1
|
Nguyen LAM, Simons CW, Thomas R. Nootropic foods in neurodegenerative diseases: mechanisms, challenges, and future. Transl Neurodegener 2025; 14:17. [PMID: 40176115 DOI: 10.1186/s40035-025-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's and Parkinson's disease are increasing globally and represent a significant cause of age-related death in the population. Recent studies emphasize the strong association between environmental stressors, particularly dietary factors, and brain health and neurodegeneration unsatisfactory outcomes. Despite ongoing efforts, the efficiency of current treatments for NDDs remains wanting. Considering this, nootropic foods with neuroprotective effects are of high interest as part of a possible long-term therapeutic strategy to improve brain health and alleviate NDDs. However, since it is a new and emerging area in food and neuroscience, there is limited information on mechanisms and challenges to consider for this to be a successful intervention. Here, we seek to address these gaps by presenting a comprehensive review of possible pathways or mechanisms including mutual interactions governing nootropic food metabolism, linkages of the pathways with NDDs, intake, and neuroprotective properties of nootropic foods. We also discuss in-depth intervention with nootropic compounds and dietary patterns in NDDs, providing a detailed exploration of their mechanisms of action. Additionally, we analyze the demand, challenges, and future directions for successful development of nootropic foods targeting NDDs.
Collapse
Affiliation(s)
- Le Anh Minh Nguyen
- Biology Department, Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A 3K7, Canada.
| | | | - Raymond Thomas
- Biology Department, Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A 3K7, Canada.
| |
Collapse
|
2
|
Han Z, Shen Y, Yan Y, Bin P, Zhang M, Gan Z. Metabolic reprogramming shapes post-translational modification in macrophages. Mol Aspects Med 2025; 102:101338. [PMID: 39977975 DOI: 10.1016/j.mam.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
Polarized macrophages undergo metabolic reprogramming, as well as extensive epigenetic and post-translational modifications (PTMs) switch. Metabolic remodeling and dynamic changes of PTMs lead to timely macrophage response to infection or antigenic stimulation, as well as its transition from a pro-inflammatory to a reparative phenotype. The transformation of metabolites in the microenvironment also determines the PTMs of macrophages. Here we reviewed the current understanding of the altered metabolites of glucose, lipids and amino acids in macrophages shape signaling and metabolism pathway during macrophage polarization via PTMs, and how these metabolites in some macrophage-associated diseases affect disease progression by shaping macrophage PTMs.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Aoyama Y, Yamazaki H, Nishimura K, Nomura M, Shigehiro T, Suzuki T, Zang W, Tatara Y, Ito H, Hayashi Y, Koike Y, Fukumoto M, Tanaka A, Zhang Y, Saika W, Hasegawa C, Kasai S, Kong Y, Minakuchi Y, Itoh K, Yamamoto M, Toyokuni S, Toyoda A, Ikawa T, Takaori-Kondo A, Inoue D. Selenoprotein-mediated redox regulation shapes the cell fate of HSCs and mature lineages. Blood 2025; 145:1149-1163. [PMID: 39775457 PMCID: PMC11923430 DOI: 10.1182/blood.2024025402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of messenger RNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we used selenocysteine transfer RNA (tRNASec) gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis. This revealed insights into the protective roles of selenoproteins in preserving HSC stemness and B-lineage maturation, despite negligible effects on myeloid cells. Notably, Trsp KO exhibited B lymphocytopenia and reduced HSCs' self-renewal capacity, recapitulating certain aspects of aged phenotypes, along with the upregulation of aging-related genes in both HSCs and pre-B cells. Although Trsp KO activated an antioxidant response transcription factor NRF2, we delineated a lineage-dependent phenotype driven by lipid peroxidation, which was exacerbated with aging yet ameliorated by ferroptosis inhibitors such as vitamin E. Interestingly, the myeloid genes were ectopically expressed in pre-B cells of Trsp KO mice, and KO pro-B/pre-B cells displayed differentiation potential toward functional CD11b+ fraction in the transplant model, suggesting that disrupted selenoprotein synthesis induces the potential of B-to-myeloid switch. Given the similarities between the KO model and aged wild-type mice, including ferroptosis vulnerability, impaired HSC self-renewal and B-lineage maturation, and characteristic lineage switch, our findings underscore the critical role of selenoprotein-mediated redox regulation in maintaining balanced hematopoiesis and suggest the preventive potential of selenoproteins against aging-related alterations.
