1
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
2
|
Kikuchi Y, Irifune M, Yoshinaka T, Oue K, Takahashi T, Oda A, Kamio H, Imamura S, Sasaki U, Imado E, Ago Y, Okada Y. A Behavioral and Electroencephalographic Study of Anesthetic State Induced by MK-801 Combined with Haloperidol, Ketamine and Riluzole in Mice. Anesth Analg 2024; 139:1064-1074. [PMID: 38377038 PMCID: PMC11465758 DOI: 10.1213/ane.0000000000006900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Ketamine is an intravenous anesthetic that acts as a channel blocker on the N-methyl- d -aspartate (NMDA) receptor, a glutamate receptor subtype. MK-801 is the most potent compound among noncompetitive NMDA receptor antagonists. Ketamine induces loss of the righting reflex (LORR) in rodents, which is one of the indicators of unconsciousness, whereas high doses of MK-801 produce ataxia, but not LORR. In contrast, we previously reported that MK-801 combined with a low dose of the dopamine receptor antagonist haloperidol-induced LORR in mice. To assess a neurophysiologically distinct brain state and demonstrate unconsciousness, electroencephalograms (EEG) need to be examined together with LORR. Therefore, we herein investigated EEG changes after the systemic administration of MK-801 alone or in combination with haloperidol, and compared them with those induced by ketamine, the glutamate release inhibitor riluzole, and the γ-aminobutyric acid type A receptor agonist propofol. METHODS All drugs were intraperitoneally administered to adult male ddY mice (n = 168). General anesthesia was evaluated based on the righting reflex test. Animals who exhibited no righting for more than 30 seconds were considered to have LORR. In a separate group of mice, EEG of the primary visual cortex was recorded before and after the administration of MK-801 (3.0 mg/kg) alone or in combination with haloperidol (0.2 mg/kg), ketamine (150 mg/kg), riluzole (30 mg/kg), or propofol (240 mg/kg). The waveforms recorded were analyzed using EEG power spectra and spectrograms. RESULTS The high dose of MK-801 alone did not induce LORR, whereas MK-801 combined with haloperidol produced LORR in a dose-dependent manner. Ketamine, riluzole, and propofol also dose-dependently induced LORR. In the EEG study, MK-801 alone induced a significant increase in δ power, while MK-801 plus haloperidol exerted similar effects on not only δ, but also θ and α power during LORR, suggesting that increases in δ, θ, and α power were necessary for LORR. The results obtained on MK-801 plus haloperidol were similar to those on ketamine in the behavioral and EEG studies, except for an increase in γ power by ketamine during LORR. Propofol significantly increased δ, θ, α, and β power during LORR. However, the EEG results obtained using riluzole, which produced a unique pattern of lower amplitude activity spanning most frequencies, markedly differed from those with the other drugs. CONCLUSIONS This study revealed differences in EEG changes induced by various sedatives. The results obtained on MK-801 alone and MK-801 plus haloperidol suggest the importance of dopamine transmission in maintaining the righting reflex.
Collapse
Affiliation(s)
- Yuka Kikuchi
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taiga Yoshinaka
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Kana Oue
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Tamayo Takahashi
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Aya Oda
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Hisanobu Kamio
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Serika Imamura
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Utaka Sasaki
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Eiji Imado
- From the Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiyuki Okada
- Department of Special Care Dentistry, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
3
|
Jungwirth J, Bavato F, Quednow BB. [Psychedelic and dissociative agents in psychiatry: challenges in the treatment]. DER NERVENARZT 2024; 95:803-810. [PMID: 39196383 PMCID: PMC11374839 DOI: 10.1007/s00115-024-01727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
With the discovery of the antidepressive effects of ketamine and the increasing withdrawal of the pharmaceutical industry from the development of new psychotropic drugs, the psychiatric research into the clinical application of hallucinogens in psychiatry has literally blossomed in the last two decades. Promising results for various treatment approaches with psychedelic agents, such lysergic acid diethylamide (LSD) and psilocybin, and dissociative agents, such as ketamine and esketamine, have raised great hopes among researchers, clinicians and patients in recent years, so that there was already talk of a new era in psychiatry. As one of the first of these substances, in December 2019 intranasal esketamine was approved in the USA and the EU for the treatment of treatment-resistant depression and Switzerland followed in 2020. Recently, psilocybin was approved in Australia, Canada and Switzerland for compassionate use in exceptional cases for the treatment of depression, while large approval studies with various psychedelic agents are currently ongoing worldwide. The medical application of psychedelic agents and ketamine/esketamine is considered to be safe; however, as with all new forms of treatment it is of crucial importance that, in addition to the hopes, the specific challenges of these new treatment approaches must also be carefully considered and assessed. Excessive expectations and an insufficient risk-benefit estimation are detrimental to the patients and the reputation of the treating physician. Although a possible paradigm shift in the care of mental health is already being discussed, this review article consciously concentrates on the possible risks of treatment and the methodological weaknesses of the studies carried out so far.
Collapse
Affiliation(s)
- Johannes Jungwirth
- AG Neurophänomenologie des Bewusstseins, Erwachsenenpsychiatrie und Psychotherapie, Psychiatrische Universitätsklinik Zürich, Universität Zürich, Zürich, Schweiz
| | - Francesco Bavato
- AG Experimentelle Pharmakopsychologie und psychologische Suchtforschung, Erwachsenenpsychiatrie und Psychotherapie, Psychiatrische Universitätsklinik Zürich, Universität Zürich, Zürich, Schweiz
| | - Boris B Quednow
- AG Experimentelle Pharmakopsychologie und psychologische Suchtforschung, Erwachsenenpsychiatrie und Psychotherapie, Psychiatrische Universitätsklinik Zürich, Universität Zürich, Zürich, Schweiz.
| |
Collapse
|
4
|
Schindler EAD. Psychotropic Drugs Reemerging as Headache Medicines. CNS Drugs 2024; 38:661-670. [PMID: 39037675 DOI: 10.1007/s40263-024-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Scientific and public attention on the therapeutic effects of psychedelics and other psychoactive compounds in headache disorders has recently grown. The use and reported therapeutic effects of such treatments have long been reported, though formal clinical trials are only recently taking place. When considering how these substances might be further studied and eventually applied, it is important to consider the specific headache disorder, the particular drug, and the mode of use. No singular protocol will be applicable across all headache disorders and drugs. In this leading article, the nuance required to consider the value of classic psychedelics, ketamine, and cannabinoids as headache medicines is presented.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Neurology Service, VA Connecticut Healthcare System, MS 127, 950 Campbell Avenue, West Haven, CT, 06516, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Juliani PZ, Rodrigues T, Bressan GN, Camponogara C, Oliveira SM, Brucker N, Fachinetto R. Effects of association between resveratrol and ketamine on behavioral and biochemical analysis in mice. J Neural Transm (Vienna) 2024; 131:971-986. [PMID: 38874765 DOI: 10.1007/s00702-024-02793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phenol commonly found in grapes and wine, has been associated as protective in experimental models involving alterations in different neurotransmitter systems. However, studies are reporting that resveratrol could have adverse effects. This study evaluated if the association of a low dose of ketamine and resveratrol could induce behavioral manifestations associated with biochemical alterations. Moreover, the effects of treatment with resveratrol and/or ketamine on monoamine oxidase (MAO) activity, oxidative stress markers, and IL-6 levels in the brain were also investigated. Male Swiss mice received a low dose of ketamine (20 mg/kg) for 14 consecutive days, and resveratrol (10, 30, or 100 mg/kg) from day 8 up to day 14 of the experimental period, intraperitoneally. Locomotor, stereotyped behavior, Y-maze, novel recognition object test (NORT), and social interaction were quantified as well as ex vivo analysis of MAO activity, IL-6 levels, and oxidative stress markers (TBARS and total thiol levels) in brain tissues. Ketamine per se reduced the number of bouts of stereotyped behavior on day 8 of the experimental period. Resveratrol per se reduced the locomotor and exploratory activity in the open field, the time of exploration of new objects in the NORT, MAO-A activity in the striatum and increased the IL-6 levels in the cortex. These effects were attenuated when the mice were co-treated with ketamine and resveratrol. There was a decrease in MAO-A activity in the cortex of mice treated with ketamine + resveratrol 100 mg/kg. No significant alterations were found in oxidative stress markers. Resveratrol does not appear to cause summative effects with ketamine on behavioral alterations. However, the effect of resveratrol per se, mainly on locomotor and exploratory activity, should be better investigated.
