1
|
Wang D, Yang Z, Wu P, Li Q, Yu C, Yang Y, Du Y, Jiang M, Ma J. Adrenomedullin 2 attenuates anxiety-like behaviors by increasing IGF-II in amygdala and re-establishing blood-brain barrier. Transl Psychiatry 2025; 15:10. [PMID: 39809730 PMCID: PMC11733292 DOI: 10.1038/s41398-025-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice. Based on transcriptome analysis and biochemical analyses, we found that ADM2 facilitates the expression of insulin-like growth factor 2 (IGF-II), which then triggers the activation of the AKT-GSK3β-mTOR signaling pathway via the IGF-II receptor (IGF-IIR), rather than the IGF-I receptor (IGF-IR). Furthermore, as evidenced by increased Evans blue staining and decreased VE-cadherin levels, the BBB exhibited dysfunction in ADM2 knockout mice with anxiety-like behaviors. In in vitro studies, ADM2 administration promoted the expression of VE-cadherin and decreased IGF-II leakage through the endothelial barrier in a BBB model. Taken together, ADM2 may alleviate anxiety-like behavior and social deficits by enhancing BBB integrity and increasing IGF-II levels in the brain. These findings highlight the potential of ADM2 as a therapeutic target for anxiety and related mental disorders.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Wu
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Yu
- Frontiers Science Center for Disease-related Molecular Network, Laboratory of Omics Technology and Bioinformatics. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuefan Du
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengwei Jiang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Department of Neurosurgery, West China Tianfu Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Moon JH, Roh HS, Park YJ, Song HH, Choi J, Jung DW, Park SJ, Park HJ, Park SH, Kim DE, Kim G, Auh JH, Bhang DH, Lee HJ, Lee DY. A three-dimensional mouse liver organoid platform for assessing EDCs metabolites simulating liver metabolism. ENVIRONMENT INTERNATIONAL 2025; 195:109184. [PMID: 39798515 DOI: 10.1016/j.envint.2024.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models. We evaluated the effects the activity of EDC metabolites generated through mLOs based on human cell-based reporter gene assays in addition to existing models. This study emphasizes the importance of hepatic ex-vivo and suggests the need a new metabolic model through a 3D mLOs platform. These results indicate that mLOs provides a novel biological method to screen for potential endocrine-disrupting activities of EDC metabolites.
Collapse
Affiliation(s)
- Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Young Jae Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun Ho Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Da Woon Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ho Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Da-Eun Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Gahee Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 00826, Republic of Korea; Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
3
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
4
|
Yokomizo-Goto M, Takenaka-Ninagawa N, Zhao C, Bourgeois Yoshioka CK, Miki M, Motoike S, Inada Y, Zujur D, Theoputra W, Jin Y, Toguchida J, Ikeya M, Sakurai H. Distinct muscle regenerative capacity of human induced pluripotent stem cell-derived mesenchymal stromal cells in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2024; 15:340. [PMID: 39370505 PMCID: PMC11457425 DOI: 10.1186/s13287-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Ullrich congenital muscular dystrophy (UCMD) is caused by a deficiency in type 6 collagen (COL6) due to mutations in COL6A1, COL6A2, or COL6A3. COL6 deficiency alters the extracellular matrix structure and biomechanical properties, leading to mitochondrial defects and impaired muscle regeneration. Therefore, mesenchymal stromal cells (MSCs) that secrete COL6 have attracted attention as potential therapeutic targets. Various tissue-derived MSCs exert therapeutic effects in various diseases. However, no reports have compared the effects of MSCs of different origins on UCMD pathology. METHODS To evaluate which MSC population has the highest therapeutic efficacy for UCMD, in vivo (transplantation of MSCs to Col6a1-KO/NSG mice) and in vitro experiments (muscle stem cell [MuSCs] co-culture with MSCs) were conducted using adipose tissue-derived MSCs, bone marrow-derived MSCs, and xeno-free-induced iPSC-derived MSCs (XF-iMSCs). RESULTS In transplantation experiments on Col6a1-KO/NSG mice, the group transplanted with XF-iMSCs showed significantly enhanced muscle fiber regeneration compared to the other groups 1 week after transplantation. At 12 weeks after transplantation, only the XF-iMSCs transplantation group showed a significantly larger muscle fiber diameter than the other groups without inducing fibrosis, which was observed in the other transplantation groups. Similarly, in co-culture experiments, XF-iMSCs were found to more effectively promote the fusion and differentiation of MuSCs derived from Col6a1-KO/NSG mice than the other primary MSCs investigated in this study. Additionally, in vitro knockdown and supplementation experiments suggested that the IGF2 secreted by XF-iMSCs promoted MuSC differentiation. CONCLUSION XF-iMSCs are promising candidates for promoting muscle regeneration while avoiding fibrosis, offering a safer and more effective therapeutic approach for UCMD than other potential therapies.
Collapse
Affiliation(s)
- Megumi Yokomizo-Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Chengzhu Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshiko Inada
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Denise Zujur
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - William Theoputra
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yonghui Jin
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Junya Toguchida
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Budhraja R, Joshi N, Radenkovic S, Kozicz T, Morava E, Pandey A. Dysregulated proteome and N-glycoproteome in ALG1-deficient fibroblasts. Proteomics 2024; 24:e2400012. [PMID: 38470198 PMCID: PMC7616334 DOI: 10.1002/pmic.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Asparagine-linked glycosylation 1 protein is a β-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2) trisaccharides (Hex-HexNAc2) and novel tetrasaccharides (NeuAc-Hex-HexNAc2) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.
Collapse
Affiliation(s)
- Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Suzuki T, Notsuda H, Oishi H, Niikawa H, Watanabe T, Watanabe Y, Onodera K, Takeda T, Sugawara R, Noda M, Sakurai K, Nagao M, Fukuda I, Okada Y. Evolution of Pleural Solitary Fibrous Tumors Causing Severe Hypoglycemia after Exceptionally Long Asymptomatic Periods: Report of Two Surgical Cases. TOHOKU J EXP MED 2024; 263:11-16. [PMID: 38325831 DOI: 10.1620/tjem.2024.j012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Non-islet cell tumor hypoglycemia (NICTH) is one of the paraneoplastic syndromes manifesting severe hypoglycemia caused by aberrant production of high-molecular-weight insulin-like growth factor 2 (big-IGF2). Two surgical cases of extremely large thoracic solitary fibrous tumors (SFT) with unusual history of NICTH are presented. One case manifested severe hypoglycemia after four years of the first complete surgical resection of the tumor with potential malignant transformation, and the other case showed severe hypoglycemia after ten years of the first detection of the tumor. Meticulous laboratory testing, including serum endocrinological tests and western immunoblotting before and after surgery was performed, and both cases were diagnosed as NICTH. Both patients underwent open thoracic surgery. The patients showed normal glucose and hormone levels immediately after the resection of responsible tumors with elevated blood insulin concentration. SFTs are generally considered benign; however, life-threatening hypoglycemia can happen regardless of treatment. Careful follow-up of the tumor growth is warranted.
Collapse
Affiliation(s)
- Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Yui Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Ken Onodera
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Tetsuto Takeda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Ringo Sugawara
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
- Department of Endocrinology and Metabolism, National Hospital Organization Sendai Medical Center
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| | - Kanako Sakurai
- Department of Endocrinology and Metabolism, National Hospital Organization Sendai Medical Center
| | - Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School
| | - Izumi Fukuda
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
7
|
Li W, She L, Zhang M, Yang M, Zheng W, He H, Wang P, Dai Q, Gong Z. The associations of IGF2, IGF2R and IGF2BP2 gene polymorphisms with gestational diabetes mellitus: A case-control study. PLoS One 2024; 19:e0298063. [PMID: 38701040 PMCID: PMC11068199 DOI: 10.1371/journal.pone.0298063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE To investigate the associations of Insulin-like growth factor-II (IGF2) gene, Insulin-like growth factor-II receptor (IGF2R) gene and Insulin-like growth factor-II binding protein 2 (IGF2BP2) gene polymorphisms with the susceptibility to gestational diabetes mellitus (GDM) in Chinese population. METHODS A total of 1703 pregnant women (835 GDM and 868 Non-GDM) were recruited in this case-control study. All participants underwent prenatal 75 g oral glucose tolerance test (OGTT) examinations during 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. Genotyping of candidate SNPs (IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs1374910, rs11705701, rs6777038, rs16860234, rs7651090) was performed on Sequenom MassARRAY platform. Logistic regression analysis was conducted to investigate the associations between candidate SNPs and risk of GDM. In addition, multifactor dimensionality reduction (MDR) method was applied to explore the effects of gene-gene interactions on GDM risk. RESULTS There were significant distribution differences between GDM group and non-GDM group in age, pre-pregnancy BMI, education level and family history of diabetes (P < 0.05). After adjusted for age, pre-pregnancy BMI, education level and family history of diabetes, there were no significant associations of the candidate SNPs polymorphisms and GDM risk (P > 0.05). Furthermore, there were no gene-gene interactions on the GDM risk among the candidate SNPs (P > 0.05). However, the fasting blood glucose (FBG) levels of rs6777038 CT carriers were significantly lower than TT carriers (4.69±0.69 vs. 5.03±1.57 mmol/L, P < 0.01), and the OGTT-2h levels of rs6777038 CC and CT genotype carriers were significantly lower than TT genotype carriers (8.10±1.91 and 8.08±1.87 vs. 8.99±2.90 mmol/L, P < 0.01). CONCLUSIONS IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs11705701, rs6777038, rs16860234, rs7651090 polymorphisms were not significantly associated with GDM risk in Wuhan, China. Further lager multicenter researches are needed to confirm these results.
