1
|
Lin Z, Xiong J, Yang J, Huang Y, Li J, Zhao G, Li B. A comprehensive analysis of the health effects associated with smoking in the largest population using UK Biobank genotypic and phenotypic data. Heliyon 2024; 10:e35649. [PMID: 39220930 PMCID: PMC11365339 DOI: 10.1016/j.heliyon.2024.e35649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Smoking is a widespread behavior, while the relationship between smoking and various diseases remains a topic of debate. Objective We conducted analysis to further examine the identified associations and assess potential causal relationships. Methods We utilized seven single nucleotide polymorphisms (SNPs) known to be linked to smoking extracting genotype data from the UK Biobank, a large-scale biomedical repository encompassing comprehensive health-related and genetic information of European descent. Phenome-wide association study (PheWAS) analysis was conducted to map the association of genetically predicted smoking status with 1,549 phenotypes. The associations identified in the PheWAS were then meticulously examined through two-sample Mendelian randomization (MR) analysis, utilizing data from the UK Biobank (n = 487,365) and the Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) (n = 337,334). This approach allowed us to comprehensively characterize the links between smoking and disease patterns. Results The PheWAS analysis produced 34 phenotypes that demonstrated significant associations with smoking (P = 0.05/1460). Importantly, sickle cell anemia and type 2 diabetes exhibited the most significant SNPs (both 85.71% significant SNPs). Furthermore, the MR analyses provided compelling evidence supporting causal associations between smoking and the risk of following diseases: obstructive chronic bronchitis (IVW: Beta = 0.48, 95% confidence interval (CI) 0.36-0.61, P = 1.62×10-13), cancer of the bronchus (IVW: Beta = 0.92, 95% CI 0.68-1.17, P = 2.02×10-13), peripheral vascular disease (IVW: Beta = 1.09, 95% CI 0.71-1.46, P = 1.63×10-8), emphysema (IVW: Beta = 1.63, 95% CI 0.90-2.36, P = 1.29×10-5), pneumococcal pneumonia (IVW: Beta = 0.30, 95% CI 0.11-0.49, P = 1.60×10-3), chronic airway obstruction (IVW: Beta = 0.83, 95% CI 0.30-1.36, P = 2.00×10-3) and type 2 diabetes (IVW: Beta = 0.53, 95% CI 0.16-0.90, P = 5.08×10-3). Conclusion This study affirms causal relationships between smoking and obstructive chronic bronchitis, cancer of the bronchus, peripheral vascular disease, emphysema, pneumococcal pneumonia, chronic airway obstruction, type 2 diabetes, in the European population. These findings highlight the broad health impacts of smoking and support smoking cessation efforts.
Collapse
Affiliation(s)
- Zixun Lin
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jiayi Xiong
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jiaqi Yang
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuanfeng Huang
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinchen Li
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Centre for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Bioinformatics Centre, Furong Laboratory, Changsha, Hunan, 410008, China
| | - Guihu Zhao
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bin Li
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
2
|
Romero Villela PN, Evans LM, Palviainen T, Border R, Kaprio J, Palmer RHC, Keller MC, Ehringer MA. Loci on chromosome 20 interact with rs16969968 to influence cigarettes per day in European ancestry individuals. Drug Alcohol Depend 2024; 257:111126. [PMID: 38387257 PMCID: PMC11062023 DOI: 10.1016/j.drugalcdep.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The understanding of the molecular genetic contributions to smoking is largely limited to the additive effects of individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include dominance, epistatic, and gene-environment interactions. METHODS To begin to address this complexity, we attempted to identify genetic interactions between rs16969968, the most replicated SNP associated with smoking quantity, and all SNPs and genes across the genome. RESULTS Using the UK Biobank European subsample, we found one SNP, rs1892967, and two genes, PCNA and TMEM230, that showed a significant genome-wide interaction with rs16969968 for log10 CPD and raw CPD, respectively, in a sample of 116 442 individuals who self-reported currently or previously smoking. We extended these analyses to individuals of South Asian descent and meta-analyzed the combined sample of 117 212 individuals of European and South Asian ancestry. We replicated the gene findings in a meta-analysis of five Finnish samples (N=40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and Health-2000-2011. CONCLUSIONS To our knowledge, this represents the first reliable epistatic association between single nucleotide polymorphisms for smoking behaviors and provides a novel direction for possible future functional studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses by pooling multiple datasets across various ancestries, which may be applied to other top SNPs for smoking and/or other phenotypes.