Collapse
Affiliation(s)
- Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Genome Analysis Unit, Quality Section, Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Tsukasa Shigehiro
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Tomokatsu Ikawa
- Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Jyotirmaya SS, Rath S, Dandapat J. Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156380. [PMID: 39827814 DOI: 10.1016/j.phymed.2025.156380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs. Various bioactive phytocompounds used in alternative therapies including Traditional Chinese Medicines (TCM) regulate redox balance and epigenetic phenomena linked to CVDs. Phytocompound-based medications are in the limelight for the development of cost-effective drugs with the least side effects, which will have immense therapeutic applications. PURPOSE This review comprehends certain risk factors associated with CVDs and triggered by oxidative stress-driven epigenetic remodelling. Further, it critically evaluates the pharmacological efficacy of phytocompounds as inhibitors of HAT/HDAC and DNMTs as well as miRNAs regulator that lowers the incidence of CVDs, aiming for new candidates as prospective epidrugs. METHODS PRISMA flow approach has been adopted for systematic literature review. Different Journals, computational databases, search engines such as Google Scholar, PubMed, Science Direct, Scopus, and ResearchGate were used to collect online information for literature survey. Statistical information collected from the World Health Organization (WHO) site (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) and the American Heart Association of Heart Disease and Stroke reported the international and national status of CVDs. RESULTS The meta-analysis of various studies is elucidated in the literature, shedding light on major risk factors such as socioeconomic parameters, which contribute highly to redox imbalance, epigenetic modulations, and CVDs. Going forward, redox imbalance driven epigenetic regulations include changes in DNA methylation status, histone modifications and non-coding RNAs expression pattern which further regulates global as well as promoter modification of various transcription factors leading to the onset of CVDs. Further, the role of various bioactive compounds used in herbal medicine, including TCM for redox regulation and epigenetic modifications are discussed. Pharmacological safety doses and different phases of clinical trials of these phytocompounds are elaborated on, which shed light on the acceptance of these phytocompounds as prospective drugs. CONCLUSION This review suggests a strong linkage between therapeutic and preventive measures against CVDs by targeting redox imbalance-driven epigenetic reprogramming using phytocompounds as prospective epidrugs. Future in-depth research is required to evaluate the possible molecular mechanisms behind the phytocompound-mediated epigenetic reprogramming and oxidative stress management during CVD progression.
Collapse
Affiliation(s)
| | - Suvasmita Rath
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar,751004, Odisha, India
| | - Jagneshwar Dandapat
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India..
| |
Collapse
|
5
|
Liu X, Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. Basic Res Cardiol 2025; 120:11-24. [PMID: 38724618 DOI: 10.1007/s00395-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
6
|
Kaltsas A, Markou E, Kyrgiafini MA, Zikopoulos A, Symeonidis EN, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes (Basel) 2025; 16:93. [PMID: 39858640 PMCID: PMC11765119 DOI: 10.3390/genes16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose-response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, UK;
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
7
|
Kang KA, Park J, Piao MJ, Fernando PDSM, Herath HMUL, Senavirathna HMMM, Kim JH, Cho SJ, Hyun JW. Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation. Biomol Ther (Seoul) 2025; 33:182-192. [PMID: 39711111 PMCID: PMC11704403 DOI: 10.4062/biomolther.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators. Reactive oxygen species (ROS) levels, antioxidant enzyme expression, NRF2 expression, and nuclear translocation were higher in SNUC5/RR cells irradiated with or without 8 Gy than in SNUC5 cells. The DNA demethylase ten-eleven translocation 1 (TET1) expression and TET1 binding to the NRF2 promoter in SNUC5/RR cells were stronger than those in SNUC5 cells, indicating lower methylation of CpG islands in the NRF2 promoter. TET1 knockdown in SNUC5/RR cells suppressed NRF2 expression significantly. Additionally, histone mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, whereas enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, was downregulated, leading to decreased trimethylation of histone H3 lysine 27. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) levels were lower and higher in SNUC5/RR cells than in SNUC5 cells, respectively. MLL and HAT knockdown in SNUC5/RR cells irradiated with or without 8 Gy decreased levels of NRF2 and heme-oxygenase 1, resulting in enhanced γ-radiation sensitivity. These findings support NRF2 as a target for improving the response to radiotherapy in patients with colorectal cancer.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Jinny Park