Collapse
Affiliation(s)
- Wei Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu She
- Xianning Center for Disease Control and Prevention, Xianning, China
| | - Muyu Zhang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenpei Zheng
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua He
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Dai
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengtao Gong
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Barbieri M, Chiodini P, Di Gennaro P, Hafez G, Liabeuf S, Malyszko J, Mani LY, Mattace-Raso F, Pepin M, Perico N, Simeoni M, Zoccali C, Tortorella G, Capuano A, Remuzzi G, Capasso G, Paolisso G. Efficacy of erythropoietin as a neuroprotective agent in CKD-associated cognitive dysfunction: A literature systematic review. Pharmacol Res 2024; 203:107146. [PMID: 38493928 DOI: 10.1016/j.phrs.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Patients with chronic kidney disease (CKD) often experience mild cognitive impairment and other neurocognitive disorders. Studies have shown that erythropoietin (EPO) and its receptor have neuroprotective effects in cell and animal models of nervous system disorders. Recombinant human EPO (rHuEPO), commonly used to treat anemia in CKD patients, could be a neuroprotective agent. In this systematic review, we aimed to assess the published studies investigating the cognitive benefits of rHuEPO treatment in individuals with reduced kidney function. We comprehensively searched Pubmed, Cochrane Library, Scopus, and Web of Science databases from 1990 to 2023. After selection, 24 studies were analyzed, considering study design, sample size, participant characteristics, intervention, and main findings. The collective results of these studies in CKD patients indicated that rHuEPO enhances brain function, improves performance on neuropsychological tests, and positively affects electroencephalography measurements. These findings suggest that rHuEPO could be a promising neuroprotective agent for managing CKD-related cognitive impairment.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Paolo Chiodini
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Piergiacomo Di Gennaro
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, France
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Francesco Mattace-Raso
- Department of Internal Medicine, Section of Geriatric Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Marion Pepin
- Clinical Epidemiology, CESP, INSERM, UMR 1018, Paris Saclay University, Villejuif, France; Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA; Institute of Biology and Molecular Biology (BIOGEM), Ariano Irpino, Italy; IPNET, Reggio Calabria, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Section of Pharmacology 'L. Donatelli', Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| | | | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
9
|
González-Flores D, Márquez A, Casimiro I. Oxidative Effects in Early Stages of Embryo Development Due to Alcohol Consumption. Int J Mol Sci 2024; 25:4100. [PMID: 38612908 PMCID: PMC11012856 DOI: 10.3390/ijms25074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol, a widely consumed drug, exerts significant toxic effects on the human organism. This review focuses on its impact during fetal development, when it leads to a spectrum of disorders collectively termed Fetal Alcohol Spectrum Disorders (FASD). Children afflicted by FASD exhibit distinct clinical manifestations, including facial dysmorphism, delayed growth, and neurological and behavioral disorders. These behavioral issues encompass diminished intellectual capacity, memory impairment, and heightened impulsiveness. While the precise mechanisms underlying alcohol-induced fetal damage remain incompletely understood, research indicates a pivotal role for reactive oxygen species (ROS) that are released during alcohol metabolism, inciting inflammation at the cerebral level. Ethanol metabolism amplifies the generation of oxidant molecules, inducing through alterations in enzymatic and non-enzymatic systems responsible for cellular homeostasis. Alcohol consumption disrupts endogenous enzyme activity and fosters lipid peroxidation in consumers, potentially affecting the developing fetus. Addressing this concern, administration of metformin during the prenatal period, corresponding to the third trimester of human pregnancy, emerges as a potential therapeutic intervention for mitigating FASD. This proposed approach holds promise for ameliorating the adverse effects of alcohol exposure on fetal development and warrants further investigation.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Antonia Márquez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ilda Casimiro
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
10
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
11
|
Koshta K, Chauhan A, Singh S, Gaikwad AN, Kumar M, Srivastava V. Altered Igf2 imprint leads to accelerated adipogenesis and early onset of metabolic syndrome in male mice following gestational arsenic exposure. CHEMOSPHERE 2024; 352:141493. [PMID: 38368966 DOI: 10.1016/j.chemosphere.2024.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Developmental exposure to environmental pollutants has been shown to promote adverse health outcomes in offspring. Exposure to heavy metals such as arsenic which also has endocrine-disrupting activity is being increasingly linked with cancers, diabetes, and lately with Metabolic Syndrome (MetS). In this work, we have assessed the effects of preconceptional plus gestational arsenic exposure on the developmental programming of MetS in offspring. In our study, only gestational arsenic exposure led to reduced birth weight, followed by catch-up growth, adiposity, elevated serum triglycerides levels, and hyperglycemia in male offspring. Significant adipocyte dysfunction was observed in offspring with increased hypertrophy, insulin resistance, and chronic inflammation in epididymal white adipose tissue. Adipose tissue regulates the metabolic health of individuals and its dysfunction resulted in elevated serum levels of metabolism-regulating adipokines (Leptin, Resistin) and pro-inflammatory cytokines (PAI-1, TNFα). The progenitor adipose-derived stem cells (AdSCs) from exposed progeny had increased proliferation and adipogenic potential with excess lipid accumulation. We also found increased activation of Akt, ERK1/2 & p38 MAPK molecules in arsenic-exposed AdSCs along with increased levels of phospho-Insulin-like growth factor-1 receptor (p-IGF1R) and its upstream activator Insulin-like growth factor-2 (IGF2). Overexpression of Igf2 was found to be due to arsenic-mediated DNA hypermethylation at the imprinting control region (ICR) located -2kb to -4.4 kb upstream of the H19 gene which caused a reduction in the conserved zinc finger protein (CTCF) occupancy. This further led to persistent activation of the MAPK signaling cascade and enhanced adipogenesis leading to the early onset of MetS in the offspring.
Collapse
Affiliation(s)
- Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Nilkanth Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mahadeo Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Drug and Chemical Toxicology, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
13
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
14
|
Kim M, Munyaneza JP, Cho E, Jang A, Jo C, Nam KC, Choo HJ, Lee JH. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals (Basel) 2023; 13:2966. [PMID: 37760369 PMCID: PMC10525433 DOI: 10.3390/ani13182966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Meat flavor is an important factor that influences the palatability of chicken meat. Inosine 5'-monophosphate (IMP), inosine, and hypoxanthine are nucleic acids that serve as taste-active compounds, mainly enhancing flavor in muscle tissue. For this study, we performed a genome-wide association study (GWAS) using a mixed linear model to identify single-nucleotide polymorphisms (SNPs) that are significantly associated with changes in the contents of the nucleotide-related compounds of breast meat in the Korean native chicken (KNC) population. The genomic region on chicken chromosome 5 containing an SNP (rs316338889) was significantly (p < 0.05) associated with all three traits. The trait-related candidate genes located in this significant genomic region were investigated through performing a functional enrichment analysis and protein-protein interaction (PPI) database search. We found six candidate genes related to the function that possibly affected the content of nucleotide-related compounds in the muscle, namely, the TNNT3 and TNNT2 genes that regulate muscle contractions; the INS, IGF2, and DUSP8 genes associated with insulin sensitivity; and the C5NT1AL gene that is presumably related to the nucleotide metabolism process. This study is the first of its kind to find candidate genes associated with the content of all three types of nucleotide-related compounds in chicken meat using GWAS. The candidate genes identified in this study can be used for genomic selection to breed better-quality chickens in the future.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
15
|
Ungureanu MC, Bilha SC, Hogas M, Velicescu C, Leustean L, Teodoriu LC, Preda C. Preptin: A New Bone Metabolic Parameter? Metabolites 2023; 13:991. [PMID: 37755271 PMCID: PMC10537071 DOI: 10.3390/metabo13090991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Preptin is a 34-aminoacid peptide derived from the E-peptide of pro-insulin-like growth factor 2 (pro-IGF2) that is co-secreted with insulin and upregulates glucose-mediated insulin secretion. High serum preptin levels were described in conditions associated with insulin resistance, such as polycystic ovary syndrome and type 2 diabetes mellitus (T2M). Insulin and also IGF2 are known to be anabolic bone hormones. The "sweet bone" in T2M usually associates increased density, but altered microarchitecture. Therefore, preptin was proposed to be one of the energy regulatory hormones that positively impacts bone health. Experimental data demonstrate a beneficial impact of preptin upon the osteoblasts. Preptin also appears to regulate osteocalcin secretion, which in turn regulates insulin sensitivity. Preptin is greatly influenced by the glucose tolerance status and the level of physical exercise, both influencing the bone mass. Clinical studies describe low serum preptin concentrations in osteoporosis in both men and women, therefore opening the way towards considering preptin a potential bone anabolic therapy. The current review addresses the relationship between preptin and bone mass and metabolism in the experimental and clinical setting, also considering the effects of preptin on carbohydrate metabolism and the pancreatic-bone loop.
