1
|
Sivri D, Akdevelioğlu Y. Effect of Fatty Acids on Glucose Metabolism and Type 2 Diabetes. Nutr Rev 2025; 83:897-907. [PMID: 39530757 DOI: 10.1093/nutrit/nuae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes is an inflammatory, non-infectious disease characterized by dysfunctional pancreatic β-cells and insulin resistance. Although lifestyle, genetic, and environmental factors are associated with a high risk of type 2 diabetes, nutrition remains one of the most significant factors. Specific types and increased amounts of dietary fatty acids are associated with type 2 diabetes and its complications. Dietary recommendations for the prevention of type 2 diabetes advocate for a diet that is characterized by reduced saturated fatty acids and trans fatty acids alongside an increased consumption of monounsaturated fatty acids, polyunsaturated fatty acids, and omega-3 fatty acids. Although following the recommendations for dietary fatty acid intake is important for reducing type 2 diabetes and its related complications, the underlying mechanisms remain unclear. This review will provide an update on the mechanisms of action of fatty acids on glucose metabolism and type 2 diabetes, as well as dietary recommendations for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Faculty of Health Science, Anadolu University, Eskişehir, Türkiye
| | - Yasemin Akdevelioğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Tsilingiris D, Natsi A, Gavriilidis E, Antoniadou C, Eleftheriadou I, Anastasiou IA, Tentolouris A, Papadimitriou E, Eftalitsidis E, Kolovos P, Tsironidou V, Giatromanolaki A, Koffa M, Tentolouris N, Skendros P, Ritis K. Interleukin-8/Matrix Metalloproteinase-9 Axis Impairs Wound Healing in Type 2 Diabetes through Neutrophil Extracellular Traps-Fibroblast Crosstalk. Eur J Immunol 2025; 55:e202451664. [PMID: 40170410 PMCID: PMC11962236 DOI: 10.1002/eji.202451664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Neutrophils interact with and activate fibroblasts through the release of neutrophil extracellular traps (NETs). We investigated the role of NETs-fibroblast crosstalk in the cutaneous wound healing of type 2 diabetes (T2D). Neutrophils/NETs, serum, and primary human skin fibroblasts (HSFs) were obtained from individuals with T2D and age/sex-matched controls. NET-stimulation studies were performed on neutrophils/HSFs, with and without specific inhibitors, while HSF healing capacity was assessed using a scratch wound healing assay. T2D HSFs display a profibrotic phenotype, showing increased CCN2/CTGF, α-smooth muscle actin, and collagen release, albeit with impaired healing capacity, elevated type I collagen C-terminal telopeptide, and collagen degradation associated with increased (∼3.5-fold) matrix metalloproteinase-9 (MMP-9) in T2D neutrophils/NETs. IL-8 induced the expression of MMP-9 in neutrophils/NETs. Moreover, T2D neutrophils/NETs exhibited increased IL-8 content, which acted in an autocrine/paracrine fashion to further augment its production by neutrophils/HSFs. The findings were validated in normoglycemic individuals during a hyperglycemic clamp with concomitant lipid infusion and further corroborated immunohistochemically in diabetic plantar ulcer biopsies. This novel, vicious circle of NETs/interleukin-8/MMP-9/HSFs was hindered by IL-8 or MMP-9 blockade via specific inhibitors or by dismantling the NET-scaffold with DNase I, suggesting candidate therapeutic targets in wound healing impairment of T2D.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Anastasia‐Maria Natsi
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Efstratios Gavriilidis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Christina Antoniadou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Ioanna A. Anastasiou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Evangelos Papadimitriou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Evgenios Eftalitsidis
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Panagiotis Kolovos
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Victoria Tsironidou
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Alexandra Giatromanolaki
- Department of PathologyUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Maria Koffa
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Panagiotis Skendros
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Konstantinos Ritis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| |
Collapse
|
3
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
4
|
Liu X, Gong M, Wu N. Research progress on the relationship between free fatty acid profile and type 2 diabetes complicated by coronary heart disease. Front Endocrinol (Lausanne) 2024; 15:1503704. [PMID: 39713052 PMCID: PMC11658973 DOI: 10.3389/fendo.2024.1503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a 2 to 3 times higher risk of cardiovascular disease compared to non-diabetic individuals, and cardiovascular disease has consistently been a leading cause of death among diabetic patients. Therefore, preventing cardiovascular disease in diabetic patients remains a significant challenge. In addition to classic indicators such as cholesterol and lipoproteins, previous studies have demonstrated that plasma level of free fatty acid (FFA) is closely related to the occurrence of atherosclerosis, particularly in T2DM patients. In recent years, with further research and advancements in testing technologies, the FFA profile has garnered widespread attention. The FFA profile includes many different types of FFAs, and changes in the plasma FFA profile and concentrations in T2DM patients may lead to the development of insulin resistance, causing damage to vascular endothelial cells and promoting the occurrence and progression of atherosclerosis. Furthermore, some FFAs have shown potential in predicting cardiovascular complications in T2DM and are associated with the severity of these complications. Here, we aim to review the changes in the FFA profile in T2DM and discuss the relationship between the FFA profile and the occurrence of vascular complications in T2DM.
