1
|
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N. Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - Progress or setback? Biochimie 2024; 227:119-128. [PMID: 38996998 DOI: 10.1016/j.biochi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Diabetes is a substantial public health issue, while its prevalence continues to rise worldwide, affecting millions of persons between the ages of 20 and 80, the development of new therapeutic classes improving glycemic control and consequently micro and macrovascular complications are needed. Today, diabetes treatment is daily for life, and should not be interrupted. However, insulin secretagogues medications, and exogenous self-administration of insulin provide efficient antidiabetic effects, but their misuse leads to hypoglycemic complications besides other risks, hence the need to look for other natural products not to use solely but in concert with others types of medications. In this review, we will highlight briefly the pathophysiology of diabetes and its complications, then we will report the main bioactive macromolecules derived from various sources of natural products providing anti-diabetic properties. However, further researches need to be carried out to face the limitations hampering the development of effective natural drugs for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Chbel
- Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur Du Maroc, 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco; INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807, Villejuif Cedex, France.
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
2
|
Toczyska K, Haq N, Lyu Z, Bewick G, Zhao M, Rosa H, Starikova J, Liu B, Persaud SJ. The selective serotonin reuptake inhibitors, sertraline and paroxetine, improve islet beta-cell mass and function in vitro. Diabetes Obes Metab 2024; 26:3606-3617. [PMID: 38888050 PMCID: PMC11639051 DOI: 10.1111/dom.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
AIMS To investigate the effects of the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine at therapeutically relevant concentrations on beta-cell mass and function. METHODS Viability was quantified in mouse insulinoma (MIN6) beta cells and mouse islets after 48-h exposure to sertraline (1-10 μM) or paroxetine (0.01-1 μM) using the Trypan blue exclusion test. The effects of therapeutic concentrations of these SSRIs on insulin secretion were determined by static incubation and perifusion experiments, while islet apoptosis was investigated by Caspase-Glo 3/7 assay, TUNEL staining and quantitative PCR analysis. Finally, proliferation of MIN6 and mouse islet beta cells was assessed by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay and immunofluorescence. RESULTS Sertraline (0.1-1 μM) and paroxetine (0.01-0.1 μM) were well tolerated by MIN6 beta cells and islets, whereas 10 μM sertraline and 1 μM paroxetine were cytotoxic. Exposure to 1 μM sertraline and 0.1 μM paroxetine significantly potentiated glucose-stimulated insulin secretion from mouse and human islets. Moreover, they showed protective effects against cytokine- and palmitate-induced apoptosis of islets, they downregulated cytokine-induced Stat1 and Traf1 mRNA expression, and they significantly increased proliferation of mouse beta cells. CONCLUSIONS Our data demonstrate that sertraline and paroxetine act directly on beta cells to enhance glucose-stimulated insulin secretion and stimulate beta-cell mass expansion by increasing proliferation and decreasing apoptosis. These drugs are therefore likely to be appropriate for treating depression in people with type 2 diabetes.
Collapse
Affiliation(s)
- Klaudia Toczyska
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Naila Haq
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Zekun Lyu
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Gavin Bewick
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Min Zhao
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Hannah Rosa
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Jessica Starikova
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Bo Liu
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| | - Shanta Jean Persaud
- Department of DiabetesSchool of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUK
| |
Collapse
|
3
|
Milešević M, Matić Jelić I, Rumenović V, Ivanjko N, Vukičević S, Bordukalo-Nikšić T. The Influence of BMP6 on Serotonin and Glucose Metabolism. Int J Mol Sci 2024; 25:7842. [PMID: 39063084 PMCID: PMC11276723 DOI: 10.3390/ijms25147842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (I.M.J.); (V.R.); (N.I.); (S.V.)
| |
Collapse
|
4
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Perrelli M, Goparaju P, Postolache TT, del Bosque-Plata L, Gragnoli C. Stress and the CRH System, Norepinephrine, Depression, and Type 2 Diabetes. Biomedicines 2024; 12:1187. [PMID: 38927393 PMCID: PMC11200886 DOI: 10.3390/biomedicines12061187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Major depressive disorder (MDD) increases the risk of type 2 diabetes (T2D) by 60% in untreated patients, and hypercortisolism is common in MDD as well as in some patients with T2D. Patients with MDD, despite hypercortisolism, show inappropriately normal levels of corticotropin-releasing hormone (CRH) and plasma adrenocorticotropin (ACTH) in the cerebrospinal fluid, which might implicate impaired negative feedback. Also, a positive feedback loop of the CRH-norepinephrine (NE)-CRH system may be involved in the hypercortisolism of MDD and T2D. Dysfunctional CRH receptor 1 (CRHR1) and CRH receptor 2 (CRHR2), both of which are involved in glucose regulation, may explain hypercortisolism in MDD and T2D, at least in a subgroup of patients. CRHR1 increases glucose-stimulated insulin secretion. Dysfunctional CRHR1 variants can cause hypercortisolism, leading to serotonin dysfunction and depression, which can contribute to hyperglycemia, insulin resistance, and increased visceral fat, all of which are characteristics of T2D. CRHR2 is implicated in glucose homeostasis through the regulation of insulin secretion and gastrointestinal functions, and it stimulates insulin sensitivity at the muscular level. A few studies show a correlation of the CRHR2 gene with depressive disorders. Based on our own research, we have found a linkage and association (i.e., linkage disequilibrium [LD]) of the genes CRHR1 and CRHR2 with MDD and T2D in families with T2D. The correlation of CRHR1 and CRHR2 with MDD appears stronger than that with T2D, and per our hypothesis, MDD may precede the onset of T2D. According to the findings of our analysis, CRHR1 and CRHR2 variants could modify the response to prolonged chronic stress and contribute to high levels of cortisol, increasing the risk of developing MDD, T2D, and the comorbidity MDD-T2D. We report here the potential links of the CRH system, NE, and their roles in MDD and T2D.
