1
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
3
|
Berger G, Corris JD, Fields SE, Hao L, Scarpa LL, Bello NT. Systematic Review of Binge Eating Rodent Models for Developing Novel or Repurposing Existing Pharmacotherapies. Biomolecules 2023; 13:742. [PMID: 37238615 PMCID: PMC10216509 DOI: 10.3390/biom13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in developing and screening candidate pharmacotherapies for psychiatric disorders have depended on rodent models. Eating disorders are a set of psychiatric disorders that have traditionally relied on behavioral therapies for effective long-term treatment. However, the clinical use of Lisdexamfatamine for binge eating disorder (BED) has furthered the notion of using pharmacotherapies for treating binge eating pathologies. While there are several binge eating rodent models, there is not a consensus on how to define pharmacological effectiveness within these models. Our purpose is to provide an overview of the potential pharmacotherapies or compounds tested in established rodent models of binge eating behavior. These findings will help provide guidance for determining pharmacological effectiveness for potential novel or repurposed pharmacotherapies.
Collapse
Affiliation(s)
- Gregory Berger
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Corris
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Spencer E. Fields
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lihong Hao
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lori L. Scarpa
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T. Bello
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Ousey J, Boktor JC, Mazmanian SK. Gut microbiota suppress feeding induced by palatable foods. Curr Biol 2023; 33:147-157.e7. [PMID: 36450285 PMCID: PMC9839363 DOI: 10.1016/j.cub.2022.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Feeding behaviors depend on intrinsic and extrinsic factors including genetics, food palatability, and the environment.1,2,3,4,5 The gut microbiota is a major environmental contributor to host physiology and impacts feeding behavior.6,7,8,9,10,11,12 Here, we explored the hypothesis that gut bacteria influence behavioral responses to palatable foods and reveal that antibiotic depletion (ABX) of the gut microbiota in mice results in overconsumption of several palatable foods with conserved effects on feeding dynamics. Gut microbiota restoration via fecal transplant into ABX mice is sufficient to rescue overconsumption of high-sucrose pellets. Operant conditioning tests found that ABX mice exhibit intensified motivation to pursue high-sucrose rewards. Accordingly, neuronal activity in mesolimbic brain regions, which have been linked with motivation and reward-seeking behavior,3 was elevated in ABX mice after consumption of high-sucrose pellets. Differential antibiotic treatment and functional microbiota transplants identified specific gut bacterial taxa from the family S24-7 and the genus Lactobacillus whose abundances associate with suppression of high-sucrose pellet consumption. Indeed, colonization of mice with S24-7 and Lactobacillus johnsonii was sufficient to reduce overconsumption of high-sucrose pellets in an antibiotic-induced model of binge eating. These results demonstrate that extrinsic influences from the gut microbiota can suppress the behavioral response toward palatable foods in mice.
Collapse
Affiliation(s)
- James Ousey
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Functional Characterization and Molecular Marker Development of the Proenkephalin as Biomarker of Food Addiction in Food Habit Domestication of Mandarin Fish (Siniperca Chuatsi). FISHES 2022. [DOI: 10.3390/fishes7030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proenkephalin (PENK), as the precursor of endogenous opioid enkephalin (ENK), is widely present in the nervous system and plays an important role in animal food addiction and rewarding behavior. In our study, we intend to study the functional characterization and molecular marker development of the penk gene related to food habit domestication of mandarin fish. We found that the penk gene of mandarin fish had three types of endogenous opioid peptide sequences. Compared with other tissues, penk mRNA was highly expressed in the whole brain. Intracerebroventricular (ICV) injection of lysine or methionine significantly increased the expression of penk mRNA. The expression of penk mRNA in the brain of mandarin fish that could be easily domesticated from eating live prey fish to artificial diets was significantly higher than those that could not. After feeding with high-carbohydrate artificial diets, the expression of penk mRNA showed no significant difference between mandarin fish with hypophagia and those that still ate normally. A total of four single nucleotide polymorphisms (SNP) loci related to easy domestication toward eating artificial diets were screened from the mandarin fish population. Additionally, the TT genotype at one of the loci was significantly correlated with the food habit domestication of mandarin fish.
Collapse
|
6
|
Díaz-Rúa A, Chivite M, Comesaña S, Conde-Sieira M, Soengas JL. The Opioid System in Rainbow Trout Telencephalon Is Probably Involved in the Hedonic Regulation of Food Intake. Front Physiol 2022; 13:800218. [PMID: 35299666 PMCID: PMC8921556 DOI: 10.3389/fphys.2022.800218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
We hypothesize that opioids are involved in the regulation of food intake in fish through homeostatic and hedonic mechanisms. Therefore, we evaluated in rainbow trout (Oncorhynchus mykiss) hypothalamus and telencephalon changes in precursors, endogenous ligands and receptors of the opioid system under different situations aimed to induce changes in the homeostatic (through fasted/fed/refed fish) and hedonic (through feeding fish a control or a palatable high-fat diet) regulation of food intake. No major changes occurred in parameters assessed related with the nutritional condition of fish (fasted/fed/refed), allowing us to suggest that the opioid system seems not to have an important role in the homeostatic regulation of food intake in rainbow trout. The responses observed in telencephalon of rainbow trout fed the palatable high-fat diet included a decrease in mRNA abundance of the opioid precursor penka, in a way similar to that known in mammals, and increased mRNA abundance of the opioid receptors oprd1 and oprk1 supporting a role for telencephalic opioid system in the hedonic regulation of food intake in fish.
Collapse
|
7
|
Valentina S, Blasio A, Ferragud A, Quadir SG, Iyer MR, Rice KC, Cottone P. Characterization of a differential reinforcement of low rates of responding task in non-deprived male and female rats: Role of Sigma-1 receptors. Neuropharmacology 2021; 200:108786. [PMID: 34516984 PMCID: PMC9869339 DOI: 10.1016/j.neuropharm.2021.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/26/2023]
Abstract
Impulsive action can be defined as the inability to withhold a response and represents one of the dimensions of the broad construct impulsivity. Here, we characterized a modified differential reinforcement of low rates of responding (DRL) task developed in our laboratory, in which impulsive action is measured in ad libitum fed/watered subjects. Specifically, we first determined the effects of both sex and estrous cycle on impulsive action by systematically comparing male and estrous-synchronized female subjects. In addition, we evaluated the convergent validity of this modified DRL task by testing the effects of the D2R/5HT2AR antagonist, aripiprazole, and the noncompetitive NMDAR antagonist, MK-801. Finally, we tested the effects of the selective antagonist BD-1063 and agonist PRE-084 of Sigma-1 receptor (Sig-1R) on impulsive action using this modified DRL task. We found that female rats showed and increased inability to withhold a response when compared to males, and this effect was driven by the metestrus/diestrus phase of the estrous cycle. In addition, aripiprazole and MK-801 fully retained their capability to reduce and increase impulsive action, respectively. Finally, the selective Sig-1R antagonist, BD-1063 dose-dependently reduced the inability to withhold a response in both sexes, though more potently in female rats. In summary, we show that impulsive action, as measured in a modified DRL task which minimizes energy-homeostatic influences, is a function of both sex and estrous cycle. Furthermore, we validate the convergent validity of the task and provide evidence that Sig-1R antagonism may represent a novel pharmacological strategy to reduce impulsive action.
