1
|
Galán-Acedo C, Verde Arregoitia LD, Arasa-Gisbert R, Auliz-Ortiz D, Saldivar-Burrola LL, Gouveia SF, Correia I, Rosete-Vergés FA, Dinnage R, Villalobos F. Global primary predictors of extinction risk in primates. Proc Biol Sci 2024; 291:20241905. [PMID: 39353553 PMCID: PMC11444774 DOI: 10.1098/rspb.2024.1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Identifying the main predictors of species' extinction risk while accounting for the effects of spatial and phylogenetic structures in the data is key to preventing species loss in tropical forests through adequate conservation practices. We recorded 22 705 precise geographical locations of primate occurrence across four major geographic realms (Neotropics, mainland Africa, Madagascar and Asia) to assess predictors of threat status using a novel Bayesian spatio-phylogenetic approach. We estimated the relative contributions of fixed factors (forest amount, body mass, home range, diel activity, locomotion, evolutionary distinctiveness and climatic instability) and random factors (space and phylogeny) to primate extinction risk. Precipitation instability increased the extinction risk in the Neotropics but decreased it in mainland Africa and Madagascar. Forest amount was negatively associated with extinction risk in all realms except Madagascar. Body mass increased the extinction risk in the Neotropics and Madagascar, whereas home range increased the extinction risk in mainland Africa and decreased it in Asia. Evolutionary distinctiveness negatively influenced extinction risk only in mainland Africa. Our findings highlight the importance of climate change mitigation and forest protection strategies. Increasing the protection of large primates and reducing hunting are also essential.
Collapse
Affiliation(s)
- Carmen Galán-Acedo
- Department of Biology, Geomatics and Landscape Ecology Laboratory, Carleton University, Ottawa, OntarioK1S 5B6, Canada
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán37684, Mexico
| | - Luis Darcy Verde Arregoitia
- Red de Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz91073, Mexico
- Laboratorio de Conservación y Bienestar Humano, Instituto en Ecología y Biodiversidad, Concepción, Chile
| | - Ricard Arasa-Gisbert
- Instituto de Investigaciones Forestales, Universidad Veracruzana, Xalapa-Enríquez, Veracruz91070, Mexico
| | - Daniel Auliz-Ortiz
- Departament of Zoology, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México04510, Mexico
| | | | - Sidney F. Gouveia
- Department of Ecology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Isadora Correia
- Department of Ecology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Russell Dinnage
- Department of Biological Sciences, Florida International University, Miami, FL33199, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz91073, Mexico
| |
Collapse
|
2
|
Medo A, Ohte N, Doi H, Kamdee K, Koba K, Arai N, Mitsunaga Y, Kume M, Kojima D, Nose T, Yokoyama A, Viputhanumas T, Mitamura H. Trophic niche partitioning and intraspecific variation in food resource use in the genus Pangasianodon in a reservoir revealed by stable isotope analysis of multiple tissues. JOURNAL OF FISH BIOLOGY 2024; 105:814-824. [PMID: 38880940 DOI: 10.1111/jfb.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanism by which non-native fish species integrate into native communities is crucial for evaluating the possibility of their establishment success. The genus Pangasianodon, comprising Pangasianodon gigas and Pangasianodon hypophthalmus, has been introduced into reservoirs, which are non-native habitats, for fishery stock enhancement. P. gigas and P. hypophthalmus often successfully establish and co-occur in several Thai reservoirs, but there is little information on differences in food resource use between the two species. To investigate the trophic niche width of P. gigas and P. hypophthalmus in a Thai reservoir, we conducted stable carbon and nitrogen ratio (δ13C and δ15N) analyses. We examined the degree of individual specialization in both species using the δ13C and δ15N values of muscle and liver tissues, which provides long- and short-term diet information. The isotopic niches did not overlap between P. gigas and P. hypophthalmus. The δ15N value of P. gigas was significantly higher than that of P. hypophthalmus, whereas the δ13C value did not significantly differ between the two species. The isotopic niche sizes were larger in P. hypophthalmus than in P. gigas. Individual specialization was observed in P. hypophthalmus but not in P. gigas, indicating that intraspecific variation in food resource use was larger in P. hypophthalmus compared to P. gigas. These findings suggest that trophic niche partitioning was one of the factors facilitating the establishment success of P. gigas and P. hypophthalmus in a reservoir, but the establishment process may differ between the two species.
Collapse
Affiliation(s)
- Ayano Medo
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Nobuaki Arai
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | | | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Daichi Kojima
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Takashi Nose
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Ayako Yokoyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Thavee Viputhanumas
- Inland Aquaculture Research and Development Division, Department of Fisheries, Bangkok, Thailand
| | - Hiromichi Mitamura
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Feng X, Peterson AT, Aguirre-López LJ, Burger JR, Chen X, Papeş M. Rethinking ecological niches and geographic distributions in face of pervasive human influence in the Anthropocene. Biol Rev Camb Philos Soc 2024; 99:1481-1503. [PMID: 38597328 DOI: 10.1111/brv.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses to B, A, and M via ecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision-making, but commonly in the context of 'natural' settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human-natural landscape is recognized as the new norm. Therefore, B, A, and M (BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human-influenced BAM (Hi-BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY, 40502, USA
| | - Xin Chen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
He F, Svenning JC, Chen X, Tockner K, Kuemmerle T, le Roux E, Moleón M, Gessner J, Jähnig SC. Freshwater megafauna shape ecosystems and facilitate restoration. Biol Rev Camb Philos Soc 2024; 99:1141-1163. [PMID: 38411930 DOI: 10.1111/brv.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Freshwater megafauna, such as sturgeons, giant catfishes, river dolphins, hippopotami, crocodylians, large turtles, and giant salamanders, have experienced severe population declines and range contractions worldwide. Although there is an increasing number of studies investigating the causes of megafauna losses in fresh waters, little attention has been paid to synthesising the impacts of megafauna on the abiotic environment and other organisms in freshwater ecosystems, and hence the consequences of losing these species. This limited understanding may impede the development of policies and actions for their conservation and restoration. In this review, we synthesise how megafauna shape ecological processes in freshwater ecosystems and discuss their potential for enhancing ecosystem restoration. Through activities such as movement, burrowing, and dam and nest building, megafauna have a profound influence on the extent of water bodies, flow dynamics, and the physical structure of shorelines and substrata, increasing habitat heterogeneity. They enhance nutrient cycling within fresh waters, and cross-ecosystem flows of material, through foraging and reproduction activities. Freshwater megafauna are highly connected to other freshwater organisms via direct consumption of species at different trophic levels, indirect trophic cascades, and through their influence on habitat structure. The literature documenting the ecological impacts of freshwater megafauna is not evenly distributed among species, regions, and types of ecological impacts, with a lack of quantitative evidence for large fish, crocodylians, and turtles in the Global South and their impacts on nutrient flows and food-web structure. In addition, population decline, range contraction, and the loss of large individuals have reduced the extent and magnitude of megafaunal impacts in freshwater ecosystems, rendering a posteriori evaluation more difficult. We propose that reinstating freshwater megafauna populations holds the potential for restoring key ecological processes such as disturbances, trophic cascades, and species dispersal, which will, in turn, promote overall biodiversity and enhance nature's contributions to people. Challenges for restoration actions include the shifting baseline syndrome, potential human-megafauna competition for habitats and resources, damage to property, and risk to human life. The current lack of historical baselines for natural distributions and population sizes of freshwater megafauna, their life history, trophic interactions with other freshwater species, and interactions with humans necessitates further investigation. Addressing these knowledge gaps will improve our understanding of the ecological roles of freshwater megafauna and support their full potential for facilitating the development of effective conservation and restoration strategies to achieve the coexistence of humans and megafauna.
Collapse
Affiliation(s)
- Fengzhi He
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun, 130102, China
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Xing Chen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Faculty for Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main, 60438, Germany
| | - Tobias Kuemmerle
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Marcos Moleón
- Department of Zoology, University of Granada, Avenida de Fuente Nueva S/N, Granada, 18071, Spain
| | - Jörn Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
5
|
Saraswati CM, Judge MA, Weeda LJZ, Bassat Q, Prata N, Le Souëf PN, Bradshaw CJA. Net benefit of smaller human populations to environmental integrity and individual health and wellbeing. Front Public Health 2024; 12:1339933. [PMID: 38504675 PMCID: PMC10949988 DOI: 10.3389/fpubh.2024.1339933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction The global human population is still growing such that our collective enterprise is driving environmental catastrophe. Despite a decline in average population growth rate, we are still experiencing the highest annual increase of global human population size in the history of our species-averaging an additional 84 million people per year since 1990. No review to date has accumulated the available evidence describing the associations between increasing population and environmental decline, nor solutions for mitigating the problems arising. Methods We summarize the available evidence of the relationships between human population size and growth and environmental integrity, human prosperity and wellbeing, and climate change. We used PubMed, Google Scholar, and Web of Science to identify all relevant peer-reviewed and gray-literature sources examining the consequences of human population size and growth on the biosphere. We reviewed papers describing and quantifying the risks associated with population growth, especially relating to climate change. Results These risks are global in scale, such as greenhouse-gas emissions, climate disruption, pollution, loss of biodiversity, and spread of disease-all potentially catastrophic for human standards of living, health, and general wellbeing. The trends increasing the risks of global population growth are country development, demographics, maternal education, access to family planning, and child and maternal health. Conclusion Support for nations still going through a demographic transition is required to ensure progress occurs within planetary boundaries and promotes equity and human rights. Ensuring the wellbeing for all under this aim itself will lower population growth and further promote environmental sustainability.
