1
|
Okamura Y, Adachi K, Niijima R, Kodama T, Otani K, Okada M, Yamawaki H. Human omentin-1 reduces vascular insulin resistance and hypertension in Otsuka Long-Evans Tokushima Fatty rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3379-3387. [PMID: 37955693 DOI: 10.1007/s00210-023-02795-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Hypertension is one of the major risk factors for renal failure and cardiovascular diseases, and is caused by various abnormalities including the contractility of blood vessels. Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which mimic human type 2 diabetes, are frequently used to study obesity-induced insulin resistance (IR) and hypertension. Human omentin-1 is one of the recently identified adipocytokines. We previously demonstrated that human omentin-1 not only caused vasodilation in rat isolated blood vessels, but also prevented inflammatory responses, a possible mechanism relating IR, in human vascular endothelial cells. Taken together, we hypothesized that human omentin-1 may reduce obesity-induced IR and hypertension in OLETF rats. METHODS OLETF rats were intraperitoneally administered with human omentin-1 for 7 days. RESULTS Human omentin-1 had no influence on overweight, hyperglycemia, urinary glucose extraction, hyperinsulinemia, and systemic IR in OLETF rats. Human omentin-1 decreased systolic blood pressure in OLETF rats. The measurement of isometric contraction revealed that human omentin-1 had no influence on the agonist-induced contractile and relaxant responses in isolated thoracic aorta from OLETF rats. However, the relaxant response mediated by human insulin was converted into the contractile response in thoracic aorta from OLETF rats, which was prevented by human omentin-1. The Western blotting revealed that human omentin-1 improved the decrease in endothelial nitric oxide synthase activation in isolated thoracic aorta from OLETF rats. CONCLUSION In summary, we for the first time revealed that human omentin-1 partly reduces vascular IR and thereby inhibits hypertension in OLETF rats.
Collapse
Affiliation(s)
- Yuta Okamura
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Ko Adachi
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Ryo Niijima
- Kitasato University Veterinary Teaching Hospital, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
2
|
Huang Z, Yang Y, Ma S, Li J, Ye H, Chen Q, Li Z, Deng J, Tan C. KLF4 down-regulation underlies placental angiogenesis impairment induced by maternal glucose intolerance in late pregnancy. J Nutr Biochem 2024; 124:109509. [PMID: 37907170 DOI: 10.1016/j.jnutbio.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Shuo Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxuan Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiling Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhishan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Chengquan Tan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 2023; 24:e13589. [PMID: 37336641 PMCID: PMC10406397 DOI: 10.1111/obr.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Hypertension is a primary risk factor for cardiovascular disease. Cardiovascular disease is the leading cause of death among adults worldwide. In this review, we focus on two of the most critical public health challenges that contribute to hypertension-obesity and excess dietary sodium from salt (i.e., sodium chloride). While the independent effects of these factors have been studied extensively, the interplay of obesity and excess salt overconsumption is not well understood. Here, we discuss both the independent and combined effects of excess obesity and dietary salt given their contributions to vascular dysfunction, autonomic cardiovascular dysregulation, kidney dysfunction, and insulin resistance. We discuss the role of ultra-processed foods-accounting for nearly 60% of energy intake in America-as a major contributor to both obesity and salt overconsumption. We highlight the influence of obesity on elevated blood pressure in the presence of a high-salt diet (i.e., salt sensitivity). Throughout the review, we highlight critical gaps in knowledge that should be filled to inform us of the prevention, management, treatment, and mitigation strategies for addressing these public health challenges.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Orlando M. Gutiérrez
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
4
|
Shan Y, Cui J, Kang X, Tang W, Lu Y, Gao Y, Chen L. Aquaporin-8 overexpression is involved in vascular structure and function changes in placentas of gestational diabetes mellitus patients. Open Life Sci 2022; 17:1473-1486. [DOI: 10.1515/biol-2022-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
To study the role and mechanism of aquaporin-8 (AQP8) in placental vascular development in gestational diabetes mellitus (GDM), hematoxylin–eosin staining and immunohistochemistry were utilized to analyze the histopathological changes in placentas in GDM patients. Transwell, CCK-8, and tube formation assays were performed to examine cell migration, proliferation, and tube formation. AQP8, vascular cell adhesion molecule 1 (VCAM-1), tumor necrosis factor alpha (TNF)-α, and vascular endothelial growth factor (VEGF)-A expression levels were investigated. Relative to the control group, the placentas in the GDM group showed morphological changes, the number of microvessels in the placental villi arterioles was significantly higher, and the area of microvessels in the arterioles of placental villi was significantly lower. The expression levels of VCAM-1, TNF-α, VEGF-A, and AQP8 in the GDM placentas and human umbilical vein endothelial cells (HUVECs) stimulated by high glucose were significantly higher than those in the control group, and AQP8 was located in placental endothelial cells. Overexpression of glucose and AQP8 inhibited tube formation, migration, and proliferation in HUVECs. High glucose levels can induce dysfunction in vascular endothelial cells and lead to pathological changes in the placental vascular structure in GDM. AQP8 overexpression in placental GDM can inhibit endothelial cell behavior, cause endothelial cell dysfunction, and further participate in the occurrence and development of GDM placental vascular lesions.
