1
|
Kim S, Bhandari R, Brearley CA, Saiardi A. The inositol phosphate signalling network in physiology and disease. Trends Biochem Sci 2024:S0968-0004(24)00192-0. [PMID: 39317578 DOI: 10.1016/j.tibs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Combinatorial substitution of phosphate groups on the inositol ring gives rise to a plethora of inositol phosphates (InsPs) and inositol pyrophosphates (PP-InsPs). These small molecules constitute an elaborate metabolic and signalling network that influences nearly every cellular function. This review delves into the knowledge accumulated over the past decades regarding the biochemical principles and significance of InsP metabolism. We focus on the biological actions of InsPs in mammals, with an emphasis on recent findings regarding specific target proteins. We further discuss the roles of InsP metabolism in contributing to physiological homeostasis and pathological conditions. A deeper understanding of InsPs and their metabolic pathways holds the potential to address unresolved questions and propel advances towards therapeutic applications.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Heitmann T, Liao G, Ernst G, Poslusney M, van Kralingen T, Li Y, Masi M, DePasquale M, Buchler I, Wei H, Carr GV, Shlevkov E, Lu M, Jessen H, Barrow JC. Identification and Characterization of a Blood-Brain Barrier Penetrant Inositol Hexakisphosphate Kinase (IP6K) Inhibitor. J Med Chem 2024; 67:13639-13665. [PMID: 39096294 DOI: 10.1021/acs.jmedchem.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to the pyrophosphate, 5-diphosphoinositol-1,2,3,4,6-pentakisphosphate (5-IP7). Most of the currently known potent IP6K inhibitors contain a critical carboxylic acid which limits blood-brain barrier (BBB) penetration. In this work, the synthesis and testing of a variety of carboxylic acid isosteres resulted in several new compounds with improved BBB penetration. The most promising compound has an IP6K1 IC50 of 16 nM with an improved brain/plasma ratio and a favorable pharmacokinetic profile. This series of brain penetrant compounds may be used to investigate the role of IP6Ks in CNS disorders.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Gangling Liao
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Glen Ernst
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Michael Poslusney
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Thomas van Kralingen
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ye Li
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Megan Masi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael DePasquale
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ingrid Buchler
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Evgeny Shlevkov
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mengsi Lu
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - Henning Jessen
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - James C Barrow
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia-reperfusion injury by elevating plasma adiponectin. Cardiovasc Res 2024; 120:954-970. [PMID: 38252884 PMCID: PMC11218692 DOI: 10.1093/cvr/cvae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.
Collapse
Affiliation(s)
- Lin Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Megan L Shipton
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
4
|
De Vos WM, Nguyen Trung M, Davids M, Liu G, Rios-Morales M, Jessen H, Fiedler D, Nieuwdorp M, Bui TPN. Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota. Nat Microbiol 2024; 9:1812-1827. [PMID: 38858593 DOI: 10.1038/s41564-024-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.
Collapse
Affiliation(s)
- Willem M De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mark Davids
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Guizhen Liu
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Melany Rios-Morales
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Henning Jessen
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Hashoul D, Saliba W, Broza YY, Haick H. Non-contact immunological signaling for highly-efficient regulation of the transcriptional map of human monocytes. Bioeng Transl Med 2024; 9:e10519. [PMID: 38818125 PMCID: PMC11135151 DOI: 10.1002/btm2.10519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 06/01/2024] Open
Abstract
The different immune system cells communicate and coordinate a response using a complex and evolved language of cytokines and chemokines. These cellular interactions carry out multiple functions in distinct cell types with numerous developmental outcomes. Despite the plethora of different cytokines and their cognate receptors, there is a restricted number of signal transducers and activators to control immune responses. Herein, we report on a new class of immunomodulatory signaling molecules based on volatile molecules (VMs, namely, volatile organic compounds [VOCs]), by which they can affect and/or control immune cell behavior and transcriptomic profile without any physical contact with other cells. The study demonstrates the role of VMs by analyzing non-contact cell communication between normal and cancerous lung cells and U937 monocytes, which are key players in the tumor microenvironment. Integrated transcriptome and proteome analyses showed the suggested regulatory role of VMs released from normal and cancer cells on neighboring monocytes in several molecular pathways, including PI3K/AKT, PPAR, and HIF-1. Presented data provide an initial platform for a new class of immunomodulatory molecules that can potentially mirror the genomic and proteomic profile of cells, thereby paving the way toward non-invasive immunomonitoring.
Collapse
Affiliation(s)
- Dina Hashoul
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
6
|
Chakkour M, Greenberg ML. Insights into the roles of inositol hexakisphosphate kinase 1 (IP6K1) in mammalian cellular processes. J Biol Chem 2024; 300:107116. [PMID: 38403246 PMCID: PMC11065760 DOI: 10.1016/j.jbc.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Inositol phosphates and their metabolites play a significant role in several biochemical pathways, gene expression regulation, and phosphate homeostasis. Among the different inositol phosphates, inositol hexakisphosphate (IP6) is a substrate of inositol hexakisphosphate kinases (IP6Ks), which phosphorylate one or more of the IP6 phosphate groups. Pyrophosphorylation of IP6 leads to the formation of inositol pyrophosphates, high-energy signaling molecules that mediate physiological processes through their ability to modify target protein activities, either by directly binding to their target protein or by pyrophosphorylating protein serine residues. 5-diphosphoinositol pentakisphosphate, the most abundant inositol pyrophosphate in mammals, has been extensively studied and found to be significantly involved in a wide range of physiological processes. Three IP6K (IP6K1, IP6K2, and IP6K3) isoforms regulate IP7 synthesis in mammals. Here, we summarize our current understanding of IP6K1's roles in cytoskeletal remodeling, trafficking, cellular migration, metabolism, gene expression, DNA repair, and immunity. We also briefly discuss current gaps in knowledge, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
7
|
Yu E, Larivière R, Thomas RA, Liu L, Senkevich K, Rahayel S, Trempe JF, Fon EA, Gan-Or Z. Machine learning nominates the inositol pathway and novel genes in Parkinson's disease. Brain 2024; 147:887-899. [PMID: 37804111 PMCID: PMC10907089 DOI: 10.1093/brain/awad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.