Collapse
Affiliation(s)
- Maria-Christina Ungureanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Stefana Catalina Bilha
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Mihai Hogas
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Velicescu
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Letitia Leustean
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Laura Claudia Teodoriu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| | - Cristina Preda
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.-C.U.)
| |
Collapse
|
16
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Collado-Pérez R, Canelles S, Ros P, García-Piqueras J, Pérez-Nadador I, Barrios V, Argente J, Chowen JA. The metabolic effects of resumption of a high fat diet after weight loss are sex dependent in mice. Sci Rep 2023; 13:13227. [PMID: 37580448 PMCID: PMC10425431 DOI: 10.1038/s41598-023-40514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Dietary restriction is a frequent strategy for weight loss, but adherence is difficult and returning to poor dietary habits can result in more weight gain than that previously lost. How weight loss due to unrestricted intake of a healthy diet affects the response to resumption of poor dietary habits is less studied. Moreover, whether this response differs between the sexes and if the insulin-like growth factor (IGF) system, sex dependent and involved in metabolic control, participates is unknown. Mice received rodent chow (6% Kcal from fat) or a high-fat diet (HFD, 62% Kcal from fat) for 4 months, chow for 3 months plus 1 month of HFD, or HFD for 2 months, chow for 1 month then HFD for 1 month. Males and females gained weight on HFD and lost weight when returned to chow at different rates (p < 0.001), but weight gain after resumption of HFD intake was not affected by previous weight loss in either sex. Glucose metabolism was more affected by HFD, as well as the re-exposure to HFD after weight loss, in males. This was associated with increases in hypothalamic mRNA levels of IGF2 (p < 0.01) and IGF binding protein (IGFBP) 2 (p < 0.05), factors involved in glucose metabolism, again only in males. Likewise, IGF2 increased IGFBP2 mRNA levels only in hypothalamic astrocytes from males (p < 0.05). In conclusion, the metabolic responses to dietary changes were less severe and more delayed in females and the IGF system might be involved in some of the sex specific observations.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Endocrinology, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Jorge García-Piqueras
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Iris Pérez-Nadador
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.
| |
Collapse
|
17
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
18
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
19
|
Niedra H, Konrade I, Peculis R, Isajevs S, Saksis R, Skapars R, Sivins A, Daukste BE, Mezaka D, Rovite V. Solitary fibrous tumor with IGF-II-induced non-islet cell tumor hypoglycemia: a case report and molecular characterization by next-generation sequencing. Front Oncol 2023; 13:1188579. [PMID: 37469410 PMCID: PMC10352493 DOI: 10.3389/fonc.2023.1188579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Non-islet cell tumor-induced hypoglycemia (NICTH) is a rare, life-threatening medical condition caused by excessive insulin-like growth factor II (IGF-II) secretion from tumors of most commonly mesenchymal origin. Using next-generation sequencing, we have characterized the genome and transcriptome of the resected IGF-II-secreting solitary fibrous tumor from a patient with severe hypoglycemia accompanied by hypoglycemia unawareness. Case presentation A 69-year-old male patient presenting with abdominal discomfort was examined using computer tomography, revealing a large lesion at the lesser pelvis extending above the umbilicus. As no bone and lymph node metastases were detected, the patient was scheduled for laparotomy. Before surgery, the patient presented with symptoms of severe hypoglycemia. Suppressed C-peptide levels and subsequent hypokalemia indicated a possible case of NICTH. The patient was treated with methylprednisolone (8 mg) to assess hypoglycemia. After the surgery, mild hypoglycemia was present for the postoperative period, and no radiological recurrences were observed 3 and 12 months after discharge. Histopathological examination results were consistent with the diagnosis of malignant solitary fibrous tumor (SFT). Overexpression of IGF-II was confirmed by both immunohistochemistry and RNA sequencing. Further NGS analysis revealed an SFT characteristic alteration-NAB2-STAT6 fusion. Additionally, three deleterious missense variants were detected in oncogenes BIRC6, KIT, and POLQ, and one homozygous in-frame deletion in the RBM10 tumor suppressor gene. Conclusion While the NAB2-STAT6 fusions are well characterized, the mutational landscape of SFTs remains understudied. This study reports the importance of NGS to characterize SFTs as we detected four coding variants in genes (BIRC6, KIT, POLQ, and RBM10) associated with tumorigenesis that could potentially contribute to the overall pathogenesis of SFT.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- RigaEast Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Raitis Peculis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Rihards Saksis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Dace Mezaka
- RigaEast Clinical University Hospital, Riga, Latvia
| | - Vita Rovite
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
20
|
Voon K, Simpson A, Fegan PG, Walsh JP. Three Cases of Non-islet Cell Tumor Hypoglycemia Highlighting Efficacy of Glucocorticoid Treatment. JCEM CASE REPORTS 2023; 1:luad045. [PMID: 37909001 PMCID: PMC10580471 DOI: 10.1210/jcemcr/luad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 11/02/2023]
Abstract
Non-islet cell tumor hypoglycemia (NICTH) is a rarely encountered cause of hypoglycemia. It is most often caused by tumor secretion of precursor insulin-like growth factor-2 (IGF-2) which, in high concentrations, binds to insulin receptors exerting insulin-like metabolic effects. It is often associated with mesenchymal and hepatic tumors. We describe 3 cases of NICTH: a 60-year-old man with an unresectable pelvic sarcoma and two women ages 43 and 57 with metastatic hemangiopericytoma. Biochemical assessment identified hypoglycemia associated with suppressed insulin, c-peptide, and beta-hydroxybutyrate levels. Each patient was treated with oral glucocorticoids, which effectively prevented recurrence of hypoglycemia and this effect was sustained long-term. These cases highlight a rarely encountered but important cause of hypoglycemia and demonstrate the long-term efficacy of glucocorticoid treatment in preventing hypoglycemia in cases of NICTH related to surgically unresectable tumors.
Collapse
Affiliation(s)
- Kimberly Voon
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Aaron Simpson
- Department of Clinical Biochemistry, PathWest Laboratory, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Department of Clinical Biochemistry, Clinipath Pathology, Osborne Park, WA 6017, Australia
| | - Peter Gerard Fegan
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Medical School, Curtin University, Perth, WA 6102, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
21
|
Matson K, Macleod A, Mehta N, Sempek E, Tang X. Impacts of MicroRNA-483 on Human Diseases. Noncoding RNA 2023; 9:37. [PMID: 37489457 PMCID: PMC10366739 DOI: 10.3390/ncrna9040037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression by targeting specific messenger RNAs (mRNAs) in distinct cell types. This review provides a com-prehensive overview of the current understanding regarding the involvement of miR-483-5p and miR-483-3p in various physiological and pathological processes. Downregulation of miR-483-5p has been linked to numerous diseases, including type 2 diabetes, fatty liver disease, diabetic nephropathy, and neurological injury. Accumulating evidence indicates that miR-483-5p plays a crucial protective role in preserving cell function and viability by targeting specific transcripts. Notably, elevated levels of miR-483-5p in the bloodstream strongly correlate with metabolic risk factors and serve as promising diagnostic markers. Consequently, miR-483-5p represents an appealing biomarker for predicting the risk of developing diabetes and cardiovascular diseases and holds potential as a therapeutic target for intervention strategies. Conversely, miR-483-3p exhibits significant upregulation in diabetes and cardiovascular diseases and has been shown to induce cellular apoptosis and lipotoxicity across various cell types. However, some discrepancies regarding its precise function have been reported, underscoring the need for further investigation in this area.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (K.M.); (A.M.); (N.M.); (E.S.)