Collapse
Affiliation(s)
| | - Melinda A. Judge
- Telethon Kids Institute, Perth, WA, Australia
- School of Mathematics and Statistics, University of Western Australia, Nedlands, WA, Australia
| | - Lewis J. Z. Weeda
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Paediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Ndola Prata
- Bixby Center for Population Health and Sustainability, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Peter N. Le Souëf
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Corey J. A. Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Bergman J, Pedersen RØ, Lundgren EJ, Lemoine RT, Monsarrat S, Pearce EA, Schierup MH, Svenning JC. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat Commun 2023; 14:7679. [PMID: 37996436 PMCID: PMC10667484 DOI: 10.1038/s41467-023-43426-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The worldwide extinction of megafauna during the Late Pleistocene and Early Holocene is evident from the fossil record, with dominant theories suggesting a climate, human or combined impact cause. Consequently, two disparate scenarios are possible for the surviving megafauna during this time period - they could have declined due to similar pressures, or increased in population size due to reductions in competition or other biotic pressures. We therefore infer population histories of 139 extant megafauna species using genomic data which reveal population declines in 91% of species throughout the Quaternary period, with larger species experiencing the strongest decreases. Declines become ubiquitous 32-76 kya across all landmasses, a pattern better explained by worldwide Homo sapiens expansion than by changes in climate. We estimate that, in consequence, total megafauna abundance, biomass, and energy turnover decreased by 92-95% over the past 50,000 years, implying major human-driven ecosystem restructuring at a global scale.
Collapse
Affiliation(s)
- Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark.
| | - Rasmus Ø Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rhys T Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Sophie Monsarrat
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Rewilding Europe, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Elena A Pearce
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| |
Collapse
|
7
|
Baletaud F, Lecellier G, Gilbert A, Mathon L, Côme JM, Dejean T, Dumas M, Fiat S, Vigliola L. Comparing Seamounts and Coral Reefs with eDNA and BRUVS Reveals Oases and Refuges on Shallow Seamounts. BIOLOGY 2023; 12:1446. [PMID: 37998045 PMCID: PMC10669620 DOI: 10.3390/biology12111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts (500 m). We modeled assemblages using 12 environmental variables and found depth to be the main driver of fish diversity and biomass, although other variables like human accessibility were important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in shallowest deep-sea environments. Biomass of large predators like sharks was three times higher on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite distinct assemblages. However, species shared between coral reefs and deeper-sea environments were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for threatened megafauna, suggesting that priority should be given to their protection.
Collapse
Affiliation(s)
- Florian Baletaud
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- GINGER SOPRONER, 98000 Noumea, New Caledonia, France;
- GINGER BURGEAP, 69000 Lyon, France;
- MARBEC, University of Montpellier, CNRS, IFREMER, 34000 Montpellier, France
| | - Gaël Lecellier
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- ISEA, University of New Caledonia, 98800 Noumea, New Caledonia, France
| | | | - Laëtitia Mathon
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- CEFE, University of Montpellier, CNRS, EPHE-PSL, IRD, 34000 Montpellier, France
| | | | | | - Mahé Dumas
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| | - Sylvie Fiat
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| |
Collapse
|
8
|
Enns C, van Vliet N, Mbane J, Muhindo J, Nyumu J, Bersaglio B, Massé F, Cerutti PO, Nasi R. Vulnerability and coping strategies within wild meat trade networks during the COVID-19 pandemic. WORLD DEVELOPMENT 2023; 170:106310. [PMID: 37312885 PMCID: PMC10213300 DOI: 10.1016/j.worlddev.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Measures adopted to prevent the spread of COVID-19 and economic shocks caused by the pandemic have affected food networks globally, including wild meat trade networks that support the livelihoods and food security of millions of people around the world. In this article, we examine how COVID-related shocks have affected the vulnerability and coping strategies of different actors along wild meat trade networks. Informed by 1,876 questionnaires carried out with wild meat hunters, traders, vendors, and consumers in Cameroon, Colombia, Democratic Republic of Congo (DRC), and Guyana, the article presents qualitative evidence as to how COVID-19 impacted different segments of society involved in wild meat trade networks. Our findings largely align with McNamara et al. (2020) and Kamogne Tagne et al.'s (2022) causal model hypothesising how the impacts of the pandemic could lead to a change in local incentives for wild meat hunting in sub-Saharan African countries. Like McNamara et al. (2020) and Kamogne Tagne et al. (2022), we find that the pandemic reduced wild meat availability for wild meat actors in urban areas while increasing reliance on wild meat for subsistence purposes in rural areas. However, we find some impact pathways to be more relevant than others, and also incorporate additional impact pathways into the existing causal model. Based on our findings, we argue that wild meat serves as an important safety net in response to shocks for some actors in wild meat trade networks. We conclude by advocating for policies and development interventions that seek to improve the safety and sustainability of wild meat trade networks and protect access to wild meat as an environmental coping strategy during times of crisis.
Collapse
Affiliation(s)
| | - Nathalie van Vliet
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| | - Joseph Mbane
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| | - Jonas Muhindo
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| | - Jonas Nyumu
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| | | | | | - Paolo Omar Cerutti
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| | - Robert Nasi
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF)
| |
Collapse
|
9
|
Gumbs R, Gray CL, Hoffmann M, Molina-Venegas R, Owen NR, Pollock LJ. Conserving avian evolutionary history can effectively safeguard future benefits for people. SCIENCE ADVANCES 2023; 9:eadh4686. [PMID: 37729417 PMCID: PMC10511189 DOI: 10.1126/sciadv.adh4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Phylogenetic diversity (PD)-the evolutionary history of a set of species-is conceptually linked to the maintenance of yet-to-be-discovered benefits from biodiversity or "option value." We used global phylogenetic and utilization data for birds to test the PD option value link, under the assumption that the performance of sets of PD-maximizing species at capturing known benefits is analogous to selecting the same species at a point in human history before these benefits were realized. PD performed better than random at capturing utilized bird species across 60% of tests, with performance linked to the phylogenetic dispersion and prevalence of each utilization category. Prioritizing threatened species for conservation by the PD they encapsulate performs comparably to prioritizing by their functional distinctiveness. However, species selected by each metric show low overlap, indicating that we should conserve both components of biodiversity to effectively conserve a variety of uses. Our findings provide empirical support for the link between evolutionary history and benefits for future generations.
Collapse
Affiliation(s)
- Rikki Gumbs
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
- Science and Solutions for a Changing Planet DTP, Grantham Institute, Imperial College London, London SW7 2AZ, UK
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
| | - Claudia L Gray
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
| | - Michael Hoffmann
- Conservation and Policy, Zoological Society of London, London NW1 4RY, UK
| | - Rafael Molina-Venegas
- Department of Ecology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nisha R Owen
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
- On the Edge Conservation, London SW3 2JJ, UK
| | - Laura J Pollock
- IUCN SSC Phylogenetic Diversity Task Force, London, UK
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
10
|
Martins IS, Schrodt F, Blowes SA, Bates AE, Bjorkman AD, Brambilla V, Carvajal-Quintero J, Chow CFY, Daskalova GN, Edwards K, Eisenhauer N, Field R, Fontrodona-Eslava A, Henn JJ, van Klink R, Madin JS, Magurran AE, McWilliam M, Moyes F, Pugh B, Sagouis A, Trindade-Santos I, McGill BJ, Chase JM, Dornelas M. Widespread shifts in body size within populations and assemblages. Science 2023; 381:1067-1071. [PMID: 37676959 DOI: 10.1126/science.adg6006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
Collapse
Affiliation(s)
- Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
| | - Franziska Schrodt
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg 41319, Sweden
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| | - Juan Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Gergana N Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Kyle Edwards
- Department of Oceanography, University of Hawai''i at Mānoa, Honolulu, HI 96822, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Richard Field
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Jonathan J Henn
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Joshua S Madin
- Hawai''i Institute of Marine Biology, University of Hawai''i at Manoa, Kāne'ohe, Hawai''i 96744, USA
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Michael McWilliam
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Brittany Pugh
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
- University College London, School of Geography, Gower Street, London WC1E 6AE, UK
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun 904-0495, Okinawa, Japan
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| |
Collapse
|
11
|
Li X, Wang H, McCauley DJ, Altieri AH, Silliman BR, Lefcheck JS, Wu J, Li B, He Q. A wide megafauna gap undermines China's expanding coastal ecosystem conservation. SCIENCE ADVANCES 2023; 9:eadg3800. [PMID: 37556546 PMCID: PMC10411873 DOI: 10.1126/sciadv.adg3800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
To fulfill sustainable development goals, many countries are expanding efforts to conserve ecologically and societally critical coastal ecosystems. Although megafauna profoundly affect the functioning of ecosystems, they are neglected as a key component in the conservation scheme for coastal ecosystems in many geographic contexts. We reveal a rich diversity of extant megafauna associated with all major types of coastal ecosystems in China, including 218 species of mammals, birds, reptiles, cephalopods, and fish across terrestrial and marine environments. However, 44% of these species are globally threatened, and 78% have not yet been assessed in China for extinction risk. More worrisome, 73% of these megafauna have not been designated as nationally protected species, and <10% of their most important habitats are protected. Filling this wide "megafauna gap" in China and globally would be a leading step as humanity strives to thrive with coastal ecosystems.