Collapse
Affiliation(s)
- Xiuyan Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wu TT, Pan Y, Zheng YY, Wang ZL, Deng CJ, Wang S, Xie X. The U -shape relationship between free fatty acid level and adverse outcomes in coronary artery disease patients with hypertension: evidence from a large prospective cohort study. Lipids Health Dis 2024; 23:291. [PMID: 39256835 PMCID: PMC11386348 DOI: 10.1186/s12944-024-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Evidence is scarce on the effect of free fatty acid (FFA) level in the prognosis of coronary artery disease (CAD) patients with hypertension. This study. METHODS A large prospective cohort study with a follow-up period of average 2 years was conducted at Xinjiang Medical University Affiliated First Hospital from December 2016 to October 2021. A total of 10,395 CAD participants were divided into groups based on FFA concentration and hypertension status, and then primary outcome mortality and secondary endpoint ischemic events were assessed in the different groups. RESULTS A total of 222 all-cause mortality (ACMs), 164 cardiac mortality (CMs), 718 major adverse cardiovascular events (MACEs) and 803 major adverse cardiovascular and cerebrovascular events (MACCEs) were recorded during follow-up period. A nonlinear relationship between FFA and adverse outcomes was observed only in CAD patients with hypertension. Namely, a "U -shape" relationship between FFA levels and long-term outcomes was found in CAD patients with hypertension. Lower FFA level (< 310 µmol/L), or higher FFA level (≥ 580 µmol/L) at baseline is independent risk factors for adverse outcomes. After adjustment for confounders, excess FFA increases mortality (ACM, HR = 1.957, 95%CI(1.240-3.087), P = 0.004; CM, HR = 2.704, 95%CI(1.495-4.890, P = 0.001) and MACE (HR = 1.411, 95%CI(1.077-1.848), P = 0.012), MACCE (HR = 1.299, 95%CI (1.013-1.666), P = 0.040) prevalence. Low levels of FFA at baseline can also increase the incidence of MACE (HR = 1.567,95%CI (1.187-2.069), P = 0.002) and MACCE (HR = 1.387, 95%CI (1.070-1.798), P = 0.013). CONCLUSIONS Baseline FFA concentrations significantly associated with long-term mortality and ischemic events could be a better and novel risk biomarker for prognosis prediction in CAD patients with hypertension. TRIAL REGISTRATION The details of the design were registered on https://www.chictr.org.cn/ (Identifier NCT05174143).
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Ying Pan
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Ying-Ying Zheng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Zhi-Long Wang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Chang-Jiang Deng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Shun Wang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China
| | - Xiang Xie
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, 830054, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang, (Xinjiang Medical University, Ministry of Education), Urumqi, China.
- Key Laboratory of Hypertension Research of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, China.
| |
Collapse
|
6
|
Shiri H, Fallah H, Abolhassani M, Fooladi S, Ramezani Karim Z, Danesh B, Abbasi-Jorjandi M. Relationship between types and levels of free fatty acids, peripheral insulin resistance, and oxidative stress in T2DM: A case-control study. PLoS One 2024; 19:e0306977. [PMID: 39133724 PMCID: PMC11318896 DOI: 10.1371/journal.pone.0306977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Free Fatty Acids (FFAs) are vital for energy homeostasis and the pathogenesis of a variety of diseases, including diabetes. For the first time, we presumed and investigated the types and levels of FFAs and their links to Insulin Resistance (IR) and Oxidative Stress (OS) in T2DM. A case-control study was conducted on 60 individuals with diabetes, 60 prediabetics with IFG, and 60 control groups. A Gas Chromatography Flame Ionization Detector (GC-FID) was used to estimate FFAs, which were then classified based on length and saturation. Indeed, antioxidant parameters such as TAC, MDA levels, PON-1, SOD-3, and CAT activity were assessed. Higher levels of LCFFA, SFFA, USFFA, and total FFA were found in people with diabetes and prediabetes. These levels were also linked to higher levels of HOMA-IR, BMI, FBS, HbA1C, and MDA, but lower levels of antioxidants. Furthermore, adjusting the above FFAs with age, sex, and antihypertensive medication increased T2DM development. SCFFA and ω3/6 fatty acids had a negative relationship with HOMA-IR, FBS, and insulin and a positive relationship with TAC. Adjusted SCFFA reduces T2DM risk. According to our models, total FFA is utilized to diagnose diabetes (AUC = 83.98, cut-off > 919 μM) and SCFFA for prediabetes (AUC = 82.32, cut-off < 39.56 μM). Total FFA (≥ 776 μM), LCFFA (≥ 613 μM), SFFA (≥ 471 μM), and USFFA (≥ 398 μM) all increase the risk of T2DM by increasing OS, BMI, and HOMA-IR. On the other hand, SCFFAs (≥ 38.7 μM) reduce the risk of T2DM by reducing BMI, HOMA-IR, and OS. SCFFAs and total FFAs can be used for the diagnosis of prediabetes and diabetes, respectively.
Collapse
Affiliation(s)
- Hamidreza Shiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Ramezani Karim
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Danesh
- Department of Internal Medicine, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Tang Y, Majewska M, Leß B, Mehmeti I, Wollnitzke P, Semleit N, Levkau B, Saba JD, van Echten-Deckert G, Gurgul-Convey E. The fate of intracellular S1P regulates lipid droplet turnover and lipotoxicity in pancreatic beta-cells. J Lipid Res 2024; 65:100587. [PMID: 38950680 PMCID: PMC11345310 DOI: 10.1016/j.jlr.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited LD biogenesis, content, and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation, and dysfunction, as well as ER stress. These changes coincided with the upregulation of proapoptotic ceramides but were independent of lipid peroxidation rate. Also in human EndoC-βH1 beta-cells, suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size and influences beta-cell sensitivity to FFA.