Collapse
Affiliation(s)
- Yanxing Shan
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| | - Jiawen Cui
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
- Department of Obstetrics and Gynecology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Qingpu , Shanghai , 201700 , China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| | - Weichun Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| | - Yiling Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| | - Ying Gao
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University , No. 6 North Road, Haierxiang, Chongchuan District , Nantong , Jiangsu, 226001 , China
| |
Collapse
|
5
|
Farías MA, Diethelm-Varela B, Navarro AJ, Kalergis AM, González PA. Interplay between Lipid Metabolism, Lipid Droplets, and DNA Virus Infections. Cells 2022; 11:2224. [PMID: 35883666 PMCID: PMC9324743 DOI: 10.3390/cells11142224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
Lipid droplets (LDs) are cellular organelles rich in neutral lipids such as triglycerides and cholesterol esters that are coated by a phospholipid monolayer and associated proteins. LDs are known to play important roles in the storage and availability of lipids in the cell and to serve as a source of energy reserve for the cell. However, these structures have also been related to oxidative stress, reticular stress responses, and reduced antigen presentation to T cells. Importantly, LDs are also known to modulate viral infection by participating in virus replication and assembly. Here, we review and discuss the interplay between neutral lipid metabolism and LDs in the replication cycle of different DNA viruses, identifying potentially new molecular targets for the treatment of viral infections.
Collapse
Affiliation(s)
- Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Areli J. Navarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| |
Collapse
|
6
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
7
|
Perez Diaz N, Lione LA, Hutter V, Mackenzie LS. Co-Incubation with PPARβ/δ Agonists and Antagonists Modeled Using Computational Chemistry: Effect on LPS Induced Inflammatory Markers in Pulmonary Artery. Int J Mol Sci 2021; 22:ijms22063158. [PMID: 33808880 PMCID: PMC8003823 DOI: 10.3390/ijms22063158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARβ/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARβ/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARβ/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARβ/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARβ/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARβ/δ antagonists. Docking using computational chemistry methods indicates that PPARβ/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARβ/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARβ/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARβ/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARβ/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.
Collapse
Affiliation(s)
- Noelia Perez Diaz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Victoria Hutter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Louise S. Mackenzie
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
8
|
Li Y, Huang C, Fu W, Zhang H, Lao Y, Zhou H, Tan H, Xu H. Screening of the active fractions from the Coreopsis tinctoria Nutt. Flower on diabetic endothelial protection and determination of the underlying mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112645. [PMID: 32045684 DOI: 10.1016/j.jep.2020.112645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Coreopsis tinctoria Nutt. flower (CTF) has been used traditionally in China for treating hypertension and diabetes as well as reducing body weight and blood fat. However, the vascular protection effect of the CTF has not been studied to date. AIM OF THE STUDY This study aimed to screen and identify bioactive fractions from the CTF with a diabetic endothelial protection effect and to clarify the underlying mechanism. MATERIALS AND METHODS The vascular protection effect of Fraction A was studied in high-fat diet and streptozocin-induced diabetic models. The endothelial protection effect of Fraction A-2 was further studied in an in vitro vascular endothelial dysfunction model induced by high glucose. In a high glucose-induced human umbilical vein endothelial cell (HUVEC) model, Fractions A-2-2 and A-2-3 were screened, and their detailed mechanisms of endothelial protection were studied. Liquid chromatography mass spectrometry (LC-MS) was used to identify the main components in Fractions A-2-2 and A-2-3. RESULTS Fraction