Collapse
Affiliation(s)
- Sabino Valentina
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Sema G Quadir
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
9
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
10
|
Szczepańska K, Kuder KJ, Kieć-Kononowicz K. Dual-targeting Approach on Histamine H 3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Curr Med Chem 2021; 28:2974-2995. [PMID: 32767910 DOI: 10.2174/0929867327666200806103144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| |
Collapse
|
11
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
Lee HS, Giunti E, Sabino V, Cottone P. Consummatory, Feeding Microstructural, and Metabolic Effects Induced by Limiting Access to Either a High-Sucrose or a High-Fat Diet. Nutrients 2020; 12:nu12061610. [PMID: 32486207 PMCID: PMC7352440 DOI: 10.3390/nu12061610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Binge eating disorder (BED) is characterized by recurrent binge eating episodes consisting of rapid consumption of excessive amounts of highly palatable, energy-dense food within discrete periods of time. The aim of this study was to test the consummatory, food microstructural, and metabolic effects of a one hour limited access to either a high-sucrose diet (HSD) or a high-fat diet (HFD) in an operant rat model of binge-like eating. Methods: Female rats were subject to a binge-like eating procedure in which a HSD, a HFD, or a standard chow diet were provided in a fixed ratio 1 (FR1) operant schedule of reinforcement. Results: Limiting access to either a HSD or a HFD promoted binge-like eating as compared to the control chow diet. However, binge-like eating of HSD, but not HFD, was based on a true increase in the amount of food consumed, an increased eating rate, and a decrease in the intake of the home-cage standard chow, altogether suggesting an increase in palatability. Moreover, while HSD rats consumed overall less energy than HFD rats, the former were more energy efficient and gained more body weight than the latter. Conclusions: These results provide information on how the quality of food can deeply influence the behavioral and metabolic outcomes of binge-like eating.
Collapse
|
13
|
Hicks C, Sabino V, Cottone P. The Alpha-1 Adrenergic Receptor Antagonist Prazosin Reduces Binge-Like Eating in Rats. Nutrients 2020; 12:nu12061569. [PMID: 32481494 PMCID: PMC7352795 DOI: 10.3390/nu12061569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Binge-eating disorder is a pervasive addiction-like disorder that is defined by excessive and uncontrollable consumption of food within brief periods of time. The aim of the current study was to examine the role of the brain noradrenergic system in binge-like eating through the use of the alpha-1 adrenergic receptor antagonist prazosin. Methods: For this purpose, we employed a limited access model whereby male Wistar rats were allowed to nosepoke for either chow (Chow rats) or a sugary, highly palatable food (Palatable rats) for 1 h/day. The effects of prazosin (0, 0.5, 1 and 2 mg/kg, i.p.) were tested in a fixed ratio 1 (FR1) and progressive ratio (PR) schedule of reinforcement. Results: The results show that prazosin preferentially reduced the responses for palatable food in a FR1 reinforcement schedule; when tested in a PR schedule of reinforcement, prazosin increased breakpoint in both Chow and Palatable rats, but more potently and more efficaciously in the latter. Our results suggest that prazosin treatment preferentially increased the motivational properties of the palatable diet. Conclusions: The current findings provide the characterization of the effects of prazosin on binge-like eating and offer support to the existing literature showing the important role of the noradrenergic system in addiction-like behavior.
Collapse
|
14
|
Maternal exercise during gestation and lactation decreases high-fat diet preference by altering central reward system gene expression in adult female offspring from high-fat fed dams. Behav Brain Res 2020; 390:112660. [PMID: 32387350 DOI: 10.1016/j.bbr.2020.112660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Exposure to maternal high-fat (HF) diet during gestation and lactation alters adult offspring's feeding behavior and diet preference. However, the impact of maternal exercise on offspring's diet preference and reward system development is less studied. In this study, we investigate the effect of perinatal maternal exercise on the development of diet preference, dopamine- and opioid-related gene expression in the central reward system in female offspring from HF-fed Sprague-Dawley rat dams. We found maternal HF diet did not alter adult offspring HF preference, but influenced offspring's dopamine and opioid system both at weaning and in adulthood, and these offspring retained higher body weight in adulthood. However, offspring from dams exposed to both HF diet and exercise during gestation and lactation had normalized body weight, decreased fat mass and lower HF-diet preference but increased energy intake in adulthood. The dopamine- and opioid-related gene expression in central reward system and POMC expression in hypothalamus was elevated in these adult offspring. We conclude that maternal exercise during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in female offspring by altering their diet preference, central reward system signaling and hypothalamus neuropeptide expression.
Collapse
|
15
|
Keefer SE, Petrovich GD. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 2020; 134:34-44. [PMID: 31829643 PMCID: PMC6944768 DOI: 10.1037/bne0000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental cues can become predictors of food availability through Pavlovian conditioning. Two forebrain regions important in this associative learning are the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). Recent work showed the BLA-mPFC pathway is activated when a cue reliably signals food, suggesting the BLA informs the mPFC of the cue's value. The current study tested this hypothesis by altering the value of 2 food cues using reversal learning and illness-induced devaluation paradigms. Rats that received unilateral excitotoxic lesions of the BLA and mPFC contralaterally placed, along with ipsilateral and sham controls, underwent discriminative conditioning, followed by reversal learning and then devaluation. All groups successfully discriminated between 2 auditory stimuli that were followed by food delivery (conditional stimulus [CS] +) or not rewarded (CS-), demonstrating this learning does not require BLA-mPFC communication. When the outcomes of the stimuli were reversed, the rats with disconnected BLA-mPFC (contralateral condition) showed increased responding to the CSs, especially to the rCS + (original CS-) during the first session, suggesting impaired cue memory recall and behavioral inhibition compared to the other groups. For devaluation, all groups successfully learned conditioned taste aversion; however, there was no evidence of cue devaluation or differences between groups. Interestingly, at the end of testing, the nondevalued contralateral group was still responding more to the original CS + (rCS-) compared to the devalued contralateral group. These results suggest a potential role for BLA-mPFC communication in guiding appropriate responding during periods of behavioral flexibility when the outcomes, and thus the values, of learned cues are altered. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Sara E. Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | - Gorica D. Petrovich
- Department of Psychology, Boston College, 140 Commomwealth Avenue, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
16
|
Valbrun LP, Zvonarev V. The Opioid System and Food Intake: Use of Opiate Antagonists in Treatment of Binge Eating Disorder and Abnormal Eating Behavior. J Clin Med Res 2020; 12:41-63. [PMID: 32095174 PMCID: PMC7011935 DOI: 10.14740/jocmr4066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/28/2019] [Indexed: 12/23/2022] Open
Abstract
Eating disorders (EDs) and substance use disorders (SUDs) commonly co-occur, especially in conjunction with affective syndromes, yet little is known about opiate abuse and ED symptoms in patients on naltrexone-bupropion therapy. Moreover, evidence suggests that the opioid system can also be regarded as one of the major systems regulating the anticipatory processes preceding binge eating episodes. The lack of evidence in the effectiveness of psychotherapy treatment in addition to psychotropic mediations compounds the difficulties in stabilizing individuals with EDs. This article aims to exhaustively review literature relating to the use of opioid antagonists in the management of binge eating disorder (BED) and other abnormal eating habits and how this can be augmented by the use of psychological approaches to come up with the most effective therapy or combination of therapies to manage these conditions. Although this approach is promising, it has not been evaluated. A review of the literature pertaining to the use of naltrexone in patients with EDs was performed through PubMed, PsycINFO and MEDLINE. We selected 63 relevant articles published between 1981 and 2018 and those written in English. Search terms included “Opioid antagonists”, “naltrexone”, “bupropion” and “Psychotherapy” each combined with “Binge Eating Disorder”, “Bulimia Nervosa”, “Anorexia Nervosa”, “Eating Disorder”, “EDNOS” and “Obesity”. While working with these articles, we also identified several problems related to use of these methods in real clinical practice. Seventy-seven articles were reviewed, and 63 were selected for inclusion. Data obtained from these sources confirmed that the blockade of opioid receptors diminishes food intake. More recent findings also indicate that the combination of bupropion and naltrexone can induce weight loss. Augmentation of this by introducing psychotherapy may lead to better outcomes. Cognitive behavioral therapy (CBT) was the most frequently recommended psychotherapy intervention, showing efficacy for EDs and chemical addictions as documented by most of the studies, but with uncertain efficacy when utilized as augmentation strategy. There are limited data supporting the use of psychotherapy in augmentation of standard therapy in ED; however, there is evidence to support that psychotherapy is safe in this population and has been effective in cases of patients with opiate addiction with and without psychiatric comorbidities as well as BED. More research is needed to establish treatment guidelines. Combining pharmacotherapeutic and psychotherapeutic interventions leads to the achievement of a better outcome in managing patients with EDs. Involving families or the use of support groups increases chances of adherence to the prescribed interventions resulting in higher rates of remission. However, it is clear that all of these interventions must occur in the context of a comprehensive treatment program. We believe that patient-specific psychotherapy may not only facilitate the treatment process, but also cause significant alterations in eating pattern. This approach for BED may lead to more significant treatment outcomes, but this possibility must be tested in larger samples.