Collapse
Affiliation(s)
- Xincheng Li
- Coastal Ecology Lab, MOE Key Laboratory of Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary (Shanghai), School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Hanchen Wang
- Coastal Ecology Lab, MOE Key Laboratory of Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary (Shanghai), School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Douglas J. McCauley
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93101, USA
| | - Andrew H. Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Brian R. Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Jonathan S. Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
- University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| | - Jihua Wu
- State Key Laboratory of Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Bo Li
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory of Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary (Shanghai), School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
12
|
Lauer DA, Lawing AM, Short RA, Manthi FK, Müller J, Head JJ, McGuire JL. Disruption of trait-environment relationships in African megafauna occurred in the middle Pleistocene. Nat Commun 2023; 14:4016. [PMID: 37463920 DOI: 10.1038/s41467-023-39480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Mammalian megafauna have been critical to the functioning of Earth's biosphere for millions of years. However, since the Plio-Pleistocene, their biodiversity has declined concurrently with dramatic environmental change and hominin evolution. While these biodiversity declines are well-documented, their implications for the ecological function of megafaunal communities remain uncertain. Here, we adapt ecometric methods to evaluate whether the functional link between communities of herbivorous, eastern African megafauna and their environments (i.e., functional trait-environment relationships) was disrupted as biodiversity losses occurred over the past 7.4 Ma. Herbivore taxonomic and functional diversity began to decline during the Pliocene as open grassland habitats emerged, persisted, and expanded. In the mid-Pleistocene, grassland expansion intensified, and climates became more variable and arid. It was then that phylogenetic diversity declined, and the trait-environment relationships of herbivore communities shifted significantly. Our results divulge the varying implications of different losses in megafaunal biodiversity. Only the losses that occurred since the mid-Pleistocene were coincident with a disturbance to community ecological function. Prior diversity losses, conversely, occurred as the megafaunal species and trait pool narrowed towards those adapted to grassland environments.
Collapse
Affiliation(s)
- Daniel A Lauer
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel A Short
- Department of Natural Resource Management, South Dakota State University, Rapid City, SD, 57703, USA
| | - Fredrick K Manthi
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Johannes Müller
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, 10115, Berlin, Germany
| | - Jason J Head
- Department of Zoology and University Museum of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Jenny L McGuire
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
13
|
Darimont CT, Cooke R, Bourbonnais ML, Bryan HM, Carlson SM, Estes JA, Galetti M, Levi T, MacLean JL, McKechnie I, Paquet PC, Worm B. Humanity's diverse predatory niche and its ecological consequences. Commun Biol 2023; 6:609. [PMID: 37386144 PMCID: PMC10310721 DOI: 10.1038/s42003-023-04940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Although humans have long been predators with enduring nutritive and cultural relationships with their prey, seldom have conservation ecologists considered the divergent predatory behavior of contemporary, industrialized humans. Recognizing that the number, strength and diversity of predator-prey relationships can profoundly influence biodiversity, here we analyze humanity's modern day predatory interactions with vertebrates and estimate their ecological consequences. Analysing IUCN 'use and trade' data for ~47,000 species, we show that fishers, hunters and other animal collectors prey on more than a third (~15,000 species) of Earth's vertebrates. Assessed over equivalent ranges, humans exploit up to 300 times more species than comparable non-human predators. Exploitation for the pet trade, medicine, and other uses now affects almost as many species as those targeted for food consumption, and almost 40% of exploited species are threatened by human use. Trait space analyses show that birds and mammals threatened by exploitation occupy a disproportionally large and unique region of ecological trait space, now at risk of loss. These patterns suggest far more species are subject to human-imposed ecological (e.g., landscapes of fear) and evolutionary (e.g., harvest selection) processes than previously considered. Moreover, continued overexploitation will likely bear profound consequences for biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Chris T Darimont
- Department of Geography, University of Victoria, Victoria, BC, Canada.
- Raincoast Conservation Foundation, Sidney, BC, Canada.
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Wallingford, UK.
| | - Mathieu L Bourbonnais
- Department of Earth, Environmental, and Geographic Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Heather M Bryan
- Raincoast Conservation Foundation, Sidney, BC, Canada
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephanie M Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - James A Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Mauro Galetti
- São Paulo State University (UNESP), Department of Biodiversity, Rio Claro, São Paulo, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL, USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Jessica L MacLean
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
- Hakai Institute, Heriot Bay, Quadra Island, BC, Canada
| | - Paul C Paquet
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Cox DTC, Gardner AS, Gaston KJ. Diel niche variation in mammalian declines in the Anthropocene. Sci Rep 2023; 13:1031. [PMID: 36658287 PMCID: PMC9852540 DOI: 10.1038/s41598-023-28104-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Biodiversity is being eroded worldwide. Many human pressures are most forcefully exerted or have greatest effect during a particular period of the day. Therefore when species are physically active (their diel niche) may influence their risk of population decline. We grouped 5032 terrestrial extant mammals by their dominant activity pattern (nocturnal, crepuscular, cathemeral and diurnal), and determine variation in population decline across diel niches. We find an increased risk of population decline in diurnal (52.1% of species), compared to nocturnal (40.1% of species), crepuscular (39.1% of species) and cathemeral (43.0% of species) species, associated with the larger proportion of diurnal mammals that are primates. Those species with declining populations whose activity predominantly coincides with that of humans (cathemeral, diurnal) face an increased number of anthropogenic threats than those principally active at night, with diurnal species more likely to be declining from harvesting. Across much of the land surface habitat loss is the predominant driver of population decline, however, harvesting is a greater threat to day-active species in sub-Saharan Africa and mainland tropical Asia, associated with declines in megafauna and arboreal foragers. Deepening understanding of diel variation in anthropogenic pressures and resulting population declines will help target conservation actions.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Alexandra S Gardner
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
15
|
Badenes‐Pérez FR. The impacts of free‐roaming cats cannot be generalized and their role in rodent management should not be overlooked. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Abiem I, Dickie I, Kenfack D, Chapman HM. Factors limiting plant recruitment in a tropical Afromontane Forest. Biotropica 2022. [DOI: 10.1111/btp.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Iveren Abiem
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Department of Plant Science and Biotechnology University of Jos Jos Nigeria
- Nigerian Montane Forest Project Yelwa Village Nigeria
| | - Ian Dickie
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - David Kenfack
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute Washington District of Columbia USA
| | - Hazel M. Chapman
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Nigerian Montane Forest Project Yelwa Village Nigeria
| |
Collapse
|
17
|
Policy interventions and competing management paradigms shape the long-term distribution of forest harvesting across the landscape. Proc Natl Acad Sci U S A 2022; 119:e2208360119. [PMID: 36191184 PMCID: PMC9564940 DOI: 10.1073/pnas.2208360119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Industrial economic models of natural resource management often incentivize the sequential harvesting of resources based on profitability, disproportionately targeting the higher-value elements of the environment. In fisheries, this issue is framed as a problem of "fishing down the food chain" when these elements represent different trophic levels or sequential depletion more generally. Harvesting that focuses on high grading the most profitable, productive, and accessible components of environmental gradients is also thought to occur in the forestry sector. Such a paradigm is inconsistent with a stewardship ethic, entrenched in the forestry literature, that seeks to maintain or enhance forest condition over time. We ask 1) how these conflicting paradigms have influenced patterns of forest harvesting over time and 2) whether more recent conservation-oriented policies influenced these historical harvesting patterns. We use detailed harvest data over a 47-y period and aggregated time series data that span over a century on the central coast of British Columbia, Canada to assess temporal changes in how logging is distributed among various classes of site productivity and terrain accessibility, corresponding to timber value. Most of this record shows a distinct trend of harvesting shifting over time to less productive stands, with some evidence of harvesting occurring in increasingly less accessible forests. However, stewardship-oriented policy changes enacted in the mid-1990s appear to have strongly affected these trends. This illustrates both a profit-maximizing tendency to log down the value chain when choices are unconstrained and the potential of policy choices to impose a greater stewardship ethic on harvesting behavior.