A treatment significantly improved the endothelium-dependent vasodilation of the mesenteric artery induced by acetylcholine in diabetic rats. The maximum relaxation was 79.82 ± 2.45% in the control group, 64.36 ± 9.81% in the model group, and 91.87 ± 7.38% in the Fraction A treatment group (P < 0.01). Fraction A treatment also decreased rat tail pressure compared with the model group at the 12th week. The systolic blood pressure was 152.7 5 ± 16.99 mmHg in the control group, 188.50 ± 5.94 mmHg in the model group, and 172.60 ± 14.31 mmHg in the Fraction A treatment group (P < 0.05). The mean blood pressure was 128.50 ± 13.79 mmHg in the control group, 157.00 ± 6.06 mmHg in the model group, and 144.80 ± 11.97 mmHg in the Fraction A treatment group (P < 0.05). In an in vitro vascular endothelium-dependent vasodilation dysfunction model induced by high glucose, Fraction A-2 improved the vasodilation of the mesenteric artery. The maximum relaxation was 82.15 ± 16.24% in the control group, 73.29 ± 14.25% in the model group, and 79.62 ± 13.89% in the Fraction A-2 treatment group (P < 0.05). In a high glucose-induced HUVEC model, Fraction A-2-2 and Fraction A-2-3 upregulated the expression of IRS-1, Akt, and eNOS and increased the levels of p-IRS-1Ser307, p-Akt Ser473, and p-eNOSSer1177 and also decreased the expression of NOX4, TNF-α, IL-6, sVCAM, sICAM, and NF-κB (P < 0.01). With the intervention of AG490 and LY294002, the above effects of Fraction A-2-2 and Fraction A-2-3 were inhibited (P < 0.01). LC-MS data showed that in Fraction A-2-2 and Fraction A-2-3, there were 10 main components: flavanocorepsin; polyphenolic; flavanomarein; isochlorogenic acid A; dicaffeoylquinic acid; coreopsin; marein; coreopsin; luteolin-7-O-glucoside; and 3',5,5',7-tetrahydroxyflavanone-O-hexoside. CONCLUSION The protective effect of the CTF on diabetic endothelial dysfunction may be due to its effect on the JAK2/IRS-1/PI3K/Akt/eNOS pathway and the related oxidative stress and inflammation. The results strongly suggested that Fraction A-2-2 and Fraction A-2-3 were the active fractions from the CTF, and the CTF might be a potential option for the prevention of vascular complications in diabetes.
Collapse
Affiliation(s)
- Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chaoran Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
9
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
10
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
11
|
Zhang Z, Xie X, Yao Q, Liu J, Tian Y, Yang C, Xiao L, Wang N. PPARδ agonist prevents endothelial dysfunction via induction of dihydrofolate reductase gene and activation of tetrahydrobiopterin salvage pathway. Br J Pharmacol 2019; 176:2945-2961. [PMID: 31144304 PMCID: PMC6637045 DOI: 10.1111/bph.14745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired endothelium-dependent relaxation (EDR) is a hallmark of endothelial dysfunction. A deficiency of tetrahydrobiopterin (BH4 ) causes endothelial NOS to produce ROS rather than NO. PPARδ is an emerging target for pharmacological intervention of endothelial dysfunction. Thus, the present study examined the role of PPARδ in the regulation of dihydrofolate reductase (DHFR), a key enzyme in the BH4 salvage pathway. EXPERIMENTAL APPROACH Gene expression was measured by using qRT-PCR and western blotting. Biopterins and ROS were determined by using HPLC. NO was measured with fluorescent dye and electron paramagnetic resonance spectroscopy. Vasorelaxation was measured by Multi Myograph System. KEY RESULTS The PPARδ agonist GW501516 increased DHFR and BH4 levels in endothelial cells (ECs). The effect was blocked by PPARδ antagonist GSK0660. Chromatin immunoprecipitation identified PPAR-responsive elements within the 5'-flanking region of the human DHFR gene. The promoter activity was examined with luciferase assays using deletion reporters. Importantly, DHFR expression was suppressed by palmitic acid (PA, a saturated fatty acid) but increased by docosahexaenoic acid (DHA, a polyunsaturated fatty acid). GSK0660 prevented DHA-induced increased DHFR expression. Conversely, the suppressive effect of PA was mitigated by GW501516. In mouse aortae, GW501516 ameliorated the PA-impaired EDR. However, this vasoprotective effect was attenuated by DHFR siRNA or methotrexate. In EC-specific Ppard knockout mice, GW501516 failed to improve vasorelaxation. CONCLUSION AND IMPLICATIONS PPARδ prevented endothelial dysfunction by increasing DHFR and activating the BH4 salvage pathway. These results provide a novel mechanism for the protective roles of PPARδ against vascular diseases.