Collapse
Affiliation(s)
- Leon P Valbrun
- Department of Psychiatry, Interfaith Medical Center, 1545 Atlantic Avenue, Brooklyn, NY 11213, USA
| | - Valeriy Zvonarev
- School of Behavioral Sciences, California Southern University, 3330 Harbor Blvd, Costa Mesa, CA 92626, USA
| |
Collapse
|
17
|
Newmyer BA, Whindleton CM, Srinivasa N, Jones MK, Scott MM. Genetic variation affects binge feeding behavior in female inbred mouse strains. Sci Rep 2019; 9:15709. [PMID: 31673099 PMCID: PMC6823456 DOI: 10.1038/s41598-019-51874-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Identifying genetic variants that regulate binge eating (BE) is critical for understanding the factors that control this behavior and for the development of pharmacological treatment strategies. Although several studies have revealed specific genes capable of affecting BE behavior, less is known about how genetic variation modulates BE. Thus, through a paradigm that promoted binge-like food intake through intermittent access to high calorie diet (HCD), we quantified food-intake in four inbred mouse strains: C57Bl/6J (B6), NOD/LtJ (NOD), 129S1/SvlmJ (S1), and A/J (AJ). We report that genetic variation likely influences the chronic regulation of food intake and the binge-like consumption of a palatable HCD. AJ mice consumed more of both standard chow and HCD than the other three strains tested when both diets were available ad libitum, while S1 mice consumed significantly less HCD than other strains during intermittent HCD access. Behavioral differences were also associated with differential changes in c-Fos immunohistochemistry in brain regions traditionally associated with appetite regulation. Our results identify 129S1/SvlmJ as a strain that exhibits low levels of binge feeding behavior and suggests that this strain could be useful in the investigation of the influence of genetic variation in the control of binge food intake.
Collapse
Affiliation(s)
- Brandon A Newmyer
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ciarra M Whindleton
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Nandan Srinivasa
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marieke K Jones
- Health Sciences Library, University of Virginia, Charlottesville, VA, USA
| | - Michael M Scott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Augustine F, Rajendran S, Singer HS. Cortical endogenous opioids and their role in facilitating repetitive behaviors in deer mice. Behav Brain Res 2019; 379:112317. [PMID: 31676208 DOI: 10.1016/j.bbr.2019.112317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Deer mice provide a non-pharmacologically induced model for the study of repetitive behaviors. In captivity, these animals develop frequent jumping and rearing that resemble clinical symptoms of obsessive-compulsive behavior (OCB), autism spectrum disorder (ASD), complex motor stereotypies (CMS), and Tourette's syndrome (TS). In this study, we pursue the mechanism of repetitive behaviors by performing stereological analyses and liquid chromatography/ mass spectrometry (LC-MS/MS) measurements of glutamate (Glut), GABA, 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), leu-enkephalin (leu-enk), and dynorphin-A (dyn-A) in frontal cortex (FC), prefrontal cortex (PFC), and basal ganglia. The only significant stereological alteration was a negative correlation between repetitive behaviors and the cell count in the ventromedial striatum (VMS). Neurochemical analyses demonstrated a significant negative correlation between repetitive behaviors and endogenous opioids (leu-enk and dyn-A) in the FC - the site of origin of habitual behaviors and cortical projections to striatal MSNs participating in direct and indirect pathways. The precise neurochemical process by which endogenous opioids influence synaptic neurotransmission is unknown. One postulated cortical mechanism, supported by our findings, is an opioid effect on cortical interneuron GABA release and a consequent effect on glutamatergic cortical pyramidal cells. Anatomical changes in the VMS could have a role in repetitive behaviors, recognizing that this region influences goal-directed and habitual behaviors.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, USA
| | | | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
19
|
Newmyer BA, Whindleton CM, Klein PM, Beenhakker MP, Jones MK, Scott MM. VIPergic neurons of the infralimbic and prelimbic cortices control palatable food intake through separate cognitive pathways. JCI Insight 2019; 5:126283. [PMID: 30939126 PMCID: PMC6538359 DOI: 10.1172/jci.insight.126283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
The prefrontal cortex controls food reward seeking and ingestion, playing important roles in directing attention, regulating motivation towards reward pursuit, and the assignment of reward salience and value. The cell types that mediate these behavioral functions, however, are not well described. We report here that optogenetic activation of vasoactive peptide expressing (VIP) interneurons in both the infralimbic (IL) and prelimbic (PL) divisions of the medial prefrontal cortex in mice is sufficient to reduce acute, binge-like intake of high calorie palatable food in the absence of any effect on low calorie rodent chow intake in the sated animal. In addition, we discovered that the behavioral mechanisms associated with these changes in feeding differed between animals that underwent either IL or PL VIPergic stimulation. While IL VIP neurons showed the ability to reduce palatable food intake, this effect was dependent upon the novelty and relative value of the food source. In addition, IL VIP neuron activation significantly reduced novel object- and novel social investigative behavior. Activation of PL VIP neurons, however, produced a reduction in high calorie palatable food intake that was independent of food novelty. Neither IL nor PL VIP excitation changed motivation to obtain food reward. Our data show how neurochemically-defined populations of cortical interneurons can regulate specific aspects of food reward-driven behavior, resulting in a selective reduction in intake of highly valued food.