Collapse
Affiliation(s)
- Yadi Tang
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariola Majewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Britta Leß
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Nina Semleit
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California. San Francisco, Oakland, CA, USA
| | | | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Wang S, Hu C, Lin H, Jia X, Hu R, Zheng R, Li M, Xu Y, Xu M, Zheng J, Zhao X, Li Y, Chen L, Zeng T, Ye Z, Shi L, Su Q, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Qin G, Wan Q, Chen G, Dai M, Zhang D, Qiu B, Zhu X, Liu R, Wang X, Tang X, Gao Z, Shen F, Gu X, Luo Z, Qin Y, Chen L, Hou X, Huo Y, Li Q, Wang G, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Mu Y, Xu G, Lai S, Li D, Ning G, Wang W, Bi Y, Lu J. Association of circulating long-chain free fatty acids and incident diabetes risk among normoglycemic Chinese adults: a prospective nested case-control study. Am J Clin Nutr 2024; 120:336-346. [PMID: 38729573 DOI: 10.1016/j.ajcnut.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Long-chain free fatty acids (FFAs) are associated with risk of incident diabetes. However, a comprehensive assessment of the associations in normoglycemic populations is lacking. OBJECTIVES Our study aimed to comprehensively investigate the prospective associations and patterns of FFA profiles with diabetes risk among normoglycemic Chinese adults. METHODS This is a prospective nested case-control study from the China Cardiometabolic Disease and Cancer Cohort (4C) study. We quantitatively measured 53 serum FFAs using a targeted metabolomics approach in 1707 incident diabetes subjects and 1707 propensity score-matched normoglycemic controls. Conditional logistic regression models were employed to estimate odds ratios (ORs) for associations. Least Absolute Shrinkage and Selection Operator (LASSO) penalty regression and quantile g-computation (qg-comp) analyses were implemented to estimate the association between multi-FFA exposures and incident diabetes. RESULTS The majority of odd-chain FFAs exhibited an inverse association with incident diabetes, wherein the ORs per SD increment of all 7 saturated fatty acids (SFAs), monounsaturated fatty acid (MUFA) 15:1, and polyunsaturated fatty acid (PUFA) 25:2 were ranging from 0.79 to 0.88 (95% CIs ranging between 0.71 and 0.97). Even-chain FFAs comprised 99.3% of total FFAs and displayed heterogeneity with incident diabetes. SFAs with 18-26 carbon atoms are inversely linked to incident diabetes, with ORs ranging from 0.81 to 0.86 (95% CIs ranging between 0.73 and 0.94). MUFAs 26:1 (OR: 0.85; 95% CI: 0.76, 0.94), PUFAs 20:4 (OR: 0.84; 95% CI: 0.75, 0.94), and 24:2 (OR: 0.87; 95% CI: 0.78, 0.97) demonstrated significant associations. In multi-FFA exposure model, 24 FFAs were significantly associated with incident diabetes, most of which were consistent with univariate results. The mixture OR was 0.78 (95% CI: 0.61, 0.99; P = 0.04159). Differential correlation network analysis revealed pre-existing perturbations in intraclass and interclass FFA coregulation before diabetes onset. CONCLUSIONS These findings underscore the variations in diabetes risk associated with FFAs across chain length and unsaturation degree, highlighting the importance of recognizing FFA subtypes in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanli Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lixin Shi
- Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Chen
- Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bihan Qiu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhengnan Gao
- Dalian Municipal Central Hospital, Dalian, China
| | - Feixia Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejiang Gu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuojie Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Xinguo Hou
- Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Huo
- Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Qiang Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yinfei Zhang
- Central Hospital of Shanghai Jiading District, Shanghai, China
| | - Chao Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Youmin Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengli Wu
- Karamay Municipal People's Hospital, Xinjiang, China
| | - Tao Yang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huacong Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Zhao
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yiming Mu
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shenghan Lai
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MA, United States
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Vergès B, Vantyghem MC, Reznik Y, Duvillard L, Rouland A, Capel E, Vigouroux C. Hypertriglyceridemia Results From an Impaired Catabolism of Triglyceride-Rich Lipoproteins in PLIN1-Related Lipodystrophy. Arterioscler Thromb Vasc Biol 2024; 44:1873-1883. [PMID: 38899472 DOI: 10.1161/atvbaha.124.320774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Pathogenic variants in PLIN1-encoding PLIN1 (perilipin-1) are responsible for an autosomal dominant form of familial partial lipodystrophy (FPL) associated with severe insulin resistance, hepatic steatosis, and important hypertriglyceridemia. This study aims to decipher the mechanisms of hypertriglyceridemia associated with PLIN1-related FPL. METHODS We performed an in vivo lipoprotein kinetic study in 6 affected patients compared with 13 healthy controls and 8 patients with type 2 diabetes. Glucose and lipid parameters, including plasma LPL (lipoprotein lipase) mass, were measured. LPL mRNA and protein expression were evaluated in abdominal subcutaneous adipose tissue from patients with 5 PLIN1-mutated FPL and 3 controls. RESULTS Patients with PLIN1-mutated FPL presented with decreased fat mass, insulin resistance, and diabetes (glycated hemoglobin A1c, 6.68±0.70% versus 7.48±1.63% in patients with type 2 diabetes; mean±SD; P=0.27). Their plasma triglycerides were higher (5.96±3.08 mmol/L) than in controls (0.76±0.27 mmol/L; P<0.0001) and patients with type 2 diabetes (2.94±1.46 mmol/L, P=0.006). Compared with controls, patients with PLIN1-related FPL had a significant reduction of the indirect fractional catabolic rate of VLDL (very-low-density lipoprotein)-apoB100 toward IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein; 1.79±1.38 versus 5.34±2.45 pool/d; P=0.003) and the indirect fractional catabolic rate of IDL-apoB100 toward LDL (2.14±1.44 versus 7.51±4.07 pool/d; P=0.005). VLDL-apoB100 production was not different between patients with PLIN1-related FPL and controls. Compared with patients with type 2 diabetes, patients with PLIN1-related FPL also showed a significant reduction of the catabolism of both VLDL-apoB100 (P=0.031) and IDL-apoB100 (P=0.031). Plasma LPL mass was significantly lower in patients with PLIN1-related FPL than in controls (21.03±10.08 versus 55.76±13.10 ng/mL; P<0.0001), although the LPL protein expression in adipose tissue was similar. VLDL-apoB100 and IDL-apoB100 indirect fractional catabolic rates were negatively correlated with plasma triglycerides and positively correlated with LPL mass. CONCLUSIONS We show that hypertriglyceridemia associated with PLIN1-related FPL results from a marked decrease in the catabolism of triglyceride-rich lipoproteins (VLDL and IDL). This could be due to a pronounced reduction in LPL availability, related to the decreased adipose tissue mass.