Collapse
Affiliation(s)
- Zihui Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Xinya Xie
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Jia Liu
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Ying Tian
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Chunmiao Yang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Nanping Wang
- The Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
12
|
Comparative Evaluation of Gemcabene and Peroxisome Proliferator-Activated Receptor Ligands in Transcriptional Assays of Peroxisome Proliferator-Activated Receptors: Implication for the Treatment of Hyperlipidemia and Cardiovascular Disease. J Cardiovasc Pharmacol 2019; 72:3-10. [PMID: 29621036 PMCID: PMC6039382 DOI: 10.1097/fjc.0000000000000580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator-activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observed in rodents and humans. In the current study, the gemcabene agonist activity against PPAR subtypes of human, rat, and mouse were compared with known lipid lowering PPAR activators. Surprisingly, gemcabene showed no or little PPAR-α transactivation compared with reference agonists, which showed concentration-dependent transactivation against human PPAR-α of 2.4- to 30-fold (fenofibric acid), 17-fold (GW590735), and 2.3- to 25-fold (WY-14643). These agents also showed robust transactivation of mouse and rat PPAR-α in a concentration-dependent manner. The known PPAR-δ agonists, GW1516, L165041, and GW0742, showed potent agonist activity against human, mouse, and rat receptors (ranging from 165- to 396-fold). By contrast, gemcabene at the highest concentration tested (300 μM) showed no response in mouse and rat and a marginal response against human PPAR-δ receptors (3.2-fold). For PPAR-γ, gemcabene showed no agonist activity against all 3 species at 100 μM and marginal activity (3.6- to 5-fold) at 300 μM. By contrast, the known agonists, rosiglitazone, indomethacin, and muraglitazar showed strong activation against the mouse, rat, and human PPAR-γ receptors. No clear antagonist activity was observed with gemcabene against any PPAR subtypes for all 3 species over a wide range of concentrations. In summary, the transactivation studies rule out gemcabene as a direct agonist or antagonist of PPAR-α, PPAR-γ, and PPAR-δ receptors of these 3 species. These data suggest that the peroxisomal effects observed in rodents and the lipid regulating effects observed in rodents and humans are not related to a direct activation of PPAR receptors by gemcabene.
Collapse
|
13
|
Toral M, Jimenez R, Montoro-Molina S, Romero M, Wangensteen R, Duarte J, Vargas F. Thyroid hormones stimulate L-arginine transport in human endothelial cells. J Endocrinol 2018; 239:49–62. [PMID: 30307153 DOI: 10.1530/joe-18-0229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone activity is associated with L-arginine metabolism and nitric oxide (NO) production, which participate in the cardiovascular manifestations of thyroid disorders. L-arginine transporters play an important role in activating L-arginine uptake and NO production. However, the effects of thyroid hormones on L-arginine transporters in endothelial cells have not yet been evaluated. The following methods were used. We measured L-arginine uptake, mRNA expression of L-arginine transporters, endothelial nitric oxide synthase (eNOS) mRNA and NO generation after the administration of T3, T4 and the T3 analog, 3,3′,5-triiodothyroacetic acid TRIAC in human umbilical vein endothelial cells (HUVECs). We also analyzed the role of αvβ3 integrin and of phosphatidyl-inositol-3 kinase (PI3K), mitogen-activated protein kinases (MAPKs: ERK1/2, p38 and SAPK-JNK) and intracellular calcium signaling pathways as underlying mechanisms. To this end, αvβ3 integrin was pharmacologically inhibited by tetraiodothyroacetic acid (TETRAC) or genetically blocked by silencing αv mRNA and PI3K, MAPKs and intracellular calcium by selective inhibitors. The following results were obtained. Thyroid hormones and the T3 analog TRIAC increased L-arginine uptake in HUVECs, the sodium-independent y+/CAT isoforms, except CAT2b, sodium-dependent y+L system and sodium-independent system b0,+L-arginine transporters, eNOS mRNA and NO production. These effects were suppressed by αvβ3 integrin inhibition with TETRAC or αv integrin downregulation or by PI3K, MAPK or intracellular Ca2+ signaling inhibitors. In conclusion, we report for the first time that activation of L-arginine uptake by thyroid hormones is related to an upregulation of L-arginine transporters. This effect seems to be mediated by activation of αvβ3 integrin receptor and subsequent PI3K, MAPK and intracellular Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Marta Toral