Collapse
Affiliation(s)
- Pamela N Romero Villela
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Richard Border
- Departments of Neurology and Computer Science, University of California, Los Angeles, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Departments of Neurology and Computer Science, University of California, Los Angeles, USA; Department of Integrative Physiology, University of Colorado, Boulder, USA.
| |
Collapse
|
3
|
Cinciripini PM, Wetter DW, Wang J, Yu R, Kypriotakis G, Kumar T, Robinson JD, Cui Y, Green CE, Bergen AW, Kosten TR, Scherer SE, Shete S. Deep sequencing of candidate genes identified 14 variants associated with smoking abstinence in an ethnically diverse sample. Sci Rep 2024; 14:6385. [PMID: 38493193 PMCID: PMC10944542 DOI: 10.1038/s41598-024-56750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Despite the large public health toll of smoking, genetic studies of smoking cessation have been limited with few discoveries of risk or protective loci. We investigated common and rare variant associations with success in quitting smoking using a cohort from 8 randomized controlled trials involving 2231 participants and a total of 10,020 common and 24,147 rare variants. We identified 14 novel markers including 6 mapping to genes previously related to psychiatric and substance use disorders, 4 of which were protective (CYP2B6 (rs1175607105), HTR3B (rs1413172952; rs1204720503), rs80210037 on chr15), and 2 of which were associated with reduced cessation (PARP15 (rs2173763), SCL18A2 (rs363222)). The others mapped to areas associated with cancer including FOXP1 (rs1288980) and ZEB1 (rs7349). Network analysis identified significant canonical pathways for the serotonin receptor signaling pathway, nicotine and bupropion metabolism, and several related to tumor suppression. Two novel markers (rs6749438; rs6718083) on chr2 are flanked by genes associated with regulation of bodyweight. The identification of novel loci in this study can provide new targets of pharmacotherapy and inform efforts to develop personalized treatments based on genetic profiles.
Collapse
Affiliation(s)
- Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - David W Wetter
- Department of Department of Population Health Sciences, University of Utah and Huntsman Cancer Institute, Salt Lake City, Utah, 84112, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George Kypriotakis
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Tapsi Kumar
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Cui
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E Green
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven E Scherer
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
5
|
Venkateswaran V, Boulier K, Ding Y, Johnson R, Bhattacharya A, Pasaniuc B. Polygenic scores for tobacco use provide insights into systemic health risks in a diverse EHR-linked biobank in Los Angeles. Transl Psychiatry 2024; 14:38. [PMID: 38238290 PMCID: PMC10796315 DOI: 10.1038/s41398-024-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Tobacco use is a major risk factor for many diseases and is heavily influenced by environmental factors with significant underlying genetic contributions. Here, we evaluated the predictive performance, risk stratification, and potential systemic health effects of tobacco use disorder (TUD) predisposing germline variants using a European- ancestry-derived polygenic score (PGS) in 24,202 participants from the multi-ancestry, hospital-based UCLA ATLAS biobank. Among genetically inferred ancestry groups (GIAs), TUD-PGS was significantly associated with TUD in European American (EA) (OR: 1.20, CI: [1.16, 1.24]), Hispanic/Latin American (HL) (OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) (OR: 1.18, CI: [1.06, 1.31]) GIAs but not in African American (AA) GIA (OR: 1.04, CI: [0.93, 1.17]). Similarly, TUD-PGS offered strong risk stratification across PGS quantiles in EA and HL GIAs and inconsistently in EAA and AA GIAs. In a cross-ancestry phenome-wide association meta-analysis, TUD-PGS was associated with cardiometabolic, respiratory, and psychiatric phecodes (17 phecodes at P < 2.7E-05). In individuals with no history of smoking, the top TUD-PGS associations with obesity and alcohol-related disorders (P = 3.54E-07, 1.61E-06) persist. Mendelian Randomization (MR) analysis provides evidence of a causal association between adiposity measures and tobacco use. Inconsistent predictive performance of the TUD-PGS across GIAs motivates the inclusion of multiple ancestry populations at all levels of genetic research of tobacco use for equitable clinical translation of TUD-PGS. Phenome associations suggest that TUD-predisposed individuals may require comprehensive tobacco use prevention and management approaches to address underlying addictive tendencies.