Collapse
Affiliation(s)
| | - Pruthvi Goparaju
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA;
| | - Teodor T. Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80246, USA
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD 21090, USA
| | - Laura del Bosque-Plata
- Nutrigenetics, and Nutrigenomic Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
| | - Claudia Gragnoli
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA;
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, 8091 Zürich, Switzerland
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, 00197 Rome, Italy
| |
Collapse
|
6
|
Tskitishvili A, Lobjanidze M, Turmanishvili Z, Mamulashvili N, Bejanishvili T. Normalization of Prediabetic Hemoglobin A1c (HbA1c) Levels After the Surgical Removal of a Serotonin-Secreting Neuroendocrine Tumor. Cureus 2024; 16:e57376. [PMID: 38694675 PMCID: PMC11061869 DOI: 10.7759/cureus.57376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Neuroendocrine tumors (NETs) are rare. When present, they often produce serotonin and are called carcinoids. Serotonin-secreting NETs can present with or without carcinoid syndrome. Although the idea of serotonin-secreting NETs potentially altering glucose metabolism is not new, data around this issue has been scarce, with only a few limited studies and case reports. We present a case where a female patient's prediabetic hemoglobin A1C levels normalized after removing serotonin-secreting NET. Before removal, the patient had locally metastatic carcinoid and serotonin-related intractable diarrhea but did not exhibit any other sign of carcinoid syndrome, including flushing, which is considered a hallmark. Therefore, in suggestive clinical contexts, this case points to the possibility of impaired glucose tolerance being an early clinical sign of carcinoid that could aid in serotonin-secreting NET diagnosis before it manifests as overt carcinoid syndrome.
Collapse
Affiliation(s)
| | - Mariam Lobjanidze
- Aieti Medical School, David Tvildiani Medical University, Tbilisi, GEO
| | | | | | | |
Collapse
|
7
|
Sun Y, Li G, Hong H, Zhu L, Kung HF, Zhang Y, Zhu J. Serotonin transporter imaging agent as a probe for β-cells of pancreas. Nucl Med Biol 2024; 130-131:108894. [PMID: 38422917 DOI: 10.1016/j.nucmedbio.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Diabetes mellitus (DM) is one of the major diseases in the world. Nuclear medicine imaging may be able to detect functional status of pancreatic β cells in vivo, which might elucidate the pathological mechanisms of diabetes and develop individualized treatment plans. In this study, we evaluated the ability of [125I]ADAM, a serotonin transporter (SERT) imaging agent, as a probe for detecting pancreatic β-cell mass (BCM). METHODS In vitro cell studies were evaluated in INS-1 cells (rat islet β cell line). Biodistribution studies were performed in male normal Sprague-Dawley rats and alloxan-induced type 1 diabetes mellitus (T1DM) rats. Distribution and expression of SERT protein in pancreas of rats were also measured by immunofluorescence staining and Western blot. RESULTS In vitro cell studies showed that the concentration of [125I]ADAM associated with the INS-1 cells was increased gradually with incubation time, and the SERT specific inhibitor, escitalopram, exhibited the inhibitory effect on this interaction. Biodistribution studies also showed that the uptake of [125I]ADAM in the pancreas of normal rats was decreased in the presence of escitalopram. However, in the T1DM rat model with a significant β cells reduction, the uptake of pancreas was increased when compared with the control. Through immunofluorescence staining and Western blot, it was found that both the endocrine and exocrine cells of the normal pancreas expressed SERT protein, and the level of SERT protein in the exocrine cells was higher than islets. In the diabetic state, the expression of SERT in the exocrine cells was further increased. CONCLUSIONS The SERT imaging agent, [125I]ADAM, at the present form will not be suitable for imaging β cells, specifically because there were extraordinarily high non-specific signals contributing from the exocrine cells of pancreas. In addition, we noticed that the level of SERT expression was abnormally elevated in the diabetic state, which might provide an unexpected target for studying the pathological mechanisms of diabetes.