Collapse
MESH Headings
- Humans
- Male
- Perilipin-1/genetics
- Perilipin-1/metabolism
- Perilipin-1/blood
- Triglycerides/blood
- Hypertriglyceridemia/blood
- Hypertriglyceridemia/genetics
- Female
- Adult
- Middle Aged
- Case-Control Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Lipoproteins/blood
- Insulin Resistance
- Lipoprotein Lipase/blood
- Lipoprotein Lipase/metabolism
- Lipoprotein Lipase/genetics
- Lipodystrophy, Familial Partial/genetics
- Lipodystrophy, Familial Partial/blood
- Lipodystrophy, Familial Partial/metabolism
- Mutation
- Blood Glucose/metabolism
- Lipoproteins, VLDL/blood
- Lipoproteins, VLDL/metabolism
- Biomarkers/blood
- Phenotype
- Genetic Predisposition to Disease
- Lipolysis
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Bruno Vergès
- Department of Endocrinology, Diabetology and Metabolic Diseases (B.V., A.R.), University Hospital, Dijon, France
- University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.)
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, and Metabolism, University of Lille, CHU (Centre Hospitalier Universitaire) Lille, France (M.C.V.)
- Université Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, France (M.C.V.)
| | - Yves Reznik
- Department of Endocrinology, University Hospital, Caen, France (Y.R.)
| | - Laurence Duvillard
- Department of Biochemistry (L.D.), University Hospital, Dijon, France
- University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.)
| | - Alexia Rouland
- Department of Endocrinology, Diabetology and Metabolic Diseases (B.V., A.R.), University Hospital, Dijon, France
- University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.)
| | - Emilie Capel
- Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France (E.C., C.V.)
| | - Corinne Vigouroux
- Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France (E.C., C.V.)
- Department of Molecular Biology and Genetics (C.V.), Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (C.V.), Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, France
| |
Collapse
|
10
|
Sharifi S, Yamamoto T, Zeug A, Elsner M, Avezov E, Mehmeti I. Non-esterified fatty acid palmitate facilitates oxidative endoplasmic reticulum stress and apoptosis of β-cells by upregulating ERO-1α expression. Redox Biol 2024; 73:103170. [PMID: 38692092 PMCID: PMC11070623 DOI: 10.1016/j.redox.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to β-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1β, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic β-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent β-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated β-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic β-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and β-cell failure.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tomoko Yamamoto
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, CB2 0AH Cambridge, UK
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Molonia MS, Speciale A, Muscarà C, Salamone FL, Saija A, Cimino F. Low concentrations of α-lipoic acid reduce palmitic acid-induced alterations in murine hypertrophic adipocytes. Nat Prod Res 2024; 38:916-925. [PMID: 37129014 DOI: 10.1080/14786419.2023.2207137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Obesity is a metabolic disorder with excessive body fat accumulation, increasing incidence of chronic metabolic diseases. Hypertrophic obesity is associated with local oxidative stress and inflammation. Herein, we evaluated the in vitro activity of micromolar concentrations of α-lipoic acid (ALA) on palmitic acid (PA)-exposed murine hypertrophic 3T3-L1 adipocytes, focussing on the main molecular pathways involved in adipogenesis, inflammation, and insulin resistance. ALA, starting from 1 µM, decreased adipocytes hypertrophy, reducing PA-triggered intracellular lipid accumulation, PPAR-γ levels, and FABP4 gene expression, and counteracted PA-induced intracellular ROS levels and NF-κB activation. ALA reverted PA-induced insulin resistance, restoring PI3K/Akt axis and inducing GLUT-1 and glucose uptake, showing insulin sensitizing properties since it increased their basal levels. In conclusion, this study supports the potential effects of low micromolar ALA against hypertrophy, inflammation, and insulin resistance in adipose tissue, suggesting its important role as pharmacological supplement in the prevention of conditions linked to obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- "Prof. Antonio Imbesi" Foundation, University of Messina,Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024; 13:380. [PMID: 38474344 PMCID: PMC10931433 DOI: 10.3390/cells13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue (AT), once considered a mere fat storage organ, is now recognized as a dynamic and complex entity crucial for regulating human physiology, including metabolic processes, energy balance, and immune responses. It comprises mainly two types: white adipose tissue (WAT) for energy storage and brown adipose tissue (BAT) for thermogenesis, with beige adipocytes demonstrating the plasticity of these cells. WAT, beyond lipid storage, is involved in various metabolic activities, notably lipogenesis and lipolysis, critical for maintaining energy homeostasis. It also functions as an endocrine organ, secreting adipokines that influence metabolic, inflammatory, and immune processes. However, dysfunction in WAT, especially related to obesity, leads to metabolic disturbances, including the inability to properly store excess lipids, resulting in ectopic fat deposition in organs like the liver, contributing to non-alcoholic fatty liver disease (NAFLD). This narrative review delves into the multifaceted roles of WAT, its composition, metabolic functions, and the pathophysiology of WAT dysfunction. It also explores diagnostic approaches for adipose-related disorders, emphasizing the importance of accurately assessing AT distribution and understanding the complex relationships between fat compartments and metabolic health. Furthermore, it discusses various therapeutic strategies, including innovative therapeutics like adipose-derived mesenchymal stem cells (ADMSCs)-based treatments and gene therapy, highlighting the potential of precision medicine in targeting obesity and its associated complications.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- Pathology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Sofia Borlan