Collapse
Affiliation(s)
| | | | | | | | - Marieke K. Jones
- Health Sciences Library, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
20
|
TouchScreen-based phenotyping: altered stimulus/reward association and lower perseveration to gain a reward in mu opioid receptor knockout mice. Sci Rep 2019; 9:4044. [PMID: 30858487 PMCID: PMC6411729 DOI: 10.1038/s41598-019-40622-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
While the contribution of Mu Opioid Receptors (MORs) to hedonic aspects of reward processing is well-established, the notion that these receptors may also regulate motivation to gain a reward, and possibly other related cognitive dimensions, has been less investigated. The prefrontal cortex (PFC) is a critical site for these processes. Our previous functional magnetic resonance imaging study found alterations of functional connectivity (FC) in reward/aversion networks in MOR knockout mice. Here we pursued voxelwise seed-based FC analyses using the same dataset with a focus on the PFC. We observed significant reduction of PFC FC in mutant mice, predominantly with the nucleus accumbens, supporting the notion of altered reward-driven top-down controls. We tested motivation for palatable food in a classical operant self-administration paradigm, and found delayed performance for mutant mice. We then evaluated motivational and cognitive abilities of MOR knockout mice in TouchScreen-based behavioral tests. Learning was delayed and stimulus/reward association was impaired, suggesting lower hedonic reward value and reduced motivation. Perseverative responses were decreased, while discriminatory behavior and attention were unchanged, indicative of increased inhibitory controls with otherwise intact cognitive performance. Together, our data suggest that MORs contribute to enhance reward-seeking and facilitate perseverative behaviors. The possibility that MOR blockade could reduce maladaptive compulsivity deserves further investigation in addiction and self-control disorder research.
Collapse
|
21
|
Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0024. [PMID: 29352024 DOI: 10.1098/rstb.2017.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Compulsive eating behaviour is a transdiagnostic construct observed in certain forms of obesity and eating disorders, as well as in the proposed construct of 'food addiction'. Compulsive eating can be conceptualized as comprising three elements: (i) habitual overeating, (ii) overeating to relieve a negative emotional state, and (iii) overeating despite adverse consequences. Neurobiological processes that include maladaptive habit formation, the emergence of a negative affect, and dysfunctions in inhibitory control are thought to drive the development and persistence of compulsive eating behaviour. These complex psychobehavioural processes are under the control of various neuropharmacological systems. Here, we describe the current evidence implicating these systems in compulsive eating behaviour, and contextualize them within the three elements. A better understanding of the neuropharmacological substrates of compulsive eating behaviour has the potential to significantly advance the pharmacotherapy for feeding-related pathologies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Graduate Program for Neuroscience, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Julia I Panciera
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,MS in Medical Sciences Program, Graduate Medical Sciences, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Master of Public Health Program, Department of Health Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| |
Collapse
|
22
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
23
|
Tapia MA, Lee JR, Weise VN, Tamasi AM, Will MJ. Sex differences in hedonic and homeostatic aspects of palatable food motivation. Behav Brain Res 2018; 359:396-400. [PMID: 30465814 DOI: 10.1016/j.bbr.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Feeding behaviors can be modified via homeostatic and hedonic mechanisms. Homeostasis, while primarily concerned with maintaining energy balance via food consumption and energy expenditure, can alter food reward and motivation in response to food deprivation. Alternatively, reward and motivation of food is also driven by its palatability or hedonic nature, and this process can be augmented by opioid receptor activation. The present study examined sex differences in the motivational properties of sucrose pellets through manipulation of homeostatic and hedonic processes via acute food deprivation and acute systemic administration of morphine, respectively. The results showed that regardless of sex, systemic injections of morphine did not alter the motivation to obtain a sucrose pellet on a progressive ratio schedule of reinforcement but does significantly increase consumption of sucrose pellets when freely available. Male and female rats demonstrated similar increased consumption of sucrose pellets under free feeding conditions following acute (24-hours) food deprivation, compared to the non-deprived conditions. Overall, the findings from these experiments indicate that female rats work harder in order to obtain a sucrose pellet (under a Progressive Ratio (PR) schedule of reinforcement) and consume more sucrose pellets than males. However, while acute morphine administration causes similar increases on feeding in males and females, it does not alter motivation as measured by breakpoint on a PR schedule of reinforcement.
Collapse
Affiliation(s)
- Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| | - Valerie N Weise
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Anna M Tamasi
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Abstract
Binge eating disorder is an addiction-like disorder characterized by recurrent, excessive food consumption within discrete periods of time, and it has been linked to increased trait impulsivity. Within impulsivity components, while impulsive action was shown to predict binge-like and addictive-like eating, the role of impulsive choice is instead unknown. The goal of this study was to determine if impulsive choice predicted, or was altered by binge-like eating of a sugary, highly palatable diet. We utilized a modified adjusting delay task procedure in free-fed rats to assess impulsive choice behavior, that is. the tendency to respond for a larger, delayed reward over a lesser, immediate reward. We found that baseline impulsive choice was not a predictor of binge-like eating in 1-h sessions of palatable diet operant self-administration. Furthermore, binge-like eating of the same palatable diet had no effect on later impulsive choice behavior. Thus, our data suggest that, unlike impulsive action, impulsive choice behavior does not predict binge-like eating in rats.
Collapse
|
25
|
Smail-Crevier RL, Maracle AC, Wash SI, Olmstead MC. Binge-like intake of sucrose reduces the rewarding value of sucrose in adult rats. Physiol Behav 2018; 194:420-429. [DOI: 10.1016/j.physbeh.2018.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
|
26
|
Selleck RA, Giacomini J, Buchholtz BD, Lake C, Sadeghian K, Baldo BA. Modulation of appetitive motivation by prefrontal cortical mu-opioid receptors is dependent upon local dopamine D1 receptor signaling. Neuropharmacology 2018; 140:302-309. [PMID: 30086291 DOI: 10.1016/j.neuropharm.2018.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Opioid neurotransmission has been implicated in psychiatric disorders featuring impaired control over appetitive motivation, such as addiction and binge-eating disorder. We have previously shown that infusions of the μ-opioid receptor (μOR) agonist DAMGO into the ventromedial prefrontal cortex (vmPFC) induced hyperphagia, increased motor activity, and augmented sucrose-reinforced responding in the task progressive ratio (PR) task, which assesses the motivational value of an incentive. These effects were not reproduced by intra-PFC infusion of a variety of dopamine (DA) agonists and antagonists, suggesting that manipulation of intra-PFC DA systems alone is not sufficient to reproduce μOR-like effects. Nevertheless, this does not rule out interactions between PFC DA and μ-opioid systems. Here we used intra-vmPFC drug cocktails containing DAMGO and SCH 23390 (a DA D1 receptor antagonist) to determine whether increases in appetitive motivation and motor activity elicited by intra-vmPFC μOR stimulation require intact signaling through vmPFC D1 receptors. Blockade of D1 receptors with SCH 23390 attenuated the enhancement of PR breakpoint, and increases in exploratory-like behavior and feeding initiation elicited by intra-vmPFC μOR stimulation. These results establish that intra-vmPFC D1 signaling is required for the expression of behavioral effects evoked by μOR stimulation within the PFC, and further suggest that D1 tone plays an enabling or permissive role in the expression of μOR -elicited effects. Simultaneous targeting of both μ-opioid and D1 systems may represent a more efficacious treatment strategy (compared to μOR blockade alone) for psychiatric disorders characterized by dysregulated appetitive motivation.