Collapse
Affiliation(s)
- Patrícia Zorzi Juliani
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Camila Camponogara
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Natália Brucker
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Mion G, Himmelseher S. Esketamine: Less Drowsiness, More Analgesia. Anesth Analg 2024; 139:78-91. [PMID: 38295061 DOI: 10.1213/ane.0000000000006851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Racemic ketamine is a 1:1 mixture of 2 enantiomers that turn light in opposite direction: Dextrorotatory esketamine is approximately 4 times more affine for the N-methyl-D-aspartate (NMDA) receptor than levorotatory arketamine, which may explain why esketamine is about twice as potent as an analgesic and anesthetic as the racemate. Esketamine has attracted renewed interest in view of the opioid crisis, racemic ketamine's abuse, and esketamine's approval for expanded use. We evaluated the anesthesia literature concerning mental, cardiovascular, cerebral, and antinociceptive effects of esketamine published in English between 1980 and 2022. The review shows that esketamine and racemic ketamine are not "the same" at clinically equivalent analgesic and anesthetic dose: Psychomimetic effects seem to be essentially related to NMDA receptor blockade and esketamine is not devoid of unwanted mental impact. However, it probably involves less cholinergic inhibition. Cognitive disturbances during arousal, awakening, and recovery from the drug are less, and less pronounced with esketamine. The drug allows for an approximately 50% dose reduction in anesthesia and analgesia which goes along with a higher clearance and shorter recovery time as compared to racemic ketamine. In comparison of esketamine with placebo, esketamine shows cardiocirculatory stabilizing and neuroprotective effects which can be seen in anesthesia induction, cardiac surgery, and analgesia and sedation in brain injury. Evidence of esketamine's antinociceptive efficacy is inconsistent, although a recent meta-analysis reports improved pain relief after surgery in a study with short observation time. To better define esketamine's place, direct head-to-head comparison with the racemate at equi-analgesic/anesthetic dose is warranted.
Collapse
Affiliation(s)
- Georges Mion
- From the Department of Anesthesia, Intensive Care and Perioperative Medicine, GHU AP-HP Centre, Université Paris - Cité, Cochin Hospital, Paris, France
| | - Sabine Himmelseher
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
7
|
Pistis M. The Evolving Challenge of New Psychoactive Substances: Understanding the Risks and Behavioral Effects of Novel Analogs of Dissociative Anesthetics. J Pharmacol Exp Ther 2024; 390:11-13. [PMID: 38906564 DOI: 10.1124/jpet.124.002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 06/23/2024] Open
Affiliation(s)
- Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy; and Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
8
|
Magny R, Mégarbane B, Chevillard L, Roulland E, Bardèche-Trystram B, Dumestre-Toulet V, Labat L, Houzé P. A combined toxicokinetic and metabolic approach to investigate deschloro-N-ethylketamine exposure in a multidrug user. J Pharm Biomed Anal 2024; 243:116086. [PMID: 38518457 DOI: 10.1016/j.jpba.2024.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
The use of new psychoactive substances derived from ketamine is rarely reported in France. A chronic GHB, 3-MMC, and methoxetamine consumer presented a loss of consciousness in a chemsex context and was referred to the intensive care unit with a rapid and favorable outcome. To investigate the chemicals responsible for the intoxication, a comprehensive analysis was conducted on the ten plasma samples collected over a 29.5-hour period, urine obtained upon admission, a 2-cm hair strand sample, and a seized crystal. These analyses were performed using liquid chromatography hyphenated to high resolution tandem mass spectrometry operating in targeted and untargeted modes. Additionally, analyses using gas chromatography coupled to mass spectrometry and nuclear magnetic resonance were conducted to probe the composition of the seized crystal. The molecular network-based approach was employed for data processing in non-targeted analyses. It allowed to confirm a multidrug exposure encompassing GHB, methyl-(aminopropyl)benzofuran (MAPB), (aminopropyl)benzofuran (APB), methylmethcathinone, chloromethcathinone, and a new psychoactive substance belonging to the arylcyclohexylamine family namely deschloro-N-ethyl-ketamine (O-PCE). Molecular network analysis facilitated the annotation of 27 O-PCE metabolites, including phase II compounds not previously reported. Plasma kinetics of O-PCE allowed the estimation of the elimination half-life of ∼5 hours. Kinetics of O-PCE metabolites was additionally characterized, possibly useful as surrogate biomarkers of consumption. We also observed marked alterations in lipid metabolism related to poly consumption of drugs. In conclusion, this case report provides a comprehensive analysis of exposure to O-PCE in a multidrug user including kinetic and metabolism data in human.
Collapse
Affiliation(s)
- Romain Magny
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France
| | - Bruno Mégarbane
- INSERM UMRS-1144, Université Paris Cité, Paris 75006, France; Réanimation Médicale et Toxicologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France.
| | | | | | - Benoit Bardèche-Trystram
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France
| | | | - Laurence Labat
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France
| | - Pascal Houzé
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France.
| |
Collapse
|
9
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Teymouri A, Nasoori H, Fakheri M, Nasiri A. Features of biliary tract diseases in ketamine abusers: a systematic review of case reports. J Med Case Rep 2024; 18:84. [PMID: 38431685 PMCID: PMC10909254 DOI: 10.1186/s13256-024-04421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND AND AIMS Anesthesiologists prefer ketamine for certain surgeries due to its effectiveness as a non-competitive inhibitor of the N-methyl-D-aspartate receptor in the brain. Recently, this agent has also shown promise as an antidepressant. However, ketamine can cause hallucinogenic effects and is sometimes abused as an illicit drug. Ketamine abuse has been associated with liver and bile duct complications. This systematic study aims to better understand cholangiopathy in ketamine abusers by reviewing case reports. METHODS AND MATERIAL In this systematic review, a comprehensive literature search was conducted with the terms "biliary tract diseases" and "ketamine". Case reports and case series of adult patients with documented ketamine abuse and reported cholangiopathy or biliary tract disease were included. We extracted the data of relevant information and the results were reported through narrative synthesis and descriptive statistics. RESULTS A total of 48 studies were initially identified, and 11 studies were finally included in the review. The mean age of the patients was 25.88 years. Of the 17 patients, 64.7% were men. Symptoms often included abdominal pain, nausea, and vomiting. Most patients were discharged with improved symptoms and liver function. Common bile duct dilation and other findings were observed in imaging results and other diagnostic studies. CONCLUSION This review highlights the diverse presentations and diagnostic modalities used in ketamine-induced cholangiography. These patients tend to be young men with deranged liver function tests and abdominal pain, which should be taken into consideration. These patients often require a multidisciplinary approach in their management.