Collapse
Affiliation(s)
- Eric Yu
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Rhalena A Thomas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital (The Neuro), Montreal, Quebec H3A 2B4, Canada
| | - Lang Liu
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
| | - Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Shady Rahayel
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital (The Neuro), Montreal, Quebec H3A 2B4, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
8
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Mondal I, Halder AK, Pattanayak N, Mandal SK, Cordeiro MNDS. Shaping the Future of Obesity Treatment: In Silico Multi-Modeling of IP6K1 Inhibitors for Obesity and Metabolic Dysfunction. Pharmaceuticals (Basel) 2024; 17:263. [PMID: 38399478 PMCID: PMC10891520 DOI: 10.3390/ph17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Recent research has uncovered a promising approach to addressing the growing global health concern of obesity and related disorders. The inhibition of inositol hexakisphosphate kinase 1 (IP6K1) has emerged as a potential therapeutic strategy. This study employs multiple ligand-based in silico modeling techniques to investigate the structural requirements for benzisoxazole derivatives as IP6K1 inhibitors. Firstly, we developed linear 2D Quantitative Structure-Activity Relationship (2D-QSAR) models to ensure both their mechanistic interpretability and predictive accuracy. Then, ligand-based pharmacophore modeling was performed to identify the essential features responsible for the compounds' high activity. To gain insights into the 3D requirements for enhanced potency against the IP6K1 enzyme, we employed multiple alignment techniques to set up 3D-QSAR models. Given the absence of an available X-ray crystal structure for IP6K1, a reliable homology model for the enzyme was developed and structurally validated in order to perform structure-based analyses on the selected dataset compounds. Finally, molecular dynamic simulations, using the docked poses of these compounds, provided further insights. Our findings consistently supported the mechanistic interpretations derived from both ligand-based and structure-based analyses. This study offers valuable guidance on the design of novel IP6K1 inhibitors. Importantly, our work exclusively relies on non-commercial software packages, ensuring accessibility for reproducing the reported models.
Collapse
Affiliation(s)
- Ismail Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nirupam Pattanayak
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Maria Natalia D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Liu W, Wang H, Zhao Q, Tao C, Qu W, Hou Y, Huang R, Sun Z, Zhu G, Jiang X, Fang Y, Gao J, Wu X, Yang Z, Ping R, Chen J, Yang R, Chu T, Zhou J, Fan J, Tang Z, Yang D, Shi Y. Multiomics analysis reveals metabolic subtypes and identifies diacylglycerol kinase α (DGKA) as a potential therapeutic target for intrahepatic cholangiocarcinoma. Cancer Commun (Lond) 2024; 44:226-250. [PMID: 38143235 PMCID: PMC10876206 DOI: 10.1002/cac2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.
Collapse
Affiliation(s)
- Weiren Liu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Huqiang Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Qianfu Zhao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Chenyang Tao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Weifeng Qu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Yushan Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Run Huang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zimei Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Guiqi Zhu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Xifei Jiang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Yuan Fang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jun Gao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Xiaoling Wu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zhixiang Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Rongyu Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Jiafeng Chen
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Rui Yang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Tianhao Chu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jian Zhou
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jia Fan
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zheng Tang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Dong Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Yinghong Shi
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| |
Collapse
|
12
|
Yang Q, Cao C, Wu B, Yang H, Tan T, Shang D, Xu C, Huang X. PPIP5K2 Facilitates Proliferation and Metastasis of Non-Small Lung Cancer (NSCLC) through AKT Signaling Pathway. Cancers (Basel) 2024; 16:590. [PMID: 38339341 PMCID: PMC10854519 DOI: 10.3390/cancers16030590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Through facilitating DNA homologous recombination repair, PPIP5K2 has been proven to be essential for improving colorectal cancer survival in our previous research. However, its function in the tumorigenesis of NSCLC, the most common cancer and the primary cause of cancer-related death globally, is still unknown. Here, we initially discovered that PPIP5K2 had significant effects on proliferation of NSCLC cells through loss- and gain-of-function assays in vitro and in vivo. Moreover, PPIP5K2 is capable of regulating NSCLC cells metastasis in an EMT-dependent manner. In terms of mechanism exploration, we found that PPIP5K2 knockdown can significantly inhibit the phosphorylation of AKT/mTOR signaling pathway, whereas the overexpression of PPIP5K2 resulted in converse effects. By employing AKT signaling related agonists or antagonists, we further demonstrated that PPIP5K2 regulates NSCLC tumorigenesis partly via the AKT/mTOR pathway. In conclusion, PPIP5K2 plays a key oncogenic role in NSCLC by the activation of the AKT/mTOR signaling axis. It is anticipated that targeting PPIP5K2 might emerge as a viable therapeutic approach for NSCLC patients.