Collapse
|
18
|
Salvatori M, Oberosler V, Augugliaro C, Krofel M, Rovero F. Effects of free-ranging livestock on occurrence and interspecific interactions of a mammalian community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2644. [PMID: 35471769 PMCID: PMC9788037 DOI: 10.1002/eap.2644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mammalian communities inhabiting temperate grasslands are of conservation concern globally, especially in Central Asia, where livestock numbers have dramatically increased in recent decades, leading to overgrazing and land-use change. Yet, how this pervasive presence of livestock herds affects the community of wild mammals remains largely unstudied. We used systematic camera trapping at 216 sites across remote, mountainous areas of the Mongolian Altai Mountains to assess the spatial and temporal patterns of occurrence and the interspecific relationships within a mammalian community that includes different categories of livestock. By adopting a recently proposed multispecies occupancy model that incorporates interspecific correlation in occupancy, we found several statistically strong correlations in occupancy among species pairs, with the majority involving livestock. The sign of such associations was markedly species-dependent, with larger wild species of conservation concern, namely, snow leopard and Siberian ibex, avoiding livestock presence. As predicted, we found evidence of a positive correlation in occupancy between predators and their respective main prey. Contrary to our expectations, a number of intraguild species pairs also showed positive co-occurrence, with no evidence of spatiotemporal niche partitioning. Overall, our study suggests that livestock encroaching into protected areas influences the whole local community of wild mammals. Though pastoralism has coexisted with wildlife for millennia in central Asian grasslands, our findings suggest that policies and practices to decrease the pressure of livestock husbandry on wildlife are needed, with special attention on large species, such as the snow leopard and its wild prey, which seem to be particularly sensitive to this pervasive livestock presence.
Collapse
Affiliation(s)
- Marco Salvatori
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
- MUSE ‐ Science Museum of TrentoTrentoItaly
| | | | - Claudio Augugliaro
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Wildlife Initiative NGOUlaanbaatarMongolia
| | - Miha Krofel
- Department of Forestry, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Francesco Rovero
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
- MUSE ‐ Science Museum of TrentoTrentoItaly
| |
Collapse
|
19
|
Lagerstrom KM, Vance S, Cornwell BH, Ruffley M, Bellagio T, Exposito-Alonso M, Palumbi SR, Hadly EA. From coral reefs to Joshua trees: What ecological interactions teach us about the adaptive capacity of biodiversity in the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210389. [PMID: 35757872 PMCID: PMC9234817 DOI: 10.1098/rstb.2021.0389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
| | - Summer Vance
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brendan H Cornwell
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Tatiana Bellagio
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Moi Exposito-Alonso
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Stephen R Palumbi
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.,Center for Innovation in Global Health, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
21
|
Ingeman KE, Zhao LZ, Wolf C, Williams DR, Ritger AL, Ripple WJ, Kopecky KL, Dillon EM, DiFiore BP, Curtis JS, Csik SR, Bui A, Stier AC. Glimmers of hope in large carnivore recoveries. Sci Rep 2022; 12:10005. [PMID: 35864129 PMCID: PMC9304400 DOI: 10.1038/s41598-022-13671-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
In the face of an accelerating extinction crisis, scientists must draw insights from successful conservation interventions to uncover promising strategies for reversing broader declines. Here, we synthesize cases of recovery from a list of 362 species of large carnivores, ecologically important species that function as terminal consumers in many ecological contexts. Large carnivores represent critical conservation targets that have experienced historical declines as a result of direct exploitation and habitat loss. We examine taxonomic and geographic variation in current extinction risk and recovery indices, identify conservation actions associated with positive outcomes, and reveal anthropogenic threats linked to ongoing declines. We find that fewer than 10% of global large carnivore populations are increasing, and only 12 species (3.3%) have experienced genuine improvement in extinction risk, mostly limited to recoveries among marine mammals. Recovery is associated with species legislation enacted at national and international levels, and with management of direct exploitation. Conversely, ongoing declines are robustly linked to threats that include habitat modification and human conflict. Applying lessons from cases of large carnivore recovery will be crucial for restoring intact ecosystems and maintaining the services they provide to humans.
Collapse
Affiliation(s)
- Kurt E Ingeman
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA. .,David H. Smith Conservation Research Program, Society for Conservation Biology, Washington, DC, USA.
| | - Lily Z Zhao
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Christopher Wolf
- Global Trophic Cascades Program, Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - David R Williams
- School of Earth and Environment, University of Leeds, Leeds, UK.,Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Amelia L Ritger
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - William J Ripple
- Global Trophic Cascades Program, Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kai L Kopecky
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Bartholomew P DiFiore
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Joseph S Curtis
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Samantha R Csik
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - An Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, 2018 Noble Hall, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
22
|
Detecting wildlife poaching: a rigorous method for comparing patrol strategies using an experimental design. ORYX 2022. [DOI: 10.1017/s0030605320001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractMany studies of wildlife poaching acknowledge the challenges of detecting poaching activities, but few address the issue. Data on poaching may be an inaccurate reflection of the true spatial distribution of events because of low detection rates. The deployment of conservation and law enforcement resources based on biased data could be ineffective or lead to unintended outcomes. Here, we present a rigorous method for estimating the probabilities of detecting poaching and for evaluating different patrol strategies. We illustrate the method with a case study in which imitation snares were set in a private nature reserve in South Africa. By using an experimental design with a known spatial distribution of imitation snares, we estimated the detection probability of the current patrol strategy used in the reserve and compared it to three alternative patrol strategies: spatially focused patrols, patrols with independent observers, and systematic search patterns. Although detection probabilities were generally low, the highest proportion of imitation snares was detected with systematic search strategies. Our study provides baseline data on the probability of detecting snares used for poaching, and presents a method that can be modified for use in other regions and for other types of wildlife poaching.
Collapse
|
23
|
Montgomery RA, Pointer AM, Jingo S, Kasozi H, Ogada M, Mudumba T. Integrating Social Justice into Higher Education Conservation Science. Bioscience 2022; 72:549-559. [PMID: 35677291 PMCID: PMC9169897 DOI: 10.1093/biosci/biac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Because biodiversity loss has largely been attributed to human actions, people, particularly those in the Global South, are regularly depicted as threats to conservation. This context has facilitated rapid growth in green militarization, with fierce crackdowns against real or perceived environmental offenders. We designed an undergraduate course to assess student perspectives on biodiversity conservation and social justice and positioned those students to contribute to a human heritage-centered conservation (HHCC) initiative situated in Uganda. We evaluated changes in perspectives using pre- and postcourse surveys and reflection instruments. Although the students started the course prioritizing biodiversity conservation, even when it was costly to human well-being, by the end of the course, they were recognizing and remarking on the central importance of social justice within conservation. We present a framework for further integration of HHCC approaches into higher education courses so as to conserve the integrity of coupled human and natural systems globally.
Collapse
Affiliation(s)
- Robert A Montgomery
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom, and with The Recanati-Kaplan Centre, Tubney, England, United Kingdom
| | | | - Sophia Jingo
- Michigan State University, East Lansing, Michigan, United States
| | - Herbert Kasozi
- Michigan State University, East Lansing, Michigan, United States
| | | | - Tutilo Mudumba
- Michigan State University, East Lansing, Michigan, United States
- Department of Zoology, Entomology, and Fisheries Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
24
|
Flores CA, Arreortúa M, González-Bernal E. Tadpole soup: Chinantec caldo de piedra and behavior of Duellmanohyla ignicolor larvae (Amphibia, Anura, Hylidae). Zookeys 2022; 1097:117-132. [PMID: 35837580 PMCID: PMC9050798 DOI: 10.3897/zookeys.1097.76426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Although amphibian consumption by humans has been reported globally, this practice is not well studied despite its direct implications to the decline of amphibian populations. The International Union for Conservation of Nature (IUCN) recognizes the need to document the use and trade of species to be considered in assessing their extinction risk. Here the consumption of Duellmanohyla ignicolor tadpoles is documented. It is a micro endemic species categorized as Near Threatened (NT) consumed in a traditional dish called “caldo de piedra” (stone soup) prepared by the Chinantec people (Tsa Ju Jmí’) in Oaxaca, Mexico. Through conversations with local people and stream monitoring, the behavior of tadpoles of this species was documented and aspects of their exploitation and habitat use described. Places where caldo de piedra is still consumed were determined and using a spatial analysis with Geographic Information Systems, the distribution of the species in relation to those localities was analyzed. A number of other areas where tadpoles of this species might also occur and be exploited is predicted. In conclusion, the school behaviour, surface feeding, and the preference for deeper waterbodies that these tadpoles exhibit makes them vulnerable to being caught in large quantities. As they are consumed locally, are not commercialized, and the species distribution range is wider than caldo de piedra consumption, this implies a low risk for their populations. However, the tadpoles’ reliance on streams with depths x̄ = 60 cm and flux x̄ = 0.65 m/s reduces the availability of sites for their optimal development.