| |
Collapse
|
22
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
23
|
Sun WX, Shu YP, Yang XY, Huang W, Chen J, Yu NN, Zhao M. Effects of folic acid supplementation in pregnant mice on glucose metabolism disorders in male offspring induced by lipopolysaccharide exposure during pregnancy. Sci Rep 2023; 13:7984. [PMID: 37198280 DOI: 10.1038/s41598-023-31690-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/15/2023] [Indexed: 05/19/2023] Open
Abstract
The DOHaD theory suggests that adverse environmental factors in early life may lead to the development of metabolic diseases including diabetes and hypertension in adult offspring through epigenetic mechanisms such as DNA methylation. Folic acid (FA) is an important methyl donor in vivo and participates in DNA replication and methylation. The preliminary experimental results of our group demonstrated that lipopolysaccharide (LPS, 50 µg/kg/d) exposure during pregnancy could lead to glucose metabolism disorders in male offspring, but not female offspring; however, the effect of folic acid supplementation on glucose metabolism disorders in male offspring induced by LPS exposure remains unclear. Therefore, in this study, pregnant mice were exposed to LPS on gestational day (GD) 15-17 and were given three doses of FA supplementation (2 mg/kg, 5 mg/kg, or 40 mg/kg) from mating to lactation to explore its effect on glucose metabolism in male offspring and the potential mechanism. This study confirmed that FA supplementation of 5 mg/kg in pregnant mice improved glucose metabolism in LPS-exposed offspring during pregnancy by regulating gene expression.
Collapse
Affiliation(s)
- Wan-Xiao Sun
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Medical College, Hefei, 230601, Anhui, China
| | - Yi-Ping Shu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xin-Yu Yang
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Huang
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Chen
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Hospital, Hefei, 230022, Anhui, China
| | - Ning-Ning Yu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Mei Zhao
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
24
|
Heidary S, Awasthi N, Page N, Allnutt T, Lewis RS, Liongue C, Ward AC. A zebrafish model of growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). Cell Mol Life Sci 2023; 80:109. [PMID: 36995466 PMCID: PMC10063521 DOI: 10.1007/s00018-023-04759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.
Collapse
Affiliation(s)
- Somayyeh Heidary
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nicole Page
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Theo Allnutt
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
25
|
Belani MA, Shah P, Banker M, Gupta SS. Investigating the potential role of swertiamarin on insulin resistant and non-insulin resistant granulosa cells of poly cystic ovarian syndrome patients. J Ovarian Res 2023; 16:55. [PMID: 36932437 PMCID: PMC10024427 DOI: 10.1186/s13048-023-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND AND AIM Conventional drugs have limitations due to prevalence of contraindications in PCOS patients. To explore the potential effects of swertiamarin, on abrupted insulin and steroidogenic signaling in human luteinized granulosa cells from PCOS patients with or without insulin resistance. EXPERIMENTAL PROCEDURE hLGCs from 8 controls and 16 PCOS patients were classified for insulin resistance based on down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. Cells were grouped as control, PCOS-IR and PCOS-NIR, treated with swertiamarin (66 µM) and metformin (1 mM). Expression of key molecules involved in insulin signaling, fat metabolism, IGF system and steroidogenesis were compared between groups. RESULTS Swertiamarin significantly (P < 0.05) reversed the expression of INSR-β, PI(3)K, p-Akt, PKC-ζ, PPARγ, (P < 0.01) IRS (Ser 307) and IGF system in PCOS-IR group and was equally potent to metformin. In the same group, candidate genes viz SREBP1c, FAS, ACC-1 and CPT-1 were down regulated by swertiamarin (P < 0.001) and metformin (P < 0.001). Significant upregulation was demonstrated in expression of StAR, CYP19A1, 17β-HSD and 3β-HSD when treated with swertiamarin (P < 0.01) and metformin (P < 0.01) in PCOS-IR followed by increase in 17β-HSD and 3β-HSD enzyme activity along with estradiol and progesterone secretions. However, swertiamarin did not reveal any effect on PCOS-NIR group as compared to metformin that significantly (P < 0.01) reversed all the parameters related to steroidogenesis and down regulated basal expression of insulin signaling genes. CONCLUSION Swertiamarin, presents itself as a potential fertility drug in hLGCs from PCOS-IR patients.
Collapse
Affiliation(s)
- Muskaan A. Belani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002 India
| | - Preeti Shah
- Nova IVI Fertility, Behind Xavier’s Ladies Hostel, 108, Swastik Society Rd, Navrangpura, Ahmedabad, 390009 Gujarat India
| | - Manish Banker
- Nova IVI Fertility, Behind Xavier’s Ladies Hostel, 108, Swastik Society Rd, Navrangpura, Ahmedabad, 390009 Gujarat India
| | - Sarita S. Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002 India
| |
Collapse
|
26
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
27
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
28
|
Brismar K, Hilding A, Ansurudeen I, Flyvbjerg A, Frystyk J, Östenson CG. Adiponectin, IGFBP-1 and -2 are independent predictors in forecasting prediabetes and type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1092307. [PMID: 36686443 PMCID: PMC9849561 DOI: 10.3389/fendo.2022.1092307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Objective Adiponectin and insulin-like growth factor (IGF) binding proteins IGFBP-1 and IGFBP-2 are biomarkers of insulin sensitivity. IGFBP-1 reflects insulin sensitivity in the liver, adiponectin in adipose tissue and IGFBP-2 in both tissues. Here, we study the power of the biomarkers adiponectin, IGFBP-1, IGFBP-2, and also included IGF-I and IGF-II, in predicting prediabetes and type 2 diabetes (T2D) in men and women with normal oral glucose tolerance (NGT). Design Subjects with NGT (35-56 years) recruited during 1992-1998 were re-investigated 8-10 years later. In a nested case control study, subjects progressing to prediabetes (133 women, 164 men) or to T2D (55 women, 98 men) were compared with age and sex matched NGT controls (200 women and 277 men). Methods The evaluation included questionnaires, health status, anthropometry, biochemistry and oral glucose tolerance test. Results After adjustment, the lowest quartile of adiponectin, IGFBP-1 and IGFBP-2 associated independently with future abnormal glucose tolerance (AGT) in both genders in multivariate analyses. High IGFs predicted weakly AGT in women. In women, low IGFBP-2 was the strongest predictor for prediabetes (OR:7.5), and low adiponectin for T2D (OR:29.4). In men, low IGFBP-1 was the strongest predictor for both prediabetes (OR:13.4) and T2D (OR:14.9). When adiponectin, IGFBP-1 and IGFBP-2 were combined, the ROC-AUC reached 0.87 for women and 0.79 for men, higher than for BMI alone. Conclusion Differences were observed comparing adipocyte- and hepatocyte-derived biomarkers in forecasting AGT in NGT subjects. In women the strongest predictor for T2D was adiponectin and in men IGFBP-1, and for prediabetes IGFBP-2 in women and IGFBP-1 in men.