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | | | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Suk Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
8
|
Hsieh HH, Kuo MZ, Chen IA, Lin CJ, Hsu V, HuangFu WC, Wu TY. Epigenetic Modifications as Novel Therapeutic Strategies of Cancer Chemoprevention by Phytochemicals. Pharm Res 2025; 42:69-78. [PMID: 39775615 DOI: 10.1007/s11095-024-03810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Epigenetic modifications, such as aberrant DNA methylation, histone alterations, non-coding RNA remodeling, and modulation of transcription factors, are pivotal in the pathogenesis of diverse malignancies. Reactive oxygen species (ROS) have the capacity to impact these epigenetic mechanisms, including DNA methylation, throughout the different stages of cancer development. Therefore, the aim of this review is to address the impact of. METHODS Published papers were searched in Pubmed and Google Scholar databases using the keywords "epigenetic", or "DNA methylation", or "phytochemicals", or "chemoprevention" to prepare this review. RESULTS There is mounting evidence indicating that diminishing ROS accumulation within cells can regulate the function of DNA methyltransferases (DNMTs). Moreover, activation of the cellular defense system can impede and potentially reverse the progression of tumors in cancerous cells. As a result, ROS scavengers, antioxidants, and demethylating agents have emerged as potential therapeutic approaches for specific types of cancer. Additionally, dietary phytochemicals present in fruits, vegetables, and herbs, which have been utilized for centuries, exhibit the capability to modulate transcription factors, decrease inflammation, deliver antioxidant benefits, induce cell-cycle arrest, and stimulate apoptosis. CONCLUSION These phytochemicals can also renew and reprogram the expression of genes that suppress cancer. Thus, prolonged exposure to phytochemicals at low doses represents an innovative therapeutic tactic for the prevention of cancer.
Collapse
Affiliation(s)
- Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, Taiwan
- School of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Min-Zhan Kuo
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - I-An Chen
- Department of English, National Taichung University of Education, Taichung City, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Victor Hsu
- Bergen County Academies, Hackensack, NJ, USA
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Development, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| | - Tien-Yuan Wu
- School of Pharmacy, Taipei Medical University, Taipei City, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
9
|
Ahmed I, Chakraborty R, Faizy AF, Moin S. Exploring the key role of DNA methylation as an epigenetic modulator in oxidative stress related islet cell injury in patients with type 2 diabetes mellitus: a review. J Diabetes Metab Disord 2024; 23:1699-1718. [PMID: 39610516 PMCID: PMC11599646 DOI: 10.1007/s40200-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterised by impaired insulin secretion and action, often exacerbated by oxidative stress. Recent research has highlighted the intricate involvement of epigenetic mechanisms, particularly DNA methylation, in the pathogenesis of T2DM. This review aims to elucidate the role of DNA methylation as an epigenetic modifier in oxidative stress-mediated beta cell dysfunction, a key component of T2DM pathophysiology. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms, is a hallmark feature of T2DM. Beta cells, responsible for insulin secretion, are particularly vulnerable to oxidative damage due to their low antioxidant capacity. Emerging evidence suggests that oxidative stress can induce aberrant DNA methylation patterns in beta cells, leading to altered gene expression profiles associated with insulin secretion and cell survival. Furthermore, studies have identified specific genes involved in beta cell function and survival that undergo DNA methylation changes in response to oxidative stress in T2DM. These epigenetic modifications can perpetuate beta cell dysfunction by dysregulating key pathways essential for insulin secretion, such as the insulin signalling cascade and mitochondrial function. Understanding the interplay between DNA methylation, oxidative stress, and beta cell dysfunction holds promise for developing novel therapeutic strategies for T2DM. Targeting aberrant DNA methylation patterns may offer new avenues for restoring beta cell function and improving glycemic control in patients with T2DM. However, further research is needed to elucidate the complex mechanisms underlying epigenetic regulation in T2DM and to translate these findings into clinical interventions.