Collapse
Affiliation(s)
- Alireza Teymouri
- Department of Surgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Nasoori
- Faculty of Pharmacy, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Maryamsadat Fakheri
- Department of Physical Medicine and Rehabilitation, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 71348-14336, Iran
| | - Aref Nasiri
- Department of Physical Medicine and Rehabilitation, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, 71348-14336, Iran.
| |
Collapse
|
11
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
12
|
Adraoui FW, Hettak K, Viardot G, Alix M, Guiffard S, Meot B, L’Hostis P, Maurin A, Delpy E, Drieu La Rochelle C, Carvalho K. Differential Effects of Aripiprazole on Electroencephalography-Recorded Gamma-Band Auditory Steady-State Response, Spontaneous Gamma Oscillations and Behavior in a Schizophrenia Rat Model. Int J Mol Sci 2024; 25:1035. [PMID: 38256109 PMCID: PMC10815955 DOI: 10.3390/ijms25021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The available antipsychotics for schizophrenia (SZ) only reduce positive symptoms and do not significantly modify SZ neurobiology. This has raised the question of the robustness and translational value of methods employed during drug development. Electroencephalography (EEG)-based measures like evoked and spontaneous gamma oscillations are considered robust translational biomarkers as they can be recorded in both patients and animal models to probe a key mechanism underlying all SZ symptoms: the excitation/inhibition imbalance mediated by N-methyl-D-aspartate receptor (NMDAr) hypofunction. Understanding the effects of commercialized atypical antipsychotics on such measures could therefore contribute to developing better therapies for SZ. Yet, the effects of such drugs on these EEG readouts are unknown. Here, we studied the effect of the atypical antipsychotic aripiprazole on the gamma-band auditory steady-state response (ASSR), spontaneous gamma oscillations and behavioral features in a SZ rat model induced by the NMDAr antagonist MK-801. Interestingly, we found that aripiprazole could not normalize MK-801-induced abnormalities in ASSR, spontaneous gamma oscillations or social interaction while it still improved MK-801-induced hyperactivity. Suggesting that aripiprazole is unable to normalize electrophysiological features underlying SZ symptoms, our results might explain aripiprazole's inefficacy towards the social interaction deficit in our model but also its limited efficacy against social symptoms in patients.
Collapse
Affiliation(s)
- Florian W. Adraoui
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Kenza Hettak
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Geoffrey Viardot
- Biotrial, Neuroscience Department, 6 Avenue de Bruxelles, 68350 Brunstatt-Didenheim, France
| | - Magali Alix
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Sabrina Guiffard
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Benoît Meot
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Philippe L’Hostis
- Biotrial, Neuroscience Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Anne Maurin
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Eric Delpy
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | | | - Kevin Carvalho
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| |
Collapse
|
13
|
Xu L, Liu X, Song Z, Xiang P, Hang T, Yan H. In vitro and in vivo metabolism of 3-Methoxyeticyclidine in human liver microsomes, a zebrafish model, and two human urine samples based on liquid chromatography-high-resolution mass spectrometry. Drug Test Anal 2024; 16:30-37. [PMID: 37125436 DOI: 10.1002/dta.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinze Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixuan Song
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
14
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Janus A, Lustyk K, Pytka K. MK-801 and cognitive functions: Investigating the behavioral effects of a non-competitive NMDA receptor antagonist. Psychopharmacology (Berl) 2023; 240:2435-2457. [PMID: 37725119 PMCID: PMC10640442 DOI: 10.1007/s00213-023-06454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
RATIONALE MK-801 (dizocilpine) is a non-competitive NMDA receptor antagonist originally explored for anticonvulsant potential. Despite its original purpose, its amnestic properties led to the development of pivotal models of various cognitive impairments widely employed in research and greatly impacting scientific progress. MK-801 offers several advantages; however, it also presents drawbacks, including inducing dose-dependent hyperlocomotion or ambiguous effects on anxiety, which can impact the interpretation of behavioral research results. OBJECTIVES The present review attempts to summarize and discuss the effects of MK-801 on different types of memory and cognitive functions in animal studies. RESULTS A plethora of behavioral research suggests that MK-801 can detrimentally impact cognitive functions. The specific effect of this compound is influenced by variables including developmental stage, gender, species, strain, and, crucially, the administered dose. Notably, when considering the undesirable effects of MK-801, doses up to 0.1 mg/kg were found not to induce stereotypy or hyperlocomotion. CONCLUSION Dizocilpine continues to be of significant importance in preclinical research, facilitating the exploration of various procognitive therapeutic agents. However, given its potential undesirable effects, it is imperative to meticulously determine the appropriate dosages and conduct supplementary evaluations for any undesirable outcomes, which could complicate the interpretation of the findings.
Collapse
Affiliation(s)
- Anna Janus
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
16
|
Rodríguez-Vega A, Dutra-Tavares AC, Souza TP, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine Exposure in a Phencyclidine-Induced Mice Model of Schizophrenia: Sex-Selective Medial Prefrontal Cortex Protein Markers of the Combined Insults in Adolescent Mice. Int J Mol Sci 2023; 24:14634. [PMID: 37834084 PMCID: PMC10572990 DOI: 10.3390/ijms241914634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tobacco misuse as a comorbidity of schizophrenia is frequently established during adolescence. However, comorbidity markers are still missing. Here, the method of label-free proteomics was used to identify deregulated proteins in the medial prefrontal cortex (prelimbic and infralimbic) of male and female mice modelled to schizophrenia with a history of nicotine exposure during adolescence. Phencyclidine (PCP), used to model schizophrenia (SCHZ), was combined with an established model of nicotine minipump infusions (NIC). The combined insults led to worse outcomes than each insult separately when considering the absolute number of deregulated proteins and that of exclusively deregulated ones. Partially shared Reactome pathways between sexes and between PCP, NIC and PCPNIC groups indicate functional overlaps. Distinctively, proteins differentially expressed exclusively in PCPNIC mice reveal unique effects associated with the comorbidity model. Interactome maps of these proteins identified sex-selective subnetworks, within which some proteins stood out: for females, peptidyl-prolyl cis-trans isomerase (Fkbp1a) and heat shock 70 kDa protein 1B (Hspa1b), both components of the oxidative stress subnetwork, and gamma-enolase (Eno2), a component of the energy metabolism subnetwork; and for males, amphiphysin (Amph), a component of the synaptic transmission subnetwork. These are proposed to be further investigated and validated as markers of the combined insult during adolescence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
17
|
Zhou C, Tajima N. Structural insights into NMDA receptor pharmacology. Biochem Soc Trans 2023; 51:1713-1731. [PMID: 37431773 PMCID: PMC10586783 DOI: 10.1042/bst20230122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.