Collapse
Affiliation(s)
- Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Hilding
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ishrath Ansurudeen
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen (SDCC), the Capital Region of Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Perry BW, Armstrong EE, Robbins CT, Jansen HT, Kelley JL. Temporal Analysis of Gene Expression and Isoform Switching in Brown Bears (Ursus arctos). Integr Comp Biol 2022; 62:1802-1811. [PMID: 35709393 DOI: 10.1093/icb/icac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons-hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
D’Cruz SC, Hao C, Labussiere M, Mustieles V, Freire C, Legoff L, Magnaghi-Jaulin L, Olivas-Martinez A, Rodriguez-Carrillo A, Jaulin C, David A, Fernandez MF, Smagulova F. Genome-wide distribution of histone trimethylation reveals a global impact of bisphenol A on telomeric binding proteins and histone acetyltransferase factors: a pilot study with human and in vitro data. Clin Epigenetics 2022; 14:186. [PMID: 36572933 PMCID: PMC9793539 DOI: 10.1186/s13148-022-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To assess the genetic and epigenetic effects promoted by Bisphenol A (BPA) exposure in adolescent males from the Spanish INMA-Granada birth cohort, and in human cells. METHODS DNA methylation was analysed using MEDIP. Repeat number variation in genomic DNA was evaluated, along with the analysis of H3K4me3 by using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Analyses were performed with material extracted from whole blood of the adolescents, complemented by in vitro assessments of human (HeLa) cells exposed to 10 nM BPA, specifically, immunofluorescence evaluation of protein levels, gene expression analysis and ChIP‒qPCR analysis. RESULTS Adolescents in the high urinary BPA levels group presented a higher level of Satellite A (SATA) repetitive region copy numbers compared to those in the low BPA group and a tendency towards increase in telomere length. We also observed decreased DNA methylation at the promoters of the imprinted genes H19, KCNQ1, and IGF2; at LINE1 retroelements; and at the ARID2, EGFR and ESRRA and TERT genes. Genome-wide sequencing revealed increased H3K4me3 occupancy at the promoters of genes encoding histone acetyltransferases, telomeric DNA binding factors and DNA repair genes. Results were supported in HeLa cells exposed to 10 nM BPA in vitro. In accordance with the data obtained in blood samples, we observed higher H3K4me3 occupancy and lower DNA methylation at some specific targets in HeLa cells. In exposed cells, changes in the expression of genes encoding DNA repair factors (ATM, ARID2, TRP53) were observed, and increased expression of several genes encoding telomeric DNA binding factors (SMG7, TERT, TEN1, UPF1, ZBTB48) were also found. Furthermore, an increase in ESR1/ERa was observed in the nuclei of HeLa cells along with increased binding of ESR1 to KAT5, KMT2E and TERF2IP promoters and decreased ESR1 binding at the RARA promoter. The DNA damage marker p53/TP53 was also increased. CONCLUSION In this pilot study, genome-wide analysis of histone trimethylation in adolescent males exposed to BPA revealed a global impact on the expression of genes encoding telomeric binding proteins and histone acetyltransferase factors with similar results in HeLa cells. Nevertheless, larger studies should confirm our findings.
Collapse
Affiliation(s)
- Shereen Cynthia D’Cruz
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Chunxiang Hao
- grid.410747.10000 0004 1763 3680School of Medicine, Linyi University, Linyi, 276000 China
| | - Martin Labussiere
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Vicente Mustieles
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Carmen Freire
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Louis Legoff
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Laura Magnaghi-Jaulin
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Alicia Olivas-Martinez
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain
| | - Andrea Rodriguez-Carrillo
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain
| | - Christian Jaulin
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Arthur David
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| | - Mariana F. Fernandez
- grid.4489.10000000121678994Center for Biomedical Research (CIBM), Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria (Ibs.GRANADA), 18012 Granada, Spain ,grid.466571.70000 0004 1756 6246Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Fatima Smagulova
- grid.410368.80000 0001 2191 9284EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
31
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
32
|
Oliveira-Neto LA, Nascimento JKF, Salvatori R, Oliveira-Santos AA, Girão RS, Silva EV, Santos ALM, Cunha MM, Bittencourt MAV, Rodrigues GT, Andrade BMR, Oliveira AHA, Valença EHO, Aguiar-Oliveira MH. Growth of teeth and bones in adult subjects with congenital untreated isolated growth hormone deficiency. Growth Horm IGF Res 2022; 65:101469. [PMID: 35696752 DOI: 10.1016/j.ghir.2022.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To understand the growth of teeth and mandibular and maxillary bones in subjects with isolated growth hormone deficiency (IGHD). MATERIAL AND METHODS Mesiodistal tooth width of 28 maxillary and mandibular dental models of 14 adult IGHD subjects (9 men) were digitalized and compared to 40 models of 20 normal-statured controls (11 men). The mean SDS of the maxillary and mandibular teeth were compared with height, cephalic perimeter, total anterior facial height, total maxillary and mandibular length, and maxillary and mandibular arches. RESULTS All average mesiodistal dimensions in absolute values of the 14 dental pairs were reduced in the IGHD group. Eight of 28 (28.6%) mesiodistal dimensions in IGHD subjects of both sexes had an average SDS below -2, thirteen of them (46.4%) had mean SDS between -1 and - 2, and seven of them (25.0%) had SDS above -1. The highest SDS values were the upper lateral incisor (-0.32 in women), and the upper canine (-0.91 in men). The lowest SDS values were the 2nd upper molar (-3.51 in men), and the 2nd upper premolar (-2.64 in women). The ascending order of the mean SDS was height, total maxillary length, total mandibular length, total anterior height of the face, cephalic perimeter, the maxillary arches width, the mesiodistal width of the mandibular teeth, the mesiodistal width of the maxillary teeth and the mandibular arches width. CONCLUSIONS Reduction in mesiodistal width is present in untreated IGHD adults with magnitude of tooth size reduction being lower than height, cephalic perimeter, total anterior facial height, and most jaw measurements. IGHD abolishes the sexual dimorphism in mesiodistal dental measures.
Collapse
Affiliation(s)
- Luiz A Oliveira-Neto
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jéssica K F Nascimento
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Roberto Salvatori
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alécia A Oliveira-Santos
- Division of Nutrition, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Rafaela S Girão
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Evânio V Silva
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - André L M Santos
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Matheus M Cunha
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Gustavo T Rodrigues
- Postgraduate Program in Dentistry School of Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Bruna M R Andrade
- Division of Speech Therapy, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alaíde H A Oliveira
- School of Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Eugênia H O Valença
- Division of Speech therapy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Manuel H Aguiar-Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil.
| |
Collapse
|
33
|
Xiao Q, Zoulikha M, Qiu M, Teng C, Lin C, Li X, Sallam MA, Xu Q, He W. The effects of protein corona on in vivo fate of nanocarriers. Adv Drug Deliv Rev 2022; 186:114356. [PMID: 35595022 DOI: 10.1016/j.addr.2022.114356] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.
Collapse
|
34
|
Pohlman AW, Moudgalya H, Jordano L, Lobato GC, Gerard D, Liptay MJ, Seder CW, Borgia JA. The role of IGF-pathway biomarkers in determining risks, screening, and prognosis in lung cancer. Oncotarget 2022; 13:393-407. [PMID: 35198099 PMCID: PMC8858079 DOI: 10.18632/oncotarget.28202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Detection rates of early-stage lung cancer are traditionally low, which contributes to inconsistent treatment responses and high rates of annual cancer deaths. Currently, low-dose computed tomography (LDCT) screening produces a high false discovery rate. This limitation has prompted research to identify biomarkers to more clearly define eligible patients for LDCT screening, differentiate indeterminate pulmonary nodules, and select individualized cancer therapy. Biomarkers within the Insulin-like Growth Factor (IGF) family have come to the forefront of this research. Main Body: Multiple biomarkers within the IGF family have been investigated, most notably IGF-I and IGF binding protein 3. However, newer studies seek to expand this search to other molecules within the IGF axis. Certain studies have demonstrated these biomarkers are useful when used in combination with lung cancer screening, but other findings were not as conclusive, possibly owing to measurement bias and non-standardized assay techniques. Research also has suggested IGF biomarkers may be beneficial in the prognostication and subsequent treatment via systemic therapy. Despite these advances, additional knowledge of complex regulatory mechanisms inherent to this system are necessary to more fully harness the potential clinical utility for diagnostic and therapeutic purposes. Conclusions: The IGF system likely plays a role in multiple phases of lung cancer; however, there is a surplus of conflicting data, especially prior to development of the disease and during early stages of detection. IGF biomarkers may be valuable in the screening, prognosis, and treatment of lung cancer, though their exact application requires further study.
Collapse
Affiliation(s)
| | - Hita Moudgalya
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lia Jordano
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gabriela C. Lobato
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - David Gerard
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michael J. Liptay
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey A. Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Silvestre T, Fetter M, Räisänen SE, Lage CFA, Stefenoni H, Melgar A, Cueva SF, Wasson DE, Martins LF, Karnezos TP, Hristov AN. Performance of dairy cows fed normal- or reduced-starch diets supplemented with an exogenous enzyme preparation. J Dairy Sci 2022; 105:2288-2300. [PMID: 35086703 DOI: 10.3168/jds.2021-21264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effects of supplementation of an exogenous enzyme preparation (EEP) on performance, total-tract digestibility of nutrients, plasma AA profile, and milk fatty acids composition in lactating dairy cows fed a reduced-starch diet compared with a normal-starch diet (i.e., positive control). Forty-eight Holstein cows (28 primiparous and 20 multiparous) were enrolled in a 10-wk randomized complete block design experiment with 16 cows per treatment. Treatments were as follows: (1) normal-starch diet (control) containing (% dry matter basis) 24.8% starch and 33.0% neutral detergent fiber (NDF), (2) reduced-starch diet (RSD) containing 18.4% starch and 39.1% NDF, or (3) RSD supplemented with 10 g/cow per day of an EEP (ENZ). The EEP contained amylolytic and fibrolytic activities and was top-dressed on the total mixed ration at the time of feeding. Compared with normal-starch diet, dry matter intake and milk and energy-corrected milk (ECM) yields were lower (on average by 7.1, 9.5, and 7.2%, respectively) for cows on the RSD treatments. Concentrations, but not yields, of milk fat and total solids were increased by RSD. Energy-corrected milk feed efficiency did not differ among treatments. Total-tract digestibility of NDF tended to increase by RSD treatments. Plasma AA concentrations were not affected by treatment, except that of 3-methylhistidine was increased by ENZ, compared with RSD. Blood glucose concentration tended to be lower in cows on the RSD treatments, but ENZ increased glucose and tended to increase insulin concentrations at 4 h after feeding when compared with RSD. Cows on the RSD treatments had decreased concentrations of de novo fatty acids and tended to have increased concentrations of preformed fatty acids in milk. Overall, decreasing dietary starch concentration by 26% decreased dry matter intake, milk, and ECM yields, but ECM feed efficiency was not different among treatments. The negative effects of reducing dietary starch on production were not attenuated by the EEP.