Collapse
Affiliation(s)
- Istiaque Ahmed
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Ritoja Chakraborty
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
10
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
11
|
Yan H, Yin Y, Zhou Y, Li Z, Li Y, Ren L, Wen J, Wang W. Regulation of cardiovascular diseases by histone deacetylases and NADPH oxidases. Redox Biol 2024; 77:103379. [PMID: 39378612 PMCID: PMC11491726 DOI: 10.1016/j.redox.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Histone deacetylases (HDACs) play critical roles in cardiovascular diseases (CVDs). In addition, reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) exert damaging effects due to oxidative stress on heart and blood vessels. Although NOX-dependent ROS production is implicated in pathogenesis, the relationship between HDACs and NOXs in CVDs remains to be elucidated. Here, we present an overview of the regulatory effects and interconnected signaling pathways of HDACs and NOXs in CVDs. Improved insights into these relationships will facilitate the discovery of novel therapeutic agents that target HDACs, oxidase stress pathways, and the interactions between these systems which may be highly effective in the prevention and treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Hui Yan
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yidan Yin
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yichen Zhou
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhanghang Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuxing Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lingxuan Ren
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiazheng Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
12
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
13
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
14
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Moulton C, Lisi V, Silvestri M, Ceci R, Grazioli E, Sgrò P, Caporossi D, Dimauro I. Impact of Physical Activity on DNA Methylation Signatures in Breast Cancer Patients: A Systematic Review with Bioinformatic Analysis. Cancers (Basel) 2024; 16:3067. [PMID: 39272925 PMCID: PMC11394229 DOI: 10.3390/cancers16173067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
18
|
Yu W, Chen Z, Li Y, Jiang S, Zhang L, Shao XM, Xiao D. In utero chronic intermittent nicotine aerosol exposure increases ischemic heart injury in adult offspring via programming of Angiotensin II receptor-derived TGFβ/ROS/Akt signaling pathway. Reprod Toxicol 2024; 128:108650. [PMID: 38945500 DOI: 10.1016/j.reprotox.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND In utero cigarette smoking/nicotine exposure during pregnancy significantly affects fetal development and increases the risk of cardiovascular disease late in life. However, the underlying molecular mechanisms remain largely unknown. We tested the hypothesis that fetal nicotine aerosol exposure reprograms ischemia-sensitive gene expressions, resulting in increased heart susceptibility to ischemic injury and cardiac dysfunction in adulthood. METHODS Pregnant rats were exposed to chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21. Experiments were performed on 6-month-old adult offspring. RESULTS CINA exposure increased ischemia-induced cardiac injury and cardiac dysfunction compared to the control group, which was associated with over- expression of angiotensin II receptor (ATR) protein in the left ventricle (LV) of adult offspring. Meanwhile, CINA exposure up-regulated cardiac TGF-β/SMADs family proteins in the LV. In addition, CINA exposure enhanced cardiac reactive oxygen species (ROS) production and increased the DNA methylation level. The levels of phosphorylated-Akt were upregulated but LC3B-II/I protein abundances were downregulated in the hearts isolated from the CINA-treated group. CONCLUSION Fetal nicotine aerosol exposure leads to cardiac dysfunction in response to ischemic stimulation in adulthood. Two molecular pathways are implicated. First, fetal CINA exposure elevates cardiac ATR levels, affecting the TGFβ-SMADs pathway. Second, heightened Angiotensin II/ATR signaling triggers ROS production, leading to DNA hypermethylation, p-Akt activation, and autophagy deficiency. These molecular shifts in cardiomyocytes result in the development of a heart ischemia-sensitive phenotype and subsequent dysfunction in adult offspring.
Collapse
Affiliation(s)
- Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zewen Chen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
19
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
20
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
21
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
22
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
25
|
Hassan N, Yi H, Malik B, Gaspard-Boulinc L, Samaraweera SE, Casolari DA, Seneviratne J, Balachandran A, Chew T, Duly A, Carter DR, Cheung BB, Norris M, Haber M, Kavallaris M, Marshall GM, Zhang XD, Liu T, Wang J, Liebermann DA, D’Andrea RJ, Wang JY. Loss of the stress sensor GADD45A promotes stem cell activity and ferroptosis resistance in LGR4/HOXA9-dependent AML. Blood 2024; 144:84-98. [PMID: 38579286 PMCID: PMC11251412 DOI: 10.1182/blood.2024024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.