Collapse
Affiliation(s)
- Changping Zhou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Nami Tajima
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
18
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Singh M, Sapkota K, Sakimura K, Kano M, Cowell RM, Overstreet-Wadiche L, Hablitz JJ, Nakazawa K. Maturation of GABAergic Synaptic Transmission From Neocortical Parvalbumin Interneurons Involves N-methyl-D-aspartate Receptor Recruitment of Cav2.1 Channels. Neuroscience 2023; 513:38-53. [PMID: 36682446 DOI: 10.1016/j.neuroscience.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood. Paired patch-clamp recordings from murine cortical PV interneurons and pyramidal neurons revealed that genetic deletion of NMDAR subunit Grin1 in prospective PV interneurons before the second postnatal week impaired evoked- and synchronized-GABA release. Whereas intrinsic excitability and spiking characteristics were also disturbed by Grin1 deletion, neither restoring their excitability by K+ channel blockade nor increasing extracellular Ca2+ rescued the GABA release. GABA release was also insensitive to the Cav2.1 channel antagonist ω-agatoxin IVA. Heterozygous deletion of Cacna1a gene (encoding Cav2.1) in PV interneurons produced a similar GABA release phenotype as the Grin1 mutants. Treatment with the Cav2.1/2.2 channel agonist GV-58 augmented somatic Ca2+ currents and GABA release in Cacna1a-haploinsufficient PV interneurons, but failed to enhance GABA release in the Grin1-deleted PV interneurons. Taken together, our results suggest that Grin1 deletion in prospective PV interneurons impairs proper maturation of membrane excitability and Cav2.1-recruited evoked GABA release. This may increase synaptic excitatory/inhibitory ratio in principal neurons, contributing to the emergence of SCZ-like phenotypes.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Kiran Sapkota
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Rita M Cowell
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazu Nakazawa
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Huang TH, Lai MC, Chen YS, Huang CW. The Roles of Glutamate Receptors and Their Antagonists in Status Epilepticus, Refractory Status Epilepticus, and Super-Refractory Status Epilepticus. Biomedicines 2023; 11:biomedicines11030686. [PMID: 36979664 PMCID: PMC10045490 DOI: 10.3390/biomedicines11030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Status epilepticus (SE) is a neurological emergency with a high mortality rate. When compared to chronic epilepsy, it is distinguished by the durability of seizures and frequent resistance to benzodiazepine (BZD). The Receptor Trafficking Hypothesis, which suggests that the downregulation of γ-Aminobutyric acid type A (GABAA) receptors, and upregulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play major roles in the establishment of SE is the most widely accepted hypothesis underlying BZD resistance. NMDA and AMPA are ionotropic glutamate receptor families that have important excitatory roles in the central nervous system (CNS). They are both essential in maintaining the normal function of the brain and are involved in a variety of neuropsychiatric diseases, including epilepsy. Based on animal and human studies, antagonists of NMDA and AMPA receptors have a significant impact in ending SE; albeit most of them are not yet approved to be in clinically therapeutic guidelines, due to their psychomimetic adverse effects. Although there is still a dearth of randomized, prospective research, NMDA antagonists such as ketamine, magnesium sulfate, and the AMPA antagonist, perampanel, are regarded to be reasonable optional adjuvant therapies in controlling SE, refractory SE (RSE) or super-refractory SE (SRSE), though there are still a lack of randomized, prospective studies. This review seeks to summarize and update knowledge on the SE development hypothesis, as well as clinical trials using NMDA and AMPA antagonists in animal and human studies of SE investigations.
Collapse
Affiliation(s)
- Tzu-Hsin Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
- Zhengxin Neurology & Rehabilitation Center, Tainan 70459, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| |
Collapse
|
22
|
Bae HJ, Bae HJ, Kim JY, Park K, Yang X, Jung SY, Park SJ, Kim DH, Shin CY, Ryu JH. The effect of lansoprazole on MK-801-induced schizophrenia-like behaviors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110646. [PMID: 36191804 DOI: 10.1016/j.pnpbp.2022.110646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
Abstract
As a heterogeneous disorder, schizophrenia is known to be associated with neuroinflammation. A recent study showed that several cytokines are higher in the plasma and cerebrospinal fluid of schizophrenia patients. Lansoprazole, a proton pump inhibitor used for treating erosive esophagitis, has been reported to reduce INF-γ-induced neurotoxicity and decrease inflammatory cytokines including IL-1β, IL-6, and TNF-α. These findings persuaded us to examine whether lansoprazole ameliorates schizophrenia-like symptoms. The schizophrenia mouse model was induced by the acute administration of MK-801, an NMDA receptor antagonist. Sensorimotor gating, Barnes maze, and social novelty preference tests were conducted to evaluate schizophrenia-like behaviors. We found that lansoprazole (0.3, 1, or 3 mg/kg) ameliorated sensorimotor gating deficits, spatial learning, and social deficits caused by MK-801 treatment (0.2 mg/kg). The catalepsy test, balance beam test, and rotarod test were performed to reveal the adverse effects of lansoprazole on motor coordination. The behavioral results indicated that lansoprazole did not result in any motor function deficits. Moreover, lansoprazole decreased inflammatory cytokines including IL-6 and TNF-α only in the cortex, but not in the hippocampus. Collectively, these results suggest that lansoprazole could be a potential candidate for treating schizophrenia patients who suffer from sensorimotor gating deficits or social disability without any motor-related adverse effects.
Collapse
Affiliation(s)
- Hyo Jeoung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xingquan Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
23
|
Awasthi N, Yadav R, Kumar D. Revealing metabolic path of Ketamine catalyzed by CYP450 via quantum mechanical approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Psiuk D, Nowak EM, Dycha N, Łopuszańska U, Kurzepa J, Samardakiewicz M. Esketamine and Psilocybin—The Comparison of Two Mind-Altering Agents in Depression Treatment: Systematic Review. Int J Mol Sci 2022; 23:ijms231911450. [PMID: 36232748 PMCID: PMC9570062 DOI: 10.3390/ijms231911450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
This publication discusses two compounds belonging to the psychoactive substances group which are studied in the context of depression treatment—psilocybin and esketamine. The former is a naturally occurring psychedelic. The latter was invented in the laboratory exactly 60 years ago. Although the substances were controversial in the past, recent studies indicate the potential of those substances as novel antidepressant agents. The PubMed/MEDLINE database was used to identify articles for systematic review, using the following search terms: (depression) AND (psilocybin) OR (ketamine). From 617 items, only 12 articles were obtained in the final analyses. Three articles were devoted to psilocybin in depression treatment and nine to esketamine. In most studies, esketamine showed a significant reduction in both depressive symptoms and suicidal ideation shortly after intake and after a month of treatment compared to baseline and to standard-of-care antidepressant agents. Psilocybin’s antidepressive effects occurred one day after intake and after 6–7 weeks of treatment and were maintained for up to 6 or 8 months of follow-up. One study indicated that psilocybin’s effects are comparable with and may be superior to escitalopram treatment. Both esketamine and psilocybin demonstrated rapid and long-term effects in reducing depression symptoms and, after overcoming some limitations, may be considered as novel antidepressant agents in future.
Collapse
Affiliation(s)
- Dominika Psiuk
- Students Scientific Association at the Chair and Department of Psychology, Medical University of Lublin, 20-059 Lublin, Poland
- Students Scientific Association at the Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence: or
| | - Emilia Magdalena Nowak
- Students Scientific Association at the Chair and Department of Psychology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Natalia Dycha
- Students Scientific Association at the Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Urszula Łopuszańska
- Chair and Department of Psychology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
| | | |
Collapse
|
25
|
Inhibition of NMDA receptors through a membrane-to-channel path. Nat Commun 2022; 13:4114. [PMID: 35840593 PMCID: PMC9287434 DOI: 10.1038/s41467-022-31817-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer’s disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration (“membrane-to-channel inhibition” (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism. Wilcox et al. (2022) show that NMDA receptor channel blockers, some of which are clinically important drugs, can access their binding site via 2 routes: a well-known path from the extracellular solution, and another path through the plasma membrane.