Collapse
Affiliation(s)
- T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis 93274
| | - H Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Instituto de Innovation Agropecuaria de Panama, 161 Carlos Lara Street, Clayton, City of Knowledge, 07144, Panama
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
36
|
Bailetti D, Sentinelli F, Prudente S, Cimini FA, Barchetta I, Totaro M, Di Costanzo A, Barbonetti A, Leonetti F, Cavallo MG, Baroni MG. Deep Resequencing of 9 Candidate Genes Identifies a Role for ARAP1 and IGF2BP2 in Modulating Insulin Secretion Adjusted for Insulin Resistance in Obese Southern Europeans. Int J Mol Sci 2022; 23:ijms23031221. [PMID: 35163144 PMCID: PMC8835579 DOI: 10.3390/ijms23031221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is characterized by impairment in insulin secretion, with an established genetic contribution. We aimed to evaluate common and low-frequency (1–5%) variants in nine genes strongly associated with insulin secretion by targeted sequencing in subjects selected from the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or function, the association between disposition index and nonsense variants were significant, also after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11–0.59, p = 0.001). Evaluating variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching significance singularly, remained associated after adjustment. Constructing a genetic risk model combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were significantly associated with a reduced probability to be in the lower, worst, extreme of insulin secretion (OR = 0.223, 95% CI = 0.105–0.473, p < 0.001). Observing a high number of normal glucose tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411, 95% CI = 1.136–5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all nine candidate genes showed association with better insulin secretion adjusted for insulin resistance, and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.
Collapse
Affiliation(s)
- Diego Bailetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| | - Federica Sentinelli
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Maria Totaro
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arcangelo Barbonetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Frida Leonetti
- Diabetes Unit, Department of Medical-Surgical Sciences and Biotechnologies, Santa Maria Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy;
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| |
Collapse
|
37
|
Lee KL, Aitken JF, Li X, Montgomery K, Hsu HL, Williams GM, Brimble MA, Cooper GJ. Vesiculin derived from IGF-II drives increased islet cell mass in a mouse model of pre-diabetes. Islets 2022; 14:14-22. [PMID: 34632959 PMCID: PMC8632304 DOI: 10.1080/19382014.2021.1982326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet-cell function and volume are both key determinants of the maintenance of metabolic health. Insulin resistance and islet-cell dysfunction often occur in the earlier stages of type 2 diabetes (T2D) progression. The ability of the islet cells to respond to insulin resistance by increasing hormone output accompanied by increased islet-cell volume is key to maintaining blood glucose control and preventing further disease progression. Eventual β-cell loss is the main driver of full-blown T2D and insulin-dependency. Researchers are targeting T2D with approaches that include those aimed at enhancing the function of the patient's existing β-cell population, or replacing islet β-cells. Another approach is to look for agents that enhance the natural capacity of the β-cell population to expand. Here we aimed to study the effects of a new putative β-cell growth factor on a mouse model of pre-diabetes. We asked whether: 1) 4-week's treatment with vesiculin, a two-chain peptide derived by processing from IGF-II, had any measurable effect on pre-diabetic mice vs vehicle; and 2) whether the effects were the same in non-diabetic littermate controls. Although treatment with vesiculin did not alter blood glucose levels over this time period, there was a doubling of the Proliferating Cell Nuclear Antigen (PCNA) detectable in the islets of treated pre-diabetic but not control mice and this was accompanied by increased insulin- and glucagon-positive stained areas in the pancreatic islets.
Collapse
Affiliation(s)
- Kate L. Lee
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- CONTACT Kate L. Lee Faculty of Medical and Health Sciences; Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, New Zealand
| | - Jacqueline F. Aitken
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Xun Li
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kirsten Montgomery
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Huai-L. Hsu
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey M. Williams
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Margaret A. Brimble
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Garth J.S. Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Li X, Lyu C, Luo Z, Zhao J, Wang Z, Yang C, Dai Q, Li H, Zhou Y, Li Z, Chen F, Gao Y. The roles of IGF2 and DNMT methylation and elongase6 related fatty acids in metabolic syndrome. Food Funct 2021; 12:10253-10262. [PMID: 34549217 DOI: 10.1039/d1fo00502b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The prevalence of metabolic syndrome (MetS) has increased along with rapid socio-economic development in China in recent decades, aggravating the burden of the health care system. Both plasma levels of fatty acids (FAs) and aberrant DNA methylation profiles are associated with MetS risk. However, studies exploring the role of DNA methylation and FAs simultaneously in MetS etiology are sparse. Objective: We aimed to explore the association between the gene methylation levels of insulin-like growth factor II (IGF2), H19, DNA methyltransferases 1 (DNMT1), DNA methyltransferases 3a (DNMT3a), and DNA methyltransferases 3b (DNMT3b) and MetS risk, and the etiological role of elongation of very-long-chain fatty acid elongase 6 (ELOVL6) related fatty acids. Method: Plasma levels of FAs were measured using a Gas Chromatography-Flame Ionization Detector (GC-FID) after organic extraction, and gene methylation was quantified using a real-time Quantitative Polymerase Chain Reaction (Q-PCR) detecting system after bisulfite treatment. The C18/C16 ratio was used as the indicator of ELOVL6 activity. Odds Ratio (OR) and 95% Confidence Interval (CI) were estimated with logistic regression. Results: Methylation levels in IGF2 and DNMT3a were not significantly associated with MetS risk. However, when stratified by C18/C16 ratio (high vs. low), positive associations were observed between the risk of MetS and methylation levels (>median) of IGF2a3 (OR = 3.1, 95% CI = 1.3-7.5) and DNMT3a (OR = 2.5, 95% CI = 1.1-5.8) genes, in individuals with lower C18/C16 ratios, while no significant associations were observed in subjects with high C18/C16 ratios. Conclusion: Methylation levels in IGF2 and DNMT3a genes may affect the risk of MetS in an ELOVL6 activity-dependent way among Chinese adults. Further studies in other populations are needed to validate this finding.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, USA
| | - ZhongCheng Luo
- Lunenfeld-Tanenbaum Research Institute, Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jing Zhao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zhongli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Jiaxing, China
| | - Chun Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qi Dai
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yunhua Zhou
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zi Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
Cao J, Yan W, Ma X, Huang H, Yan H. Insulin-like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link Between Type 2 Diabetes Mellitus and Cancer. J Clin Endocrinol Metab 2021; 106:2807-2818. [PMID: 34061963 PMCID: PMC8475209 DOI: 10.1210/clinem/dgab391] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Type 2 diabetes mellitus (T2DM) and cancer share a variety of risk factors and pathophysiological features. It is becoming increasingly accepted that the 2 diseases are related, and that T2DM increases the risk of certain malignancies. OBJECTIVE This review summarizes recent advancements in the elucidation of functions of insulin-like growth factor 2 (IGF-2) messenger RNA (mRNA)-binding protein 2 (IGF2BP2) in T2DM and cancer. METHODS A PubMed review of the literature was conducted, and search terms included IGF2BP2, IMP2, or p62 in combination with cancer or T2DM. Additional sources were identified through manual searches of reference lists. The increased risk of multiple malignancies and cancer-associated mortality in patients with T2DM is believed to be driven by insulin resistance, hyperinsulinemia, hyperglycemia, chronic inflammation, and dysregulation of adipokines and sex hormones. Furthermore, IGF-2 is oncogenic, and its loss-of-function splice variant is protective against T2DM, which highlights the pivotal role of this growth factor in the pathogenesis of these 2 diseases. IGF-2 mRNA-binding proteins, particularly IGF2BP2, are also involved in T2DM and cancer, and single-nucleotide variations (formerly single-nucleotide polymorphisms) of IGF2BP2 are associated with both diseases. Deletion of the IGF2BP2 gene in mice improves their glucose tolerance and insulin sensitivity, and mice with transgenic p62, a splice variant of IGF2BP2, are prone to diet-induced fatty liver disease and hepatocellular carcinoma, suggesting the biological significance of IGF2BP2 in T2DM and cancer. CONCLUSION Accumulating evidence has revealed that IGF2BP2 mediates the pathogenesis of T2DM and cancer by regulating glucose metabolism, insulin sensitivity, and tumorigenesis. This review provides insight into the potential involvement of this RNA binding protein in the link between T2DM and cancer.