Collapse
Affiliation(s)
- Ryan A Selleck
- Dept. Cellular & Molecular Pharmacology, Rosalind Franklin, Univ.of Medicine & Science, USA
| | - Juliana Giacomini
- Physiology Graduate Training Program, Univ. Wisconsin-Madison, School of Medicine &Public Health, USA
| | | | - Curtis Lake
- College of Agricultural & Life Sciences, Univ. Wisconsin-Madison, USA
| | - Ken Sadeghian
- Dept. Psychiatry, Univ. Wisconsin-Madison, School of Medicine & Public Health, USA
| | - Brian A Baldo
- Dept. Psychiatry, Univ. Wisconsin-Madison, School of Medicine & Public Health, USA.
| |
Collapse
|
27
|
|
28
|
Levy A, Daniels S, Hudson R, Horman T, Flynn A, Zhou Y, Leri F. Bupropion and naltrexone combination alters high fructose corn syrup self-administration and gene expression in rats. Neuropharmacology 2018; 135:547-554. [DOI: 10.1016/j.neuropharm.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
|
29
|
Murphy M, Dijkstra DJ, Duncan JS, Horgan GW, Mercer JG. A spontaneous binge-like eating model in mice using unpredictable once weekly access to palatable diets. Appetite 2018; 126:137-146. [PMID: 29627345 DOI: 10.1016/j.appet.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
Many pre-clinical models of binge-like eating involve predictable, scheduled, access to a palatable diet high in fat (HF), where access may be preceded by anticipatory behaviour. Here, to introduce spontaneity into the binge-type consumption of palatable diets, mice were allowed 2 h access on a random day once per week and at a random time within an 8 h window either side of the transition from dark phase to light phase. Despite normal intake of a stock diet prior to unpredictable access to HF diet, mice immediately initiated a substantial eating episode when presented with HF diet. Following this consumption, compensatory hypophagia was observed relative to stock diet-fed controls, and cumulative energy intakes converged. There were no effects of HF diet on body weight or body composition over a 12-week period. Binge-like consumption was also observed on unpredictable access to the complete liquid diet, chocolate Ensure, but not with a 10% sucrose solution. Binge-like responses to unpredictable access to HF diet or Ensure were similar in male and female mice, although there were effects of sex on caloric consumption from stock diet in the compensatory period following palatable diet intake, with higher intakes in females. The timing of the 2h access period relative to light phase transition affected intake of palatable diets, but less robustly than the equivalent effect on stock diet intake during the same timed periods - the diurnal patterning of energy intake was diet sensitive. The large spontaneous binge-like consumption on unpredictable access to either solid or liquid palatable diets in mice of either sex offers the potential to combine these attributes with other manipulations where a developing obesity is part of the binge-like eating phenotype.
Collapse
Affiliation(s)
- Michelle Murphy
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dorieka J Dijkstra
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK; Department of Obstetrics and Gynaecology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline S Duncan
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Graham W Horgan
- Biomathematics & Statistics Scotland, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Julian G Mercer
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
30
|
Giuliano C, Peña-Oliver Y, Goodlett CR, Cardinal RN, Robbins TW, Bullmore ET, Belin D, Everitt BJ. Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats. Neuropsychopharmacology 2018; 43:728-738. [PMID: 28553834 PMCID: PMC5809777 DOI: 10.1038/npp.2017.105] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 01/01/2023]
Abstract
Excessive drinking to intoxication is the major behavioral characteristic of those addicted to alcohol but it is not the only one. Indeed, individuals addicted to alcohol also crave alcoholic beverages and spend time and put much effort into compulsively seeking alcohol, before eventually drinking large amounts. Unlike this excessive drinking, for which treatments exist, compulsive alcohol seeking is therefore another key feature of the persistence of alcohol addiction since it leads to relapse and for which there are few effective treatments. Here we provide novel evidence for the existence in rats of an individual vulnerability to switch from controlled to compulsive, punishment-resistant alcohol seeking. Alcohol-preferring rats given access to alcohol under an intermittent 2-bottle choice procedure to establish their alcohol-preferring phenotype were subsequently trained instrumentally to seek and take alcohol on a chained schedule of reinforcement. When stable seeking-taking performance had been established, completion of cycles of seeking responses resulted unpredictably either in punishment (0.45 mA foot-shock) or the opportunity to make a taking response for access to alcohol. Compulsive alcohol seeking, maintained in the face of the risk of punishment, emerged in only a subset of rats with a predisposition to prefer and drink alcohol, and was maintained for almost a year. We show further that a selective and potent μ-opioid receptor antagonist (GSK1521498) reduced both alcohol seeking and alcohol intake in compulsive and non-compulsive rats, indicating its therapeutic potential to promote abstinence and prevent relapse in individuals addicted to alcohol.
Collapse
Affiliation(s)
- Chiara Giuliano
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK, Tel: +44 0 1223 765292, Fax: +44 0 1223 333564, E-mail:
| | - Yolanda Peña-Oliver
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Edward T Bullmore
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Cambridge, UK,Clinical Unit Cambridge and Academic DPU, GlaxoSmithKline R&D, Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Belin
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Barry J Everitt
- Behavioral and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Pomrenze MB, Fetterly TL, Winder DG, Messing RO. The Corticotropin Releasing Factor Receptor 1 in Alcohol Use Disorder: Still a Valid Drug Target? Alcohol Clin Exp Res 2017; 41:1986-1999. [PMID: 28940382 PMCID: PMC5711524 DOI: 10.1111/acer.13507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide that plays a key role in behavioral and physiological responses to stress. A large body of animal literature implicates CRF acting at type 1 CRF receptors (CRFR1) in consumption by alcohol-dependent subjects, stress-induced reinstatement of alcohol seeking, and possibly binge alcohol consumption. These studies have encouraged recent pilot studies of CRFR1 antagonists in humans with alcohol use disorder (AUD). It was a great disappointment to many in the field that these studies failed to show an effect of these compounds on stress-induced alcohol craving. Here, we examine these studies to explore potential limitations and discuss preclinical and human literature to ask whether CRFR1 is still a valid drug target to pursue for the treatment of AUD.
Collapse
Affiliation(s)
| | - Tracy L. Fetterly
- Department of Molecular Physiology & Biophysics, Vanderbilt
University, Nashville, TN
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University,
Nashville, TN
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt
University, Nashville, TN
- Vanderbilt Center for Addiction Research, Vanderbilt University,
Nashville, TN
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University,
Nashville, TN
| | - Robert O. Messing
- Institute for Neuroscience, University of Texas at Austin, Austin,
TX
- Departments of Neuroscience and Neurology, University of Texas at
Austin, Austin, TX
- Waggoner Center for Alcohol and Addiction Research, University of
Texas at Austin, Austin, TX
| |
Collapse
|
33
|
Moore CF, Schlain GS, Mancino S, Sabino V, Cottone P. A behavioral and pharmacological characterization of palatable diet alternation in mice. Pharmacol Biochem Behav 2017; 163:1-8. [PMID: 29097161 PMCID: PMC5911178 DOI: 10.1016/j.pbb.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/28/2022]
Abstract
Obesity and eating disorders are widespread in Western societies. Both the increased availability of highly palatable foods and dieting are major risk factors contributing to the epidemic of disorders of feeding. The purpose of this study was to characterize an animal model of maladaptive feeding induced by intermittent access to a palatable diet alternation in mice. In this study, mice were either continuously provided with standard chow food (Chow/Chow), or provided with standard chow for 2days and a high-sucrose, palatable food for 1day (Chow/Palatable). Following stability of intake within the cycling paradigm, we then investigated the effects of several pharmacological treatments on excessive eating of palatable food: naltrexone, an opioid receptor antagonist, SR141716A, a cannabinoid-1 receptor antagonist/inverse agonist, and BD-1063, a sigma-1 receptor antagonist. Over successive cycles, Chow/Palatable mice showed an escalation of palatable food intake within the first hour of renewed access to palatable diet and displayed hypophagia upon its removal. Naltrexone, SR141716A, and BD-1063 all reduced overconsumption of palatable food during this first hour. Here we provide evidence of strong face and convergent validity in a palatable diet alternation model in mice, confirming multiple shared underlying mechanisms of pathological eating across species, and thus making it a useful therapeutic development tool.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, USA
| | - Gabrielle S Schlain
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Samantha Mancino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
34
|
Baldo BA. Prefrontal Cortical Opioids and Dysregulated Motivation: A Network Hypothesis. Trends Neurosci 2017; 39:366-377. [PMID: 27233653 DOI: 10.1016/j.tins.2016.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Loss of inhibitory control over appetitively motivated behavior occurs in multiple psychiatric disorders, including drug abuse, behavioral addictions, and eating disorders with binge features. In this opinion article, novel actions of μ-opioid peptides in the prefrontal cortex (PFC) that could contribute to inhibitory control deficits will be discussed. Evidence has accrued to suggest that excessive intra-PFC μ-opioid receptor (μ-OR) signaling alters the PFC response to excitatory drive, resulting in supernormal and incoherent recruitment of multiple PFC output pathways. Affected pathways include functionally opposed PFC→hypothalamus 'appetitive driver' and PFC→striatum 'appetitive limiter' projections. This network perturbation engenders disorganized, impulsive appetitive responses. Evidence supporting this hypothesis from human imaging and animal studies will be discussed, and combinatorial drug treatments targeting μ-ORs and specific PFC subcortical targets will be explored.