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
| | - Rosario Jimenez
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Miguel Romero
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Juan Duarte
- Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Félix Vargas
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
14
|
Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol Nutr Food Res 2018; 62:e1800033. [PMID: 29851248 DOI: 10.1002/mnfr.201800033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The aim is to analyze whether the probiotic Lactobacillus fermentum CECT5716 (LC40) can prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. METHODS AND RESULTS Tacrolimus increases systolic blood pressure (SBP) and impairs endothelium-dependent relaxation to acetylcholine and these effects are partially prevented by LC40. Endothelial dysfunction induced by tacrolimus is related to both increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) and uncoupled endothelial nitric oxide synthase (eNOS)-driven superoxide production and Rho-kinase-mediated eNOS inhibition. LC40 treatment prevents all the aortic changes induced by tacrolimus. LC40 restores the imbalance between T-helper 17 (Th17)/regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and the spleen. Tacrolimus-induced gut dysbiosis, that is, it decreases microbial diversity, increases the Firmicutes/Bacteroidetes (F/B) ratio and decreases acetate- and butyrate-producing bacteria, and these effects are prevented by LC40. Fecal microbiota transplantation (FMT) from LC40-treated mice to control mice prevents the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. CONCLUSION LC40 treatment prevents hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects are associated with a reduction in vascular oxidative stress, mainly through NOX2 downregulation and prevention of eNOS uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Natalia Chueca-Porcuna
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A., 18004, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, 28040, Spain.,Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007, Madrid, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| |
Collapse
|
15
|
The Role of Nrf2 Signaling in PPAR β/ δ-Mediated Vascular Protection against Hyperglycemia-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5852706. [PMID: 30046379 PMCID: PMC6036815 DOI: 10.1155/2018/5852706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Hyperglycemia induces oxidative stress and plays a substantial role in the progression of vascular diseases. Here, we demonstrated the potentiality of peroxisome proliferator-activated receptor (PPAR)β/δ activation in attenuating high glucose-induced oxidative stress in endothelial cells and diabetic rats, pointing to the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2). HUVECs exposed to high glucose showed increased levels of reactive oxygen species (ROS) and upregulated NOX-2, NOX-4, Nrf2, and NQO-1 effects that were significantly reversed by the PPARβ/δ agonists GW0742 and L165041. Both PPARβ/δ agonists, in a concentration-dependent manner, induced transcriptional and protein upregulation of heme oxygenase-1 (HO-1) under low- and high-glucose conditions. All effects of PPARβ/δ agonists were reversed by either pharmacological inhibition or siRNA-based downregulation of PPARβ/δ. These in vitro findings were confirmed in diabetic rats treated with GW0742. In conclusion, PPARβ/δ activation confers vascular protection against hyperglycemia-induced oxidative stress by suppressing NOX-2 and NOX-4 expression plus a direct induction of HO-1; with the subsequent downregulation of the Nrf2 pathway. Thus, PPARβ/δ activation could be of interest to prevent the progression of diabetic vascular complications.