Collapse
Affiliation(s)
- Yuli Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
9
|
Li P, Tong T, Wu Y, Zhou X, Zhang M, Liu J, She Y, Li Z, Li Y. The Synergism of Human Lactobacillaceae and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice. J Microbiol Biotechnol 2023; 33:1657-1670. [PMID: 37734909 PMCID: PMC10772568 DOI: 10.4014/jmb.2304.04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_gnavus_group, Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed that lotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13(S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yusong Wu
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Xin Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Sino Canada health engineering research institute, Hefei, P.R. China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd, Beijing, 102209, P.R. China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, P.R. China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yongli Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
10
|
Coppola T, Daziano G, Legroux I, Béraud-Dufour S, Blondeau N, Lebrun P. Unlocking Therapeutic Synergy: Tailoring Drugs for Comorbidities such as Depression and Diabetes through Identical Molecular Targets in Different Cell Types. Cells 2023; 12:2768. [PMID: 38067196 PMCID: PMC10706795 DOI: 10.3390/cells12232768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Research in the field of pharmacology aims to generate new treatments for pathologies. Nowadays, there are an increased number of chronic disorders that severely and durably handicap many patients. Among the most widespread pathologies, obesity, which is often associated with diabetes, is constantly increasing in incidence, and in parallel, neurodegenerative and mood disorders are increasingly affecting many people. For years, these pathologies have been so frequently observed in the population in a concomitant way that they are considered as comorbidities. In fact, common mechanisms are certainly at work in the etiology of these pathologies. The main purpose of this review is to show the value of anticipating the effect of baseline treatment of a condition on its comorbidity in order to obtain concomitant positive actions. One of the implications would be that by understanding and targeting shared molecular mechanisms underlying these conditions, it may be possible to tailor drugs that address both simultaneously. To this end, we firstly remind readers of the close link existing between depression and diabetes and secondly address the potential benefit of the pleiotropic actions of two major active molecules used to treat central and peripheral disorders, first a serotonin reuptake inhibitor (Prozac ®) and then GLP-1R agonists. In the second part, by discussing the therapeutic potential of new experimental antidepressant molecules, we will support the concept that a better understanding of the intracellular signaling pathways targeted by pharmacological agents could lead to future synergistic treatments targeting solely positive effects for comorbidities.
Collapse
Affiliation(s)
- Thierry Coppola
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| | | | | | | | | | - Patricia Lebrun
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| |
Collapse
|
11
|
Martin H, Coursan A, Lallement J, Di Miceli M, Kandiah J, Raho I, Buttler J, Guilloux JP, De Deurwaerdere P, Layé S, Routh VH, Guiard BP, Magnan C, Cruciani-Guglielmacci C, Fioramonti X. Serotonergic neurons are involved in the counter-regulatory response to hypoglycemia. J Neuroendocrinol 2023; 35:e13344. [PMID: 37857383 DOI: 10.1111/jne.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.
Collapse
Affiliation(s)
- Hugo Martin
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Adeline Coursan
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, UK
| | - Janany Kandiah
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Ilyès Raho
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Jasmine Buttler
- INCIA, UMR CNRS, Bordeaux University, Neurocampus, Bordeaux, France
| | | | | | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey, USA
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Toulouse, France
| | | | | | - Xavier Fioramonti
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
12
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Kong CC, Cheng JD, Wang W. Neurotransmitters regulate β cells insulin secretion: A neglected factor. World J Clin Cases 2023; 11:6670-6679. [PMID: 37901031 PMCID: PMC10600852 DOI: 10.12998/wjcc.v11.i28.6670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023] Open
Abstract
β cells are the main cells responsible for the hypoglycemic function of pancreatic islets, and the insulin secreted by these cells is the only hormone that lowers blood glucose levels in the human body. β cells are regulated by various factors, among which neurotransmitters make an important contribution. This paper discusses the effects of neurotransmitters secreted by various sympathetic and parasympathetic nerves on β cells and summarizes the mechanisms by which various neurotransmitters regulate insulin secretion. Many neurotransmitters do not have a single source and are not only released from nerve terminals but also synthesized by β cells themselves, allowing them to synergistically regulate insulin secretion. Almost all of these neurotransmitters depend on the presence of glucose to function, and their actions are mostly related to the Ca2+ and cAMP concentrations. Although neurotransmitters have been extensively studied, many of their mechanisms remain unclear and require further exploration by researchers.
Collapse
Affiliation(s)
- Chu-Chu Kong
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ji-Dong Cheng
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| |
Collapse
|
14
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Akrab SNA, Al Gawhary NE, Shafik AN, Morcos GNB, Wissa MY. The role of mosapride and levosulpiride in gut function and glycemic control in diabetic rats. Arab J Gastroenterol 2023:S1687-1979(23)00009-6. [PMID: 36878815 DOI: 10.1016/j.ajg.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND STUDY AIMS Gastroparesis is a well-known consequence of long-standing diabetes that presents with gastric dysmotility in the absence of gastric outlet obstruction. This study aimed to evaluate the therapeutic effects of mosapride and levosulpiride on improving gastric emptying in type 2 diabetes mellitus (T2DM) while regulating glycemic levels. MATERIAL AND METHODS Rats were divided into the normal control, untreated diabetic, metformin-treated (100 mg/kg/day), mosapride-treated (3 mg/kg/day), levosulpiride-treated (5 mg/kg/day), metformin (100 mg/kg/day) + mosapride (3 mg/kg/day)-treated, and metformin (100 mg/kg/day) + levosulpiride (5 mg/kg/day)-treated diabetic groups. T2DM was induced by a streptozotocin-nicotinamide model. Fourweeks from diabetes onset, the treatment was started orally daily for 2 weeks. Serum glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels were measured. Gastric motility study was performed using isolated rat fundus and pylorus strip preparations. Moreover, the intestinal transit rate was measured. RESULTS Mosapride and levosulpiride administration showed a significant decrease in serum glucose levels with improvement of gastric motility and intestinal transit rate. Mosapride showed a significant increase in serum insulin and GLP-1 levels. Metformin with mosapride and levosulpiride co-administration showed better glycemic control and gastric emptying than either drug administered alone. CONCLUSION Mosapride and levosulpiride showed comparable prokinetic effects. Metformin administration with mosapride and levosulpiride showed better glycemic control and prokinetic effects. Mosapride provided better glycemic control than levosulpiride. Metformin + mosapride combination provided superior glycemic control and prokinetic effects.
