL-6 levels were quantified by immunoassay. Treatment effects were assessed within and between patient groups. Relationships among cognitive performance, whole-brain GMVs, and the IL-6 level were investigated by partial correlation analysis. Relative to baseline, patients in the lithium group showed improved working memory, verbal learning, processing speed, and reasoning/problem solving after 24 weeks of treatment; those in the placebo group showed only improved working memory and verbal learning. The composite MCCB score did not differ significantly between groups. The whole-brain GMV reduction was significantly lesser in the lithium group than in the placebo group (0.46% vs. 1.03%; P < 0.001). The GMV and IL-6 reduction ratios correlated with each other in both groups (r = -0.17, P = 0.025). In the lithium group, the whole-brain GMV reduction ratio correlated with the working memory improvement ratio (r = -0.15, P = 0.030) and processing speed (r = -0.14, P = 0.036); the IL-6 reduction ratio correlated with the working memory (r = -0.21, P = 0.043) and verbal learning (r = -0.30, P = 0.031) improvement ratios. In the placebo group, the whole-brain GMV reduction ratio correlated only with the working memory improvement ratio (r = -0.24, P = 0.019); the IL-6 reduction ratio correlated with the working memory (r = -0.17, P = 0.022) and verbal learning (r = -0.15, P = 0.011) improvement ratios. Both treatments implemented in this study nearly improved the cognitive performance of patients with schizophrenia; relative to placebo, low-dose lithium had slightly greater effects on several aspects of cognition. The patterns of correlation among GMV reduction, IL-6 reduction, and cognitive performance improvement differed between groups.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensor Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China.
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China.
| | - Shuiqing Hu
- Key Laboratory of Sensor Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, China
| | - Lei Yang
- Key Laboratory of Sensor Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, China
| | - Hongjun Tian
- Key Laboratory of Sensor Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, China
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Ranli Li
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC_Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| |
Collapse
|
43
|
Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front Psychiatry 2023; 14:1231750. [PMID: 37850104 PMCID: PMC10577328 DOI: 10.3389/fpsyt.2023.1231750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Numerous studies have now implicated a role for inflammation in schizophrenia. However, many aspects surrounding this aspect of the disease are still controversial. This controversy has been driven by conflicting evidence on the role of both pro-and anti-inflammatory factors and by often contentious findings concerning cytokine and immune cell profiles in the central nervous system and periphery. Current evidence supports the point that interleukin-6 is elevated in CSF, but does not support activation of microglia, resident macrophage-like cells in the brain. Furthermore, the mechanisms involving transit of the peripheral immune system factors across the blood brain barrier to central parenchyma have still not been completely elucidated. This process appears to involve perivascular macrophages and accompanying dendritic cells retained in the parenchyma by the chemokine and cytokine composition of the surrounding milieu. In addition, a number of studies have shown that this can be modulated by infection with viruses such as herpes simplex virus type I which may disrupt antigen presentation in the perivascular space, with long-lasting consequences. In this review article, we discuss the role of inflammation and viral infection as potential disease modifiers in schizophrenia. The primary viral hit may occur in the fetus in utero, transforming the immune response regulatory T-cells or the virus may secondarily remain latent in immune cells or neurons and modify further immune responses in the developing individual. It is hoped that unraveling this pathway further and solidifying our understanding of the pathophysiological mechanisms involved will pave the way for future studies aimed at identification and implementation of new biomarkers and drug targets. This may facilitate the development of more effective personalized therapies for individuals suffering with schizophrenia.
Collapse
Affiliation(s)
- Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Research and Education Department Addiction Care Northern Netherlands, Groningen, Netherlands
| | - Paul C. Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
44
|
Kuuskmäe C, Philips MA, Kilk K, Haring L, Kangro R, Seppo I, Zilmer M, Vasar E. Kynurenine pathway dynamics in patients with schizophrenia spectrum disorders across the disease trajectory. Psychiatry Res 2023; 328:115423. [PMID: 37639988 DOI: 10.1016/j.psychres.2023.115423] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The aim of this study was to evaluate how schizophrenia spectrum disorders (SSD) and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum levels of tryptophan (Trp) metabolites. A total of 112 adults (54 first-episode psychosis [FEP] patients and 58 control subjects [CSs]) participated in the study. The investigated changes in the metabolite levels appeared against a background of persistent increase in BMI and waist circumference among the patients. Regarding the kynurenine (KYN) pathway, the strongest changes were seen in AP-naïve FEP patients. Trp, KYN, kynurenic acid (KYNA), and anthranilic acid (ANT) levels were significantly reduced in blood samples from patients in the early stage of the disease. Furthermore, 3-OH-kynurenine (3-HK) and quinolinic acid (QUIN) levels were somewhat lower in these patients. Most of these changes in the KYN pathway became weaker with AP treatment. The levels of serotonin and its metabolite 5-HIAA tended to be higher at 5.1 years in patients showing the relation of elevated serotonin turnover to increased BMI and waist circumference. The similar trend was evident for the ratio between xanthurenic acid (XA) and KYNA with strong link to the elevated BMI. Altogether, the present study supports the role of Trp-metabolites in the development of obesity and metabolic syndrome in SSD patients.