Collapse
|
26
|
Al-Gailani L, Al-Kaleel A, Arslan G, Ayyıldız M, Ağar E. THE effect of general anesthetics on genetic absence epilepsy in WAG/Rij rats. Neurol Res 2022; 44:995-1005. [PMID: 35786420 DOI: 10.1080/01616412.2022.2095706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIM To establish safe and straightforward anesthesia used in experiments, we examined the effect of ketamine, ketamine/xylazine, urethane, chloral hydrate, pentobarbital, isoflurane, dexmedetomidine, and dexmedetomidine/ketamine on epileptiform activity in genetic absence epilepsy (WAG\Rij) rats. MATERIALS AND METHOD Sixty-three male WAG/Rij rats weighing (170-190 g) were used. Tripolar electrodes were inserted into the skull. After ECoG activities were recorded for each animal for 2 hours as controls, , the anesthetic substances were administered and the recording continued for another 2 hours. All the anesthetic substances were administered intraperitoneally except isoflurane, which was administered by inhalation.The PowerLab system was used for electrophysiological activity recording and analysis. RESULTS The administration of ketamine (90 mg/kg), ketamine/xylazine (90/10 mg/kg), urethane (1.25 g/kg), chloral hydrate (175 mg/kg), pentobarbital (50-90 mg/kg), isoflurane (induction 5%, maintaining 3-4%), dexmedetomidine (0.5-1 mg/kg), and dexmedetomidine/ketamine (50/90 mg/kg), significantly decreased the total number of SWD, the total number of spikes, and the SWD duration (p < 0,05). The mean duration of SWD was not affected in pentobarbital (50-90 mg/kg), isoflurane (induction 5%, maintaining 3-4%), dexmedetomidine (0.5-1 mg/kg), and Dexmedetomidine/ketamine (50/90 mg/kg) groups (p > 0.05). Time scale showed a significant decrease in the total number of SWD in the first 20 minutes (P < 0.001) for all groups except dexmedetomidine (0.5-1 mg/kg), and dexmedetomidine/ketamine (50/90 mg/kg) groups (p > 0.05). CONCLUSION The anesthetics we used significantly reduced the epileptiform activity immediately after the administration, except dexmedetomidine and dexmedetomidine/ketamine groups, so we recommend using dexmedetomidine and Dexmedetomidine/ketamine in electrophysiological studies accompanied by anesthetics.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Department of Physiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Erdal Ağar
- Faculty of Medicine, Giresun University, Giresun, Turkey
| |
Collapse
|
27
|
Le TT, Cordero IP, Jawad MY, Swainson J, Di Vincenzo JD, Jaberi S, Phan L, Lui LMW, Ho R, Rosenblat JD, McIntyre RS. The abuse liability of ketamine: A scoping review of preclinical and clinical studies. J Psychiatr Res 2022; 151:476-496. [PMID: 35623124 DOI: 10.1016/j.jpsychires.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
Abstract
While ketamine has been used clinically over the past decades, it has only been recently shown to be a promising therapy for treatment-resistant depression (TRD). However, ketamine and related dissociative agents may also be misused recreationally, creating significant concerns for abuse liability when prescribed for depression. Although the abuse potential of ketamine is widely recognized, there is limited evidence on the differential abuse liability of ketamine enantiomers, (S)-ketamine and (R)-ketamine. The current scoping review aims to summarize the extant literature on the abuse liability of (R,S)-ketamine and the enantiomers. A systematic search was conducted on the Embase, Medline, and APA PsycInfo databases from 1947 to July 29, 2021. Clinical and preclinical studies that assessed the abuse potential of (R,S)-ketamine, (S)-ketamine, and (R)-ketamine were screened and assessed for eligibility by two independent reviewers. A total of 65 eligible studies were identified; 55 were preclinical studies and 10 were clinical studies. Only 4 preclinical studies evaluated the abuse liability of ketamine enantiomers. Available preclinical evidence suggests that (R,S)-ketamine and (S)-ketamine have greater risk for abuse compared to (R)-ketamine. (R)-ketamine, at the antidepressant-relevant doses in rodents, appears to be safe with minimal liability for abuse. Although the abuse potential of (R,S)-ketamine is well-established in animals, limited clinical studies indicate that single or repeated ketamine administrations in professionally controlled settings did not result in misuse, dependence, diversion and/or gateway activity in patients with TRD. However, most clinical studies were retrospective and did not systematically evaluate the abuse liability of ketamine via validated psychological scales/questionnaires. Future randomized controlled trials are warranted to ascertain the abuse liability of racemic, (S)- and (R)-ketamine in TRD population, especially among patients with comorbid substance use disorders.
Collapse
Affiliation(s)
- Tuyen T Le
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabel Pazos Cordero
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Muhammad Youshay Jawad
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | | | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Saja Jaberi
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | - Lee Phan
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Moore TJ, Alami A, Alexander GC, Mattison DR. Safety and effectiveness of NMDA receptor antagonists for depression: A multidisciplinary review. Pharmacotherapy 2022; 42:567-579. [PMID: 35665948 PMCID: PMC9540857 DOI: 10.1002/phar.2707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022]
Abstract
Ketamine, an anesthetic available since 1970, and esketamine, its newer S-enantiomer, provide a novel approach for the treatment of depression and other psychiatric disorders. At subanesthetic doses, the two drugs, along with their older congener, phencyclidine (PCP), induce a transient, altered mental state by blocking the N-methyl-D-aspartate (NMDA) receptor for glutamate, the primary excitatory neurotransmitter in the mammalian central nervous system. This multidisciplinary review examines the pharmacology/direct effects on consciousness, effectiveness in depression and acute suicidality, and safety of these fast-acting NMDA antagonists. To capture the essence of 60 years of peer-reviewed literature, we used a semi-structured approach to the subtopics, each of which required a different search strategy. We review the evidence for the three primary reported benefits of the two clinical drugs when used for depression: success in difficult-to-treat patients, rapid onset of action within a day, and immediate effects on suicidality. Key safety issues include the evidence-and lack thereof-for the effects of repeatedly inducing this altered mental state, and whether an adequate safety margin exists to rule out the neurotoxic effects seen in animal studies. This review includes evidence from multiple sources that raise substantial questions about both safety and effectiveness of ketamine and esketamine for psychiatric disorders.
Collapse
Affiliation(s)
- Thomas J. Moore
- Center for Drug Safety and Effectiveness, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of EpidemiologyMilken Institute School of Public Health, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Abdallah Alami
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaOntarioCanada
- School of Mathematics and StatisticsCarleton UniversityOttawaOntarioCanada
| | - G. Caleb Alexander
- Center for Drug Safety and Effectiveness, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Donald R. Mattison
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaOntarioCanada
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
29
|
GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron 2022; 110:2438-2454.e8. [PMID: 35700736 PMCID: PMC9365314 DOI: 10.1016/j.neuron.2022.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs. In mice, GluN3A is expressed by SST-INs in the cortex and pyramidal neurons in the BLA GluN3A assembles as excitatory glycine GluN1/GluN3A receptors (eGlyRs) eGlyRs detect extracellular glycine levels and generate tonic excitatory currents eGlyRs tune the function of SST-INs in cortex and alter the formation of fear memories in BLA
Collapse
|
30
|
Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat Struct Mol Biol 2022; 29:507-518. [PMID: 35637422 PMCID: PMC10075384 DOI: 10.1038/s41594-022-00772-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 01/02/2023]
Abstract
Excitatory signaling mediated by N-methyl-D-aspartate receptor (NMDAR) is critical for brain development and function, as well as for neurological diseases and disorders. Channel blockers of NMDARs are of medical interest owing to their potential for treating depression, Alzheimer's disease, and epilepsy. However, precise mechanisms underlying binding and channel blockade have remained limited owing to challenges in obtaining high-resolution structures at the binding site within the transmembrane domains. Here, we monitor the binding of three clinically important channel blockers: phencyclidine, ketamine, and memantine in GluN1-2B NMDARs at local resolutions of 2.5-3.5 Å around the binding site using single-particle electron cryo-microscopy, molecular dynamics simulations, and electrophysiology. The channel blockers form different extents of interactions with the pore-lining residues, which control mostly off-speeds but not on-speeds. Our comparative analyses of the three unique NMDAR channel blockers provide a blueprint for developing therapeutic compounds with minimal side effects.