Collapse
Affiliation(s)
- Brian A Baldo
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Blvd, Madison, WI 53719, USA.
| |
Collapse
|
35
|
Worley J. The Role of Pleasure Neurobiology and Dopamine in Mental Health Disorders. J Psychosoc Nurs Ment Health Serv 2017; 55:17-21. [PMID: 28850647 DOI: 10.3928/02793695-20170818-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent evidence and research has demonstrated that the pleasure response and associated neurotransmitters and brain circuits play a significant role in substance use disorders (SUDs). It was thought that negative behaviors associated with SUDs resulted from negative choices, but it is now known that chemical changes in the brain drive those behaviors. Several mental health disorders (e.g., eating disorders, non-suicidal self-injury, compulsive sex behaviors, internet gaming, gambling) are also thought to involve those same pleasure responses, neurotransmitters, and brain regions. Studies have shown that the use of naltrexone, a dopamine antagonist, can reduce symptoms of these disorders. It is important for nurses to understand the underlying physiology of mental health disorders that are thought to have an addictive or craving component. This understanding can help reduce stigma. Educating patients about likely neurobiological causes for their disorders can also help reduce guilt and shame. Nurses should educate patients about these disorders and evidence-based treatments, including off-label use of naltrexone. [Journal of Psychosocial Nursing and Mental Health Services, 55(9), 17-21.].
Collapse
|
36
|
Moore CF, Sabino V, Koob GF, Cottone P. Neuroscience of Compulsive Eating Behavior. Front Neurosci 2017; 11:469. [PMID: 28883784 PMCID: PMC5573809 DOI: 10.3389/fnins.2017.00469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023] Open
Abstract
A systematic characterization of compulsivity in pathological forms of eating has been proposed in the context of three functional domains: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. In this review, we provide evidence supporting this hypothesis and we differentiate the nascent field of neurocircuits and neurochemical mediators of compulsive eating through their underlying neuropsychobiological processes. A better understanding of the neurobiological mechanisms that lead to compulsive eating behavior can improve behavioral and pharmacological intervention for disorders of pathological eating.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States.,Graduate Program for Neuroscience, Boston University School of MedicineBoston, MA, United States
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, United States
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States
| |
Collapse
|
37
|
Abstract
Binge-eating disorder (BED) is the most prevalent eating disorder with estimates of 2-5% of the general adult population. Nonetheless, its pathophysiology is poorly understood. Furthermore, there exist few therapeutic options for its effective treatment. Here we review the current state of binge-eating neurobiology and pharmacology, drawing from clinical therapeutic, neuroimaging, cognitive, human genetic and animal model studies. These studies, which are still in their infancy, indicate that while there are many gaps in our knowledge, several key neural substrates appear to underpin binge-eating and may be conserved between human and animals. This observation suggests that behavioral intermediate phenotypes or endophenotypes relevant to BED may be modeled in animals, facilitating the identification and testing of novel pharmacological targets. The development of novel, safe and effective pharmacological therapies for the treatment of BED will enhance the ability of clinicians to provide optimal care for people with BED.
Collapse
Affiliation(s)
- Peter H Hutson
- Department of Neurobiology, CNS Discovery, Teva Pharmaceuticals, West Chester, PA, USA.
| | - Iris M Balodis
- Peter Boris Centre for Addiction Research, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Marc N Potenza
- Department of Psychiatry, Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; National Center on Addiction and Substance Abuse, USA; Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
38
|
Pathological Overeating: Emerging Evidence for a Compulsivity Construct. Neuropsychopharmacology 2017; 42:1375-1389. [PMID: 27922596 PMCID: PMC5436113 DOI: 10.1038/npp.2016.269] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022]
Abstract
Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted.
Collapse
|
39
|
The Trace Amine-Associated Receptor 1 Agonist RO5256390 Blocks Compulsive, Binge-like Eating in Rats. Neuropsychopharmacology 2017; 42:1458-1470. [PMID: 27711047 PMCID: PMC5436108 DOI: 10.1038/npp.2016.233] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/20/2023]
Abstract
Compulsive, binge eating of highly palatable food constitutes a core feature of some forms of obesity and eating disorders, as well as of the recently proposed disorder of food addiction. Trace amine-associated receptor 1 (TAAR1) is a highly conserved G-protein-coupled receptor bound by endogenous trace amines. TAAR1 agonists have been shown to reduce multiple behavioral effects of drugs of abuse through their actions on the mesocorticolimbic system. In this study, we hypothesized that TAAR1 may have a role in compulsive, binge-like eating; we tested this hypothesis by assessing the effects of a TAAR1 agonist, RO5256390, in multiple excessive feeding-related behaviors induced by limiting access to a highly palatable diet in rats. Our results show that RO5256390 blocked binge-like eating in rats responding 1 h per day for a highly palatable sugary diet. Consistent with a palatability-selective effect, drug treatment selectively reduced the rate and regularity of palatable food responding, but it did not affect either baseline intake or food restriction-induced overeating of the standard chow diet. Furthermore, RO5256390 fully blocked compulsive-like eating when the palatable diet was offered in an aversive compartment of a light/dark conflict box, and blocked the conditioned rewarding properties of palatable food, as well as palatable food-seeking behavior in a second-order schedule of reinforcement. Drug treatment had no effect on either anxiety-like or depressive-like behavior, and it did not affect control performance in any of the tests. Importantly, rats exposed to palatable food showed decreased TAAR1 levels in the medial prefrontal cortex (mPFC), and RO5256390 microinfused into the infralimbic, but not prelimbic, subregion of the mPFC-reduced binge-like eating. Altogether, these results provide evidence for TAAR1 agonism as a novel pharmacological treatment for compulsive, binge eating.