Collapse
Affiliation(s)
- Sara N A Akrab
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Nawal E Al Gawhary
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - George N B Morcos
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Egypt; Basic Medical Science Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Marian Y Wissa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
16
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
18
|
Liu B, Ruz‐Maldonado I, Toczyska K, Olaniru OE, Zariwala MG, Hopkins D, Zhao M, Persaud SJ. The selective serotonin reuptake inhibitor fluoxetine has direct effects on beta cells, promoting insulin secretion and increasing beta-cell mass. Diabetes Obes Metab 2022; 24:2038-2050. [PMID: 35676820 PMCID: PMC9545812 DOI: 10.1111/dom.14791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
AIM This study investigated whether therapeutically relevant concentrations of fluoxetine, which have been shown to reduce plasma glucose and glycated haemoglobin independent of changes in food intake and body weight, regulate beta-cell function and improve glucose homeostasis. METHODS Cell viability, insulin secretion, beta-cell proliferation and apoptosis were assessed after exposure of MIN6 beta cells or isolated mouse and human islets to 0.1, 1 or 10 μmol/L fluoxetine. The effect of fluoxetine (10 mg/kg body weight) administration on glucose homeostasis and islet function was also examined in ob/ob mice. RESULTS Exposure of MIN6 cells and mouse islets to 0.1 and 1 μmol/L fluoxetine for 72 hours did not compromise cell viability but 10 μmol/L fluoxetine significantly increased Trypan blue uptake. The dose of 1 μmol/L fluoxetine significantly increased beta-cell proliferation and protected islet cells from cytokine-induced apoptosis. In addition, 1 μmol/L fluoxetine induced rapid and reversible potentiation of glucose-stimulated insulin secretion from islets isolated from mice, and from lean and obese human donors. Finally, intraperitoneal administration of fluoxetine to ob/ob mice over 14 days improved glucose tolerance and resulted in significant increases in beta-cell proliferation and enhanced insulin secretory capacity. CONCLUSIONS These data are consistent with a role for fluoxetine in regulating glucose homeostasis through direct effects on beta cells. Fluoxetine thus demonstrates promise as a preferential antidepressant for patients with concomitant occurrence of depression and diabetes.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Inmaculada Ruz‐Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenConnecticutUSA
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Oladapo E. Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | | - David Hopkins
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Shanta J. Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
19
|
Lee CJ, Schnieders JH, Rubakhin SS, Patel AV, Liu C, Naji A, Sweedler JV. d-Amino Acids and Classical Neurotransmitters in Healthy and Type 2 Diabetes-Affected Human Pancreatic Islets of Langerhans. Metabolites 2022; 12:metabo12090799. [PMID: 36144204 PMCID: PMC9501506 DOI: 10.3390/metabo12090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The pancreatic islets of Langerhans are clusters of cells that function as endocrine units synthesizing and releasing insulin and a range of additional peptide hormones. The structural and chemical characteristics of islets change during type 2 diabetes development. Although a range of metabolites including neurotransmitters has been reported in rodent islets, the involvement of these cell-to-cell signaling molecules within human pancreatic islets in the pathophysiology of type 2 diabetes is not well known, despite studies suggesting that these molecules impact intra- and inter-islet signaling pathways. We characterize the enigmatic cell-to-cell signaling molecules, d-serine (d-Ser) and d-aspartate (d-Asp), along with multiple classical neurotransmitters and related molecules, in healthy versus type 2 diabetes-affected human islets using capillary electrophoresis separations. Significantly reduced d-Ser percentage and gamma-aminobutyric acid (GABA) levels were found in type 2 diabetes-affected islets compared to healthy islets. In addition, the negative correlations of many of the signaling molecules, such as d-Ser percentage (r = −0.35), d-Asp (r = −0.32), serotonin (r = −0.42), and GABA (r = −0.39) levels, with hemoglobin A1c (HbA1c) levels and thus with the progression of type 2 diabetes further demonstrate the disruption in intra- or inter-islet signaling pathways and suggest that these cell-to-cell signaling molecules may be potential therapeutic targets.
Collapse
Affiliation(s)
- Cindy J. Lee
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack H. Schnieders
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit V. Patel
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
20
|
Garvey RW, Lacivita E, Niso M, Duszyńska B, Harris PE, Leopoldo M. Design, synthesis, and characterization of a novel fluoroprobe for live human islet cell imaging of serotonin 5-HT1A receptor. ChemMedChem 2022; 17:e202100759. [PMID: 35286016 DOI: 10.1002/cmdc.202100759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Mounting evidence suggests that the serotonin system serves in signal transmission to regulate insulin secretion in pancreatic islets of Langerhans. Among the 5-HT receptor subtype found in pancreatic islets, serotonin receptor 1A (5-HT 1A ) demonstrates a unique ability to inhibit beta-cell insulin secretion. We report on the design, synthesis, and characterization of two novel fluorescent probes for the 5-HT 1A receptor. The compounds were prepared by conjugating the scaffold of the 5-HT 1A receptor agonist 8-OH-DPAT with two fluorophores suitable for live-cells imaging. Compound 5a showed a high affinity for the 5-HT 1A receptor ( K i = 1.8 nM). Fluoroprobe 5a was able to label the 5-HT 1A receptor in pancreatic islet cell cultures in a selective manner, as the fluorescence emission was significantly attenuated by co-administration of the 5-HT 1A receptor antagonist WAY-100635. Thus, fluoroprobe 5a showed useful properties to further characterize this unique receptor's role.