Collapse
Affiliation(s)
- Qi Yang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150001, China;
| | - Chenhui Cao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Binghuo Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Haochi Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Tan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Shang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150001, China;
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
13
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
14
|
Gu C, Li X, Zong G, Wang H, Shears SB. IP8: A quantitatively minor inositol pyrophosphate signaling molecule that punches above its weight. Adv Biol Regul 2024; 91:101002. [PMID: 38064879 DOI: 10.1016/j.jbior.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024]
Abstract
The inositol pyrophosphates (PP-IPs) are specialized members of the wider inositol phosphate signaling family that possess functionally significant diphosphate groups. The PP-IPs exhibit remarkable functionally versatility throughout the eukaryotic kingdoms. However, a quantitatively minor PP-IP - 1,5 bisdiphosphoinositol tetrakisphosphate (1,5-IP8) - has received considerably less attention from the cell signalling community. The main purpose of this review is to summarize recently-published data which have now brought 1,5-IP8 into the spotlight, by expanding insight into the molecular mechanisms by which this polyphosphate regulates many fundamental biological processes.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Xingyao Li
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Guangning Zong
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Huanchen Wang
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| | - Stephen B Shears
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
15
|
Li X, Wei Q, Zhao K, Wang W, Liu B, Li W, Wang J. Monitoring Intracellular IP6 with a Genetically Encoded Fluorescence Biosensor. ACS Sens 2023; 8:4484-4493. [PMID: 38079595 DOI: 10.1021/acssensors.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inositol hexakisphosphate (IP6), a naturally occurring metabolite of inositol with specific functions in different organelles or tissues, participates in numerous physiological processes and plays a key role in mammalian metabolic regulation. However, current IP6 detection methods, i.e., high-performance liquid chromatography and gel electrophoresis, require sample destruction and lack spatiotemporal resolution. Here, we construct and characterize a genetically encoded fluorescence biosensor named HIPSer that enables ratiometric quantitative IP6 detection in HEK293T cells and subcellular compartments. We demonstrate that HIPSer has a high sensitivity and relative selectivity for IP6 in vitro. We also provide proof-of-concept evidence that HIPSer can monitor IP6 levels in real time in HEK293T cells and can be targeted for IP6 detection in the nucleus of HEK293T cells. Moreover, HIPSer could also detect changes in IP6 content induced by chemical inhibition of IP6-metabolizing enzymes in HEK293T cells. Thus, HIPSer achieves spatiotemporally precise detection of fluctuations in endogenous IP6 in live cells and provides a versatile tool for mechanistic investigations of inositol phosphate functions in metabolism and signaling.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kaiyuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Heitmann T, Liao G, de León P, Ernst G, Buchler I, Wei H, Shlevkov E, Brown D, Fitzek M, Collier M, Smith DM, Barrow JC. Fragment-Based Screening Identifies New Quinazolinone-Based Inositol Hexakisphosphate Kinase (IP6K) Inhibitors. ACS Med Chem Lett 2023; 14:1760-1766. [PMID: 38116421 PMCID: PMC10726443 DOI: 10.1021/acsmedchemlett.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
A high-throughput fragment-based screen has been employed to discover a series of quinazolinone inositol hexakisphosphate kinase (IP6K) inhibitors. IP6Ks have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, blood coagulation, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to form pyrophosphate 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7). Molecular docking studies and investigation of structure-activity relationships around the quinazolinone core resulted in compounds with submicromolar potency and interesting selectivity for IP6K1 versus the closely related IP6K2 and IP6K3 isoforms.
Collapse
Affiliation(s)
- Tyler Heitmann
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Gangling Liao
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Pablo de León
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Glen Ernst
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ingrid Buchler
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Evgeny Shlevkov
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dean Brown
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Martina Fitzek
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Matthew Collier
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - David M. Smith
- Emerging
Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - James C. Barrow
- Lieber
Institute for Brain Development, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
17
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
18
|
Heitmann T, Barrow JC. The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System. Biomolecules 2023; 13:1317. [PMID: 37759717 PMCID: PMC10526494 DOI: 10.3390/biom13091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - James C. Barrow
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Eisenbeis VB, Qiu D, Gorka O, Strotmann L, Liu G, Prucker I, Su XB, Wilson MSC, Ritter K, Loenarz C, Groß O, Saiardi A, Jessen HJ. β-lapachone regulates mammalian inositol pyrophosphate levels in an NQO1- and oxygen-dependent manner. Proc Natl Acad Sci U S A 2023; 120:e2306868120. [PMID: 37579180 PMCID: PMC10450438 DOI: 10.1073/pnas.2306868120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly β-lapachone (β-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that β-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that β-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with β-lap. The data presented here unveil unique aspects of β-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.
Collapse
Affiliation(s)
- Verena B. Eisenbeis
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Danye Qiu
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg79106, Germany
| | - Lisa Strotmann
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Guizhen Liu
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Isabel Prucker
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Miranda S. C. Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Kevin Ritter
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Christoph Loenarz
- Faculty of Chemistry and Pharmacy, Institute for Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Olaf Groß
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg79106, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Henning J. Jessen
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| |
Collapse
|
20
|
Druzijanic A, Kovic M, Roguljic M, Cigic L, Majstorovic M, Vucenik I. Application of Inositol Hexaphosphate and Inositol in Dental Medicine: An Overview. Biomolecules 2023; 13:913. [PMID: 37371493 DOI: 10.3390/biom13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphorylated inositol hexaphosphate (IP6) is a naturally occurring carbohydrate, and its parent compound, myoinositol (Ins), is abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate essential cellular functions. IP6 has profound modulation effects on macrophages, which warrants further research on the therapeutic benefits of IP6 for inflammatory diseases. Here, we review IP6 as a promising compound that has the potential to be used in various areas of dentistry, including endodontics, restorative dentistry, implantology, and oral hygiene products, due to its unique structure and characteristic properties. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anti-inflammatory effect associated with preventing and suppressing the progression of chronic dental inflammatory diseases. IP6 in dentistry is now substantial, and this narrative review presents and discusses the different applications proposed in the literature and gives insights into future use of IP6 in the fields of orthodontics, periodontics, implants, and pediatric dentistry.