Collapse
|
31
|
Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia. Proc Natl Acad Sci U S A 2022; 119:e2122544119. [PMID: 35588456 PMCID: PMC9173783 DOI: 10.1073/pnas.2122544119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synaptogenesis and neural network remodeling are at their maximum during the perinatal period of human brain development. Perturbations of this highly sensitive stage might underlie the etiology of neurodevelopmental disorders. Subchronic neonatal administration of phencyclidine, a drug of abuse, has been used to model schizophrenia in rodents. In this model, we found specific long-term synaptic changes in Purkinje cells and transient gene expression changes in the cerebellum. While transient increased neuronal activity in the cerebellum, induced using chemogenetics, reproduces some phencyclidine-induced molecular changes, it is insufficient to reproduce the long-term synaptic effects. Our results show the complex mechanism of action of phencyclidine on the development of neuronal connectivity and further highlight the potential contribution of cerebellar defects in psychiatric diseases. Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.
Collapse
|
32
|
Subramanian S, Haroutounian S, Palanca BJA, Lenze EJ. Ketamine as a therapeutic agent for depression and pain: mechanisms and evidence. J Neurol Sci 2022; 434:120152. [PMID: 35092901 DOI: 10.1016/j.jns.2022.120152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Ketamine is an anesthetic drug which is now used to treat chronic pain conditions and psychiatric disorders, especially depression. It is an N-methyl-D-aspartate (NMDA) receptor antagonist with additional effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, opioid receptors, and monoaminergic receptors. This article focuses on ketamine's role in treating depression and pain, two commonly comorbid challenging conditions with potentially shared neurobiologic circuitry. Many clinical trials have utilized intravenous or intranasal ketamine for treating depression and pain. Intravenous ketamine is more bioavailable than intranasal ketamine and both are effective for acute depressive episodes. Intravenous ketamine is advantageous for post-operative analgesia and is associated with a reduction in total opioid requirements. Few studies have treated chronic pain or concurrent depression and pain with ketamine. Larger, randomized control trials are needed to examine the safety and efficacy of intravenous vs. intranasal ketamine, ideal target populations, and optimal dosing to treat both depression and pain.
Collapse
Affiliation(s)
- Subha Subramanian
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ben Julian A Palanca
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Machado RA, Patel J, Elsayed MS. The role of ketamine-induced beta activity in the treatment of refractory status epilepticus. Is the EEG useful to determine responder's rate? A retrospective study. Epilepsy Behav 2022; 127:108512. [PMID: 34974373 DOI: 10.1016/j.yebeh.2021.108512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Multiple investigations have been done to evaluate the possible effect of ketamine in the treatment of status epilepticus (SE). OBJECTIVES To evaluate the electrographic effect of ketamine on EEG, and its clinical utility following-up refractory and super refractory status epilepticus (SRSE). METHODS Retrospective review of 24 patients with SE. Clinical record and Video-electroencephalogram (video-EEG) of all included patients were reviewed. The patients' EEGs were then monitored for any immediate changes after administration of the first dose of ketamine as well as at the time patients would be predicted to have peak serum concentration of ketamine. Patients with cessation of electrographic seizures and no SE recurrence within the same admissions were categorized as "Responders". Statistical differences between qualitative variables were analyzed using chi square test. Differences between median were analyzed by Mann-Whitney U test. Difference between groups were considered significant when p < 0.05. RESULTS We identified 24 patients with SE. Twelve out of 24 (50%) had SRSE and 12 out of 24 (50%) had refractory status epilepticus (RSE). The appearance of superimposed beta activity after ketamine was initiated was associated with a higher responder rate (100% versus 33.3% in the responder group versus the non-responder group respectively). Notably, the presence of a burst suppression pattern had no significant association with one group compared to the other (41.6% versus 33.3%, in the responder group vs the non-responder group respectively). CONCLUSIONS Background superimposed beta activity induced by ketamine is an early and reliable EEG finding associated with status epilepticus termination.
Collapse
Affiliation(s)
| | - Janaki Patel
- Wayne State University/Detroit Medical Center, United States
| | - Mona S Elsayed
- Adult Comprehensive Epilepsy Program, Wayne State University/Detroit Medical Center, United States
| |
Collapse
|
35
|
Purcell K, Bianchi PW, Glenn D, Blakey B, Motov S. Ketamine: A Potential Adjunct for Severe Benzodiazepine Withdrawal. Cureus 2021; 13:e20114. [PMID: 35003959 PMCID: PMC8723697 DOI: 10.7759/cureus.20114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Following the abrupt cessation of benzodiazepine therapy, patients can present with acute life-threatening withdrawal. Medical management of benzodiazepine withdrawal is typically undertaken with benzodiazepines either through loading dose with gradual taper or symptom triggered treatment, though adjuvant anxiolytics and anticonvulsants are often used. Ketamine, increasingly utilized as an adjunct in the treatment of alcohol withdrawal, may represent an effective medication in the treatment of benzodiazepine withdrawal. In this case report, a 27-year-old male with a history of benzodiazepine and opioid abuse presented to our emergency department with a chief complaint of drug withdrawal. Despite standard treatment with large amounts of benzodiazepine, barbiturate, opioid, and adjunctive medications, the patient remained with severe withdrawal syndrome until an infusion of ketamine (0.5mg/kg in 30 minutes) was administered resulting in significant improvement of the patient symptoms. This case demonstrates the potential role of ketamine as an adjunct medication in the treatment of benzodiazepine withdrawal.
Collapse
|
36
|
Abstract
Hallucinogens, or psychedelics, are substances/drugs that have been used for over a millennium. The most well known are LSD, psilocybin, mescaline, and PCP. These substances may induce hallucinations as well as cause somatic and psychological symptoms. Because of the Controlled Substances Act of 1970, there has been very little research done to determine the long-term consequences or perhaps potential benefit of misuse and abuse of hallucinogens. Typically, these drugs are not abused but more often misused. Recently, there has been a renewed interest in these compounds, which may lead to possible therapeutic options.
Collapse
Affiliation(s)
- Wm Maurice Redden
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA.
| | - Saif-Ur-Rahman Paracha
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - Quratulanne Sheheryar
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| |
Collapse
|
37
|
Pairing of neonatal phencyclidine exposure and acute adolescent stress in male rats as a novel developmental model of schizophrenia. Behav Brain Res 2021; 409:113308. [PMID: 33872663 DOI: 10.1016/j.bbr.2021.113308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023]
Abstract
Improved understanding of the neurophysiological and neurochemical mechanisms underlying schizophrenia is essential for the identification of biological markers and developing new therapeutic targets. The development of behaviorally faithful, predictive animal models is crucial to this endeavor. We have developed a novel two-hit paradigm designed to recapitulate in rodents the developmental process leading to appearance of human schizophrenia symptomatology. The model pairs neonatal administration of the NMDA receptor (NMDAR) open-channel blocker phencyclidine (PCP 10 mg/kg) to male rats at 7, 9 and 11 days of age, with later adolescent exposure (34 days of age) to a single prolonged stress paradigm consisting of 2 h restraint, followed by 20 min of forced swimming. Four experimental groups were examined: vehicle and no stress (VEH-NS), vehicle plus stress (VEH-S), PCP and no stress (PCP-NS), and PCP plus stress (PCP-S). Only pairing of neonatal PCP with single prolonged adolescent stress caused deficits in novel object recognition memory and increased anxiety-like behavior in the elevated plus maze task, without altering locomotor activity. In a separate cohort of animals, the PCP-S group showed significant reduction in magnitude of hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses following a single pair of theta-burst stimuli (TBS), while LTP was diminished in both PCP treated groups when elicited by a second pair of TBS. These results suggest that the combination of neonatal PCP and acute adolescent stress are necessary for lasting cognitive impairment and anxiety-like phenotype, and that these behavioral impairments may be due to deficits in LTP in hippocampus, and perhaps elsewhere in the brain.