Collapse
Affiliation(s)
- Robert W Garvey
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Enza Lacivita
- Universita' degli Studi di Bari, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Mauro Niso
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia -Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Beata Duszyńska
- Institute of Pharmacology of the Polish Academy of Sciences: Instytut Farmakologii im Jerzego Maja Polskiej Akademii Nauk, Department of Medicinal Chemistry, Smetna, 12, 31-343, Krakow, POLAND
| | - Paul E Harris
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Marcello Leopoldo
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| |
Collapse
|
21
|
Grajales D, Vázquez P, Ruíz-Rosario M, Tudurí E, Mirasierra M, Ferreira V, Hitos AB, Koller D, Zubiaur P, Cigudosa JC, Abad-Santos F, Vallejo M, Quesada I, Tirosh B, Leibowitz G, Valverde ÁM. The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice. Diabetologia 2022; 65:490-505. [PMID: 34932133 PMCID: PMC8803721 DOI: 10.1007/s00125-021-05630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Tudurí
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Vítor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Iván Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
The complex interactions among serotonin, insulin, leptin, and glycolipid metabolic parameters in human obesity. CNS Spectr 2022; 27:99-108. [PMID: 32921339 DOI: 10.1017/s1092852920001820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To provide evidence to the link between serotonin (5-HT), energy metabolism, and the human obese phenotype, the present study investigated the binding and function of the platelet 5-HT transporter (SERT), in relation to circulating insulin, leptin, and glycolipid metabolic parameters. METHODS Seventy-four drug-free subjects were recruited on the basis of divergent body mass index (BMIs) (16.5-54.8 Kg/m2). All subjects were tested for their blood glycolipid profile together with platelet [3H]-paroxetine ([3H]-Par) binding and [3H]-5-HT reuptake measurements from April 1st to June 30th, 2019. RESULTS The [3H]-Par Bmax (fmol/mg proteins) was progressively reduced with increasing BMIs (P < .001), without changes in affinity. Moreover, Bmax was negatively correlated with BMI, waist/hip circumferences (W/HC), triglycerides (TD), glucose, insulin, and leptin, while positively with high-density lipoprotein (HDL) cholesterol (P < .01). The reduction of 5-HT uptake rate (Vmax, pmol/min/109 platelets) among BMI groups was not statistically significant, but Vmax negatively correlated with leptin and uptake affinity values (P < .05). Besides, [3H]-Par affinity values positively correlated with glycemia and TD, while [3H]-5-HT reuptake affinity with glycemia only (P < .05). Finally, these correlations were specific of obese subjects, while, from multiple linear-regression analysis conducted on all subjects, insulin (P = .006) resulting negatively related to Bmax independently from BMI. CONCLUSIONS Present findings suggest the presence of a possible alteration of insulin/5-HT/leptin axis in obesity, differentially impinging the density, function, and/or affinity of the platelet SERT, as a result of complex appetite/reward-related interactions between the brain, gut, pancreatic islets, and adipose tissue. Furthermore, they support the foremost cooperation of peptides and 5-HT in maintaining energy homeostasis.
Collapse
|
23
|
Doi M, Nakama N, Sumi T, Usui N, Shimada S. Prenatal methamphetamine exposure causes dysfunction in glucose metabolism and low birthweight. Front Endocrinol (Lausanne) 2022; 13:1023984. [PMID: 36353228 PMCID: PMC9637823 DOI: 10.3389/fendo.2022.1023984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) is a psychostimulant drug that induces addiction. Previous epidemiological studies have demonstrated that maternal METH abuse during pregnancy causes low birthweight (LBW) in the offspring. As a source of essential nutrients, in particular glucose, the placenta plays a key role in fetal development. LBW leads to health problems such as obesity, diabetes, and neurodevelopmental disorders (NDDs). However, the detailed mechanism underlying offspring's LBW and health hazards caused by METH are not fully understood. Therefore, we investigated the effects of prenatal METH exposure on LBW and fetal-placental relationship by focusing on metabolism. We found dysfunction of insulin production in the pancreas of fetuses exposed to METH. We also found a reduction of the glycogen cells (GCs) storing glycogens in the junctional zone of placenta, all of which suggest abnormal glucose metabolism affects the fetal development. These results suggest that dysfunction in fetal glucose metabolism may cause LBW and future health hazards. Our findings provide novel insights into the cause of LBW via the fetal-placental crosstalk.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Nanako Nakama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
25
|
Cooper ID, Brookler KH, Crofts CAP. Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines 2021; 9:1165. [PMID: 34572351 PMCID: PMC8472634 DOI: 10.3390/biomedicines9091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) and/or cardiovascular disease (CVD), conditions of hyperinsulinaemia, have lower levels of osteocalcin and bone remodelling, and increased rates of fragility fractures. Unlike osteoporosis with lower bone mineral density (BMD), T2DM bone fragility "hyperinsulinaemia-osteofragilitas" phenotype presents with normal to increased BMD. Hyperinsulinaemia and insulin resistance positively associate with increased BMD and fragility fractures. Hyperinsulinaemia enforces glucose fuelling, which decreases NAD+-dependent antioxidant activity. This increases reactive oxygen species and mitochondrial fission, and decreases oxidative phosphorylation high-energy production capacity, required for osteoblasto/cytogenesis. Osteocytes directly mineralise and resorb bone, and inhibit mineralisation of their lacunocanalicular space via pyrophosphate. Hyperinsulinaemia decreases vitamin D availability via adipocyte sequestration, reducing dendrite connectivity, and compromising osteocyte viability. Decreased bone remodelling and micropetrosis ensues. Trapped/entombed magnesium within micropetrosis fossilisation spaces propagates magnesium deficiency (MgD), potentiating hyperinsulinaemia and decreases vitamin D transport. Vitamin D deficiency reduces osteocalcin synthesis and favours osteocyte apoptosis. Carbohydrate restriction/fasting/ketosis increases beta-oxidation, ketolysis, NAD+-dependent antioxidant activity, osteocyte viability and osteocalcin, and decreases excess insulin exposure. Osteocalcin is required for hydroxyapatite alignment, conferring bone structural integrity, decreasing fracture risk and improving metabolic/endocrine homeodynamics. Patients presenting with fracture and normal BMD should be investigated for T2DM and hyperinsulinaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Kenneth H. Brookler
- Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Catherine A. P. Crofts
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand;
| |
Collapse
|
26
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
27
|
Asai S, Žáková L, Selicharová I, Marek A, Jiráček J. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem 2021; 413:4531-4543. [PMID: 34050775 DOI: 10.1007/s00216-021-03423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 β cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by β cells and searching for new modulators of insulin secretion.