Collapse
Affiliation(s)
- Junguo Cao
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Weijia Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Department of Ophthalmology, University of Heidelberg, Heidelberg 69120, Germany
| | - Xiujian Ma
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Hong Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
| |
Collapse
|
40
|
Activation of Cx43 Hemichannels Induces the Generation of Ca 2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int J Mol Sci 2021; 22:ijms22158095. [PMID: 34360859 PMCID: PMC8347185 DOI: 10.3390/ijms22158095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.
Collapse
|
41
|
Gültiken N, Yarim M, Yarim GF, Sözmen M, Anadol E, Findik M. Plasma concentration and uterine and ovarian expressions of insulin-like growth factor-2 in dogs with cystic endometrial hyperplasia-pyometra. Acta Vet Hung 2021; 69:73-79. [PMID: 33891559 DOI: 10.1556/004.2021.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the plasma concentrations of insulin-like growth factor-2 (IGF-2) as well as its expression in the uterus and ovary of healthy dogs and those with cystic endometrial hyperplasia (CEH)-pyometra complex. Group 1 (n = 10) included bitches with open cervix pyometra, while Group 2 (n = 7) consisted of clinically healthy bitches in dioestrus. The number of IGF-2 immunopositive interstitial cells was significantly higher in Group 1, whereas in Group 2 there were only two cases in which a few cells were IGF-2 immunopositive. IGF-2 immunopositivity was observed in the endometrial glandular epithelium in both groups. Additionally, interstitial fibroblasts and macrophages in the endometrium were also positive in Group 1. The concentration of plasma IGF-2 was higher in Group 1 than in Group 2 (P < 0.05). The concentration was positively correlated with IGF-2 expression in the endometrial glands (r = 0.926; P < 0.001) in Group 1. However, a negative correlation was present between plasma IGF-2 concentration and IGF-2 expression in the interstitial endocrine cells of the ovary in Group 1 (r = -0.652; P < 0.05). The results suggest that IGF-2 plays an important role during the inflammatory process occurring in bitches with CEH-pyometra complex as well as in the endometrium of healthy bitches in dioestrus.
Collapse
Affiliation(s)
- Nilgün Gültiken
- 1Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Murat Yarim
- 2Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Gül Fatma Yarim
- 3Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Mahmut Sözmen
- 2Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Elvan Anadol
- 4Laboratory Animal Breeding and Experimental Research Center, University of Gazi, Ankara, Turkey
| | - Murat Findik
- 1Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
42
|
IGF2 deficiency causes mitochondrial defects in skeletal muscle. Clin Sci (Lond) 2021; 135:979-990. [PMID: 33825857 PMCID: PMC8055961 DOI: 10.1042/cs20210128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Exercise training improves muscle fitness in many aspects, including induction of mitochondrial biogenesis and maintenance of mitochondrial dynamics. The insulin-like growth factors were recently proposed as key regulators of myogenic factors to regulate muscle development. The present study aimed to investigate the physical exercise impact on insulin-like growth factor 2 (IGF2) and analyzed its functions on skeletal muscle cells in vitro. Using online databases, we stated that IGF2 was relatively highly expressed in skeletal muscle cells and increased after exercise training. Then, IGF2 deficiency in myotubes from C2C12 and primary skeletal muscle cells (PMSCs) led to impaired mitochondrial function, reduced mitochondria-related protein content, and decreased mitochondrial biogenesis. Furthermore, we explored the possible regulatory pathway and found that mitochondrial regulation in skeletal muscle cells might occur through IGF2-Sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) signaling pathway. Therefore, the present study first demonstrated the relationship between IGF2 and mitochondria in skeletal muscle.
Collapse
|
43
|
Aguiar-Oliveira MH, Salvatori R. Disruption of the GHRH receptor and its impact on children and adults: The Itabaianinha syndrome. Rev Endocr Metab Disord 2021; 22:81-89. [PMID: 32935264 DOI: 10.1007/s11154-020-09591-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Since 1994, we have been studying an extended kindred with 105 subjects (over 8 generations) residing in Itabaianinha County, in the Brazilian state of Sergipe, who have severe isolated GH deficiency (IGHD) due to a homozygous inactivating mutation (c.57 + 1G > A) in the GH releasing hormone (GHRH) receptor (GHRHR) gene. Most of these individuals have never received GH replacement therapy. They have low GH, and very low and often undetectable levels of serum IGF-I. Their principal physical findings are proportionate short stature, doll facies, high-pitched-voice, central obesity, wrinkled skin, and youthful hair with delayed pigmentation, and virtual absence of graying. The newborns from this cohort are of normal size, indicating that GH is not needed for intra-uterine growth. However, these IGHD individuals exhibit a myriad of phenotypic changes throughout the body, with a greater number of beneficial than harmful consequences. This GHRH signal disruption syndrome has been a valuable model to study the GH roles in body size and function. This reviews summarized the findings we have reported on this cohort.
Collapse
Affiliation(s)
- Manuel H Aguiar-Oliveira
- Division of Endocrinology, University Hospital, Federal University of Sergipe, Rua Claudio Batista s/n, Aracaju, Sergipe, 49060-100, Brazil.
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, 21287, USA
| |
Collapse
|
44
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
45
|
Guerra-Cantera S, Frago LM, Collado-Pérez R, Canelles S, Ros P, Freire-Regatillo A, Jiménez-Hernaiz M, Barrios V, Argente J, Chowen JA. Sex Differences in Metabolic Recuperation After Weight Loss in High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2021; 12:796661. [PMID: 34975768 PMCID: PMC8716724 DOI: 10.3389/fendo.2021.796661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary intervention is a common tactic employed to curtail the current obesity epidemic. Changes in nutritional status alter metabolic hormones such as insulin or leptin, as well as the insulin-like growth factor (IGF) system, but little is known about restoration of these parameters after weight loss in obese subjects and if this differs between the sexes, especially regarding the IGF system. Here male and female mice received a high fat diet (HFD) or chow for 8 weeks, then half of the HFD mice were changed to chow (HFDCH) for 4 weeks. Both sexes gained weight (p < 0.001) and increased their energy intake (p < 0.001) and basal glycemia (p < 0.5) on the HFD, with these parameters normalizing after switching to chow but at different rates in males and females. In both sexes HFD decreased hypothalamic NPY and AgRP (p < 0.001) and increased POMC (p < 0.001) mRNA levels, with all normalizing in HFDCH mice, whereas the HFD-induced decrease in ObR did not normalize (p < 0.05). All HFD mice had abnormal glucose tolerance tests (p < 0.001), with males clearly more affected, that normalized when returned to chow. HFD increased insulin levels and HOMA index (p < 0.01) in both sexes, but only HFDCH males normalized this parameter. Returning to chow normalized the HFD-induced increase in circulating leptin (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.001, only in females) and IGFBP3 (p < 0.001), whereas free IGF1 levels remained elevated (p < 0.01). In males IGFBP2 decreased with HFD and normalized with chow (p < 0.001), with no changes in females. Although returning to a healthy diet improved of most metabolic parameters analyzed, fIGF1 levels remained elevated and hypothalamic ObR decreased in both sexes. Moreover, there was sex differences in both the response to HFD and the switch to chow including circulating levels of IGF2 and IGFBP2, factors previously reported to be involved in glucose metabolism. Indeed, glucose metabolism was also differentially modified in males and females, suggesting that these observations could be related.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| |
Collapse
|
46
|
Lazúrová I, Jochmanová I, Sotak Š, Špaková I, Mareková M. Is there a role for the IGF system and epidermal growth factor (EGF) in the pathogenesis of adrenocortical adenomas? A preliminary case-control study. Physiol Res 2020; 69:1085-1094. [PMID: 33210933 DOI: 10.33549/physiolres.934553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adrenal incidentalomas (AI) are very common and mostly they are non-functioning adenomas (NFA). NFAs are often associated with insulin resistance and metabolic syndrome. Several biomarkers, including certain growth factors, may participatein the pathogenesis ofmetabolic changes in patients with adrenal adenomas.Patients with NFA and age-matched control subjects were enrolled in the study. Data on age, gender, presence of metabolic syndrome or its components were obtained for each subject. Blood samples were obtained and glycemia, insulinemia, lipid profile, and selected growth factor levels were measured. Forty-three patients with NFA and 40 controls were included in the study. Differences were not found in the metabolic syndrome and its components prevalence or in the biochemical profile between patients and the control group. Significant differences were noticed in the levels of IGF1, IGF2, and IGFBP3 (p=0.016, p=0.005, p=0.004, respectively), but there were no differences in VEGF or EGF concentrations. In NFA patients, an association between glycemia and EGF levels was present (p=0.026). No significant correlations between tumor size and insulin or growth factor concentrations were present in AI patients. Significantly higher serum IGF1, IGF2, and IGFBP3 concentrations in NFA patients may support the role of the IGF axis in the pathogenesis of adrenocortical lesions.No correlation between IGFs or IGFBP3 and parameters of glucose or lipid metabolism was found. Present results may support the role of the growth hormone axis rather than hyperinsulinemia and insulin resistance in the pathogenesis of adrenocortical adenomas.