Collapse
|
25
|
Ladd R, Crouthers R, Brook S, Eames JC. Reviewing the status and demise of the Endangered Eld’s deer and identifying priority sites and conservation actions in Cambodia. MAMMALIA 2022. [DOI: 10.1515/mammalia-2021-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Eld’s deer (Rucervus eldi) was once widely distributed across Southeast Asia, however the species is now listed as Endangered, having suffered severe population declines and range contractions. Cambodia has been considered a strong hold for the Eld’s deer subspecies R. e. siamensis, however there is limited population data available for this species within Cambodia, making its status unclear. Here, we collated all records of Eld’s deer presence between 2000 and 2020 to provide an insight into the current status of the species in Cambodia. Data was sourced through literature review as well as the internal databases of conservation organisations and biodiversity surveys. Our findings reveal that very small, spatially isolated populations of Eld’s deer are now largely restricted to nine areas in the eastern and northern parts of the country and that urgent conservation action is required to secure the future of this species in Cambodia. Effective law enforcement and anti-hunting strategies, implementation of management plans within protected areas as well as investigation into the potential of captive populations to support the conservation of Eld’s deer in the wild are essential for preserving this species.
Collapse
Affiliation(s)
- Rachel Ladd
- School of Agriculture and Food Sciences, The University of Queensland , Gatton , Qld 4343 , Australia
| | - Rachel Crouthers
- World Wide Fund for Nature Cambodia , Street 322, Boeung Keng Kang I , Phnom Penh , Cambodia
| | - Sarah Brook
- Wildlife Conservation Society, Asia Regional Program , P.O. Box 1620, House 21, Street 21 , Phnom Penh , Cambodia
| | - Jonathan C. Eames
- BirdLife International Cambodia Programme , House 32A, Street 494 , Phnom Penh , Cambodia
- Rising Phoenix Co., Ltd. , House 32A, Street 494 , Phnom Penh , Cambodia
| |
Collapse
|
26
|
Oedin M, Brescia F, Vidal E, Millon A. Make flying-fox hunting sustainable again: Comparing expected demographic effectiveness and hunters' acceptance of more restrictive regulations. AMBIO 2022; 51:1078-1089. [PMID: 34628603 PMCID: PMC8847530 DOI: 10.1007/s13280-021-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Hunting is a major threat to many species of wildlife. However, managing hunting systems to ensure their sustainability requires a thorough demographic knowledge about the impact of hunting. Here we develop a framework integrating ecological, modelling and sociological data to achieve a sustainability assessment of flying-fox hunting in New Caledonia and assess the relative merits of alternative management policies. Using age-specific stochastic population models, we found that the current annual hunting rate [5.5-8.5%] is likely to lead to a severe decline (- 79%) of Pteropus populations over the next 30 years. However, a majority of hunters surveyed (60%) were willing to soften their practices, offering an opportunity for adaptive management. Recurrent temporary hunting ban (at least 1 year out of 2) in combination with protected areas (≥ 25%) appears as the most effective and most accepted management option. Our integrative approach appears to be a promising method for ensuring that traditional hunting systems can remain sustainable in a rapidly changing world.
Collapse
Affiliation(s)
- Malik Oedin
- Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL (AgricultuRe BiOdiveRsité Et vALorisation), Port-Laguerre, BP 73, 98890 Païta, New Caledonia
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Centre IRD Nouméa - BP A5, 98848 Nouméa Cedex, New Caledonia
- Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Bât. Villemin, Technopôle Arbois-Méditerranée, 13545 Aix-en-Provence, France
| | - Fabrice Brescia
- Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL (AgricultuRe BiOdiveRsité Et vALorisation), Port-Laguerre, BP 73, 98890 Païta, New Caledonia
| | - Eric Vidal
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Centre IRD Nouméa - BP A5, 98848 Nouméa Cedex, New Caledonia
- UMR Entropie (IRD, Université de La Réunion, CNRS), Labex-Corail, Institut de Recherche pour le Développement (IRD), 101 Promenade R. Laroque, BP A5, 98848 Nouméa Cedex, New Caledonia
| | - Alexandre Millon
- Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Bât. Villemin, Technopôle Arbois-Méditerranée, 13545 Aix-en-Provence, France
| |
Collapse
|
27
|
Chen Q, Wang S, Seabloom EW, MacDougall AS, Borer ET, Bakker JD, Donohue I, Knops JMH, Morgan JW, Carroll O, Crawley M, Bugalho MN, Power SA, Eskelinen A, Virtanen R, Risch AC, Schütz M, Stevens C, Caldeira MC, Bagchi S, Alberti J, Hautier Y. Nutrients and herbivores impact grassland stability across spatial scales through different pathways. GLOBAL CHANGE BIOLOGY 2022; 28:2678-2688. [PMID: 35038782 DOI: 10.1111/gcb.16086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong liverpool University, Suzhou, China
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mick Crawley
- Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Lioy FG, Franculli D, Calandri S, Francescangeli D, Pecorella S, Gaudiano L, Filacorda S, Valvo ML, Nielsen CK, Anile S. Show me your tail, if you have one! Is inbreeding depression occurring in wildcats (Felis silvestris silvestris) from Italy? MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00627-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Mannocci L, Villon S, Chaumont M, Guellati N, Mouquet N, Iovan C, Vigliola L, Mouillot D. Leveraging social media and deep learning to detect rare megafauna in video surveys. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13798. [PMID: 34153121 PMCID: PMC9291111 DOI: 10.1111/cobi.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 05/04/2023]
Abstract
Deep learning has become a key tool for the automated monitoring of animal populations with video surveys. However, obtaining large numbers of images to train such models is a major challenge for rare and elusive species because field video surveys provide few sightings. We designed a method that takes advantage of videos accumulated on social media for training deep-learning models to detect rare megafauna species in the field. We trained convolutional neural networks (CNNs) with social media images and tested them on images collected from field surveys. We applied our method to aerial video surveys of dugongs (Dugong dugon) in New Caledonia (southwestern Pacific). CNNs trained with 1303 social media images yielded 25% false positives and 38% false negatives when tested on independent field video surveys. Incorporating a small number of images from New Caledonia (equivalent to 12% of social media images) in the training data set resulted in a nearly 50% decrease in false negatives. Our results highlight how and the extent to which images collected on social media can offer a solid basis for training deep-learning models for rare megafauna detection and that the incorporation of a few images from the study site further boosts detection accuracy. Our method provides a new generation of deep-learning models that can be used to rapidly and accurately process field video surveys for the monitoring of rare megafauna.
Collapse
Affiliation(s)
- Laura Mannocci
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
- LIRMM, Univ MontpellierCNRSMontpellierFrance
| | - Sébastien Villon
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - Marc Chaumont
- LIRMM, Univ MontpellierCNRSMontpellierFrance
- University of NîmesNîmesFrance
| | - Nacim Guellati
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- FRB – CESABMontpellierFrance
| | - Corina Iovan
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - Laurent Vigliola
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
30
|
The Impacts of Drought on the Health and Demography of Eastern Grey Kangaroos. Animals (Basel) 2022; 12:ani12030256. [PMID: 35158580 PMCID: PMC8833700 DOI: 10.3390/ani12030256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Eastern grey kangaroos, like most wildlife, are facing an increasingly uncertain future under rapid climate change. How individuals and populations cope with extreme climatic events will influence their capacity to adapt and persist. Here, we analyzed how drought impacted eastern grey kangaroo populations by focusing on their body condition, demography, activity rates at water points, and the likelihood of parasitic infections. We found that body condition was lower as environmental conditions became more extreme and that fewer males in the population were observed. The proportion of juveniles within the population increased as more favorable conditions returned. Kangaroos with poor body conditions were more likely to become hosts to ticks, while higher parasite egg burdens in scats occurred in autumn. Our study has shown that the impacts eastern grey kangaroos face during climatic events such as drought can be severe and may have long-term consequences. Abstract Extreme climatic events such as droughts and floods are expected to become more intense and severe under climate change, especially in the southern and eastern parts of Australia. We aimed to quantify the relationship between body condition scores (BCS), demography, activity rate, and parasitic infections of eastern grey kangaroos on a large conservation property under different climate extremes by employing camera traps established at artificial water points (AWPs). The survey period included a severe drought, broken by a significant flooding event. Climatic and environmental conditions were documented using remotely sensed indices of moisture availability and vegetation productivity. These conditions were found to affect all health and population parameters measured. BCS, juvenile proportions, and sex ratios were most correlated with 6-month lags in climatic conditions, while the activity rate of kangaroos at AWPs was most correlated with vegetation productivity. Ticks were mostly found on individuals with a poorer BCS, while the concentration of parasitic eggs in feces was higher in autumn than in spring. Our study offers a glimpse into some of the environmental drivers of eastern grey kangaroo populations and their health, information that may become increasingly important in today’s climate. It further emphasizes the importance of this knowledge for wildlife conservation efforts appropriate to managing the impact of climate change alongside other threats.