Collapse
Affiliation(s)
- Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840, Prague 2, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic.
| |
Collapse
|
28
|
Moon JH, Kim H, Kim H, Park J, Choi W, Choi W, Hong HJ, Ro HJ, Jun S, Choi SH, Banerjee RR, Shong M, Cho NH, Kim SK, German MS, Jang HC, Kim H. Lactation improves pancreatic β cell mass and function through serotonin production. Sci Transl Med 2021; 12:12/541/eaay0455. [PMID: 32350130 DOI: 10.1126/scitranslmed.aay0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Pregnancy imposes a substantial metabolic burden on women through weight gain and insulin resistance. Lactation reduces the risk of maternal postpartum diabetes, but the mechanisms underlying this benefit are unknown. Here, we identified long-term beneficial effects of lactation on β cell function, which last for years after the cessation of lactation. We analyzed metabolic phenotypes including β cell characteristics in lactating and non-lactating humans and mice. Lactating and non-lactating women showed comparable glucose tolerance at 2 months after delivery, but after a mean of 3.6 years, glucose tolerance in lactated women had improved compared to non-lactated women. In humans, the disposition index, a measure of insulin secretory function of β cells considering the degree of insulin sensitivity, was higher in lactated women at 3.6 years after delivery. In mice, lactation improved glucose tolerance and increased β cell mass at 3 weeks after delivery. Amelioration of glucose tolerance and insulin secretion were maintained up to 4 months after delivery in lactated mice. During lactation, prolactin induced serotonin production in β cells. Secreted serotonin stimulated β cell proliferation through serotonin receptor 2B in an autocrine and paracrine manner. In addition, intracellular serotonin acted as an antioxidant to mitigate oxidative stress and improved β cell survival. Together, our results suggest that serotonin mediates the long-term beneficial effects of lactation on female metabolic health by increasing β cell proliferation and reducing oxidative stress in β cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wonsuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wongun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nam Han Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seung K Kim
- Department of Developmental Biology and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S German
- Diabetes Center, Hormone Research Institute and Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
29
|
Vlaemynck K, De Man M, De Man K, Hoorens A, Geboes K. Neuroendocrine tumor with diarrhea: not always the usual suspects - a case report of metastatic calcitoninoma with literature review. Acta Clin Belg 2021; 76:239-243. [PMID: 31900071 DOI: 10.1080/17843286.2020.1711668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe a case of a 59-year-old man without relevant past medical history, presenting with chronic diarrhea and weight loss. Extensive laboratory analysis, stool cultures and gastro- and ileocolonoscopy could not identify a diagnosis. Abdominal imaging revealed a mass in the uncinate process of the pancreas with mesenteric adenopathies and liver metastases. Fine needle aspiration was compatible with a pancreatic neuroendocrine tumor with low proliferative capacity (Ki-67 <1%). Immunohistochemical staining was positive for calcitonin and serum calcitonin levels were clearly elevated. Surprisingly, 18FDG PET-CT scan was positive, but no tracer uptake was seen on 68Gallium-DOTATOC PET-CT scan. Treatment with somatostatin analogues was not successful, but long-term tumor control could be obtained with Everolimus. However, no significant effect was seen on stool frequency despite additional treatment with multiple symptomatic therapies, liver-directed therapy with radio- and chemoembolization and additional external radiotherapy to the primary pancreatic tumor. Ondansetron, eventually, seems to be the only therapy, until now, causing a decrease in stool frequency.Functioning pancreatic calcitoninomas are considered to be a rare disease entity with few literature on optimal (nuclear) imaging and treatment. We discuss molecular insights regarding these aspects that can be of great interest to nuclear medicine physicians, pathologists, endocrinologists and gastroenterologists.
Collapse
Affiliation(s)
- Kenny Vlaemynck
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Marc De Man
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Kathia De Man
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Karen Geboes
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
30
|
Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel) 2021; 14:238. [PMID: 33800403 PMCID: PMC8001502 DOI: 10.3390/ph14030238] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Anna Pintaudi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Marco Baldini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| |
Collapse
|
31
|
Zhang S, Li X, Zhao S, Drobizhev M, Ai HW. A fast, high-affinity fluorescent serotonin biosensor engineered from a tick lipocalin. Nat Methods 2021; 18:258-261. [PMID: 33633410 DOI: 10.1038/s41592-021-01078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) is an important signaling monoamine and neurotransmitter. We report structure-guided engineering of a green fluorescent, genetically encoded serotonin sensor (G-GESS) from a 5-HT-binding lipocalin in the soft tick Argas monolakensis. G-GESS shows fast response kinetics and high affinity, specificity, brightness and photostability. We used G-GESS to image 5-HT dynamics in cultured cells, brain slices and behaving mice.