Collapse
Affiliation(s)
- Nunki Hassan
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Hangyu Yi
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Bilal Malik
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Lucie Gaspard-Boulinc
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
- Department of Biology, Ecole Normale Supérieure, PSL University Paris, Paris, France
| | - Saumya E. Samaraweera
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Debora A. Casolari
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Janith Seneviratne
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, University of Sydney, Camperdown, NSW, Australia
| | - Alastair Duly
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniel R. Carter
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Murray Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano-Science and Technology, University of New South Wales, Sydney, NSW, Australia
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Translational Research Institute, Henan Provincial People’s Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Liu
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| | - Dan A. Liebermann
- Fels Institute for Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, School of Medicine, Temple University, Philadelphia, PA
| | - Richard J. D’Andrea
- Acute Leukaemia Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Jenny Y. Wang
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Kolling Institute, Sydney, NSW, Australia
| |
Collapse
|
26
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
28
|
Kim KJ, Akhmedova Z, Heo HJ, Kim DO. Red Pine Bark Extract Alleviates Akt/GSK-3β Signaling Disruption in the Hippocampus of Streptozotocin-Induced Diabetic Sprague-Dawley Rats. J Microbiol Biotechnol 2024; 34:1307-1313. [PMID: 38881175 PMCID: PMC11239400 DOI: 10.4014/jmb.2403.03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
This study investigates whether red pine (Pinus densiflora Sieb. et Zucc.) bark extract (PBE) can alleviate diabetes and abnormal apoptosis signaling pathways in the hippocampus of streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Two dosages of PBE (15 and 30 mg/kg of body weight/day) were administered orally to STZ-induced diabetic SD rats for 20 days. Blood glucose level and body weight were measured once per week. After 20 days of oral administration of PBE, the rat hippocampus was collected, and the production of Akt, p-Akt, GSK-3β, p-GSK-3β, tau, p-tau, Bax, and Bcl-2 proteins were determined by western blot analysis. A decrease in blood glucose level and recovery of body weight were observed in PBE-treated diabetic rats. In the Akt/GSK-3β/tau signaling pathway, PBE inhibited diabetes-induced Akt inactivation, GSK-3β inactivation, and tau hyperphosphorylation. The protein production ratio of Bax/Bcl-2 was restored to the control group level. These results suggest that PBE, rich in phenolic compounds, can be used as a functional food ingredient to ameliorate neuronal apoptosis in diabetes mellitus.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zukhra Akhmedova
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
29
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
30
|
Liu J, He X, Deng S, Zhao S, Zhang S, Chen Z, Xue C, Zeng L, Zhao H, Zhou Y, Bai R, Xu Z, Liu S, Zhou Q, Li M, Zhang J, Huang X, Chen R, Wang L, Lin D, Zheng J. QDPR deficiency drives immune suppression in pancreatic cancer. Cell Metab 2024; 36:984-999.e8. [PMID: 38642552 DOI: 10.1016/j.cmet.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.
Collapse
Affiliation(s)
- Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
32
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
33
|
Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol 2024; 15:1359600. [PMID: 38515749 PMCID: PMC10954773 DOI: 10.3389/fimmu.2024.1359600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.
Collapse
Affiliation(s)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
34
|
Swiatlowska P, Tipping W, Marhuenda E, Severi P, Fomin V, Yang Z, Xiao Q, Graham D, Shanahan C, Iskratsch T. Hypertensive Pressure Mechanosensing Alone Triggers Lipid Droplet Accumulation and Transdifferentiation of Vascular Smooth Muscle Cells to Foam Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308686. [PMID: 38145971 PMCID: PMC10916670 DOI: 10.1002/advs.202308686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/27/2023]
Abstract
Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - William Tipping
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Emilie Marhuenda
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Paolo Severi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Department of Translational MedicineLaboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerrara44121Italy
| | | | - Zhisheng Yang
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Qingzhong Xiao
- William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Duncan Graham
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1QAUK
| | - Cathy Shanahan
- School of Cardiovascular Medicine and SciencesKing's College LondonLondonSE5 9NUUK
| | - Thomas Iskratsch
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
35
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
36
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
37
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
38
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
39
|
Keane JA, Ealy AD. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals (Basel) 2024; 14:330. [PMID: 38275789 PMCID: PMC10812430 DOI: 10.3390/ani14020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.