Collapse
|
38
|
Chung AKK, Chan WM, Law JKC, Tse CY. Ketamine abusers with SLC6A3 rs393795 genotype showed a preliminary association with psychosis and schizophrenia: A pilot case-control study. Schizophr Res 2021; 230:24-25. [PMID: 33667855 DOI: 10.1016/j.schres.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Albert Kar-Kin Chung
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wing-Man Chan
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Johnson Kai-Chun Law
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cheuk-Yin Tse
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
39
|
Higgins GA, Carroll NK, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S, Izhakova J, Magomedova L, DeLannoy I, Sellers EM. Low Doses of Psilocybin and Ketamine Enhance Motivation and Attention in Poor Performing Rats: Evidence for an Antidepressant Property. Front Pharmacol 2021; 12:640241. [PMID: 33716753 PMCID: PMC7952974 DOI: 10.3389/fphar.2021.640241] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Long term benefits following short-term administration of high psychedelic doses of serotonergic and dissociative hallucinogens, typified by psilocybin and ketamine respectively, support their potential as treatments for psychiatric conditions such as major depressive disorder. The high psychedelic doses induce perceptual experiences which are associated with therapeutic benefit. There have also been anecdotal reports of these drugs being used at what are colloquially referred to as "micro" doses to improve mood and cognitive function, although currently there are recognized limitations to their clinical and preclinical investigation. In the present studies we have defined a low dose and plasma exposure range in rats for both ketamine (0.3-3 mg/kg [10-73 ng/ml]) and psilocybin/psilocin (0.05-0.1 mg/kg [7-12 ng/ml]), based on studies which identified these as sub-threshold for the induction of behavioral stereotypies. Tests of efficacy were focused on depression-related endophenotypes of anhedonia, amotivation and cognitive dysfunction using low performing male Long Evans rats trained in two food motivated tasks: a progressive ratio (PR) and serial 5-choice (5-CSRT) task. Both acute doses of ketamine (1-3 mg/kg IP) and psilocybin (0.05-0.1 mg/kg SC) pretreatment increased break point for food (PR task), and improved attentional accuracy and a measure of impulsive action (5-CSRT task). In each case, effect size was modest and largely restricted to test subjects characterized as "low performing". Furthermore, both drugs showed a similar pattern of effect across both tests. The present studies provide a framework for the future study of ketamine and psilocybin at low doses and plasma exposures, and help to establish the use of these lower concentrations of serotonergic and dissociative hallucinogens both as a valid scientific construct, and as having a therapeutic utility.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc., Fergus, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Matt Brown
- InterVivo Solutions Inc., Fergus, ON, Canada
| | | | | | | | | | | | - Ines DeLannoy
- InterVivo Solutions Inc., Mississauga, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Edward M Sellers
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
40
|
Schultz KJ, Colby SM, Yesiltepe Y, Nuñez JR, McGrady MY, Renslow RS. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists. Phys Chem Chem Phys 2021; 23:1197-1214. [PMID: 33355332 DOI: 10.1039/d0cp03620j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uncompetitive antagonists of the N-methyl d-aspartate receptor (NMDAR) have demonstrated therapeutic benefit in the treatment of neurological diseases such as Parkinson's and Alzheimer's, but some also cause dissociative effects that have led to the synthesis of illicit drugs. The ability to generate NMDAR antagonists in silico is therefore desirable for both new medication development and preempting and identifying new designer drugs. Recently, generative deep learning models have been applied to de novo drug design as a means to expand the amount of chemical space that can be explored for potential drug-like compounds. In this study, we assess the application of a generative model to the NMDAR to achieve two primary objectives: (i) the creation and release of a comprehensive library of experimentally validated NMDAR phencyclidine (PCP) site antagonists to assist the drug discovery community and (ii) an analysis of both the advantages conferred by applying such generative artificial intelligence models to drug design and the current limitations of the approach. We apply, and provide source code for, a variety of ligand- and structure-based assessment techniques used in standard drug discovery analyses to the deep learning-generated compounds. We present twelve candidate antagonists that are not available in existing chemical databases to provide an example of what this type of workflow can achieve, though synthesis and experimental validation of these compounds are still required.
Collapse
Affiliation(s)
| | - Sean M Colby
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Jamie R Nuñez
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Ryan S Renslow
- Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
41
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
42
|
Nawaz R, Gul S, Amin R, Huma T, Al Mughairbi F. Overview of schizophrenia research and treatment in Pakistan. Heliyon 2020; 6:e05545. [PMID: 33294688 PMCID: PMC7695967 DOI: 10.1016/j.heliyon.2020.e05545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/12/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
Mental health is the most neglected health sector in Pakistan, and the majority of citizens have limited or no access to primary and secondary psychiatric services. The incidence of schizophrenia (SCZ) has increased at an alarming rate in Pakistan, relative to that of other psychiatric disorders. While numerous studies have investigated SCZ, few have addressed the issue about the Pakistani population. In the present review, the researchers discuss current data integral to the prevalence, pathophysiology, and molecular genetics of SCZ; treatment approaches to the disease; and patient responses to drugs prescribed for SCZ in Pakistan. Most Pakistani patients exhibit poor responses to antipsychotic drugs. Based on our review, the researchers hypothesize that genetic dissimilarities between Pakistani and Western populations contribute to such poor responses. Consequently, an understanding of such genetic differences and the provision of personalized treatment may simultaneously aid in improving SCZ treatment in Pakistan.
Collapse
Affiliation(s)
- Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| | - Saima Gul
- Department of Rehabilitation Science, Faculty of Pharmacy & Allied Health Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Rafat Amin
- Department of Pathology, Institute of Biological, Biochemical and Pharmaceutical Sciences, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | | | - Fadwa Al Mughairbi
- Department of Clinical Psychology, College of Medicine & Health Sciences, UAE University 15551 Al Ain, United Arab Emirates
| |
Collapse
|
43
|
Novakov IA, Sheikin DS, Navrotskii MB, Mkrtchyan AS, Brunilina LL, Balakin KV. Dexoxadrol and its bioisosteres: structure, synthesis, and pharmacological activity. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2946-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Abstract
An intranasal formulation of esketamine, the S enantiomer of ketamine, in conjunction with an oral antidepressant, has been approved by the FDA for treating treatment-resistant major depressive disorder (TRD) in 2019, almost 50 years after it was approved as an intravenous anesthetic. In contrast to traditional antidepressants, ketamine shows a rapid (within 2 h) and sustained (∼7 days) antidepressant effect and has significant positive effects on antisuicidal ideation. Ketamine's antidepressant mechanism is predominantly mediated by the N-methyl-d-aspartate receptor (NMDA) receptor, although NMDA-independent mechanisms are not ruled out. At the neurocircuitry level, ketamine affects the brain's reward and mood circuitry located in the corticomesolimbic structures involving the hippocampus, nucleus accumbens, and prefrontal cortex. Repurposing of ketamine for treating TRD provided a new understanding of the pathophysiology of depression, a paradigm shift from monoamine to glutamatergic neurotransmission, thus making it a unique tool to investigate the brain and its complex neurocircuitries.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
45
|
Abbott JA, Popescu GK. Hydroxynorketamine Blocks N-Methyl-d-Aspartate Receptor Currents by Binding to Closed Receptors. Mol Pharmacol 2020; 98:203-210. [PMID: 32606205 PMCID: PMC7406986 DOI: 10.1124/mol.120.119784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ketamine, a dissociative anesthetic, is experiencing a clinical resurgence as a fast-acting antidepressant. In the central nervous system, ketamine acts primarily by blocking NMDA receptor currents. Although it is generally safe in a clinical setting, it can be addictive, and several of its derivatives are being investigated as preferable alternatives. 2R,6R-Hydroxynorketamine (HNK), a ketamine metabolite, reproduces some of the therapeutic effects of ketamine and appears to lack abuse liability. Here, we report a systematic investigation of the effects of HNK on macroscopic responses elicited from recombinant NMDA receptors expressed in human embryonic kidney 293 cells. We found that, like ketamine, HNK reduced NMDA receptor currents in a dose-, pH-, and voltage-dependent manner. Relative to ketamine, it had 100-fold-lower potency (46 µM at pH 7.2), 10-fold-slower inhibition onset, slower apparent dissociation rate, weaker voltage dependence, and complete competition by magnesium. Notably, HNK inhibition was fully effective when applied to resting receptors. These results revealed unexpected properties of hydroxynorketamine that warrant its further investigation as a possible therapeutic in pathologies associated with NMDA receptor dysfunction. SIGNIFICANCE STATEMENT: NMDA receptors are excitatory ion channels with fundamental roles in synaptic transmission and plasticity, and their dysfunction associates with severe neuropsychiatric disorders. 2R,6R-Hydroxynorketamine, a metabolite of ketamine, mimics some of the neuroactive properties of ketamine and may lack its abuse liability. Results show that 2R,6R-hydroxynorketamine blocks NMDA receptor currents with low affinity and weak voltage dependence and is effective when applied to resting receptors. These properties highlight its effectiveness to a subset of NMDA receptor responses and recommend it for further investigation.