Collapse
|
31
|
Macdonald DW, Harrington LA, Moorhouse TP, D'Cruze N. Trading Animal Lives: Ten Tricky Issues on the Road to Protecting Commodified Wild Animals. Bioscience 2021; 71:846-860. [PMID: 34876885 PMCID: PMC8643462 DOI: 10.1093/biosci/biab035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Wildlife commodification can generate benefits for biodiversity conservation, but it also has negative impacts; overexploitation of wildlife is currently one of the biggest drivers of vertebrate extinction risk. In the present article, we highlight 10 issues that in our experience impede sustainable and humane wildlife trade. Given humanity's increasing demands on the natural world we question whether many aspects of wildlife trade can be compatible with appropriate standards for biodiversity conservation and animal welfare, and suggest that too many elements of wildlife trade as it currently stands are not sustainable for wildlife or for the livelihoods that it supports. We suggest that the onus should be on traders to demonstrate that wildlife use is sustainable, humane, and safe (with respect to disease and invasion risk), rather than on conservationists to demonstrate it is not, that there is a need for a broad acceptance of responsibility and, ultimately, widespread behavior change. We urge conservationists, practitioners, and others to take bold, progressive steps to reach consensus and action.
Collapse
Affiliation(s)
| | | | | | - Neil D'Cruze
- Department of Zoology at the University of Oxford, Tubney, Oxfordshire, United Kingdom
| |
Collapse
|
32
|
García-Macía J, Pérez I, Rodríguez-Caro RC. Biases in conservation: A regional analysis of Spanish vertebrates. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Crist E, Kopnina H, Cafaro P, Gray J, Ripple WJ, Safina C, Davis J, DellaSala DA, Noss RF, Washington H, Rolston H, Taylor B, Orlikowska EH, Heister A, Lynn WS, Piccolo JJ. Protecting Half the Planet and Transforming Human Systems Are Complementary Goals. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.761292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The unfolding crises of mass extinction and climate change call for urgent action in response. To limit biodiversity losses and avert the worst effects of climate disruption, we must greatly expand nature protection while simultaneously downsizing and transforming human systems. The conservation initiative Nature Needs Half (or Half Earth), calling for the conservation of half the Earth's land and seas, is commensurate with the enormous challenges we face. Critics have objected to this initiative as harboring hardship for people near protected areas and for failing to confront the growth economy as the main engine of global ecological destruction. In response to the first criticism, we affirm that conservation policies must be designed and implemented in collaboration with Indigenous and local communities. In response to the second criticism, we argue that protecting half the Earth needs to be complemented by downscaling and reforming economic life, humanely and gradually reducing the global population, and changing food production and consumption. By protecting nature generously, and simultaneously contracting and transforming the human enterprise, we can create the conditions for achieving justice and well-being for both people and other species. If we fail to do so, we instead accept a chaotic and impoverished world that will be dangerous for us all.
Collapse
|
34
|
Sayol F, Cooke RSC, Pigot AL, Blackburn TM, Tobias JA, Steinbauer MJ, Antonelli A, Faurby S. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. SCIENCE ADVANCES 2021; 7:eabj5790. [PMID: 34757780 PMCID: PMC8580305 DOI: 10.1126/sciadv.abj5790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/21/2021] [Indexed: 06/02/2023]
Abstract
Human impacts reshape ecological communities through the extinction and introduction of species. The combined impact of these factors depends on whether non-native species fill the functional roles of extinct species, thus buffering the loss of functional diversity. This question has been difficult to address, because comprehensive information about past extinctions and their traits is generally lacking. We combine detailed information about extinct, extant, and established alien birds to quantify historical changes in functional diversity across nine oceanic archipelagos. We found that alien species often equal or exceed the number of anthropogenic extinctions yet apparently perform a narrower set of functional roles as current island assemblages have undergone a substantial and ubiquitous net loss in functional diversity and increased functional similarity among assemblages. Our results reveal that the introduction of alien species has not prevented anthropogenic extinctions from reducing and homogenizing the functional diversity of native bird assemblages on oceanic archipelagos.
Collapse
Affiliation(s)
- Ferran Sayol
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Robert S. C. Cooke
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Tim M. Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, UK
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London Silwood Park, Ascot, UK
| | - Manuel J. Steinbauer
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research and Sport Ecology, Department of Sport Science, Bayreuth, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
35
|
Pouteau R, Brunel C, Dawson W, Essl F, Kreft H, Lenzner B, Meyer C, Pergl J, Pyšek P, Seebens H, Weigelt P, Winter M, Kleunen M. Environmental and socioeconomic correlates of extinction risk in endemic species. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robin Pouteau
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
- AMAP IRD CNRS CIRAD INRA Univ Montpellier Montpellier France
| | - Caroline Brunel
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Wayne Dawson
- Department of Biosciences Durham University Durham UK
| | - Franz Essl
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Bernd Lenzner
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
- Institute for Geosciences and Geography Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jan Pergl
- Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic
| | - Petr Pyšek
- Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Prague 2 Czech Republic
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography University of Goettingen Göttingen Germany
- Campus‐Institut Data Science Göttingen Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Mark Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
- Department of Biology University of Konstanz Konstanz Germany
| |
Collapse
|
36
|
Lopes PFM, Hanazaki N, Nakamura EM, Salivonchyk S, Begossi A. What fisher diets reveal about fish stocks. AMBIO 2021; 50:1851-1865. [PMID: 33677808 PMCID: PMC8363708 DOI: 10.1007/s13280-021-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Tracking fish consumption could provide additional information on changes to fish stocks, one of the planet's main protein sources. We used data on seafood consumption in fishing villages in Brazil over time to test for changes in: species richness, diversity, and composition, fish size and trophic levels, consumption of endangered species, and functional diversity (namely, species with different behavioral and habitat preferences). Our results demonstrate the potential to include this additional data source to complement fisheries data, especially in data-poor countries. With respect to Brazil specifically, we identified a decrease in both the average trophic level and size of the species consumed. While the consumption of endangered species had always been low, most of these species changed over time, thereby suggesting that many, especially elasmobranchs, may have become rare on the plates. Although it may be hard to fully isolate cultural changes from biodiversity changes when it comes to analyzing consumption data, by examining diets it is possible to identify aspects worth investigating further, such as, whether the decrease in dietary trophic levels mirrors a decrease in environmental trophic levels. In places where fisheries data are either inexistent or limited, diet track surveys, such as household expenditure programs, can help trace the changes caused by fisheries in stocks and habitats.
Collapse
Affiliation(s)
- Priscila F. M. Lopes
- Departament of Ecology, Universidade Federal Do RioGrande do Norte, Natal, RN Brazil
| | - Natália Hanazaki
- Department of Ecology and Zoology, Biological Sciences Center, Universidade Federal de Santa Catarina - Campus Universitário, Sala 009 Bloco C - Córrego Grande, 88040-900 Florianópolis, SC Brazil
| | - Elaine M. Nakamura
- Department of Ecology and Zoology, Biological Sciences Center, Universidade Federal de Santa Catarina - Campus Universitário, Sala 010 Bloco C - Córrego Grande, CEP: 88040-900 Florianópolis, SC Brazil
| | - Svetlana Salivonchyk
- Institute for Nature Management, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Alpina Begossi
- CAPESCA, NEPA, UNICAMP SP, Rua Albert Einstein 291, Campinas, SP 13083-852 Brazil
| |
Collapse
|
37
|
Doody JS, Reid JA, Bilali K, Diaz J, Mattheus N. In the post-COVID-19 era, is the illegal wildlife trade the most serious form of trafficking? CRIME SCIENCE 2021; 10:19. [PMID: 34540528 PMCID: PMC8436868 DOI: 10.1186/s40163-021-00154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 05/05/2023]
Abstract
Despite the immense impact of wildlife trafficking, comparisons of the profits, costs, and seriousness of crime consistently rank wildlife trafficking lower relative to human trafficking, drug trafficking and weapons trafficking. Using the published literature and current events, we make the case, when properly viewed within the context of COVID-19 and other zoonotic diseases transmitted from wildlife, that wildlife trafficking is the most costly and perhaps the most serious form of trafficking. Our synthesis should raise awareness of the seriousness of wildlife trafficking for humans, thereby inducing strategic policy decisions that boost criminal justice initiatives and resources to combat wildlife trafficking.
Collapse
Affiliation(s)
- J. Sean Doody
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Joan A. Reid
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Klejdis Bilali
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Jennifer Diaz
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Nichole Mattheus
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| |
Collapse
|
38
|
Sánchez-Barreiro F, Gopalakrishnan S, Ramos-Madrigal J, Westbury MV, de Manuel M, Margaryan A, Ciucani MM, Vieira FG, Patramanis Y, Kalthoff DC, Timmons Z, Sicheritz-Pontén T, Dalén L, Ryder OA, Zhang G, Marquès-Bonet T, Moodley Y, Gilbert MTP. Historical population declines prompted significant genomic erosion in the northern and southern white rhinoceros (Ceratotherium simum). Mol Ecol 2021; 30:6355-6369. [PMID: 34176179 PMCID: PMC9291831 DOI: 10.1111/mec.16043] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.