Collapse
Affiliation(s)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| |
Collapse
|
40
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
41
|
Rahman MS, Billah MM, Rangel V, Cantu E. Elevated temperature triggers increase in global DNA methylation, 5-methylcytosine expression levels, apoptosis and NOx levels in the gonads of Atlantic sea urchin. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110899. [PMID: 37673203 DOI: 10.1016/j.cbpb.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Global warming is one of the greatest threats to living organisms. Among them, marine invertebrates are severely impacted on reproductive fitness by rising seawater surface temperatures due to climate change (e.g., massive heat waves). In this study, we used highly sensitive radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), in situ TUNEL assay, luminescence assay, and colorimetric assay techniques to investigate the impacts of high temperatures on global DNA methylation, cellular apoptosis, and nitrative stress in gonads of Atlantic sea urchin (Arbacia punctulata, a commercially important species). Young adult sea urchins were exposed to 24, 28, and 32 °C for one week in a controlled laboratory setting. High temperatures (28 and 32 °C) markedly increased global DNA methylation (around 1.1-1.5-fold in testes and ~ 1.7-fold in ovaries) and 5-methylcytosine (5-mC) levels in gonads (around 2.7- to ~5.1-fold in ovaries and ~ 3.5- to ~6.2-fold in testes) compared with controls (24 °C). The number of apoptotic nuclei in gonads was much higher in high-temperature groups. The caspase activity also increased significantly (P < 0.05) in gonads in high-temperature groups. Nitrate/nitrites (NOx, a biomarker of reactive nitrogen species) levels were increased around 2.6- to ~5.2-fold in testes and ~ 1.9- to ~3.8-fold in ovaries in high-temperature groups. Collectively, these outcomes indicate that high temperatures drastically induce global DNA methylation, 5-mC expression levels, cellular apoptosis, and NOx levels in the gonads of Atlantic sea urchin.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Victor Rangel
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Esmirna Cantu
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
42
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
43
|
Kiran GS, Kumar PK, Mitra P, Kumar K, Goyal T, Sharma S, Rana S, Sharma P. Unravelling blood-based epigenetic mechanisms: the impact of hsa-miR-146a and histone H3 acetylation in lead-induced inflammation among occupational workers. Int Arch Occup Environ Health 2023; 96:1257-1266. [PMID: 37572134 DOI: 10.1007/s00420-023-02004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Occupational and environmental exposure to lead (Pb) is a persistent health problem majorly in developing countries and has been implied to cause epigenetic alterations. Its effect on histone post-translational modifications is not explored in human population. MicroRNAs are epigenetic modulators reported to be differentially expressed under Pb exposure. The present study was targeted to find plausible association between the role of hsa-miR-146a and global histone (H3) acetylation in Pb-induced inflammation in occupationally exposed workers. MATERIALS AND METHODS A total of 100 occupationally exposed individuals working in different industries were recruited for the study and divided into 2 groups based on the median Pb levels [low Pb group (Pb < 5 μg/dL) and High Pb group (Pb > 5 μg/dL)]. The Pb levels were measured in whole blood using atomic absorption spectrometry to confirm Pb exposure. Histone H3 acetylation and serum interleukin-6 (IL-6) levels were measured using colorimetric methods and enzyme-linked immunosorbent assay (ELISA), respectively. MicroRNA-146a expression was quantified using TaqMan assay. RESULTS The median BLL of the study population was 5 μg/dL. BLL, IL-6, and Histone (H3) acetylation increased significantly with the duration of exposure. BLL level showed a significant positive correlation with IL-6 and histone H3 acetylation level. We also found that hsa-miR-146a exhibited significantly increased expression in the high Pb group compared to the low Pb group (Fold change: 2.56; P = 0.014). The linear regression model suggested that BLL has significantly predicted histone H3 acetylation, hsa-miR-146a, and IL-6 in the study subjects. CONCLUSION The finding that hsa-miR146a was significantly upregulated in individuals with high BLL and had a significant negative correlation with serum IL-6 suggests that Pb-induced oxidative stress likely activates H3 acetylation, which then releases inflammatory cytokines like IL-6.
Collapse
Affiliation(s)
- Gangam Sai Kiran
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Rajasthan, India
| | - Pvsn Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Rajasthan, India
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanishka Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Rajasthan, India
| | - Taru Goyal
- Department of Paediatric Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Rajasthan, India.