Collapse
Affiliation(s)
- Shen Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Xinyu Li
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Shengyu Zhao
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Mikhail Drobizhev
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. .,Department of Chemistry, University of Virginia, Charlottesville, VA, USA. .,The UVA Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, Mohammadi H, Sajjadi-Jazi SM, Mahmoudi-Kohan S, Faridbod F, Larijani B, Saadat F, Faridi Majidi R, Khorramizadeh MR. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem 2021; 413:1615-1627. [PMID: 33501550 DOI: 10.1007/s00216-020-03122-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) levels have been associated with several exclusively metabolic disorders. Herein, a new approach for 5-HT level as a novel biomarker of diabetes mellitus is considered using a simple nanocomposite and HPLC method. Reduced graphene oxide (rGO) comprising gold nanoparticles (AuNPs) was decorated with 18-crown-6 (18.Cr.6) to fabricate a simple nanocomposite (rGO-AuNPs-18.Cr.6). The nanocomposite was positioned on a glassy carbon electrode (GCE) to form an electrochemical sensor for the biomarker 5-HT in the presence of L-tryptophan (L-Trp), dopamine (DA), ascorbic acid (AA), urea, and glucose. The nanocomposite exhibited efficient catalytic activity for 5-HT detection by square-wave voltammetry (SWV). The proposed sensor displayed high selectivity, excellent reproducibility, notable anti-interference ability, and long-term stability even after 2 months. SWV defined a linear range of 5-HT concentration from 0.4 to 10 μg L-1. A diabetic animal model (diabetic zebrafish model) was then applied to investigate 5-HT as a novel biomarker of diabetes. A limit of detection (LOD) of about 0.33 μg L-1 was found for the diabetic group and 0.15 μg L-1 for the control group. The average levels of 5-HT obtained were 9 and 2 μg L-1 for control and diabetic groups, respectively. The recovery, relative standard deviation (RSD), and relative error (RE) were found to be about 97%, less than 2%, and around 3%, respectively. The significant reduction in 5-HT level in the diabetic group compared to the control group proved that the biomarker 5-HT can be applied for the early diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Farzad Torabi
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mahsa Sadeghi Afjeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hassan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sadegh Mahmoudi-Kohan
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Farnoush Faridbod
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farshid Saadat
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, 41887-94755, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
33
|
Hajishafiee M, Elovaris RA, Jones KL, Heilbronn LK, Horowitz M, Poppitt SD, Feinle-Bisset C. Effects of intragastric administration of L-tryptophan on the glycaemic response to a nutrient drink in men with type 2 diabetes - impacts on gastric emptying, glucoregulatory hormones and glucose absorption. Nutr Diabetes 2021; 11:3. [PMID: 33414406 PMCID: PMC7791097 DOI: 10.1038/s41387-020-00146-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rate of gastric emptying and glucoregulatory hormones are key determinants of postprandial glycaemia. Intragastric administration of L-tryptophan slows gastric emptying and reduces the glycaemic response to a nutrient drink in lean individuals and those with obesity. We investigated whether tryptophan decreases postprandial glycaemia and slows gastric emptying in type 2 diabetes (T2D). METHODS Twelve men with T2D (age: 63 ± 2 years, HbA1c: 49.7 ± 2.5 mmol/mol, BMI: 30 ± 1 kg/m2) received, on three separate occasions, 3 g ('Trp-3') or 1.5 g ('Trp-1.5') tryptophan, or control (0.9% saline), intragastrically, in randomised, double-blind fashion, 30 min before a mixed-nutrient drink (500 kcal, 74 g carbohydrates), containing 3 g 3-O-methyl-D-glucose (3-OMG) to assess glucose absorption. Venous blood samples were obtained at baseline, after tryptophan, and for 2 h post-drink for measurements of plasma glucose, C-peptide, glucagon and 3-OMG. Gastric emptying of the drink was quantified using two-dimensional ultrasound. RESULTS Tryptophan alone stimulated C-peptide (P = 0.002) and glucagon (P = 0.04), but did not affect fasting glucose. In response to the drink, Trp-3 lowered plasma glucose from t = 15-30 min and from t = 30-45 min compared with control and Trp-1.5, respectively (both P < 0.05), with no differences in peak glucose between treatments. Gastric emptying tended to be slower after Trp-3, but not Trp-1.5, than control (P = 0.06). Plasma C-peptide, glucagon and 3-OMG increased on all days, with no major differences between treatments. CONCLUSIONS In people with T2D, intragastric administration of 3 g tryptophan modestly slows gastric emptying, associated with a delayed rise, but not an overall lowering of, postprandial glucose.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Rachel A Elovaris
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
34
|
Mondanelli G, Orecchini E, Volpi C, Panfili E, Belladonna ML, Pallotta MT, Moretti S, Galarini R, Esposito S, Orabona C. Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients. Int J Tryptophan Res 2020; 13:1178646920956646. [PMID: 33061415 PMCID: PMC7534075 DOI: 10.1177/1178646920956646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by anomalous functioning of the immuno regulatory, tryptophan-catabolic enzyme indoleamine 2,3 dioxygenase 1 (IDO1). In T1D, the levels of kynurenine-the first byproduct of tryptophan degradation via IDO1-are significantly lower than in nondiabetic controls, such that defective immune regulation by IDO1 has been recognized as potentially contributing to autoimmunity in T1D. Because tryptophan catabolism-and the production of immune regulatory catabolites-also occurs via the gut microbiota, we measured serum levels of tryptophan, and metabolites thereof, in pediatric, diabetic patients after a 3-month oral course of Lactobacillus rhamnosus GG. Daily administration of the probiotic significantly affected circulating levels of tryptophan as well as the qualitative pattern of metabolite formation in the diabetic patients, while it decreased inflammatory cytokine production by the patients. This study suggests for the first time that a probiotic treatment may affect systemic tryptophan metabolism and restrain proinflammatory profile in pediatric T1D.