Collapse
Affiliation(s)
- I Lazúrová
- First Department of Internal Medicine, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | | | | | | | | |
Collapse
|
47
|
Muhammad T, Wan Y, Sha Q, Wang J, Huang T, Cao Y, Li M, Yu X, Yin Y, Chan WY, Chen ZJ, You L, Lu G, Liu H. IGF2 improves the developmental competency and meiotic structure of oocytes from aged mice. Aging (Albany NY) 2020; 13:2118-2134. [PMID: 33318299 PMCID: PMC7880328 DOI: 10.18632/aging.202214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Advanced maternal-age is a major factor adversely affecting oocyte quality, consequently worsening pregnancy outcomes. Thus, developing strategies to reduce the developmental defects associated with advanced maternal-age would benefit older mothers. Multiple growth factors involved in female fertility have been extensively studied; however, the age-related impacts of various growth factors remain poorly studied. In the present study, we identified that levels of insulin-like growth factor 2 (IGF2) are significantly reduced in the serum and oocytes of aged mice. We found that adding IGF2 in culture medium promotes oocyte maturation and significantly increases the proportion of blastocysts: from 41% in the untreated control group to 64% (50 nM IGF2) in aged mice (p < 0.05). Additionally, IGF2 supplementation of the culture medium reduced reactive oxygen species production and the incidence of spindle/chromosome defects. IGF2 increases mitochondrial functional activity in oocytes from aged mice: we detected increased ATP levels, elevated fluorescence intensity of mitochondria, higher mitochondrial membrane potentials, and increased overall protein synthesis, as well as increased autophagy activity and decreased apoptosis. Collectively, our findings demonstrate that IGF2 supplementation in culture media improves oocyte developmental competence and reduces meiotic structure defects in oocytes from aged mice.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yanling Wan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yingying Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Wai Yee Chan
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Li You
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Gang Lu
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
48
|
Seo YA, Choi EK, Aring L, Paschall M, Iwase S. Transcriptome Analysis of the Cerebellum of Mice Fed a Manganese-Deficient Diet. Front Genet 2020; 11:558725. [PMID: 33408735 PMCID: PMC7780674 DOI: 10.3389/fgene.2020.558725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn), primarily acquired through diet, is required for brain function and development. Epidemiological studies have found an association between both low and high levels of Mn and impaired neurodevelopment in children. Recent genetic studies have revealed that patients with congenital Mn deficiency display severe psychomotor disability and cerebral and cerebellar atrophy. Although the impact of Mn on gene expression is beginning to be appreciated, Mn-dependent gene expression remains to be explored in vertebrate animals. The goal of this study was to use a mouse model to define the impact of a low-Mn diet on brain metal levels and gene expression. We interrogated gene expression changes in the Mn-deficient mouse brain at the genome-wide scale by RNA-seq analysis of the cerebellum of mice fed low or normal Mn diets. A total of 137 genes were differentially expressed in Mn-deficient cerebellums compared with Mn-adequate cerebellums (Padj < 0.05). Mn-deficient mice displayed downregulation of key pathways involved with "focal adhesion," "neuroactive ligand-receptor interaction," and "cytokine-cytokine receptor interaction" and upregulation of "herpes simplex virus 1 infection," "spliceosome," and "FoxO signaling pathway." Reactome pathway analysis identified upregulation of the splicing-related pathways and transcription-related pathways, as well as downregulation of "metabolism of carbohydrate," and "extracellular matrix organization," and "fatty acid metabolism" reactomes. The recurrent identifications of splicing-related pathways suggest that Mn deficiency leads to upregulation of splicing machineries and downregulation of diverse biological pathways.
Collapse
Affiliation(s)
- Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Molly Paschall
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
49
|
Aparecida Silveira E, Vaseghi G, de Carvalho Santos AS, Kliemann N, Masoudkabir F, Noll M, Mohammadifard N, Sarrafzadegan N, de Oliveira C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int J Mol Sci 2020; 21:E9042. [PMID: 33261185 PMCID: PMC7730690 DOI: 10.3390/ijms21239042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT's role and ways to manage or prevent it are needed.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Annelisa Silva de Carvalho Santos
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- United Faculty of Campinas, Goiânia 74525-020, Goiás, Brazil
| | - Nathalie Kliemann
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Matias Noll
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- Instituto Federal Goiano, Ceres 76300-000, Goiás, Brazil
| | - Noushin Mohammadifard
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| |
Collapse
|
50
|
Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks ( Bos grunniens). Animals (Basel) 2020; 10:ani10091474. [PMID: 32842565 PMCID: PMC7552236 DOI: 10.3390/ani10091474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Yak, a bovid animal, is the predominant livestock on the Qinghai–Tibet Plateau. Rumen is an important digestive organ for ruminants, such as cattle, yak, and sheep. Rumen bacteria play a crucial role in dietary energy digestion of yaks and in their adaptation to the plateau environment. Dietary energy levels affect rumen bacterial populations and lipid deposition in the meat of ruminants. The intramuscular fat fatty acid profile is important for meat quality and human health. This study was conducted to determine the rumen bacterial populations affected by dietary energy levels and understand their relationship with intramuscular fat fatty acids. The results found that increasing dietary energy significantly increased ruminal propionate concentration and reduced the ammonia concentration. High dietary energy increased the ratio of Firmicutes to Bacteroidetes and mainly increased ruminal amylolytic and propionate-producing bacteria populations. Ruminal acetate and propionate were positively related to intramuscular saturated fatty acid content, and Prevotella was positively related to intramuscular polyunsaturated fatty acid content and negatively related to intramuscular saturated fatty acid content. This study gives insights into how the effects of dietary energy on rumen bacterial populations are related to intramuscular fat fatty acids of yaks. Abstract The yak rumen microflora has more efficient fiber-degrading and energy-harvesting abilities than that of low-altitude cattle; however, few studies have investigated the effects of dietary energy levels on the rumen bacterial populations and the relationship between rumen bacteria and the intramuscular fatty acid profile of fattening yaks. In this study, thirty yaks were randomly assigned to three groups. Each group received one of the three isonitrogenous diets with low (3.72 MJ/kg), medium (4.52 MJ/kg), and high (5.32 MJ/kg) levels of net energy for maintenance and fattening. After 120 days of feeding, results showed that increasing dietary energy significantly increased ruminal propionate fermentation and reduced ammonia concentration. The 16S rDNA sequencing results showed that increasing dietary energy significantly increased the ratio of Firmicutes to Bacteroidetes and stimulated the relative abundance of Succiniclasticum, Saccharofermentans, Ruminococcus, and Blautia populations. The quantitative real-time PCR analysis showed that high dietary energy increased the abundances of Streptococcus bovis, Prevotella ruminicola, and Ruminobacter amylophilus at the species level. Association analysis showed that ruminal acetate was positively related to some intramuscular saturated fatty acid (SFA) contents, and Prevotella was significantly positively related to intramuscular total polyunsaturated fatty acid content and negatively related to intramuscular total SFA content. This study showed that high dietary energy mainly increased ruminal amylolytic and propionate-producing bacteria populations, which gave insights into how the effects of dietary energy on rumen bacteria are related to intramuscular fat fatty acids of fattening yaks.
Collapse
|