Collapse
Affiliation(s)
- Carolin Kuuskmäe
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia.
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, Estonia; Psychiatry Clinic of Tartu University Hospital, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, Estonia
| | - Indrek Seppo
- School of Economics and Business Administration, University of Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| |
Collapse
|
45
|
Orbe EB, Benros ME. Immunological Biomarkers as Predictors of Treatment Response in Psychotic Disorders. J Pers Med 2023; 13:1382. [PMID: 37763150 PMCID: PMC10532612 DOI: 10.3390/jpm13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders, notably schizophrenia, impose a detrimental burden on both an individual and a societal level. The mechanisms leading to psychotic disorders are multifaceted, with genetics and environmental factors playing major roles. Increasing evidence additionally implicates neuro-inflammatory processes within at least a subgroup of patients with psychosis. While numerous studies have investigated anti-inflammatory add-on treatments to current antipsychotics, the exploration of immunological biomarkers as a predictor of treatment response remains limited. This review outlines the current evidence from trials exploring the potential of baseline inflammatory biomarkers as predictors of the treatment effect of anti-inflammatory drugs as add-ons to antipsychotics and of antipsychotics alone. Several of the studies have found correlations between baseline immunological biomarkers and treatment response; however, only a few studies incorporated baseline biomarkers as a primary endpoint, and the findings thus need to be interpreted with caution. Our review emphasizes the need for additional research on the potential of repurposing anti-inflammatory drugs while utilizing baseline inflammatory biomarkers as a predictor of treatment response and to identify subgroups of individuals with psychotic disorders where add-on treatment with immunomodulating agents would be warranted. Future studies investigating the correlation between baseline inflammatory markers and treatment responses can pave the way for personalized medicine approaches in psychiatry centred around biomarkers such as specific baseline inflammatory biomarkers in psychotic disorders.
Collapse
Affiliation(s)
- Elif Bayram Orbe
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
46
|
Singh D, Guest PC, Dobrowolny H, Fischbach T, Meyer-Lotz G, Breitling-Ziegler C, Haghikia A, Vielhaber S, Steiner J. Cytokine alterations in CSF and serum samples of patients with a first episode of schizophrenia: results and methodological considerations. Eur Arch Psychiatry Clin Neurosci 2023; 273:1387-1393. [PMID: 36773080 PMCID: PMC10449694 DOI: 10.1007/s00406-023-01569-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
We determined cytokine levels in paired serum/CSF samples from first-episode schizophrenia (FES) participants (n = 20) and controls (n = 21) using a 13-plex immunoassay. Applying strictly-determined detection limits, 12 cytokines were found in serum and two in CSF. Higher serum MCP-1 levels (p = 0.007) were present in FES versus controls, which correlated with serum IgG (R = - 0.750; p = 0.013). Finally, IL-18 levels correlated with body weight in FES (R = 0.691; p = 0.041). This study demonstrates potential limitations in the sensitivity of multiplex cytokine assays for CSF studies in mental disorders and suggests that some published studies in this area should be re-evaluated.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tino Fischbach
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Carolin Breitling-Ziegler
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
47
|
Llorca-Bofí V, Bioque M, Font M, Gich I, Mur M. Correlation between C-reactive protein and the inflammatory ratios in acute schizophrenia inpatients: are they associated? J Psychiatr Res 2023; 165:191-196. [PMID: 37515951 DOI: 10.1016/j.jpsychires.2023.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
C-reactive protein (CRP) and inflammatory ratios have been proposed to study immune dysregulation in schizophrenia. Nevertheless, links between CRP and inflammatory ratios in acute SCZ inpatients have been understudied. This study investigated the relationship between CRP and inflammatory ratios (Neutrophil-Lymphocyte Ratio [NRL], Platelet-Lymphocyte Ratio [PLR], Monocyte-Lymphocyte ratio [MLR] and Basophil-Lymphocyte Ratio [BLR]) in a total of 698 acute SCZ inpatients; and analysed how this relationship is affected by sex and type of episode. CRP correlated with NLR (rs = 0.338, p < 0.001), PLR (rs = 0.271, p < 0.001) and MLR (rs = 0.148, p < 0.001) but not with BLR (rs = 0.059, p = 0.121). Multiple lineal regression analysis showed that high levels of NLR, MLR and PLR but not BLR were independently associated with high CRP levels. No sex-related variations were found. Significant associations were maintained for NLR and MLR in first-episode and multiepisode SCZ, although the strength of the association was stronger in multiepisode SCZ. Again, no sex-related differences were found in these associations. In conclusion, inflammatory ratios were low to moderately associated with CRP in acute SCZ inpatients. NLR and multiepisode SCZ showed the highest associations with CRP. Future studies should consider inflammatory ratios not as a substitute for CRP but as a complementary biomarker.