Collapse
Affiliation(s)
- Jamie A Abbott
- Departments of Biochemistry and Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Gabriela K Popescu
- Departments of Biochemistry and Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
46
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
47
|
Neuroimmunological antibody-mediated encephalitis and implications for diagnosis and therapy in neuropsychiatry. Acta Neuropsychiatr 2020; 32:177-185. [PMID: 31791436 DOI: 10.1017/neu.2019.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The past decade has seen a surge of reports and investigations into cases of autoimmune-mediated encephalitis. The increasing recognition of these disorders is especially of relevance to the fields of neurology and psychiatry. Autoimmune encephalitis involves antibodies against synaptic receptors, neuronal cell surface proteins and intracellular targets. These disorders feature prominent symptoms of cognitive impairment and behavioural changes, often associated with the presence of seizures. Early in the clinical course, autoimmune encephalitis may manifest as psychiatric symptoms of psychosis and involve psychiatry as an initial point of contact. Although commonly associated with malignancy, these disorders can present in the absence of an inciting neoplasm. The identification of autoimmune encephalitis is of clinical importance as a large proportion of individuals experience a response to immunotherapy. This review focuses on the current state of knowledge on n-methyl-d-aspartate (NMDA) receptor-associated encephalitis and limbic encephalitis, the latter predominantly involving antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, the γ-aminobutyric acid (GABA)B receptor and leucine-rich glioma-inactivated 1 (LGI1) protein. In addition, we briefly describe anti-dopamine D2 receptor encephalitis. A summary of the literature will focus on common clinical presentations and course, diagnostic approaches and response to treatment. Since a substantial proportion of patients with autoimmune encephalitis exhibit symptoms of psychosis, the relevance of this disorder to theories of psychosis and schizophrenia will also be discussed.
Collapse
|
48
|
Ryu IS, Kim OH, Lee YE, Kim JS, Li ZH, Kim TW, Lim RN, Lee YJ, Cheong JH, Kim HJ, Lee YS, Steffensen SC, Lee BH, Seo JW, Jang EY. The Abuse Potential of Novel Synthetic Phencyclidine Derivative 1-(1-(4-Fluorophenyl)Cyclohexyl)Piperidine (4'-F-PCP) in Rodents. Int J Mol Sci 2020; 21:ijms21134631. [PMID: 32610694 PMCID: PMC7369973 DOI: 10.3390/ijms21134631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The dissociative anesthetic phencyclidine (PCP) and PCP derivatives, including 4′-F-PCP, are illegally sold and abused worldwide for recreational and non-medical uses. The psychopharmacological properties and abuse potential of 4′-F-PCP have not been fully characterized. In this study, we evaluated the psychomotor, rewarding, and reinforcing properties of 4′-F-PCP using the open-field test, conditioned place preference (CPP), and self-administration paradigms in rodents. Using Western immunoblotting, we also investigated the expression of dopamine (DA)-related proteins and DA-receptor-mediated downstream signaling cascades in the nucleus accumbens (NAc) of 4′-F-PCP-self-administering rats. Intraperitoneal administration of 10 mg/kg 4′-F-PCP significantly increased locomotor and rearing activities and increased CPP in mice. Intravenous administration of 1.0 mg/kg/infusion of 4′-F-PCP significantly enhanced self-administration during a 2 h session under fixed ratio schedules, showed a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement, and significantly altered the expression of DA transporter and DA D1 receptor in the NAc of rats self-administering 1.0 mg/kg 4′-F-PCP. Additionally, the expression of phosphorylated (p) ERK, pCREB, c-Fos, and FosB/ΔFosB in the NAc was significantly enhanced by 1.0 mg/kg 4′-F-PCP self-administration. Taken together, these findings suggest that 4′-F-PCP has a high potential for abuse, given its robust psychomotor, rewarding, and reinforcing properties via activation of DAergic neurotransmission and the downstream signaling pathways in the NAc.
Collapse
Affiliation(s)
- In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Oc-Hee Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Young Eun Lee
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Zhan-Hui Li
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Tae Wan Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Young Ju Lee
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| |
Collapse
|
49
|
Kim CS, Johnston D. Antidepressant Effects of (S)-Ketamine through a Reduction of Hyperpolarization-Activated Current I h. iScience 2020; 23:101239. [PMID: 32629607 PMCID: PMC7322259 DOI: 10.1016/j.isci.2020.101239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/11/2019] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
Compelling evidence suggests that a single sub-anesthetic dose of (R,S)-ketamine exerts rapid and robust antidepressant effects. However, the cellular mechanisms underlying the antidepressant effects of (R,S)-ketamine remain unclear. Here, we show that (S)-ketamine reduced dendritic but not somatic hyperpolarization-activated current Ih of dorsal CA1 neurons in unstressed rats, whereas (S)-ketamine decreased both somatic and dendritic Ih in chronic unpredictable stress (CUS) rats. The reduction of Ih by (S)-ketamine was independent of NMDA receptors, barium-sensitive conductances, and cAMP-dependent signaling pathways in both unstressed and CUS groups. (S)-ketamine pretreatment before the onset of depression prevented CUS-induced behavioral phenotypes and neuropathological changes of dorsal CA1 neurons. Finally, in vivo infusion of thapsigargin-induced anxiogenic- and anhedonic-like behaviors and upregulation of functional Ih, but these were reversed by (S)-ketamine. Our results suggest that (S)-ketamine reduces or prevents Ih from being increased following CUS, which contributes to the rapid antidepressant effects and resiliency to CUS. (S)-ketamine reduced the CUS-induced upregulation of somatic Ih This was independent of NMDAR, Ba2+-sensitive conductances, and cAMP signaling (S)-ketamine pretreatment before the onset of depression provided resiliency to CUS In vivo thapsigargin-induced changes in behaviors were reversed by (S)-ketamine
Collapse
Affiliation(s)
- Chung Sub Kim
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, 1 University Station Stop, C7000, Austin, TX 78712, USA.
| | - Daniel Johnston
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, 1 University Station Stop, C7000, Austin, TX 78712, USA
| |
Collapse
|
50
|
Refractory anti-NMDAR encephalitis successfully treated with bortezomib and associated movements disorders controlled with tramadol: a case report with literature review. J Neurol 2020; 267:2462-2468. [DOI: 10.1007/s00415-020-09988-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
|