- General and Digestive Surgery Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain;
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Khapchaev AY, Vorotnikov AV, Antonova OA, Samsonov MV, Shestakova EA, Sklyanik IA, Tomilova AO, Shestakova MV, Shirinsky VP. Shear Stress and the AMP-Activated Protein Kinase Independently Protect the Vascular Endothelium from Palmitate Lipotoxicity. Biomedicines 2024; 12:339. [PMID: 38397940 PMCID: PMC10886486 DOI: 10.3390/biomedicines12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Saturated free fatty acids are thought to play a critical role in metabolic disorders associated with obesity, insulin resistance, type 2 diabetes (T2D), and their vascular complications via effects on the vascular endothelium. The most abundant saturated free fatty acid, palmitate, exerts lipotoxic effects on the vascular endothelium, eventually leading to cell death. Shear stress activates the endothelial AMP-activated protein kinase (AMPK), a cellular energy sensor, and protects endothelial cells from lipotoxicity, however their relationship is uncertain. Here, we used isoform-specific shRNA-mediated silencing of AMPK to explore its involvement in the long-term protection of macrovascular human umbilical vein endothelial cells (HUVECs) against palmitate lipotoxicity and to relate it to the effects of shear stress. We demonstrated that it is the α1 catalytic subunit of AMPK that is critical for HUVEC protection under static conditions, whereas AMPK-α2 autocompensated a substantial loss of AMPK-α1, but failed to protect the cells from palmitate. Shear stress equally protected the wild type HUVECs and those lacking either α1, or α2, or both AMPK-α isoforms; however, the protective effect of AMPK reappeared after returning to static conditions. Moreover, in human adipose microvascular endothelial cells isolated from obese diabetic individuals, shear stress was a strong protector from palmitate lipotoxicity, thus highlighting the importance of circulation that is often obstructed in obesity/T2D. Altogether, these results indicate that AMPK is important for vascular endothelial cell protection against lipotoxicity in the static environment, however it may be dispensable for persistent and more effective protection exerted by shear stress.
Collapse
Affiliation(s)
- Asker Y. Khapchaev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Alexander V. Vorotnikov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Olga A. Antonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Mikhail V. Samsonov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Ekaterina A. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Igor A. Sklyanik
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Alina O. Tomilova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Marina V. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Vladimir P. Shirinsky
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| |
Collapse
|
14
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
15
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Jung IR, Ahima RS, Kim SF. Inositol polyphosphate multikinase modulates free fatty acids-induced insulin resistance in primary mouse hepatocytes. J Cell Biochem 2023; 124:1695-1704. [PMID: 37795573 DOI: 10.1002/jcb.30478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Phillips AE, Wilson AS, Greer PJ, Hinton A, Culp S, Paragomi P, Pothoulakis I, Singh V, Lee PJ, Lahooti I, Whitcomb DC, Papachristou GI. Relationship of circulating levels of long-chain fatty acids to persistent organ failure in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G279-G285. [PMID: 37461868 PMCID: PMC10511174 DOI: 10.1152/ajpgi.00074.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023]
Abstract
During acute pancreatitis (AP), free fatty acids (FFAs) are liberated from circulating triglycerides (TG) and injured adipocytes by pancreatic lipase. Circulating FFAs have been suspected as a source of systemic lipotoxicity in AP. However, assessment of FFAs is difficult and time-consuming, and little is known about relative levels of FFAs between patients with different severities of AP and controls. This study's aims were to assess early circulating levels of FFAs, (both saturated and unsaturated) in patients with AP vs. controls, and associations between FFA levels and AP severity. Serum samples from patients with AP were collected at enrollment (day 1 of hospital stay); serum samples were also collected from controls. FFAs including palmitic, palmitoleic, stearic, oleic, and linoleic acid were extracted and quantitated using gas chromatography separation. Severity of AP was determined by Revised Atlanta Classification. Differences in FFA levels and percentages of total FFAs were assessed between patients with AP and controls and patients with AP of different severity grades. A total of 93 patients with AP (48 female, 52%) and 29 controls (20 female, 69%) were enrolled. Of the patients with AP, 74 had mild/moderate and 19 had severe AP. Serum levels of all FFAs except stearic acid were significantly higher in patients with AP compared with controls. A strong and independent association between elevated palmitoleic acid levels and severe AP was found. Serum unsaturated FFA levels, specifically palmitoleic acid, appear to correlate with severe AP. These findings have potential clinical implications for targeted AP therapies.NEW & NOTEWORTHY Drivers of the inflammatory response in acute pancreatitis remain incompletely understood. Unsaturated fatty acids, specifically palmitoleic, appear to have an association with more severe acute pancreatitis. This finding presents a new clinical understanding of fatty acid toxicity and highlights a potential future target for treatment in severe acute pancreatitis.