Collapse
Affiliation(s)
- Vidhya Venkateswaran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Office of the Director and National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kristin Boulier
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi Ding
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ruth Johnson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Balbuena L, Peters E, Speed D. Using polygenic risk scores to investigate the evolution of smoking and mental health outcomes in UK biobank participants. Acta Psychiatr Scand 2023; 148:447-456. [PMID: 37607129 DOI: 10.1111/acps.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Mendelian randomization studies report a bi-directional relation between cigarette smoking and mental disorders, yet from a clinical standpoint, mental disorders are the focus of treatment. Here, we used an event history framework to understand their evolution in the life course. Our objective was to estimate the relative contribution of genetic predispositions and self-reported smoking status (never, former, and present smoker) to hospitalizations for major depression, bipolar disorder, and schizophrenia. METHODS We calculated polygenic risk scores (PRS) for ever smoking, pack-years of smoking as a proportion of adult life, and neuroticism in 337,140 UK Biobank participants of white British ancestry. These PRS and self-reported smoking status were entered as explanatory variables in survival models for hospitalization. RESULTS The estimated single nucleotide polymorphisms heritabilities (h2 ) were 23%, 5.7%, and 5.7% for pack-years, ever smoking, and neuroticism respectively. PRS pack-years and PRS neuroticism were associated with higher hospitalization risk for mental disorders in all smoking status groups. The hazard for mental health hospitalization was higher in both previous (HR: 1.50, CI: 1.35-1.67) and current (HR: 3.58, 2.97-4.31) compared to never smokers, after adjusting for confounders. CONCLUSION Since genetic liabilities for smoking and neuroticism are fixed at conception and smoking initiation generally started before age 20, our results show that preventing smoking in adolescents probably prevents the development of mental disorders.
Collapse
Affiliation(s)
- Lloyd Balbuena
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Evyn Peters
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Mize TJ, Funkhouser SA, Buck JM, Stitzel JA, Ehringer MA, Evans LM. Testing Association of Previously Implicated Gene Sets and Gene-Networks in Nicotine Exposed Mouse Models with Human Smoking Phenotypes. Nicotine Tob Res 2023; 25:1030-1038. [PMID: 36444815 PMCID: PMC10077928 DOI: 10.1093/ntr/ntac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/15/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Smoking behaviors are partly heritable, yet the genetic and environmental mechanisms underlying smoking phenotypes are not fully understood. Developmental nicotine exposure (DNE) is a significant risk factor for smoking and leads to gene expression changes in mouse models; however, it is unknown whether the same genes whose expression is impacted by DNE are also those underlying smoking genetic liability. We examined whether genes whose expression in D1-type striatal medium spiny neurons due to DNE in the mouse are also associated with human smoking behaviors. METHODS Specifically, we assessed whether human orthologs of mouse-identified genes, either individually or as a set, were genetically associated with five human smoking traits using MAGMA and S-LDSC while implementing a novel expression-based gene-SNP annotation methodology. RESULTS We found no strong evidence that these genes sets were more strongly associated with smoking behaviors than the rest of the genome, but ten of these individual genes were significantly associated with three of the five human smoking traits examined (p < 2.5e-6). Three of these genes have not been reported previously and were discovered only when implementing the expression-based annotation. CONCLUSIONS These results suggest the genes whose expression is impacted by DNE in mice are largely distinct from those contributing to smoking genetic liability in humans. However, examining a single mouse neuronal cell type may be too fine a resolution for comparison, suggesting that experimental manipulation of nicotine consumption, reward, or withdrawal in mice may better capture genes related to the complex genetics of human tobacco use. IMPLICATIONS Genes whose expression is impacted by DNE in mouse D1-type striatal medium spiny neurons were not found to be, as a whole, more strongly associated with human smoking behaviors than the rest of the genome, though ten individual mouse-identified genes were associated with human smoking traits. This suggests little overlap between the genetic mechanisms impacted by DNE and those influencing heritable liability to smoking phenotypes in humans. Further research is warranted to characterize how developmental nicotine exposure paradigms in mice can be translated to understand nicotine use in humans and their heritable effects on smoking.