Collapse
Affiliation(s)
- Vicent Llorca-Bofí
- Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Psychiatry, Santa Maria University Hospital Lleida, Lleida, Spain; Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Miquel Bioque
- Department of Medicine, University of Barcelona, Barcelona, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, CIBERSAM, IDIBAPS, Barcelona, Spain
| | - Maria Font
- Laboratory Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Ignasi Gich
- CIBER Epidemiología y Salud Pública (CIBERESP), Department of Clinical Epidemiology and Public Health, HSCSP, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Maria Mur
- Department of Medicine and Surgery, Universitat de Lleida, Spain; Department of Psychiatry, Santa Maria University Hospital Lleida, Lleida, Spain; Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain.
| |
Collapse
|
48
|
Shangguan F, Chen Z, Lv Y, Zhang XY. Interaction between high interleukin-2 and high cortisol levels is associated with psychopathology in patients with chronic schizophrenia. J Psychiatr Res 2023; 165:255-263. [PMID: 37541091 DOI: 10.1016/j.jpsychires.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Both cortisol and interleukins appear at abnormal levels in schizophrenia. Our previous study has shown that cortisol and interleukins are associated with psychopathology and response to antipsychotic medications in a relatively small sample size of patients with schizophrenia. The current study was designed to investigate how cortisol, interleukins (ILs) and their interactions would correlate with clinical presentation in a relatively large sample size of patients with schizophrenia. METHODS We compared serum cortisol, IL-2, IL-6, and IL-8 levels in 162 medicated schizophrenia patients (including 27 patients in remission) and 62 healthy controls. Serum levels of cortisol and interleukins were measured by radioimmunoassay and quantitative ELISA, respectively. Clinical symptoms were assessed according to the Positive and Negative Syndrome Scale (PANSS). RESULTS Patients with schizophrenia had significantly higher levels of cortisol and IL-2 compared to controls. Patients in remission had higher levels of IL-6 than non-remitting patients. PANSS positive symptoms, general psychopathology, cortisol and IL-2 were the most central nodes in the cortisol-IL-symptom network. The interaction between cortisol and IL-2 was associated with PANSS positive symptoms, general psychopathology and depressive factor. For patients with cortisol level above the median, IL-2 was negatively associated with PANSS positive symptoms and general psychopathology. CONCLUSIONS Our results indicated that the interaction between cytokines and cortisol may be associated with the pathophysiology of some symptoms in chronic schizophrenia. In particular, the interaction between cortisol and IL-2 is associated with the clinical phenotypes of schizophrenia.