Collapse
|
40
|
Tandon S, Keefe KA, Taha SA. Mu opioid receptor signaling in the nucleus accumbens shell increases responsiveness of satiety-modulated lateral hypothalamus neurons. Eur J Neurosci 2017; 45:1418-1430. [DOI: 10.1111/ejn.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Shashank Tandon
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| | - Kristen A. Keefe
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| | - Sharif A. Taha
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| |
Collapse
|
41
|
Feeding-modulatory effects of mu-opioids in the medial prefrontal cortex: a review of recent findings and comparison to opioid actions in the nucleus accumbens. Psychopharmacology (Berl) 2017; 234:1439-1449. [PMID: 28054099 PMCID: PMC5420483 DOI: 10.1007/s00213-016-4522-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Whereas reward-modulatory opioid actions have been intensively studied in subcortical sites such as the nucleus accumbens (Acb), the role of cortical opioid transmission has received comparatively little attention. OBJECTIVES The objective of this study is to describe recent findings on the motivational actions of opioids in the prefrontal cortex (PFC), emphasizing studies of food motivation and ingestion. PFC-based opioid effects will be compared/contrasted to those elicited from the Acb, to glean possible common functional principles. Finally, the motivational effects of opioids will be placed within a network context involving the PFC, Acb, and hypothalamus. RESULTS Mu-opioid receptor (μ-OR) stimulation in both the Acb and PFC induces eating and enhances food-seeking instrumental behaviors; μ-OR signaling also enhances taste reactivity within a highly circumscribed zone of medial Acb shell. In both the Acb and PFC, opioid-sensitive zones are aligned topographically with the sectors that project to feeding-modulatory zones of the hypothalamus and intact glutamate transmission in the lateral/perifornical (LH-PeF) hypothalamic areas is required for both Acb- and PFC-driven feeding. Conversely, opioid-mediated feeding responses elicited from the PFC are negatively modulated by AMPA signaling in the Acb shell. CONCLUSIONS Opioid signaling in the PFC engages functionally opposed PFC➔hypothalamus and PFC➔Acb circuits, which, respectively, drive and limit non-homeostatic feeding, producing a disorganized and "fragmented" pattern of impulsive food-seeking behaviors and hyperactivity. In addition, opioids act directly in the Acb to facilitate food motivation and taste hedonics. Further study of this cortico-striato-hypothalamic circuit, and incorporation of additional opioid-responsive telencephalic structures, could yield insights with translational relevance for eating disorders and obesity.
Collapse
|
42
|
Preliminary evidence of sex differences in behavioral and neural responses to palatable food reward in rats. Physiol Behav 2017; 176:165-173. [PMID: 28365279 DOI: 10.1016/j.physbeh.2017.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022]
Abstract
The female bias in eating disorder prevalence is the largest in all of psychiatry. Binge eating on palatable food (PF) is a core, maladaptive symptom that cuts across all major types of eating disorders and can be studied via animal models. Using an individual differences rat model of binge eating that identifies binge eating prone (BEP) and binge eating resistant (BER) phenotypes, we previously showed that, compared with males, females consume more PF and are more likely to be classified as BEP. One potential explanation for this sex difference is that PF is inherently more rewarding to females, leading to higher rates of binge eating. Here we tested the hypothesis that females have more robust behavioral and neural responses to PF reward than males. Adult male (N=18) and female (N=17) Sprague-Dawley rats were exposed to the Conditioned Place Preference paradigm using PF as the unconditioned stimulus. Select males (N=9) and females (N=9) were video-recorded during three of the PF-paired conditioning sessions to score feeding behavior. Following CPP, 13 male and 12 female rats were exposed to PF just prior to sacrifice to induce expression of the neural activation marker Fos, and Fos expression was quantified in mesocorticolimbic, hypothalamic, and amygdalar circuits. In the CPP paradigm, females displayed a more robust shift in preference for the chamber paired with PF compared with males, and behavioral analyses revealed that average duration of individual feeding bouts during pairing sessions was longer in females than in males. Fos expression was significantly higher in females vs. males in select regions of the mesocorticolimbic reward circuit, with no sex differences in hypothalamic or amygdalar regions. These results provide initial evidence that PF may be more rewarding to females than to males, possibly due to heightened responsiveness of neural substrates that mediate the hedonic and motivational responses to PF, which in part, may underlie sex differences in binge eating proneness.
Collapse
|
43
|
Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol Learn Mem 2017; 141:27-32. [PMID: 28288832 DOI: 10.1016/j.nlm.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Associative learning can enable environmental cues to signal food and stimulate feeding, independent of physiological hunger. Two forebrain regions necessary in cue driven feeding, the basolateral area of the amygdala and the medial prefrontal cortex, communicate via extensive, topographically organized connections. The basolateral nucleus (BLA) sends extensive projections to the prelimbic cortex (PL), and our aim here was to determine if this pathway was selectively recruited during cue-food associative learning. The anterior and posterior basolateral nuclei are recruited during different phases of cue-food learning, and thus we examined whether distinct pathways that originate in these nuclei and project to the PL are differently recruited during early and late stages of learning. To accomplish this we used neuroanatomical tract tracing combined with the detection of Fos induction. To identify projecting neurons within the BLA, prior to training, rats received a retrograde tracer, Fluoro-Gold (FG) into the PL. Rats were given either one or ten sessions of tone-food presentations (Paired group) or tone-only presentations (Control group). The Paired group learned the tone-food association quickly and robustly and had greater Fos induction within the anterior and posterior BLA during early and late learning compared to the Control group. Notably, the Paired group had more double-labeled neurons (FG + Fos) during late training compared to the Control group, specifically in the anterior BLA. This demonstrates selective recruitment of the anterior BLA-PL pathway by late cue-food learning. These findings indicate plasticity and specificity in the BLA-PL pathways across cue-food associative learning.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
44
|
Corwin RLW, Wojnicki FHE, Zimmer DJ, Babbs RK, McGrath LE, Olivos DR, Mietlicki-Baase EG, Hayes MR. Binge-type eating disrupts dopaminergic and GABAergic signaling in the prefrontal cortex and ventral tegmental area. Obesity (Silver Spring) 2016; 24:2118-25. [PMID: 27558648 DOI: 10.1002/oby.21626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Binge eating is characterized by repeated intermittent bouts of compulsive overconsumption of food. Treatment is challenging given limited understanding of the mechanisms underlying this type of disordered eating. The hypothesis that dysregulation of mesocortical dopaminergic and GABAergic systems underlie binge eating was tested. METHODS Analysis of gene expression within the ventral tegmental area and its terminal mesocortical regions was examined in bingeing rats before and after bingeing occurred. In addition, alterations in binge-type behavior induced by pharmacological inactivation of subnuclei of the prefrontal cortex (PFC) and by pharmacological activation and inhibition of cortical D1 and D2 receptors were examined. RESULTS Correlative and functional evidence demonstrates dysregulated neurotransmitter processing by the PFC and ventral tegmental area, but not the amygdala or nucleus accumbens, in bingeing rats. Either GABAergic inactivation or D2-like receptor activation within the PFC increased consumption in bingeing rats, but not controls, suggesting that the PFC, and D2 receptors in particular, functions as a behavioral brake to limit bingeing. CONCLUSIONS The act of bingeing resolved some gene expression differences that preceded binge onset, further suggesting that bingeing may partially serve to self-medicate a system driving this maladaptive behavior. However, the failure of bingeing to resolve other dopaminergic/GABAergic differences may render individuals vulnerable to future binge episodes.