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Rajasthan, India
| |
Collapse
|
44
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
45
|
Liu ZY, Song K, Tu B, Lin LC, Sun H, Zhou Y, Li R, Shi Y, Yang JJ, Zhang Y, Zhao JY, Tao H. Crosstalk between oxidative stress and epigenetic marks: New roles and therapeutic implications in cardiac fibrosis. Redox Biol 2023; 65:102820. [PMID: 37482041 PMCID: PMC10369469 DOI: 10.1016/j.redox.2023.102820] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023] Open
Abstract
With the in-depth investigation of cardiac fibrosis, oxidative stress (OS) has been recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression. OS is a condition characterized by the disruption of equilibrium between reactive oxygen species (ROS) produced by the organism and the antioxidant defense system, resulting in adverse effects on the structure and function of the heart. The accumulation of reactive substances beyond cellular thresholds disrupts the normal physiology of both cardiomyocytes and non-cardiomyocytes, leading to OS, inflammation, hypertrophy, and cardiac fibrosis. Furthermore, cardiac OS also modulates several crucial genes involved in maintaining cellular homeostasis, including those associated with mitochondrial biogenesis, injury, and antioxidant defense, which are inevitably associated with concurrent epigenetic changes. Multiple studies have demonstrated the crucial role of epigenetic modifications in regulating cardiac OS. Consequently, modulating OS through targeted epigenetic modifications emerges as a potentially promising therapeutic strategy for managing cardiac fibrosis. This article provides a new review of current research on this subject and proposes that epigenetics may improve OS-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
46
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Zand A, Enkhbilguun S, Macharia JM, Budán F, Gyöngyi Z, Varjas T. Tartrazine Modifies the Activity of DNMT and HDAC Genes-Is This a Link between Cancer and Neurological Disorders? Nutrients 2023; 15:2946. [PMID: 37447272 DOI: 10.3390/nu15132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sodbuyan Enkhbilguun
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pécs, H-7621 Pécs, Hungary
| | - Ferenc Budán
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
48
|
Peng X, Wang S, Wang J, Ju W, Yang G, Gu K, Liu H, Wang Z, Jiang X, Li M, Chen H, Shi J, Chen M. Plasma 8-Hydroxy-2'-Deoxyguanosine, a Potential Valuable Biomarker for Atrial Fibrosis Is Influenced by Polymorphism of DNA Methylation Gene. Circ J 2023; 87:964-972. [PMID: 37225477 DOI: 10.1253/circj.cj-22-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Previous studies revealed a relationship between 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the occurrence/recurrence of atrial fibrillation (AF). This 2-part study aimed to validate whether DNA damage related to 8-OHdG is associated with left atrial (LA) fibrosis in AF patients quantified by voltage mapping (Part I), and to identify the underlying genetic components regulating the 8-OHdG level (Part II). METHODS AND RESULTS Plasma 8-OHdG determination, DNA extraction, and genotyping were conducted before catheter ablation. LA voltage mapping was performed under sinus rhythm. According to the percentage of low voltage area (LVA), patients were categorized as stage I (<5%), stage II (5-10%), stage III (10-20%), and stage IV (>20%). Part I included 209 AF patients. The 8-OHdG level showed an upward trend together with advanced LVA stage (stage I 8.1 [6.1, 10.5] ng/mL, stage II 8.5 [5.7, 14.1] ng/mL, stage III 14.3 [12.1, 16.5] ng/mL, stage IV 13.9 [10.5, 16.0] ng/mL, P<0.000). Part II included 175 of the 209 patients from Part I. Gene-set analysis based on genome-wide association study summary data identified that the gene set named 'DNA methylation on cytosine' was the only genetic component significantly associated with 8-OHdG concentration. CONCLUSIONS Higher 8-OHdG levels may predict more advanced LVA of the LA in AF patients. DNA methylation is the putative genetic component underlying oxidative DNA damage in AF patients.
Collapse
Affiliation(s)
- Xiafeng Peng
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Shixin Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jing Wang
- Nephrology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Weizhu Ju
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Gang Yang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Kai Gu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hailei Liu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Zidun Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Xiaohong Jiang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Mingfang Li
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hongwu Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jiaojiao Shi
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Minglong Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
49
|
Sae-Khow K, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Boonmee A, Benjaskulluecha S, Palaga T, Leelahavanichkul A. Less Severe Polymicrobial Sepsis in Conditional mgmt-Deleted Mice Using LysM-Cre System, Impacts of DNA Methylation and MGMT Inhibitor in Sepsis. Int J Mol Sci 2023; 24:10175. [PMID: 37373325 DOI: 10.3390/ijms241210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme that might be important during sepsis but has never been explored. Then, the proteomic analysis of lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins and reduced oxidative phosphorylation proteins compared with control, possibly related to cell injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and other parameters compared with sepsis in the littermate control. The mgmt null protective effect was lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA methylation and repair in macrophages during sepsis.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
50
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|