Collapse
Affiliation(s)
- Ana Druzijanic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Mare Kovic
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marija Roguljic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Livia Cigic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Martina Majstorovic
- Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, 100 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Mukherjee S, Chakraborty M, Haubner J, Ernst G, DePasquale M, Carpenter D, Barrow JC, Chakraborty A. The IP6K Inhibitor LI-2242 Ameliorates Diet-Induced Obesity, Hyperglycemia, and Hepatic Steatosis in Mice by Improving Cell Metabolism and Insulin Signaling. Biomolecules 2023; 13:868. [PMID: 37238737 PMCID: PMC10216446 DOI: 10.3390/biom13050868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are global health concerns, and thus, drugs for the long-term treatment of these diseases are urgently needed. We previously discovered that the inositol pyrophosphate biosynthetic enzyme IP6K1 is a target in diet-induced obesity (DIO), insulin resistance, and NAFLD. Moreover, high-throughput screening (HTS) assays and structure-activity relationship (SAR) studies identified LI-2242 as a potent IP6K inhibitor compound. Here, we tested the efficacy of LI-2242 in DIO WT C57/BL6J mice. LI-2242 (20 mg/kg/BW daily, i.p.) reduced body weight in DIO mice by specifically reducing the accumulation of body fat. It also improved glycemic parameters and reduced hyperinsulinemia. LI-2242-treated mice displayed reduced the weight of various adipose tissue depots and an increased expression of metabolism- and mitochondrial-energy-oxidation-inducing genes in these tissues. LI-2242 also ameliorated hepatic steatosis by reducing the expression of genes that enhance lipid uptake, lipid stabilization, and lipogenesis. Furthermore, LI-2242 enhances the mitochondrial oxygen consumption rate (OCR) and insulin signaling in adipocytes and hepatocytes in vitro. In conclusion, the pharmacologic inhibition of the inositol pyrophosphate pathway by LI-2242 has therapeutic potential in obesity and NAFLD.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Glen Ernst
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Michael DePasquale
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Danielle Carpenter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - James C. Barrow
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| |
Collapse
|
22
|
Shipton ML, Jamion FA, Wheeler S, Riley AM, Plasser F, Potter BVL, Butler SJ. Expedient synthesis and luminescence sensing of the inositol pyrophosphate cellular messenger 5-PP-InsP 5. Chem Sci 2023; 14:4979-4985. [PMID: 37206391 PMCID: PMC10189900 DOI: 10.1039/d2sc06812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Inositol pyrophosphates are important biomolecules associated with apoptosis, cell growth and kinase regulation, yet their exact biological roles are still emerging and probes do not exist for their selective detection. We report the first molecular probe for the selective and sensitive detection of the most abundant cellular inositol pyrophosphate 5-PP-InsP5, as well as an efficient new synthesis. The probe is based on a macrocyclic Eu(iii) complex bearing two quinoline arms providing a free coordination site at the Eu(iii) metal centre. Bidentate binding of the pyrophosphate group of 5-PP-InsP5 to the Eu(iii) ion is proposed, supported by DFT calculations, giving rise to a selective enhancement in Eu(iii) emission intensity and lifetime. We demonstrate the use of time-resolved luminescence as a bioassay tool for monitoring enzymatic processes in which 5-PP-InsP5 is consumed. Our probe offers a potential screening methodology to identify drug-like compounds that modulate the activity of enzymes of inositol pyrophosphate metabolism.
Collapse
Affiliation(s)
- Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Fathima A Jamion
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Simon Wheeler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
23
|
Sun Y, Wang Z, Hua W, Cui L, Kong L, Luo J. d -chiro-Inositol Derivatives with Multidrug Resistance Reversal Activities from the Fruits of Chisocheton siamensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:860-868. [PMID: 37020426 DOI: 10.1021/acs.jnatprod.2c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chisosiamols A-K (1-11), 11 new d-chiro-inositol derivatives, along with a known analogue (12) were isolated from the fruits of Chisocheton siamensis. Their planar structures and relative configurations were elucidated by the comprehensive application of spectroscopic methods, especially from the characteristic coupling constants, and 1H-1H COSY spectra. The absolute configurations of the d-chiro-inositol core were determined using the ECD exciton chirality and X-ray diffraction crystallographic analytical methods. This is the first crystallographic data reported for the d-chiro-inositol derivatives. A structural elucidation strategy mainly combining 1H-1H COSY correlations and ECD exciton chirality for determining the structure of d-chiro-inositol derivatives was developed, which also led to the revisions of previously reported structures. Bioactivity evaluation indicated that chisosiamols A, B, and J can reverse multidrug resistance in MCF-7/DOX cells in the IC50 range of 3.4-6.5 μM (RF: 3.6-7.0).
Collapse
Affiliation(s)
- Yujin Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zefan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wang Hua
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Letian Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
24
|
Soni S, Anand P, Swarnkar MK, Patial V, Tirpude NV, Padwad YS. MAPKAPK2-centric transcriptome profiling reveals its major role in governing molecular crosstalk of IGFBP2, MUC4, and PRKAR2B during HNSCC pathogenesis. Comput Struct Biotechnol J 2023; 21:1292-1311. [PMID: 36817960 PMCID: PMC9929207 DOI: 10.1016/j.csbj.2023.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.