Collapse
Affiliation(s)
| | - Shyam Gopalakrishnan
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,DTU Bioinformatics, Kongens Lyngby, Hovedstaden, Denmark.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Marc de Manuel
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Ashot Margaryan
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Marta M Ciucani
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Filipe G Vieira
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Zena Timmons
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Thomas Sicheritz-Pontén
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,BGI-Shenzhen, Shenzhen, China
| | - Tomás Marquès-Bonet
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Spain.,National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Thohoyandou, South Africa
| | - M Thomas P Gilbert
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| |
Collapse
|
39
|
Delso Á, Fajardo J, Muñoz J. Protected area networks do not represent unseen biodiversity. Sci Rep 2021; 11:12275. [PMID: 34112867 PMCID: PMC8192537 DOI: 10.1038/s41598-021-91651-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Most existing protected area networks are biased to protect charismatic species or landscapes. We hypothesized that conservation networks designed to include unseen biodiversity-species rich groups that consist of inconspicuous taxa, or groups affected by knowledge gaps-are more efficient than networks that ignore these groups. To test this hypothesis, we generated species distribution models for 3006 arthropod species to determine which were represented in three networks of different sizes and biogeographic origin. We assessed the efficiency of each network using spatial prioritization to measure its completeness, the increment needed to achieve conservation targets, and its specificity, the extent to which proposed priority areas to maximize unseen biodiversity overlap with existing networks. We found that the representativeness of unseen biodiversity in the studied protected areas, or extrinsic representativeness, is low, with ~ 40% of the analyzed unseen biodiversity species being unprotected. We also found that existing networks should be expanded ~ 26% to 46% of their current area to complete targets, and that existing networks do not efficiently conserve the unseen biodiversity given their low specificity (as low as 8.8%) unseen biodiversity. We conclude that information on unseen biodiversity must be included in systematic conservation planning approaches to design more efficient and ecologically representative protected areas.
Collapse
Affiliation(s)
- Ángel Delso
- Universidad Internacional Menéndez Pelayo, Madrid, Spain.
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain.
| | - Javier Fajardo
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Jesús Muñoz
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
40
|
Gomez L. The illegal hunting and exploitation of porcupines for meat and medicine in Indonesia. NATURE CONSERVATION 2021. [DOI: 10.3897/natureconservation.43.62750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Indonesia is home to five species of porcupines, three of which are island endemics. While all five species are currently assessed as Least Concern by the IUCN Red List of Threatened Species, impacts of harvest and trade have not been factored in. To gain a fuller understanding of the porcupine trade in Indonesia, this study examines seizure data of porcupines, their parts and derivatives from January 2013 to June 2020. A total of 39 incidents were obtained amounting to an estimated 452 porcupines. Various confiscated commodities revealed porcupines are traded for consumption, traditional medicine, trophies/charms as well as for privately run wildlife/recreational parks. Targeted hunting of porcupines for commercial international trade was also evident. Porcupines are also persecuted as agricultural pests and wildlife traffickers take advantage of such situations to procure animals for trade. What clearly emerges from this study is that porcupines are being illegally hunted and exploited throughout their range in Indonesia facilitated by poor enforcement and legislative weakness. Porcupines are in decline due to habitat loss, retaliatory killings and uncontrolled poaching. It is therefore crucial that effective conservation measures are taken sooner rather than later to prevent further depletion of these species. Including all porcupines as protected species under Indonesian wildlife laws and listing them in Appendix II of CITES to improve regulation, enforcement and monitoring of domestic and international trade trends involving porcupines in Indonesia would contribute significantly towards this end.
Collapse
|
41
|
He F, Langhans SD, Zarfl C, Wanke R, Tockner K, Jähnig SC. Combined effects of life-history traits and human impact on extinction risk of freshwater megafauna. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:643-653. [PMID: 32671869 DOI: 10.1111/cobi.13590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 06/16/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Megafauna species are intrinsically vulnerable to human impact. Freshwater megafauna (i.e., freshwater animals ≥30 kg, including fishes, mammals, reptiles, and amphibians) are subject to intensive and increasing threats. Thirty-four species are listed as critically endangered on the International Union for Conservation of Nature (IUCN). Red List of Threatened Species, the assessments for which are an important basis for conservation actions but remain incomplete for 49 (24%) freshwater megafauna species. Consequently, the window of opportunity for protecting these species could be missed. Identifying the factors that predispose freshwater megafauna to extinction can help predict their extinction risk and facilitate more effective and proactive conservation actions. Thus, we collated 8 life-history traits for 206 freshwater megafauna species. We used generalized linear mixed models to examine the relationships between extinction risk based on the IUCN Red List categories and the combined effect of multiple traits, as well as the effect of human impact on these relationships for 157 classified species. The most parsimonious model included human impact and traits related to species' recovery potential including life span, age at maturity, and fecundity. Applying the most parsimonious model to 49 unclassified species predicted that 17 of them are threatened. Accounting for model predictions together with IUCN Red List assessments, 50% of all freshwater megafauna species are considered threatened. The Amazon and Yangtze basins emerged as global diversity hotspots of threatened freshwater megafauna, in addition to existing hotspots, including the Ganges-Brahmaputra and Mekong basins and the Caspian Sea region. Assessment and monitoring of those species predicted to be threatened are needed, especially in the Amazon and Yangtze basins. Investigation of life-history traits and trends in population and distribution, regulation of overexploitation, maintaining river connectivity, implementing protected areas focusing on freshwater ecosystems, and integrated basin management are required to protect threatened freshwater megafauna in diversity hotspots.
Collapse
Affiliation(s)
- Fengzhi He
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- School of Geography, Queen Mary University of London, London, E1 4NS, UK
| | - Simone D Langhans
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
- BC3 - Basque Centre for Climate Change, Sede Building 1, Leioa, 48904, Spain
| | - Christiane Zarfl
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, Tübingen, 72074, Germany
| | - Roland Wanke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Klement Tockner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Austrian Science Fund (FWF), Sensengasse 1, Vienna, 1090, Austria
| | - Sonja C Jähnig
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| |
Collapse
|
42
|
Sayol F, Steinbauer MJ, Blackburn TM, Antonelli A, Faurby S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. SCIENCE ADVANCES 2020; 6:6/49/eabb6095. [PMID: 33268368 PMCID: PMC7710364 DOI: 10.1126/sciadv.abb6095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/15/2020] [Indexed: 06/02/2023]
Abstract
Human-driven extinctions can affect our understanding of evolution, through the nonrandom loss of certain types of species. Here, we explore how knowledge of a major evolutionary transition-the evolution of flightlessness in birds-is biased by anthropogenic extinctions. Adding data on 581 known anthropogenic extinctions to the extant global avifauna increases the number of species by 5%, but quadruples the number of flightless species. The evolution of flightlessness in birds is a widespread phenomenon, occurring in more than half of bird orders and evolving independently at least 150 times. Thus, we estimate that this evolutionary transition occurred at a rate four times higher than it would appear based solely on extant species. Our analysis of preanthropogenic avian diversity shows how anthropogenic effects can conceal the frequency of major evolutionary transitions in life forms and highlights the fact that macroevolutionary studies with only small amounts of missing data can still be highly biased.
Collapse
Affiliation(s)
- F Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Centre for Biodiversity and Environmental Research, University College London, London, UK
| | - M J Steinbauer
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER) & Department of Sport Science, Bayreuth, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - T M Blackburn
- Centre for Biodiversity and Environmental Research, University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - A Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford, United Kingdom
| | - S Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
43
|
Goumas M, Lee VE, Boogert NJ, Kelley LA, Thornton A. The Role of Animal Cognition in Human-Wildlife Interactions. Front Psychol 2020; 11:589978. [PMID: 33250826 PMCID: PMC7672032 DOI: 10.3389/fpsyg.2020.589978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Humans have a profound effect on the planet's ecosystems, and unprecedented rates of human population growth and urbanization have brought wild animals into increasing contact with people. For many species, appropriate responses toward humans are likely to be critical to survival and reproductive success. Although numerous studies have investigated the impacts of human activity on biodiversity and species distributions, relatively few have examined the effects of humans on the behavioral responses of animals during human-wildlife encounters, and the cognitive processes underpinning those responses. Furthermore, while humans often present a significant threat to animals, the presence or behavior of people may be also associated with benefits, such as food rewards. In scenarios where humans vary in their behavior, wild animals would be expected to benefit from the ability to discriminate between dangerous, neutral and rewarding people. Additionally, individual differences in cognitive and behavioral phenotypes and past experiences with humans may affect animals' ability to exploit human-dominated environments and respond appropriately to human cues. In this review, we examine the cues that wild animals use to modulate their behavioral responses toward humans, such as human facial features and gaze direction. We discuss when wild animals are expected to attend to certain cues, how information is used, and the cognitive mechanisms involved. We consider how the cognitive abilities of wild animals are likely to be under selection by humans and therefore influence population and community composition. We conclude by highlighting the need for long-term studies on free-living, wild animals to fully understand the causes and ecological consequences of variation in responses to human cues. The effects of humans on wildlife behavior are likely to be substantial, and a detailed understanding of these effects is key to implementing effective conservation strategies and managing human-wildlife conflict.