Collapse
Affiliation(s)
- Travis J Mize
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Scott A Funkhouser
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
8
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1547] [Impact Index Per Article: 1547.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
9
|
Jang SK, Evans L, Fialkowski A, Arnett DK, Ashley-Koch AE, Barnes KC, Becker DM, Bis JC, Blangero J, Bleecker ER, Boorgula MP, Bowden DW, Brody JA, Cade BE, Jenkins BWC, Carson AP, Chavan S, Cupples LA, Custer B, Damrauer SM, David SP, de Andrade M, Dinardo CL, Fingerlin TE, Fornage M, Freedman BI, Garrett ME, Gharib SA, Glahn DC, Haessler J, Heckbert SR, Hokanson JE, Hou L, Hwang SJ, Hyman MC, Judy R, Justice AE, Kaplan RC, Kardia SLR, Kelly S, Kim W, Kooperberg C, Levy D, Lloyd-Jones DM, Loos RJF, Manichaikul AW, Gladwin MT, Martin LW, Nouraie M, Melander O, Meyers DA, Montgomery CG, North KE, Oelsner EC, Palmer ND, Payton M, Peljto AL, Peyser PA, Preuss M, Psaty BM, Qiao D, Rader DJ, Rafaels N, Redline S, Reed RM, Reiner AP, Rich SS, Rotter JI, Schwartz DA, Shadyab AH, Silverman EK, Smith NL, Smith JG, Smith AV, Smith JA, Tang W, Taylor KD, Telen MJ, Vasan RS, Gordeuk VR, Wang Z, Wiggins KL, Yanek LR, Yang IV, Young KA, Young KL, Zhang Y, Liu DJ, Keller MC, Vrieze S. Rare genetic variants explain missing heritability in smoking. Nat Hum Behav 2022; 6:1577-1586. [PMID: 35927319 PMCID: PMC9985486 DOI: 10.1038/s41562-022-01408-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.
Collapse
Affiliation(s)
- Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology & Evolution, University of Colorado Boulder, Boulder, CO, USA
| | | | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | | | - Kathleen C Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Meher Preethi Boorgula
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda W Campbell Jenkins
- Jackson Heart Study Graduate Training and Education Center, Jackson State University School of Public Health, Jackson, MS, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sameer Chavan
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Sean P David
- Department of Family Medicine, Prtizker School of Medicine, University of Chicago, Chicago, IL, USA
- NorthShore University HealthSystem, Evanston, IL, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Tasha E Fingerlin
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E Garrett
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hosptial and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew C Hyman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renae Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA
| | - Robert C Kaplan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Kelly
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Division of General Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marinelle Payton
- Department of Epidemiology and Biostatistics, Jackson Heart Study Graduate Training and Education Center, Jackson State University School of Public Health, Jackson, MS, USA
| | - Anna L Peljto
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Reed
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - J Gustav Smith
- Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albert V Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhe Wang
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Liao Z, Yi M, Li J, Zhang Y. DNA repair in lung cancer: a large-scale quantitative analysis for polymorphisms in DNA repairing pathway genes and lung cancer susceptibility. Expert Rev Respir Med 2022; 16:997-1010. [PMID: 35984915 DOI: 10.1080/17476348.2022.2115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The results of associations between single nucleotide polymorphisms (SNPs) of genes in DNA repairing pathway and lung cancer (LC) risk are inconsistent. METHODS We applied allele, dominant and recessive models to explore the risk of researched variants to LC in total LC and subgroups by ethnicity or LC subtypes with a cutoff point of p < 0.05. RESULTS A total of 76,935 cases and 88,649 controls from 192 articles were included. Among the analyzed 40 variants from 20 genes, we found 9 statistically significant variants in overall populations by allele model, including five SNPs (rs1760944, rs9344, rs13181, rs1001581, and rs915927) increasing LC risk (odd ratios [ORs] = 1.10-1.71) and four SNPs (rs1042522, rs3213245, rs11615, and rs238406) decreasing the risk (ORs = 0.75-0.94). We identified rs1042522 and rs13181 as significant variants for LC in three models. Additionally, we identified differential significant SNPs in ethnic and subtype's analysis with comparison to total population. CONCLUSIONS There are five SNPs in DNA repairing pathway associated with increased LC risk and four others decreased LC risk. Besides, the risky SNPs in different ethnicities and various LC subtypes were partly different, and the contribution of different genotypes to risk alleles were various as well.