Collapse
Key Words
- 3'-UTR
- 3′-UTR, 3′-untranslated region
- AREs, Adenylate-uridylate-rich element(s)
- ATCC, American Type Culture Collection
- ActD, Actinomycin D
- CISBP, Catalog of Inferred Sequence Binding Preferences
- Ct, Cycle Threshold
- DAP3, Death associated protein 3
- DEGs, Differentially expressed gene(s)
- Differentially expressed genes
- EHBP1, EH domain binding protein 1
- FC, Fold change
- FDR, False discovery rate
- FPKM, Fragments per kilobase of transcript per million mapped
- GFP, Green fluorescent protein
- GO, Gene Ontology
- HKG, House-keeping genes
- HNSCC
- HNSCCs, Head and neck squamous cell carcinoma(s)
- HQ, High quality
- IAEC, Institutional animal ethics committee
- IFN, Interferon
- IGFBP2, Insulin-like growth factor-binding protein 2
- IHC, Immunohistochemistry
- IP6K2, Inositol hexakisphosphate kinase 2
- KD, Knockdown
- KEGG, Kyoto encyclopedia of genes and genomics
- MAPK, Mitogen-Activated Protein Kinase
- MAPKAPK2
- MAPKAPK2 or MK2, Mitogen-activated protein kinase-activated protein kinase 2
- MELK, Maternal embryonic leucine zipper kinase
- MK2KD, MK2-knockdown
- MK2WT, MK2 wild-type
- MKP-1, Mitogen-activated protein kinase phosphatase-1
- MUC4, Mucin 4
- NGS, Next generation sequencing
- NOD/SCID, Non-obese diabetic/severe combined immunodeficient
- PRKAR2B, Protein kinase CAMP-dependent type II regulatory subunit beta
- QC, Quality control
- RBPs, RNA-binding protein(s)
- RIN, RNA integrity number
- RNA-seq, Ribose Nucleic Acid -sequencing
- RNA-sequencing
- RT-qPCR, Real-time quantitative polymerase chain reaction
- RUNX1, Runt-related transcription factor 1
- SLF2, SMC5-SMC6 complex localization factor 2
- TCGA, The cancer genome atlas
- TNF-α, Tumor necrosis factor-alpha
- TTP, Tristetraprolin
- Transcriptome
- VEGF, Vascular endothelial growth factor
- WB, Western blotting
- WT, Wild type
- ZNF662, Zinc finger protein 662
- p27, Cyclin-dependent kinase inhibitor 1B
- shRNA, Short hairpin RNA
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narendra V. Tirpude
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
25
|
Ito M, Fujii N, Kohara S, Hori S, Tanaka M, Wittwer C, Kikuchi K, Iijima T, Kakimoto Y, Hirabayashi K, Kurotaki D, Jessen HJ, Saiardi A, Nagata E. Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP 7 metabolism in the enteric nervous system. J Biol Chem 2023; 299:102928. [PMID: 36681123 PMCID: PMC9957762 DOI: 10.1016/j.jbc.2023.102928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shuho Hori
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | | | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
26
|
Boregowda SV, Nanjappa MK, Booker CN, Strivelli J, Supper VM, Cooke PS, Phinney DG. Pharmacological Inhibition of Inositol Hexakisphosphate Kinase 1 Protects Mice against Obesity-Induced Bone Loss. BIOLOGY 2022; 11:biology11091257. [PMID: 36138736 PMCID: PMC9495776 DOI: 10.3390/biology11091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Obesity and type II diabetes mellitus (T2DM) are prominent risk factors for secondary osteoporosis due to the negative impacts of hyperglycemia and excessive body fat on bone metabolism. While the armamentarium of anti-diabetic drugs is expanding, their negative or unknown impacts on bone metabolism limits effectiveness. The inactivation of inositol hexakisphosphate kinase 1 (IP6K1) protects mice from high-fat-diet (HFD)-induced obesity (DIO) and insulin resistance by enhancing thermogenic energy expenditure, but the role of this kinase and the consequences of its inhibition on bone metabolism are unknown. To determine if IP6K1 inhibition in obese mice affords protection against obesity-induced metabolic derangements and bone loss, we maintained 2-month-old mice on a normal chow control diet or HFD under thermal neutral conditions for 100 d. Beginning on day 40, HFD-fed mice were divided into two groups and administered daily injections of vehicle or the pan-IP6K inhibitor TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl) purine]. HFD-fed mice developed obesity, hyperglycemia, hyperlipidemia, and secondary osteoporosis, while TNP administration protected mice against HFD-induced metabolic and lipid derangements and preserved bone mass, mineral density, and trabecular microarchitecture, which correlated with reduced serum leptin levels, reduced marrow adiposity, and preservation of marrow resident skeletal stem/progenitor cells (SSPCs). TNP also exhibited hypotensive activity, an unrealized benefit of the drug, and its prolonged administration had no adverse impacts on spermatogenesis. Together, these data indicate that the inhibition of IP6K1 using selective inhibitors, such as TNP, may provide an effective strategy to manage obesity and T2DM due to its bone sparing effects.
Collapse
Affiliation(s)
- Siddaraju V. Boregowda
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | | | - Cori N. Booker
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Valentina M. Supper
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32610, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Donald G. Phinney
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
27
|
Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci 2022; 16:926794. [PMID: 35936490 PMCID: PMC9355605 DOI: 10.3389/fncel.2022.926794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.
Collapse
|
28
|
Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol 2022; 70:102177. [PMID: 35780751 DOI: 10.1016/j.cbpa.2022.102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
29
|
Zhou Y, Mukherjee S, Huang D, Chakraborty M, Gu C, Zong G, Stashko MA, Pearce KH, Shears SB, Chakraborty A, Wang H, Wang X. Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. J Med Chem 2022; 65:6869-6887. [PMID: 35467861 PMCID: PMC9383042 DOI: 10.1021/acs.jmedchem.2c00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity and obesity-induced metabolic dysfunctions are significant risk factors for nonalcoholic fatty liver disease and cardiovascular diseases. Thus, obesity is an economic and social burden in developed countries. Blocking the synthesis of inositol pyrophosphates by inositol hexakisphosphate kinase (IP6K) has been identified as a potential therapeutic strategy for obesity and related diseases. We have developed a novel and potent IP6K inhibitor 20 (UNC7467) (IC50 values: IP6K1 8.9 nM; IP6K2 4.9 nM; IP6K3 1320 nM). Inositol phosphate profiling of the HCT116 colon cancer cell line demonstrates that 20 reduced levels of inositol pyrophosphates by 66-81%, without significantly perturbing levels of other inositol phosphates. Furthermore, intraperitoneal injection of 20 in diet-induced obese mice improved glycemic profiles, ameliorated hepatic steatosis, and reduced weight gain without altering food intake. Thus, inhibitor 20 can be used as an in vivo probe for IP6K-related research. Moreover, it may have therapeutic relevance in treating obesity and related diseases.