Collapse
Affiliation(s)
- Anna Evans Phillips
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Annette S Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Phil J Greer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Stacey Culp
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Pedram Paragomi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ioannis Pothoulakis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Vijay Singh
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - Peter J Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Ila Lahooti
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - David C Whitcomb
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
18
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
19
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
20
|
Zhang Z, Zhou D, Luan X, Wang X, Zhu Z, Luo W, Yang J, Tang S, Song Y. Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes. ACS NANO 2023; 17:9313-9325. [PMID: 37155357 DOI: 10.1021/acsnano.3c00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type 2 diabetes (T2D) results from the cells' insulin resistance, and to date, insulin therapy and diabetes medications targeting glycemic management have failed to reverse the increase in T2D prevalence. Restoring liver functions to improve hepatic insulin resistance by reducing oxidative stress is a potential strategy for T2D treatment. Herein, the liver-targeted biodegradable silica nanoshells embedded with platinum nanoparticles (Pt-SiO2) are designed as reactive oxygen species (ROS) nanoscavengers and functional hollow nanocarriers. Then, 2,4-dinitrophenol-methyl ether (DNPME, mitochondrial uncoupler) is loaded inside Pt-SiO2, followed by coating a lipid bilayer (D@Pt-SiO2@L) for long-term effective ROS removal (platinum nanoparticles scavenge overproduced ROS, while DNPME inhibits ROS production) in the liver tissue of T2D models. It is found that D@Pt-SiO2@L reverses elevated oxidative stress, insulin resistance, and impaired glucose consumption in vitro, and significantly improves hepatic steatosis and antioxidant capacity in diabetic mice models induced by a high-fat diet and streptozotocin. Moreover, intravenous administration of D@Pt-SiO2@L indicates therapeutic effects on hyperlipidemia, insulin resistance, hyperglycemia, and diabetic nephropathy, which provides a promising approach for T2D treatment by reversing hepatic insulin resistance through long-term ROS scavenging.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaochun Tang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
21
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
22
|
Jung IR, Ahima RS, Kim SF. IPMK modulates FFA-induced insulin resistance in primary mouse hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538310. [PMID: 37162825 PMCID: PMC10168377 DOI: 10.1101/2023.04.26.538310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Li X, Li Z, Dong X, Wu Y, Li B, Kuang B, Chen G, Zhang L. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res 2023. [PMID: 36882189 DOI: 10.1002/ptr.7798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), one of the major complications of type 2 diabetes, is a leading cause of heart failure and death in advanced diabetes. Although there is an association between DCM and ferroptosis in cardiomyocytes, the internal mechanism of ferroptosis leading to DCM development remains unknown. CD36 is a key molecule in lipid metabolism that mediates ferroptosis. Astragaloside IV (AS-IV) confers various pharmacological effects such as antioxidant, anti-inflammatory, and immunomodulatory. In this study, we demonstrated that AS-IV was able to recover the dysfunction of DCM. In vivo experiments showed that AS-IV ameliorated myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of CD36 and ferroptosis-related factors in DCM rats. In vitro experiments showed that AS-IV decreased CD36 expression and inhibited lipid accumulation and ferroptosis in PA-induced cardiomyocytes. The results demonstrated that AS-IV decreased cardiomyocyte injury and myocardial dysfunction by inhibiting ferroptosis mediated by CD36 in DCM rats. Therefore, AS-IV regulated the lipid metabolism of cardiomyocytes and inhibited cellular ferroptosis, which may have potential clinical value in DCM treatment.
Collapse
Affiliation(s)
- Xin Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ziwei Li
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Dong
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yu Wu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baohua Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Kuang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Gangyi Chen
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Pham L, Komalavilas P, Eddie AM, Thayer TE, Greenwood DL, Liu KH, Weinberg J, Patterson A, Fessel JP, Boyd KL, Schafer JC, Kuck JL, Shaver AC, Flaherty DK, Matlock BK, Wijers CDM, Serezani CH, Jones DP, Brittain EL, Rathmell JC, Noto MJ. Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation. Commun Biol 2022; 5:1366. [PMID: 36513703 PMCID: PMC9747976 DOI: 10.1038/s42003-022-04339-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.
Collapse
Affiliation(s)
- Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Padmini Komalavilas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex M Eddie
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy E Thayer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dalton L Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jaclyn Weinberg
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrew Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Division of Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jenny C Schafer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Kuck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron C Shaver
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David K Flaherty
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittany K Matlock
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christiaan D M Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Henrique Serezani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Evan L Brittain
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael J Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
25
|
Qi M, Shao X, Li D, Zhou Y, Yang L, Chi J, Che K, Wang Y, Xiao M, Zhao Y, Kong Z, Lv W. Establishment and validation of a clinical model for predicting diabetic ketosis in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:967929. [PMID: 36339436 PMCID: PMC9627223 DOI: 10.3389/fendo.2022.967929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Diabetic ketosis (DK) is one of the leading causes of hospitalization among patients with diabetes. Failure to recognize DK symptoms may lead to complications, such as diabetic ketoacidosis, severe neurological morbidity, and death. Purpose This study aimed to develop and validate a model to predict DK in patients with type 2 diabetes mellitus (T2DM) based on both clinical and biochemical characteristics. Methods A cross-sectional study was conducted by evaluating the records of 3,126 patients with T2DM, with or without DK, at The Affiliated Hospital of Qingdao University from January 2015 to May 2022. The patients were divided randomly into the model development (70%) or validation (30%) cohorts. A risk prediction model was constructed using a stepwise logistic regression analysis to assess the risk of DK in the model development cohort. This model was then validated using a second cohort of patients. Results The stepwise logistic regression analysis showed that the independent risk factors for DK in patients with T2DM were the 2-h postprandial C-peptide (2hCP) level, age, free fatty acids (FFA), and HbA1c. Based on these factors, we constructed a risk prediction model. The final risk prediction model was L= (0.472a - 0.202b - 0.078c + 0.005d - 4.299), where a = HbA1c level, b = 2hCP, c = age, and d = FFA. The area under the curve (AUC) was 0.917 (95% confidence interval [CI], 0.899-0.934; p<0.001). The discriminatory ability of the model was equivalent in the validation cohort (AUC, 0.922; 95% CI, 0.898-0.946; p<0.001). Conclusion This study identified independent risk factors for DK in patients with T2DM and constructed a prediction model based on these factors. The present findings provide an easy-to-use, easily interpretable, and accessible clinical tool for predicting DK in patients with T2DM.