Collapse
|
16
|
Toral M, Jiménez R, Romero M, Robles-Vera I, Sánchez M, Salaices M, Sabio JM, Duarte J. Role of endoplasmic reticulum stress in the protective effects of PPARβ/δ activation on endothelial dysfunction induced by plasma from patients with lupus. Arthritis Res Ther 2017; 19:268. [PMID: 29208022 PMCID: PMC5717848 DOI: 10.1186/s13075-017-1478-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Background We tested whether GW0742, a peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) agonist, improves endothelial dysfunction induced by plasma from patients with systemic lupus erythematosus (SLE) involving the inhibition of endoplasmic reticulum (ER) stress. Methods A total of 12 non-pregnant women with lupus and 5 non-pregnant healthy women (controls) participated in the study. Cytokines and double-stranded DNA autoantibodies (anti-dsDNA) were tested in plasma samples. Endothelial cells, isolated from human umbilical cord veins (HUVECs), were used to measure nitric oxide (NO), intracellular reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and ER stress markers. Results Interferon-γ, interleukin-6, and interleukin-12 levels were significantly increased in plasma from patients with SLE with active nephritis (AN), as compared to both patients with SLE with inactive nephritis (IN) and the control group. The NO production stimulated by both the calcium ionophore A23187 and insulin was significantly reduced in HUVECs incubated with plasma from patients with AN-SLE as compared with the control group. Plasma from patients with IN-SLE did not modify A23187-stimulated NO production. Increased ROS production and NADPH oxidase activity were found in HUVECs incubated with plasma from patients with AN-SLE, which were suppressed by the ER stress inhibitor 4-PBA and the NADPH oxidase inhibitors, apocynin and VAS2870. GW0742 incubation restored the impaired NO production, the increased ROS levels, and the increased ER stress markers induced by plasma from patients with AN-SLE. These protective effects were abolished by the PPARβ/δ antagonist GSK0660 and by silencing PPARβ/δ. Conclusions PPARβ/δ activation may be an important target to control endothelial dysfunction in patients with SLE.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Mercedes Salaices
- CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain.,Department of Pharmacology, School of Medicine, Autonomous University of Madrid, Research Institute Universitary Hospital La Paz (IdiPAZ), 28029, Madrid, Spain
| | - José Mario Sabio
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,Department of Internal Medicine, Virgen de las Nieves Universitary Hospital, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain. .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain. .,CIBER of cardiovascular diseases (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Maccallini C, Mollica A, Amoroso R. The Positive Regulation of eNOS Signaling by PPAR Agonists in Cardiovascular Diseases. Am J Cardiovasc Drugs 2017; 17:273-281. [PMID: 28315197 DOI: 10.1007/s40256-017-0220-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing evidence shows that activation of peroxisome proliferator-activated receptors (PPARs) plays an essential role in the regulation of vascular endothelial function through a range of mechanisms, including non-metabolic. Among these, the PPAR-mediated activation of endothelial nitric oxide synthase (eNOS) appears to be of considerable importance. The regulated and sustained bioavailability of nitric oxide (NO) in the endothelium is essential to avoid the development of cardiovascular diseases such as hypertension or atherosclerosis. Therefore, a deeper understanding of the different effects of specific PPAR ligands on NO bioavailability could be useful in the development of novel or multi-targeted PPAR agonists. In this review, we report the most meaningful and up-to-date in vitro and in vivo studies of the regulation of NO production performed by different PPAR agonists. Insights into the molecular mechanisms of PPAR-mediated eNOS activation are also provided. Although findings from animal studies in which the activation of PPARα, PPARβ/δ, or PPARγ have provided clear vasoprotective effects have been promising, several benefits from PPAR agonists are offset by unwanted outcomes. Therefore, new insights could be useful in the development of tissue-targeted PPAR agonists with more tolerable side effects to improve treatment options for cardiovascular diseases.
Collapse
|
18
|
Mahmoud AM, Wilkinson FL, McCarthy EM, Moreno-Martinez D, Langford-Smith A, Romero M, Duarte J, Alexander MY. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J 2017; 31:4636-4648. [PMID: 28687612 PMCID: PMC5714503 DOI: 10.1096/fj.201601244rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Fiona L Wilkinson
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eoghan M McCarthy
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Musculoskeletal Biomedical Research Unit, National Institute for Health Research Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Daniel Moreno-Martinez
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alexander Langford-Smith
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - M Yvonne Alexander
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; .,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
19
|
Zhang Z, Jiang M, Xie X, Yang H, Wang X, Xiao L, Wang N. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Sci Rep 2017; 7:40237. [PMID: 28067284 PMCID: PMC5220361 DOI: 10.1038/srep40237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway.
Collapse
Affiliation(s)
- Zihui Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Manli Jiang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinya Xie
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haixia Yang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinfeng Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nanping Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China.,The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
20
|
A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim Biophys Acta Gen Subj 2017; 1861:3311-3322. [DOI: 10.1016/j.bbagen.2016.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
21
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
22
|
Vascular smooth muscle cell dysfunction in diabetes: nuclear receptors channel to relaxation. Clin Sci (Lond) 2016; 130:1837-9. [DOI: 10.1042/cs20160518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Endothelial dysfunction and impaired vascular relaxation represent a common cause of microvascular disease in patients with diabetes. Although multiple mechanisms underlying altered endothelial cell function in diabetes have been described, there is currently no specific and approved pharmacological treatment. In this edition of Clinical Science, Morales-Cano et al. characterize voltage-dependent K+ (Kv) channels as genes regulated by pharmacological activation of peroxisome proliferator-activated receptor-b/d (PPARb/d). Diabetes altered Kv channel function leading to impaired coronary artery relaxation, which was prevented by pharmacological activation of PPARb/d. These studies highlight an important mechanism of vascular dysfunction in diabetes and point to a potential approach for therapy, particularly considering that PPARb/d ligands have been developed and tested in small clinical trials.