Collapse
Affiliation(s)
- Yubai Zhou
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Daowei Huang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Zubair M, Hamzah R, Griffin R, Ali N. Identification and functional characterization of multiple inositol polyphosphate phosphatase1 (Minpp1) isoform-2 in exosomes with potential to modulate tumor microenvironment. PLoS One 2022; 17:e0264451. [PMID: 35235602 PMCID: PMC8890658 DOI: 10.1371/journal.pone.0264451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Inositol polyphosphates (InsPs) play key signaling roles in diverse cellular functions, including calcium homeostasis, cell survival and death. Multiple inositol polyphosphate phosphatase 1 (Minpp1) affects the cellular levels of InsPs and cell functions. The Minpp1 is an endoplasmic reticulum (ER) resident but localizes away from its cytosolic InsPs substrates. The current study examines the heterogeneity of Minpp1 and the potential physiologic impact of Minpp1 isoforms, distinct motifs, subcellular distribution, and enzymatic potential. The NCBI database was used to analyze the proteome diversity of Minpp1 using bioinformatics tools. The analysis revealed that translation of three different Minpp1 variants resulted in three isoforms of Minpp1 of varying molecular weights. A link between the minpp1 variant-2 gene and ER-stress, using real-time PCR, suggests a functional similarity between minpp1 variant-1 and variant-2. A detailed study on motifs revealed Minpp1 isoform-2 is the only other isoform, besides isoform-1, that carries a phosphatase motif for InsPs hydrolysis but no ER-retention signal. The confocal microscopy revealed that the Minpp1 isoform-1 predominantly localized near the nucleus with a GRP-78 ER marker, while Minpp1 isoform-2 was scattered more towards the cell periphery where it co-localizes with the plasma membrane-destined multivesicular bodies biomarker CD63. MCF-7 cells were used to establish that Minpp1 isoform-2 is secreted into exosomes. Brefeldin A treatment resulted in overexpression of the exosome-associated Minpp1 isoform-2, suggesting its secretion via an unconventional route involving endocytic-generated vesicles and a link to ER stress. Results further demonstrated that the exosome-associated Minpp1 isoform-2 was enzymatically active. Overall, the data support the possibility that an extracellular form of enzymatically active Minpp1 isoform-2 mitigates any anti-proliferative actions of extracellular InsPs, thereby also impacting the makeup of the tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Rabab Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Robert Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| |
Collapse
|
31
|
Whole Body Ip6k1 Deletion Protects Mice from Age-Induced Weight Gain, Insulin Resistance and Metabolic Dysfunction. Int J Mol Sci 2022; 23:ijms23042059. [PMID: 35216174 PMCID: PMC8878859 DOI: 10.3390/ijms23042059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.
Collapse
|
32
|
Lee H, Park SJ, Hong S, Lim SW, Kim S. Deletion of IP6K1 in mice accelerates tumor growth by dysregulating the tumor-immune microenvironment. Anim Cells Syst (Seoul) 2022; 26:19-27. [PMID: 35308129 PMCID: PMC8928833 DOI: 10.1080/19768354.2022.2029560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A family of inositol hexakisphosphate kinases (IP6Ks) catalyzes the production of inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate) which is known to modulate various biological events such as cell growth. While targeting IP6K1 in various cancer cells has been well reported to control cancer cell motility and invasiveness, the role of host IP6K1 in tumor progression remains unknown. By using a syngeneic MC38 murine mouse colon carcinoma model, here we examined how host IP6K1 in the tumor microenvironment influences tumor growth. In IP6K1 knockout (KO) mice, the growth of MC38 tumor cells was markedly accelerated and host survival was significantly shortened compared with wild-type (WT). Our flow cytometric analysis revealed that tumors grown in IP6K1 KO mice had lower immune suppressive myeloid cells and M1 polarized macrophages. Notably, infiltration of both antigen-presenting dendritic cells and CD8+ cytotoxic T lymphocytes into the tumor tissues was remarkably abrogated in IP6K1 KO condition. These studies suggest that enhanced tumor growth in IP6K1 KO mice resulted from reduced anti-tumor immunity due to disturbed immune cell actions in the tumor microenvironment. In conclusion, we demonstrate that host IP6K1 acts as a tumor suppressor, most likely by fine-tuning diverse tumor-immune cell interactions, which might have implications for improving the host response against cancer progression.
Collapse
Affiliation(s)
- Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Mukherjee S, Chakraborty M, Ulmasov B, McCommis K, Zhang J, Carpenter D, Msengi EN, Haubner J, Guo C, Pike DP, Ghoshal S, Ford DA, Neuschwander-Tetri BA, Chakraborty A. Pleiotropic actions of IP6K1 mediate hepatic metabolic dysfunction to promote nonalcoholic fatty liver disease and steatohepatitis. Mol Metab 2021; 54:101364. [PMID: 34757046 PMCID: PMC8609165 DOI: 10.1016/j.molmet.2021.101364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Obesity and insulin resistance greatly increase the risk of nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH). We have previously discovered that whole-body and adipocyte-specific Ip6k1deletion protects mice from high-fat-diet-induced obesity and insulin resistance due to improved adipocyte thermogenesis and insulin signaling. Here, we aimed to determine the impact of hepatocyte-specific and whole-body Ip6k1 deletion (HKO and Ip6k1-KO or KO) on liver metabolism and NAFLD/NASH. METHODS Body weight and composition; energy expenditure; glycemic profiles; and serum and liver metabolic, inflammatory, fibrotic and toxicity parameters were assessed in mice fed Western and high-fructose diet (HFrD) (WD: 40% kcal fat, 1.25% cholesterol, no added choline and HFrD: 60% kcal fructose). Mitochondrial oxidative capacity was evaluated in isolated hepatocytes. RNA-Seq was performed in liver samples. Livers from human NASH patients were analyzed by immunoblotting and mass spectrometry. RESULTS HKO mice displayed increased hepatocyte mitochondrial oxidative capacity and improved insulin sensitivity but were not resistant to body weight gain. Improved hepatocyte metabolism partially protected HKO mice from NAFLD/NASH. In contrast, enhanced whole-body metabolism and reduced body fat accumulation significantly protected whole-body Ip6k1-KO mice from NAFLD/NASH. Mitochondrial oxidative pathways were upregulated, whereas gluconeogenic and fibrogenic pathways were downregulated in Ip6k1-KO livers. Furthermore, IP6K1 was upregulated in human NASH livers and interacted with the enzyme O-GlcNAcase that reduces protein O-GlcNAcylation. Protein O-GlcNAcylation was found to be reduced in Ip6k1-KO and HKO mouse livers. CONCLUSION Pleiotropic actions of IP6K1 in the liver and other metabolic tissues mediate hepatic metabolic dysfunction and NAFLD/NASH, and thus IP6K1 deletion may be a potential treatment target for this disease.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle McCommis
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza Naomi Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Daniel P Pike
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Sarbani Ghoshal
- Department of Biological Sc. and Geology, QCC-CUNY, Bayside, NY, USA
| | - David A Ford
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
34
|
PPIP5K2 promotes colorectal carcinoma pathogenesis through facilitating DNA homologous recombination repair. Oncogene 2021; 40:6680-6691. [PMID: 34645979 DOI: 10.1038/s41388-021-02052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.