Collapse
Affiliation(s)
- Rebecca L W Corwin
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Francis H E Wojnicki
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Derek J Zimmer
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R Keith Babbs
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lauren E McGrath
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diana R Olivos
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth G Mietlicki-Baase
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew R Hayes
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Iemolo A, Seiglie M, Blasio A, Cottone P, Sabino V. Pituitary adenylate cyclase-activating polypeptide (PACAP) in the central nucleus of the amygdala induces anxiety via melanocortin receptors. Psychopharmacology (Berl) 2016; 233:3269-77. [PMID: 27376948 PMCID: PMC4982769 DOI: 10.1007/s00213-016-4366-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety disorders are the most common mental disorders in the USA. Characterized by feelings of uncontrollable apprehension, they are accompanied by physical, affective, and behavioral symptoms. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1 (PAC1R) are highly expressed in the central nucleus of the amygdala (CeA), and they have gained growing attention for their proposed role in mediating the body's response to stress. OBJECTIVES The aim of this study was to evaluate the anxiogenic effects of PACAP in the CeA and its effects on the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, the mechanism of action of PACAP in the CeA was investigated. METHODS PACAP was microinfused into the CeA of rats, and its effects in the elevated plus maze (EPM), the defensive withdrawal tests, and plasma corticosterone levels were evaluated. The ability of the melanocortin receptor antagonist SHU9119 to block PACAP effect in the EPM was assessed. RESULTS Intra-CeA PACAP exerted a dose-dependent anxiogenic effect and activated the HPA axis. In contrast, PACAP microinfused into the basolateral nucleus of the amygdala (BlA) had no effect. Finally, the anxiogenic effect of intra-CeA PACAP was prevented by SHU9119. CONCLUSIONS These data prove an anxiogenic role for the PACAP system of the CeA and reveal that the melanocortin receptor 4 (MC4R) system of CeA mediates these effects. Our data provide insights into this neuropeptide system as a mechanism for modulating the behavioral and endocrine response to stress and suggest that dysregulations of this system may contribute to the pathophysiology of anxiety-related disorders.
Collapse
Affiliation(s)
- Attilio Iemolo
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Mariel Seiglie
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA, 02118, USA.
| |
Collapse
|
46
|
Simon JJ, Skunde M, Walther S, Bendszus M, Herzog W, Friederich HC. Neural signature of food reward processing in bulimic-type eating disorders. Soc Cogn Affect Neurosci 2016; 11:1393-401. [PMID: 27056455 DOI: 10.1093/scan/nsw049] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Abstract
Clinical observations and similarities to addiction suggest heightened reward sensitivity to food in patients with bulimic-type eating (BTE) disorders. Therefore, we investigated the expectation and receipt of food reward compared with monetary reward in patients with BTE. Fifty-six patients with BTE (27 patients with binge eating disorder and 29 with bulimia nervosa) and 55 matched healthy control participants underwent event-related functional magnetic resonance imaging while performing both food and monetary incentive delay tasks. BTE patients exhibited reduced brain activation in the posterior cingulate cortex during the expectation of food and increased activity in the medial orbitofrontal cortex, anterior medial prefrontal cortex and posterior cingulate cortex during the receipt of food reward. These findings were relevant to food because we found no significant group differences related to monetary reward. In the patients, higher brain activity in the medial orbitofrontal cortex during the receipt of food reward was related to higher levels of trait food craving and external eating. BTE patients exhibited increased hedonic processing during the receipt of food reward. These findings corroborate the notion that an altered responsiveness of the reward network to food stimuli is associated with BTE.
Collapse
Affiliation(s)
- Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany Department of Psychosomatic Medicine and Psychotherapy Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mandy Skunde
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Walther
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany Department of General Adult Psychiatry, Centre for Psychosocial Medicine, Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany Department of Psychosomatic Medicine and Psychotherapy Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016; 10:63. [PMID: 27065827 PMCID: PMC4813092 DOI: 10.3389/fnbeh.2016.00063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Bryan Scot Barker
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Ali D Güler
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Michael M Scott
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
48
|
Piquet-Pessôa M, Fontenelle LF. Opioid antagonists in broadly defined behavioral addictions: a narrative review. Expert Opin Pharmacother 2016; 17:835-44. [PMID: 26798982 DOI: 10.1517/14656566.2016.1145660] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Naltrexone (NTX), a mu-opioid receptor antagonist, has been approved for the treatment of alcoholism and opioid dependence. More recently, however, NTX and a related drug, nalmefene (NMF), have also shown positive results for the treatment of gambling disorders. AREAS COVERED In this study, we reviewed the trials testing the effect of opioid antagonists (OA) in gambling disorders and in other broadly defined behavioral addictions, including selected DSM-5 disruptive, impulse-control, and conduct disorders, obsessive-compulsive and related disorders, eating disorders, and other conditions not currently recognized by official classification schemes. We found six randomized controlled trials (RCTs) of OA in gambling disorder, two RCTs of OA in trichotillomania (hair pulling disorder), two RCTs of OA in binge eating disorder, and one RCT of OA for kleptomania. We also reviewed case reports on hypersexual disorder, compulsive buying and skin picking disorders. EXPERT OPINION The reviewed data supported the use of OA, namely NTX and NMF, in gambling disorder (both) and kleptomania (NTX). We did not find enough evidence to support the use of NTX or NMF in trichotillomania (hair pulling disorder), excoriation (skin-picking) disorder, compulsive buying disorder, hypersexual disorder, or binge eating disorder.
Collapse
Affiliation(s)
- Marcelo Piquet-Pessôa
- a Obsessive, Compulsive, and Anxiety Spectrum Disorders Research Program, Institute of Psychiatry , Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil
| | - Leonardo F Fontenelle
- a Obsessive, Compulsive, and Anxiety Spectrum Disorders Research Program, Institute of Psychiatry , Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,b D'Or Institute for Research and Education (IDOR) , Rio de Janeiro , Brasil.,c Monash Institute of Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences & Monash Biomedical Imaging (MBI) Facility , Monash University , Victoria , Australia
| |
Collapse
|
49
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
50
|
Velázquez-Sánchez C, Santos JW, Smith KL, Ferragud A, Sabino V, Cottone P. Seeking behavior, place conditioning, and resistance to conditioned suppression of feeding in rats intermittently exposed to palatable food. Behav Neurosci 2015; 129:219-24. [PMID: 25798634 DOI: 10.1037/bne0000042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Binge eating disorder is characterized by excessive consumption of highly palatable food within short periods of time accompanied by loss of control over eating. Extensive evidence provides support for the consideration of binge eating disorder as an addiction-like disorder. In this study, we wanted to determine whether rats undergoing an operant binge-like eating procedure could develop maladaptive forms of conditioned feeding behaviors. For this purpose, we trained male rats to self-administer either a sugary, highly palatable diet ("Palatable" rats) or a chow diet ("Chow" rats) for 1 hour a day. After escalation and stabilization of palatable food intake, we tested Chow and Palatable rats in (a) a conditioned place preference test, (b) a second-order schedule of reinforcement, (c) a cue-induced suppression of feeding test. In the conditioned place preference task, Palatable rats spent significantly more time in the compartment that was previously paired with the palatable food, compared to Chow controls. Furthermore, in the second-order schedule of reinforcement task, Palatable rats exhibited active lever responding 4- to 6-fold higher than Chow control rats. Finally, in the cue-induced suppression of feeding test, although Chow control subjects reduced responding by 32% in the presence of the conditioned punishment, Palatable rats persevered in responding despite the aversive cue. These results further characterize this animal model of binge-like eating and provide additional evidence for the addictive properties of highly palatable food.
Collapse
Affiliation(s)
- Clara Velázquez-Sánchez
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| | - Jeffrey W Santos
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| | - Karen L Smith
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine
| |
Collapse
|