Collapse
Affiliation(s)
- Mengmeng Qi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianfeng Shao
- School of Public Health, Qingdao University, Qingdao, China
| | - Ding Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Xiao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyun Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Mojsak P, Maliszewska K, Klimaszewska P, Miniewska K, Godzien J, Sieminska J, Kretowski A, Ciborowski M. Optimization of a GC-MS method for the profiling of microbiota-dependent metabolites in blood samples: An application to type 2 diabetes and prediabetes. Front Mol Biosci 2022; 9:982672. [PMID: 36213115 PMCID: PMC9538375 DOI: 10.3389/fmolb.2022.982672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in serum or plasma metabolome may reflect gut microbiota dysbiosis, which is also known to occur in patients with prediabetes and type 2 diabetes (T2DM). Thus, developing a robust method for the analysis of microbiota-dependent metabolites (MDMs) is an important issue. Gas chromatography with mass spectrometry (GC–MS) is a powerful approach enabling detection of a wide range of MDMs in biofluid samples with good repeatability and reproducibility, but requires selection of a suitable solvents and conditions. For this reason, we conducted for the first time the study in which, we demonstrated an optimisation of samples preparation steps for the measurement of 75 MDMs in two matrices. Different solvents or mixtures of solvents for MDMs extraction, various concentrations and volumes of derivatizing reagents as well as temperature programs at methoxymation and silylation step, were tested. The stability, repeatability and reproducibility of the 75 MDMs measurement were assessed by determining the relative standard deviation (RSD). Finally, we used the developed method to analyse serum samples from 18 prediabetic (PreDiab group) and 24 T2DM patients (T2DM group) from our 1000PLUS cohort. The study groups were homogeneous and did not differ in age and body mass index. To select statistically significant metabolites, T2DM vs. PreDiab comparison was performed using multivariate statistics. Our experiment revealed changes in 18 MDMs belonging to different classes of compounds, and seven of them, based on the SVM classification model, were selected as a panel of potential biomarkers, able to distinguish between patients with T2DM and prediabetes.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | | | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Michal Ciborowski,
| |
Collapse
|
27
|
Bora S, Adole PS, Vinod KV, Pillai AA. A validated and optimized method for separation and quantification of total fatty acids by gas chromatography-ion trap mass spectrometry in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123473. [PMID: 36155260 DOI: 10.1016/j.jchromb.2022.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Fatty acids (FAs) are associated with many physiological functions of tissues, and their alteration has been linked with tissue-specific or systemic diseases. The current situation warrants us to have a sensitive and specific method for analysis of total FAs simultaneously from the biological fluid so that the risk prediction, diagnosis or prognosis of the disease can be made effectively. Because of greater sensitivity and resolution, a method of gas chromatography-ion trap mass spectrometry (GC-IT/MS) has been optimized and validated to quantify simultaneously 19 total FAs levels in plasma and compared with GC-triple quadrupole mass spectrometry. FAs have been transesterified by methanolic acetyl chloride to fatty acid methyl esters (FAMEs). A 65 min GC method separated all 19 FAMEs. The calibration curve had good linearity up to 313-922 μM with a correlation coefficient between 0.9882 and 0.9998. The LODs and LOQs of FAMEs were in the range of 0.63 to 9.55 and 2.12 to 31.8 μM, respectively. The method has recovery up to 144 %, stability at 4 °C for 48 h and one freeze-thaw cycle, and good intra-day and inter-day precision. The optimized method has been used to quantify plasma total FAs in type 2 diabetes mellitus patients with and without acute coronary syndrome. Though a significant difference has been found between IT/MS and triple quadrupole mass spectrometry, the GC-IT/MS can help to quantify total FAs in the clinical setting.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India.