Collapse
|
35
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
36
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
37
|
Couto D, Richter A, Walter H, Furkert D, Hothorn M, Fiedler D. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry 2021; 60:2739-2748. [PMID: 34499474 DOI: 10.1021/acs.biochem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.
Collapse
Affiliation(s)
- Daniel Couto
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Annika Richter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Henriette Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
38
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
39
|
Southey BR, Bolt CR, Rymut HE, Keever MR, Ulanov AV, Li Z, Rund LA, Johnson RW, Rodriguez-Zas SL. Impact of Weaning and Maternal Immune Activation on the Metabolism of Pigs. Front Mol Biosci 2021; 8:660764. [PMID: 34336923 PMCID: PMC8319725 DOI: 10.3389/fmolb.2021.660764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Weaning wields environmental, social, and nutritional stresses that are detectable in the blood metabolite levels of the offspring. Prenatal stress in the form of maternal immune activation (MIA) in response to infection, which is associated with health and behavior disorders, also elicits prolonged changes in blood and brain cytokine and metabolite levels of the offspring. The goal of this study was to investigate the effects of weaning and MIA on the offspring’s liver function to advance the understanding of the impact of stressors on peripheral and central nervous systems, physiology, and health. Gas chromatography–mass spectrometry analysis was used to compare the level of hepatic metabolites from 22-day-old pigs (n = 48) evenly distributed among weaning (nursed or weaned), viral MIA exposure (yes or no), and sexes. Weaning effects were detected on 38 metabolites at p-value < 0.05 (28 metabolites at FDR p-value < 0.05), and sex-dependent MIA effects were detected on 11 metabolites. Multiple intermediate and final products of the enriched (FDR p-value < 0.05) glycolysis and gluconeogenesis and pentose phosphate pathways were over-abundant in nursed relative to weaned pigs. The enriched pathways confirm the impact of weaning on hepatic metabolic shift, oxidative stress, and inflammation. Higher levels of the glucogenic amino acid histidine are observed in pigs exposed to MIA relative to controls, suggesting that the role of this metabolite in modulating inflammation may supersede the role of this amino acid as an energy source. The lower levels of cholesterol detected in MIA pigs are consistent with hypocholesterolemia profiles detected in individuals with MIA-related behavior disorders. Our findings underline the impact of weaning and MIA stressors on hepatic metabolites that can influence peripheral and central nervous system metabolic products associated with health and behavior disorders.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni R Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marissa R Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
40
|
Inositol pyrophosphates promote MYC polyubiquitination by FBW7 to regulate cell survival. Biochem J 2021; 478:1647-1661. [PMID: 33821962 DOI: 10.1042/bcj20210081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.
Collapse
|
41
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
42
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
43
|
Sandström J, Balian A, Lockowandt R, Fornander T, Nordenskjöld B, Lindström L, Pérez-Tenorio G, Stål O. IP6K2 predicts favorable clinical outcome of primary breast cancer. Mol Clin Oncol 2021; 14:94. [PMID: 33767863 PMCID: PMC7976380 DOI: 10.3892/mco.2021.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/09/2021] [Indexed: 01/15/2023] Open
Abstract
The inositol hexakisphosphate kinase (IP6K) 1 and 2 genes are localized at 3p21.31, a highly altered gene-dense chromosomal region in cancer. The IP6Ks convert IP6 to IP7, which inhibits activation of the tumor-promoting PI3K/Akt/mTOR signaling pathway. IP6K2 has been suggested to be involved in p53-induced apoptosis, while IP6K1 may stimulate tumor growth and migration. The present study aimed to elucidate the role of the two IP6Ks in predicting outcome in patients with breast cancer. To the best of our knowledge, the role of IP6K was analyzed for the first time in tumors from three cohorts of patients with breast cancer; one Swedish low-risk cohort, one Dutch cohort and the TCGA dataset. Analyses of gene -and protein expression and subcellular localization were included. IP6K2 gene expression was associated with ER positivity and nuclear p-Akt. Improved prognosis was detected with high IP6K2 gene expression compared with low IP6K2 gene expression in systemically untreated patients in the Swedish low-risk and Dutch cohorts. In the TCGA dataset, IP6K2 prognostic value was significant when selecting for tumors with wild-type TP53. A multivariable analysis testing IP6K2 against other cancer-related genes at 3p.21.31, including IP6K1 and clinical biomarkers, revealed that IP6K2 was associated with decreased risk of distant recurrence. IP6K1 was associated with increased risk of distant recurrence in the multivariable test and protein analysis revealed trends of worse prognosis with high IP6K1 in the cytoplasm. The expression levels of IP6K1 and IP6K2 were associated to a high extent; however, a diverging prognostic value of the two genes was observed in breast cancer. The present data suggest that IP6K2 can be a favorable prognostic factor, while IP6K1 may not be.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Alien Balian
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Rebecca Lockowandt
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Linda Lindström
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Stockholm, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
44
|
Metabolic supervision by PPIP5K, an inositol pyrophosphate kinase/phosphatase, controls proliferation of the HCT116 tumor cell line. Proc Natl Acad Sci U S A 2021; 118:2020187118. [PMID: 33649228 PMCID: PMC7958180 DOI: 10.1073/pnas.2020187118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Identification of common patterns of cancer metabolic reprogramming could assist the development of new therapeutic strategies. Recent attention in this field has focused on identifying and targeting signal transduction pathways that interface directly with major metabolic control processes. In the current study we demonstrate the importance of signaling by the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) to the metabolism and proliferation of the HCT116 colonic tumor cell line. We observed reciprocal cross talk between PPIP5K catalytic activity and glucose metabolism, and we show that CRISPR-mediated PPIP5K deletion suppresses HCT116 cell proliferation in glucose-limited culture conditions that mimic the tumor cell microenvironment. We conducted detailed, global metabolomic analyses of wild-type and PPIP5K knockout (KO) cells by measuring both steady-state metabolite levels and by performing isotope tracing experiments. We attribute the growth-impaired phenotype to a specific reduction in the supply of precursor material for de novo nucleotide biosynthesis from the one carbon serine/glycine pathway and the pentose phosphate pathway. We identify two enzymatic control points that are inhibited in the PPIP5K KO cells: serine hydroxymethyltransferase and phosphoribosyl pyrophosphate synthetase, a known downstream target of AMP-regulated protein kinase, which we show is noncanonically activated independently of adenine nucleotide status. Finally, we show the proliferative defect in PPIP5K KO cells can be significantly rescued either by addition of inosine monophosphate or a nucleoside mixture or by stable expression of PPIP5K activity. Overall, our data describe multiple, far-reaching metabolic consequences for metabolic supervision by PPIP5Ks in a tumor cell line.