Collapse
Affiliation(s)
- Fangfang Shangguan
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Ziwei Chen
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Yue Lv
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Ye J, Wei Y, Zeng J, Gao Y, Tang X, Xu L, Hu Y, Liu X, Liu H, Chen T, Li C, Zeng L, Wang J, Zhang T. Serum Levels of Tumor Necrosis Factor-α and Vascular Endothelial Growth Factor in the Subtypes of Clinical High Risk Individuals: A Prospective Cohort Study. Neuropsychiatr Dis Treat 2023; 19:1711-1723. [PMID: 37546519 PMCID: PMC10402730 DOI: 10.2147/ndt.s418381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Numerous studies have established the roles of inflammation and angioneurins in the pathogenesis of schizophrenia (SCZ). This study aimed to compare the serum levels of tumour necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) in patients at clinical high risk (CHR) for psychosis or SCZ at baseline and one year after treatment. Methods A total of 289 CHR participants from the Shanghai At Risk for Psychosis Extended Program (SHARP) were tracked for a year. They were divided into two and four subtypes based on symptom severity according to the Structured Interview for Prodromal Syndromes (SIPS) and received standard medical care. At baseline and one-year follow-up, TNF-α and VEGF were detected using enzyme-linked immunosorbent assay, and pathological features were assessed using the Global Assessment of Function (GAF) score. Results Baseline TNF-α levels did not differ significantly, while VEGF levels were lower in patients with more severe symptoms. VEGF showed a negative correlation with negative features, both overall (r = -0.212, p = 0.010) and in the subgroup with higher positive scores (r = -0.370, p = 0.005). TNF-α was positively correlated with negative symptoms in the subgroup with higher negative scores (r = 0.352, p = 0.002). A three-way multivariate analysis of variance demonstrated that participants in Subtype 1 of positive or negative symptoms performed better than those in Subtype 2, with significant main effects and interactions of group and both cytokines. Discussion TNF-α and VEGF levels are higher and lower, respectively, in CHR patients with more severe clinical symptoms, particularly negative symptoms, which point to a worsening inflammatory and vascular status in the brain.
Collapse
Affiliation(s)
- JiaYi Ye
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - JiaHui Zeng
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - YuQing Gao
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - XiaoHua Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, MA, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| | - LingYun Zeng
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, ShenZhen, GuangDong, People’s Republic of China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, People’s Republic of China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, People’s Republic of China
| |
Collapse
|
50
|
Moreno I, Stojanovic-Pérez A, Bulduk B, Sánchez-Gistau V, Algora MJ, Ortega L, Muntané G, Vilella E, Labad J, Martorell L. High blood levels of brain-derived neurotrophic factor (BDNF) mRNA in early psychosis are associated with inflammatory markers. J Psychiatr Res 2023; 164:440-446. [PMID: 37429187 DOI: 10.1016/j.jpsychires.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) single nucleotide polymorphism (SNP) rs6265C > T, Val66Met, affects BDNF secretion and has been related to inflammatory processes. Both the rs6265 and BDNF protein levels have been widely investigated in neuropsychiatric disorders with conflicting results. In the present study we examined BDNF mRNA expression in blood considering the SNP rs6265 and its relationship with inflammatory markers in the early stages of psychosis. The rs6265 genotype and blood BDNF mRNA levels were measured in 34 at-risk mental states (ARMS) individuals, 37 patients with first-episode psychosis (FEP) and 42 healthy controls (HCs) by quantitative PCR and reverse transcription (RT)-qPCR using validated TaqMan assays. We also obtained measures of interleukin-6 (IL6) mRNA levels, fibrinogen, neutrophil-to-lymphocyte ratio (NLR) and high-sensitivity C-reactive protein. We identified that BDNF mRNA levels were associated with the rs6265 genotype in an allele-dose-dependent manner, with low expression levels associated with the T allele (Met substitution). Thus, we controlled for the rs6265 genotype in all analyses. Blood BDNF mRNA levels differed between diagnostic groups: patients with FEP exhibited higher blood BDNF mRNA levels than ARMS individuals, and the lowest levels were observed in HC. In addition, we observed significant correlations between BDNF mRNA levels and inflammatory markers (IL6 mRNA levels and NLR), controlled by the rs6265 genotype, in ARMS and FEP groups. This exploratory study suggests that the rs6265 genotype is associated with differential blood mRNA expression of BDNF that increases with illness progression and correlated with inflammation in the early stages of psychosis.
Collapse
Affiliation(s)
- Irene Moreno
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bengisu Bulduk
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Vanessa Sánchez-Gistau
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Algora
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Ortega
- Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Departament d'Infermeria, URV, Tarragona, Catalonia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biologia Evolutiva, IBE, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Labad
- Hospital de Mataró, Consorci Sanitari del Maresme, Fundació Parc Taulí, Mataró, Catalonia, Spain; Institut d'Innovació i Investigació Parc Taulí (I3PT), Translational Neuroscience Research Unit I3PT-Inc-UAB, Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|