Collapse
|
23
|
Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:231-240. [PMID: 27260409 DOI: 10.1016/j.jep.2016.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer, Araliaceae) has been used as a traditional medicine for thousands of years for the treatment of a wide variety of diseases, including diabetes. Processed ginseng named Black ginseng exhibits more potent biological activities than white and red ginseng. The aim of this study was to investigate the effects of black ginseng extract (GBG05-FF) on hyperglycemia and glucose tolerance in streptozotocin (STZ)-induced diabetic mice. MATERIALS AND METHODS Black ginseng was produced by a repeated steaming and drying process, subsequent extraction with 70% ethanol, filtration, and lyophilization. The effect of GBG05-FF on glucose uptake and related protein expression and phosphorylation were determined in C2C12 cells. Furthermore, we evaluated the anti-diabetic effects of GBG05-FF in STZ-induced diabetic mice. RESULTS GBG05-FF significantly (p<0.05) increased glucose uptake in C2C12 myotubes via AMPK, Sirt1 and PI3-K pathway. In addition, GBG05-FF improved the fasting blood glucose levels and glucose tolerance in STZ-induced diabetic mice. GBG05-FF decreased blood parameters such as glycated hemoglobin, triglyceride and total cholesterol. Quantitative RT-PCR assay revealed that in the STZ-induced diabetic mice treated with GBG05-FF, the expression of hepatic genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase)), glycogenolysis (liver glycogen phosphorylase (LGP)) and glycogenesis (glycogen synthase (GS)) was suppressed, while the expression of the genes involved in glucose uptake (glucose transporter (GLUT) 1, GLUT4) and β-oxidation (acyl-CoA oxidase (ACO), carnitine palmitoyl transferase 1a (CPT1a), mitochondrial medium chain acyl-CoA dehydrogenase (MCAD)) in muscle were increased. GBG05-FF delayed diabetes-associated muscle atrophy by activating mTOR. The major bioactive compounds including ginsenoside Rg1, Rg3(S), Rg3(R), Rg5, Rk1 and Rh4 were evaluated for glucose uptake effect in C2C12 myotubes; the data indicated that Rh4 significantly (p<0.05) increased glucose uptake. CONCLUSION Collectively, the results suggested that GBG05-FF is a potentially useful agent for treatment of diabetes by increasing glucose uptake.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Glycated Hemoglobin/metabolism
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Liver/drug effects
- Liver/enzymology
- Male
- Mice, Inbred ICR
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Panax/chemistry
- Panax/classification
- Phosphorylation
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Signal Transduction/drug effects
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Mi-Yae Shon
- International Ginseng and Herb Research Institute, Geumsan, 312-804, Republic of Korea
| | - Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Do-Yeon Kim
- International Ginseng and Herb Research Institute, Geumsan, 312-804, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| |
Collapse
|
24
|
Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond) 2016; 130:1823-36. [PMID: 27413020 DOI: 10.1042/cs20160141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.