Collapse
|
45
|
Liao G, Ye W, Heitmann T, Ernst G, DePasquale M, Xu L, Wormald M, Hu X, Ferrer M, Harmel RK, Fiedler D, Barrow J, Wei H. Identification of Small-Molecule Inhibitors of Human Inositol Hexakisphosphate Kinases by High-Throughput Screening. ACS Pharmacol Transl Sci 2021; 4:780-789. [PMID: 33860201 DOI: 10.1021/acsptsci.0c00218] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 01/15/2023]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) catalyze pyrophosphorylation of inositol hexakisphosphate (IP6) into inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7), which is involved in numerous areas of cell physiology including glucose homeostasis, blood coagulation, and neurological development. Inhibition of IP6Ks may be effective for the treatment of Type II diabetes, obesity, metabolic complications, thrombosis, and psychiatric disorders. We performed a high-throughput screen (HTS) of 158 410 compounds for IP6K1 inhibitors using a previously developed ADP-Glo Max assay. Of these, 1206 compounds were found to inhibit IP6K1 kinase activity by more than 25%, representing a 0.8% hit rate. Structural clustering analysis of HTS-active compounds, which were confirmed in the dose-response testing using the same kinase assay, revealed diverse clusters that were feasible for future structure-activity relationship (SAR) optimization to potent IP6K inhibitors. Medicinal chemistry SAR efforts in three chemical series identified potent IP6K1 inhibitors which were further validated in an orthogonal LC-MS IP7 analysis. The effects of IP6K1 inhibitors on cellular IP7 levels were further confirmed and were found to correlate with cellular IP6K1 binding measured by a high-throughput cellular thermal shift assay (CETSA).
Collapse
Affiliation(s)
- Gangling Liao
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Wenjuan Ye
- National Center for Advancing Translational Sciences, Rockville 20850, Maryland, United States
| | - Tyler Heitmann
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Glen Ernst
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Michael DePasquale
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Laiyi Xu
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Michael Wormald
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, Rockville 20850, Maryland, United States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, Rockville 20850, Maryland, United States
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - James Barrow
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, United States
| |
Collapse
|
46
|
Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules 2020; 25:molecules25215079. [PMID: 33139672 PMCID: PMC7663797 DOI: 10.3390/molecules25215079] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders. We review inositols and inositol phosphate metabolism in mammalian cells to establish their biological activities and highlight their potential roles in energy metabolism. These molecules are known to decrease insulin resistance, increase insulin sensitivity, and have diverse properties with importance from cell signaling to metabolism. Evidence showed that inositol phosphates might enhance the browning of white adipocytes and directly improve insulin sensitivity through adipocytes. In addition, inositol pyrophosphates containing high-energy phosphate bonds are considered in increasing cellular energetics. Despite all recent advances, many aspects of the bioactivity of inositol phosphates are still not clear, especially their effects on insulin resistance and alteration of metabolism, so more research is needed.
Collapse
|
47
|
Shears SB, Wang H. Metabolism and Functions of Inositol Pyrophosphates: Insights Gained from the Application of Synthetic Analogues. Molecules 2020; 25:E4515. [PMID: 33023101 PMCID: PMC7583957 DOI: 10.3390/molecules25194515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs) comprise an important group of intracellular, diffusible cellular signals that a wide range of biological processes throughout the yeast, plant, and animal kingdoms. It has been difficult to gain a molecular-level mechanistic understanding of the actions of these molecules, due to their highly phosphorylated nature, their low levels, and their rapid metabolic turnover. More recently, these obstacles to success are being surmounted by the chemical synthesis of a number of insightful PP-InsP analogs. This review will describe these analogs and will indicate the important chemical and biological information gained by using them.
Collapse
Affiliation(s)
- Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | | |
Collapse
|
48
|
Chin AC, Gao Z, Riley AM, Furkert D, Wittwer C, Dutta A, Rojas T, Semenza ER, Felder RA, Pluznick JL, Jessen HJ, Fiedler D, Potter BVL, Snyder SH, Fu C. The inositol pyrophosphate 5-InsP 7 drives sodium-potassium pump degradation by relieving an autoinhibitory domain of PI3K p85α. SCIENCE ADVANCES 2020; 6:6/44/eabb8542. [PMID: 33115740 PMCID: PMC7608788 DOI: 10.1126/sciadv.abb8542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/14/2020] [Indexed: 05/10/2023]
Abstract
Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.
Collapse
Affiliation(s)
- Alfred C Chin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Gao
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Amit Dutta
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Tomas Rojas
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan R Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning J Jessen
- Institute of Organic Chemistry and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
50
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|