Collapse
Affiliation(s)
- Zexi Liao
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
De Angelis F, Wendt FR, Pathak GA, Tylee DS, Goswami A, Gelernter J, Polimanti R. Drinking and smoking polygenic risk is associated with childhood and early-adulthood psychiatric and behavioral traits independently of substance use and psychiatric genetic risk. Transl Psychiatry 2021; 11:586. [PMID: 34775470 PMCID: PMC8590689 DOI: 10.1038/s41398-021-01713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Alcohol drinking and tobacco smoking are hazardous behaviors associated with a wide range of adverse health outcomes. In this study, we explored the association of polygenic risk scores (PRS) related to drinks per week, age of smoking initiation, smoking initiation, cigarettes per day, and smoking cessation with 433 psychiatric and behavioral traits in 4498 children and young adults (aged 8-21) of European ancestry from the Philadelphia neurodevelopmental cohort. After applying a false discovery rate multiple testing correction accounting for the number of PRS and traits tested, we identified 36 associations related to psychotic symptoms, emotion and age recognition social competencies, verbal reasoning, anxiety-related traits, parents' education, and substance use. These associations were independent of the genetic correlations among the alcohol-drinking and tobacco-smoking traits and those with cognitive performance, educational attainment, risk-taking behaviors, and psychopathology. The removal of participants endorsing substance use did not affect the associations of each PRS with psychiatric and behavioral traits identified as significant in the discovery analyses. Gene-ontology enrichment analyses identified several neurobiological processes underlying mechanisms of the PRS associations we report. In conclusion, we provide novel insights into the genetic overlap of smoking and drinking behaviors in children and young adults, highlighting their independence from psychopathology and substance use.
Collapse
Affiliation(s)
- Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
12
|
Amador C, Zeng Y, Barber M, Walker RM, Campbell A, McIntosh AM, Evans KL, Porteous DJ, Hayward C, Wilson JF, Navarro P, Haley CS. Genome-wide methylation data improves dissection of the effect of smoking on body mass index. PLoS Genet 2021; 17:e1009750. [PMID: 34499657 PMCID: PMC8428545 DOI: 10.1371/journal.pgen.1009750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Variation in obesity-related traits has a genetic basis with heritabilities between 40 and 70%. While the global obesity pandemic is usually associated with environmental changes related to lifestyle and socioeconomic changes, most genetic studies do not include all relevant environmental covariates, so the genetic contribution to variation in obesity-related traits cannot be accurately assessed. Some studies have described interactions between a few individual genes linked to obesity and environmental variables but there is no agreement on their total contribution to differences between individuals. Here we compared self-reported smoking data and a methylation-based proxy to explore the effect of smoking and genome-by-smoking interactions on obesity related traits from a genome-wide perspective to estimate the amount of variance they explain. Our results indicate that exploiting omic measures can improve models for complex traits such as obesity and can be used as a substitute for, or jointly with, environmental records to better understand causes of disease.
Collapse
Affiliation(s)
- Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanni Zeng
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Michael Barber
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, Chancellor’s Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris S. Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|