Collapse
|
25
|
Toral M, Romero M, Jiménez R, Robles-Vera I, Tamargo J, Martínez MC, Pérez-Vizcaíno F, Duarte J. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110-111:25-36. [DOI: 10.1016/j.bcp.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
|
26
|
Vázquez-Carrera M. Unraveling the Effects of PPARβ/δ on Insulin Resistance and Cardiovascular Disease. Trends Endocrinol Metab 2016; 27:319-334. [PMID: 27005447 DOI: 10.1016/j.tem.2016.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
Abstract
Insulin resistance precedes dyslipidemia and type 2 diabetes mellitus (T2DM) development. Preclinical evidence suggests that peroxisome proliferator-activated receptor (PPAR) β/δ activators may prevent and treat obesity-induced insulin resistance and T2DM, while clinical trials highlight their potential utility in dyslipidemia. This review summarizes recent mechanistic insights into the antidiabetic effects of PPARβ/δ activators, including their anti-inflammatory actions, their ability to inhibit endoplasmic reticulum (ER) stress and hepatic lipogenesis, and to improve atherogenesis and insulin sensitivity, as well as their capacity to activate pathways that are also stimulated by exercise. Findings from clinical trials are also examined. Dissecting the effects of PPARβ/δ ligands on insulin sensitivity and atherogenesis may provide a basis for the development of therapies for the prevention and treatment of T2DM and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
27
|
Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 2016; 33:1831-44. [PMID: 26147382 DOI: 10.1097/hjh.0000000000000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Endothelial dysfunction plays a key role in obesity-induced risk of cardiovascular disease. The aim of the present study was to analyze the effect of chronic peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW0742 treatment on endothelial function in obese mice fed a high-fat diet (HFD). METHODS AND RESULTS Five-week-old male mice were allocated to one of the following groups: control, control-treated (GW0742, 3 mg/kg per day, by oral gavage), HFD, HFD + GW0742, HFD + GSK0660 (1 mg/kg/day, intraperitoneal) or HFD-GW0742-GSK0660 and followed for 11 or 13 weeks. GW0742 administration to mice fed HFD prevented the gain of body weight, heart and kidney hypertrophy, and fat accumulation. The increase in plasma levels of fasting glucose, glucose tolerance test, homeostatic model assessment of insulin resistance, and triglyceride found in the HFD group was suppressed by GW0742. This agonist increased plasma HDL in HFD-fed mice and restored the levels of tumor necrosis factor-α and adiponectin in fat. GW0742 prevented the impaired nitric oxide-dependent vasodilatation induced by acetylcholine in aortic rings from mice fed HFD. Moreover, GW0742 increased both aortic Akt and endothelial nitric oxide synthase phosphorylation, and inhibited the increase in caveolin-1/endothelial nitric oxide synthase interaction, ethidium fluorescence, NOX-1, Toll-like receptor 4, tumor necrosis factor-α, and interleukin-6 expression, and IκBα phosphorylation found in aortae from the HFD group. GSK0660 prevented all changes induced by GW0742. CONCLUSION PPARβ/δ activation prevents obesity and exerts protective effects on hypertension and on the early manifestations of atherosclerosis, that is, endothelial dysfunction and the vascular pro-oxidant and pro-inflammatory status, in HFD-fed mice.
Collapse
|
28
|
Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clin Sci (Lond) 2015; 129:823-37. [PMID: 26253087 DOI: 10.1042/cs20150111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition.
Collapse
|
29
|
Byagowi S, Naserpour Farivar T, Najafipour R, Sahmani M, Darabi M, Fayezi S, Mirshahvaladi S, Darabi M. Effect of PPARδ agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. Can J Diabetes 2015; 39:123-7. [PMID: 25575964 DOI: 10.1016/j.jcjd.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The stearoyl-CoA desaturase 1 (SCD1), also known as Δ9-desaturase, is a regulatory enzyme in the cellular lipid modification process that has been linked to pancreatic cancer and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and ERK1/2- and EGF receptor (EGFR)-dependent pathways on the expression of SCD1 in human pancreatic carcinoma cell line PANC-1. METHODS PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used MEK inhibitor PD98059, EGFR-selective inhibitor AG1478, and PPARδ agonist GW0742. Changes in mRNA, protein expression and activity index of SCD1 were then determined using real-time reverse transcription polymerase chain reaction, Western blot and gas liquid chromatography, respectively. RESULTS The activity index and expression of SCD1 (p<0.01) decreased following treatment with PPARδ agonist at both mRNA and protein levels, whereas significant increases were observed after treatment with MEK or EGFR inhibitor. It was also found that the activity index of SCD1 were lower (p<0.01) in the combined treatment compared to the incubation with either inhibitor alone. CONCLUSIONS PPARδ and MEK/ERK1/2- and EGFR-dependent pathways affect the expression and activity of SCD1 in pancreatic cancer cells. Furthermore, the aforementioned kinase signalling pathways were involved in an inhibitory effect on the expression and activity of SCD1 in these cells, possibly via PPARδ activation.
Collapse
Affiliation(s)
- Shima Byagowi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Naserpour Farivar
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Students Research Committee, Faculty of Medicine, Department of Anatomy and Cell Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Biotechnology, Cellular and Molecular and Burns Research Centers, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Darabi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|