Collapse
Affiliation(s)
- Madeleine Goumas
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Victoria E. Lee
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Midlothian, United Kingdom
| | - Neeltje J. Boogert
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Laura A. Kelley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| |
Collapse
|
44
|
Miao Z, Wang Q, Chen D, Song Z, Zhang W, Zhou X, MacMillan DC. Current Societal Views about Sustainable Wildlife Management and Conservation: A Survey of College Students in China. Animals (Basel) 2020; 10:ani10101821. [PMID: 33036300 PMCID: PMC7599632 DOI: 10.3390/ani10101821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Wildlife conservation and management has become a very complex public policy issue in China as concerns about animal welfare and empathy for animals have emerged, especially in the younger generation. Science-based conservation policy and strategy that focus on sustainable management are perceived as less irrelevant today and can often be in conflict with emerging attitudes and values. Sustainable wildlife management adheres to the conservation concept of effective combination of species conservation and sustainable utilization, with an aim to establish a long-acting species conservation model that promotes all-round development of ecology, society, and economy, and has traditionally formed the basis of conservation management. This study designed a semi-structured questionnaire, which aimed to assess attitudes of Chinese college students towards sustainable wildlife management and wildlife conservation, and investigate the role of demographic and other characteristics on attitude. From October 2018 to April 2019, nine universities (including “Double First-Class” universities, first-tier universities, second-tier universities), and four three-year colleges in China were selected as survey sites, where face-to-face interviews were conducted among students. The results show that students broadly support the sustainable wildlife management but not in issues relating to “Animal Welfare and Rights” and “Trophy Hunting”. Students with lowest support for the theory and practice of sustainable wildlife management are vegetarians, freshmen, and those who have taken environmental protection electives in their educational program. Abstract Wildlife conservation and management has become a very complex public policy issue in China as concerns over on animal welfare and empathy for animals have grown. Science-based conservation strategies that are oriented toward sustainable wildlife management (SWM) are under threat as these new attitudes and values emerge and take hold. This study accesses the attitudes of college students towards SWM and wildlife conservation, and investigates demographic characteristics influencing their attitudes in China, a country that is traditionally associated with consumptive use of wildlife and SWM, but where new ideas about wildlife conservation are emerging. From October 2018 to April 2019, nine universities (including “Double First-Class” universities, first-tier universities, second-tier universities), and four three-year colleges in China were selected as survey locations, and face-to-face interviews were conducted with 1991 students. A total of 1977 questionnaires were recovered, of which 1739 were valid, with a completion rate of 88%. A Likert seven-point scale method was used to score students’ attitudes, and a classification and regression tree (CART) was used to analyze whether their attitudes were affected by their demographic characteristics. The results show that although students are broadly supportive of the theory of SWM, some are deeply antagonistic about on SWM on issues that arouse strong emotions such as “Animal Welfare and Rights” and “Trophy Hunting”. Demographic characteristics of students affect their degree of support for the SWM with support for SWM lower among vegetarians, freshmen, and students who have taken environmental protection electives. This research suggests that the theory of SWM requires to be refreshed and adapted to appeal to the younger generation of Chinese students, with SWM principles integrated into the environmental education programs of universities and three-year colleges. More attention should also be attached to media publicity by the government about wildlife conservation so as to enhance awareness of the need for SWM.
Collapse
Affiliation(s)
- Zhen Miao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Z.M.); (D.C.); (Z.S.)
| | - Qiang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Dongxiao Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Z.M.); (D.C.); (Z.S.)
| | - Zhifan Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Z.M.); (D.C.); (Z.S.)
| | - Wei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Z.M.); (D.C.); (Z.S.)
- Correspondence: (W.Z.); (X.Z.)
| | - Xuehong Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Z.M.); (D.C.); (Z.S.)
- Correspondence: (W.Z.); (X.Z.)
| | - Douglas C. MacMillan
- Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, Kent CT2 7NR, UK;
| |
Collapse
|
45
|
Gallego‐Zamorano J, Benítez‐López A, Santini L, Hilbers JP, Huijbregts MAJ, Schipper AM. Combined effects of land use and hunting on distributions of tropical mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1271-1280. [PMID: 31919881 PMCID: PMC7540261 DOI: 10.1111/cobi.13459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 05/22/2023]
Abstract
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species' range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species' distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.
Collapse
Affiliation(s)
- Juan Gallego‐Zamorano
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
| | - Ana Benítez‐López
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
- Integrative Ecology GroupEstación Biológica de Doñana (EBD‐CSIC)Av. Americo Vespucio S/NSevilla41092Spain
| | - Luca Santini
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
- National Research CouncilInstitute of Research on Terrestrial Ecosystems (CNR‐IRET)Via Salaria km 29.300Rome00015Italy
| | - Jelle P. Hilbers
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
- PBL Netherlands Environmental Assessment AgencyP.O. Box 30314 NL‐2500 GHThe HagueThe Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
| | - Aafke M. Schipper
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of ScienceRadboud UniversityP.O. Box 9010NijmegenNL‐6500 GLThe Netherlands
- PBL Netherlands Environmental Assessment AgencyP.O. Box 30314 NL‐2500 GHThe HagueThe Netherlands
| |
Collapse
|
46
|
Roberson LA, Watson RA, Klein CJ. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat Commun 2020; 11:4764. [PMID: 32958769 PMCID: PMC7506527 DOI: 10.1038/s41467-020-18505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Industrial-scale harvest of species at risk of extinction is controversial and usually highly regulated on land and for charismatic marine animals (e.g. whales). In contrast, threatened marine fish species can be legally caught in industrial fisheries. To determine the magnitude and extent of this problem, we analyze global fisheries catch and import data and find reported catch records of 91 globally threatened species. Thirteen of the species are traded internationally and predominantly consumed in European nations. Targeted industrial fishing for 73 of the threatened species accounts for nearly all (99%) of the threatened species catch volume and value. Our results are a conservative estimate of threatened species catch and trade because we only consider species-level data, excluding group records such as 'sharks and rays.' Given the development of new fisheries monitoring technologies and the current push for stronger international mechanisms for biodiversity management, industrial fishing of threatened fish and invertebrates should no longer be neglected in conservation and sustainability commitments.
Collapse
Affiliation(s)
- Leslie A Roberson
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, Australia.
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, QLD, Australia.
| | - Reg A Watson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Carissa J Klein
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Mudumba T, Jingo S, Heit D, Montgomery RA. The landscape configuration and lethality of snare poaching of sympatric guilds of large carnivores and ungulates. Afr J Ecol 2020. [DOI: 10.1111/aje.12781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tutilo Mudumba
- Research on the Ecology of Carnivores and their Prey Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Department of Zoology, Entomology and Fisheries Sciences College of Natural Sciences Makerere University Kampala Uganda
| | - Sophia Jingo
- Research on the Ecology of Carnivores and their Prey Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - David Heit
- Research on the Ecology of Carnivores and their Prey Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Robert A. Montgomery
- Research on the Ecology of Carnivores and their Prey Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| |
Collapse
|
48
|
Rija AA, Critchlow R, Thomas CD, Beale CM. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS One 2020; 15:e0227163. [PMID: 32822346 PMCID: PMC7446782 DOI: 10.1371/journal.pone.0227163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Illegal hunting is a persistent problem in many protected areas, but an overview of the extent of this problem and its impact on wildlife is lacking. We reviewed 40 years (1980-2020) of global research to examine the spatial distribution of research and socio-ecological factors influencing population decline within protected areas under illegal hunting pressure. From 81 papers reporting 988 species/site combinations, 294 mammal species were reported to have been illegally hunted from 155 protected areas across 48 countries. Research in illegal hunting has increased substantially during the review period and showed biases towards strictly protected areas and the African continent. Population declines were most frequent in countries with a low human development index, particularly in strict protected areas and for species with a body mass over 100 kg. Our results provide evidence that illegal hunting is most likely to cause declines of large-bodied species in protected areas of resource-poor countries regardless of protected area conservation status. Given the growing pressures of illegal hunting, increased investments in people's development and additional conservation efforts such as improving anti-poaching strategies and conservation resources in terms of improving funding and personnel directed at this problem are a growing priority.
Collapse
Affiliation(s)
- Alfan A. Rija
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rob Critchlow
- Department of Biology, University of York, York, United Kingdom
| | - Chris D. Thomas
- Department of Biology, University of York, York, United Kingdom
| | - Colin M. Beale
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
49
|
Silva AFD, Malhado AC, Correia RA, Ladle RJ, Vital MV, Mott T. Taxonomic bias in amphibian research: Are researchers responding to conservation need? J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Hoskins HM, McCann NP, Jocque M, Reid N. Rapid defaunation of terrestrial mammals in a protected Neotropical cloud forest remnant. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|