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elena Orecchini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Panfili
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Auge I. Intracellular events in diabetes mellitus - Behind the scenes. Acta Physiol (Oxf) 2020; 229:e13468. [PMID: 32174000 DOI: 10.1111/apha.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Isabel Auge
- Klinik für Innere Medizin III AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
36
|
A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1. Cancers (Basel) 2020; 12:cancers12030691. [PMID: 32183367 PMCID: PMC7140066 DOI: 10.3390/cancers12030691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17–92 cluster, which have been implicated in β-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial–mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the “islet/insulinoma tumors” (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as “metastasis-like/primary” (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models.
Collapse
|
37
|
Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019; 8:cells8111336. [PMID: 31671770 PMCID: PMC6912706 DOI: 10.3390/cells8111336] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the cornerstone of treatment for schizophrenia because of their high clinical efficacy. However, SGA treatment is associated with severe metabolic alterations and body weight gain, which can increase the risk of type 2 diabetes and cardiovascular disease, and greatly accelerate mortality. Several underlying mechanisms have been proposed for antipsychotic-induced weight gain (AIWG), but some studies suggest that metabolic changes in insulin-sensitive tissues can be triggered before the onset of AIWG. In this review, we give an outlook on current research about the metabolic disturbances provoked by SGAs, with a particular focus on whole-body glucose homeostasis disturbances induced independently of AIWG, lipid dysregulation or adipose tissue disturbances. Specifically, we discuss the mechanistic insights gleamed from cellular and preclinical animal studies that have reported on the impact of SGAs on insulin signaling, endogenous glucose production, glucose uptake and insulin secretion in the liver, skeletal muscle and the endocrine pancreas. Finally, we discuss some of the genetic and epigenetic changes that might explain the different susceptibilities of SGA-treated patients to the metabolic side-effects of antipsychotics.
Collapse
|
38
|
Cataldo LR, Suazo J, Olmos P, Bravo C, Galgani JE, Fex M, Martínez JA, Santos JL. Platelet Serotonin Levels Are Associated with Plasma Soluble Leptin Receptor Concentrations in Normoglycemic Women. J Diabetes Res 2019; 2019:2714049. [PMID: 31192261 PMCID: PMC6525868 DOI: 10.1155/2019/2714049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Most peripheral serotonin (5-hydroxytryptamine (5HT)) is synthetized in the gut with platelets being its main circulating reservoir. 5HT is acting as a hormone in key organs to regulate glucose and lipid metabolism. However, the relation between platelet 5HT levels and traits related to glucose homeostasis and lipid metabolism in humans remains poorly explored. The objectives of this study were (a) to assess the association between platelet 5HT levels and plasma concentration of nonesterified fatty acids (NEFAs) and some adipokines including leptin and its soluble leptin receptor (sOb-R), (b) to assess the association between platelet 5HT levels and anthropometric traits and indexes of insulin secretion/sensitivity derived from oral glucose tolerance test (OGTT), and (c) to evaluate changes in platelet 5HT levels in response to OGTT. In a cross-sectional study, 59 normoglycemic women underwent a standard 2-hour OGTT. Plasma leptin, sOb-R, total and high molecular weight adiponectin, TNFα, and MCP1 were determined by immunoassays. Platelet 5HT levels and NEFAs were measured before and after OGTT. The free leptin index was calculated from leptin and sOb-R measurements. Insulin sensitivity indexes derived from OGTT (HOMA-S and Matsuda ISICOMP) and plasma NEFAs (Adipose-IR, Revised QUICKI) were also calculated. Our data show that among metabolic traits, platelet 5HT levels were associated with plasma sOb-R (r = 0.39, p = 0.003, corrected p = 0.018). Platelet 5HT levels were reduced in response to OGTT (779 ± 237 vs.731 ± 217 ng/109 platelets, p = 0.005). In conclusion, platelet 5HT levels are positively associated with plasma sOb-R concentrations and reduced in response to glucose intake possibly indicating a role of peripheral 5HT in leptin-mediated appetite regulation.
Collapse
Affiliation(s)
- Luis Rodrigo Cataldo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Lund University Diabetes Centre, Clinical Research Center, Lund University, Malmö, Sweden
| | - José Suazo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pablo Olmos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bravo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Health Sciences, Nutrition & Dietetics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Malin Fex
- Lund University Diabetes Centre, Clinical Research Center, Lund University, Malmö, Sweden
| | - J. Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- IMDEA-Food, Madrid, Spain
| | - José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Role of Serotonin Transporter in Antidepressant-Induced Diabetes Mellitus: A Pharmacoepidemiological–Pharmacodynamic Study in VigiBase®. Drug Saf 2018; 41:1087-1096. [DOI: 10.1007/s40264-018-0693-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|