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Ajith A Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
28
|
Hu T, Zhang W, Han F, Zhao R, Liu L, An Z. Plasma fingerprint of free fatty acids and their correlations with the traditional cardiac biomarkers in patients with type 2 diabetes complicated by coronary heart disease. Front Cardiovasc Med 2022; 9:903412. [PMID: 35935651 PMCID: PMC9355375 DOI: 10.3389/fcvm.2022.903412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a well-established risk factor for cardiovascular disease, with at least 2–3 fold higher risk of cardiovascular diseases than non-diabetics. Free fatty acids (FFAs) are believed to play important roles in the occurrence of cardiovascular disease in people with T2DM. The aim of this study was to investigate the fingerprint of plasma FFAs and their correlations with the tradition risk factors of cardiovascular disease in T2DM patients complicated by coronary heart disease (CHD-T2DM). A total of 401 participants, including healthy control (HC, n = 143), T2DM patients (n = 134), and CHD-T2DM patients (n = 126) were enrolled in this study. Plasma levels of 36 FFAs with carbon chain length ranged from 3 to 22 were quantified by using reverse phase ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Tradition risk factors of cardiovascular disease were tested in clinical laboratory, including homocysteine (HCY), creatine kinase (CK), high sensitivity C reactive protein (hsCRP), and N-terminal pro-brain natriuretic peptide (NT-proBNP) and so on. Almost all the FFAs with different carbon chain length and unsaturation were significantly upregulated in the T2DM-CHD groups, compared to the HC and T2DM groups. Both n-3 and n-6 polyunsaturated fatty acids (PUFA) were also found to be significantly upregulated in T2DM-CHD group compared to the T2DM group. However, no significantly differences of the n-6/n-3 PUFA ratio, arachidonic acid/eicosapentaenoic acid (AA/EPA) ratio, and arachidonic acid/docosahexaenoic acid (AA/DHA) ratio were observed between T2DM-CHD and T2DM groups. Plasma FFA levels were found to be positively correlated with HCY, CK, hsCRP, NT-proBNP and other tradition risk factors of CHD. Multivariate logistic regression analysis indicated that a dozens of FFAs were the independent risk factors of CHD after adjustment for confounding factors and other risk factors. Excessively high plasma levels of FFAs were demonstrated to be independent risk factors for CHD in patients with T2DM, despite of the differences in chain length, unsaturation, and double bond position.
Collapse
|
29
|
Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2- and 3-hydroxyl fatty acids by LC-MS. Anal Chim Acta 2022; 1216:339981. [DOI: 10.1016/j.aca.2022.339981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022]
|
30
|
Henning C, Stübner C, Arabi SH, Reichenwallner J, Hinderberger D, Fiedler R, Girndt M, Di Sanzo S, Ori A, Glomb MA. Glycation Alters the Fatty Acid Binding Capacity of Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3033-3046. [PMID: 35194998 DOI: 10.1021/acs.jafc.1c07218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycation significantly alters the physicochemical and biofunctional properties of proteins in foods and in vivo. In the present study, human serum albumin (HSA) as the major transporter of fatty acids was modified with glyoxal under physiological conditions. Reversibly albumin-bound glyoxal was removed, and advanced glycation end products were quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total modification of protein-bound lysine and arginine residues reached up to 4.2 and 9.6%, respectively. The impact of these modifications on the transport capacity of long-chain fatty acids was characterized by spin-labeled fatty acid probes via electron paramagnetic resonance spectroscopy. With increasing degree of glycation, the equivalence of the seven binding sites of native HSA with a dissociation constant of 0.74 ± 0.09 μM was set off with only the three high-affinity sites 2, 4, and 5 remaining (0.46 ± 0.07 μM). The other four sites were shifted to low affinities with significantly higher dissociation constants (1.32 ± 0.35 μM). Tryptic peptide mapping enabled us to relate these findings to molecular changes at specific binding sites. Modification hotspots identified were lysine 351, 286, 159 and arginine 144, 485, 117. Further investigation of plasma protein samples of uremic patients vs healthy controls gave first insights into the in vivo situation.
Collapse
Affiliation(s)
- Christian Henning
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Christine Stübner
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Seyed Hamidreza Arabi
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Jörg Reichenwallner
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Simone Di Sanzo
- Leibniz Institute on Aging─Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging─Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
31
|
Chen G, Guo L, Zhao X, Ren Y, Chen H, Liu J, Jiang J, Liu P, Liu X, Hu B, Wang N, Peng H, Xu G, Tao H. Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans. Front Mol Biosci 2022; 8:784288. [PMID: 35242810 PMCID: PMC8887861 DOI: 10.3389/fmolb.2021.784288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Guoyou Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Li Guo
- Department of Anesthesia, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yachao Ren
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Hongyang Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Jincheng Liu
- Academic Affairs Office, Harbin Medical University-Daqing, Daqing, China
| | - Jiaqi Jiang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Peijia Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Bo Hu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Na Wang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Haisheng Peng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haiquan Tao
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cerebrovascular Diseases Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
32
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Zhao W, Zhou L, Novák P, Shi X, Lin CB, Zhu X, Yin K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J Diabetes Res 2022; 2022:2193768. [PMID: 35719709 PMCID: PMC9203236 DOI: 10.1155/2022/2193768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic dysfunction plays a key role in the development of diabetic nephropathy (DN). However, the exact effects and mechanisms are still unclear. The pyrin domain-containing protein 3 (NLRP3) inflammasome, a member of the nod-like receptor family, is considered a crucial inflammatory regulator and plays important roles in the progress of DN. A growing body of evidence suggests that high glucose, high fat, or other metabolite disorders can abnormally activate the NLRP3 inflammasome. Thus, in this review, we discuss the potential function of abnormal metabolites such as saturated fatty acids (SFAs), cholesterol crystals, uric acid (UA), and homocysteine in the NLRP3 inflammasome activation and explain the potential function of metabolic dysfunction regulation of NLRP3 activation in the progress of DN via regulation of inflammatory response and renal interstitial fibrosis (RIF). In addition, the potential mechanisms of metabolism-related drugs, such as metformin and sodium glucose cotransporter (SGLT2) inhibitors, which have served as the suppressors of the NLRP3 inflammasomes, in DN, are also discussed. A better understanding of NLRP3 inflammasome activation in abnormal metabolic microenvironment may provide new insights for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xian Shi
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Chuang Biao Lin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
34
|
Chen J, Li F, Yang W, Jiang S, Li Y. Comparison of Gut Microbiota and Metabolic Status of Sows With Different Litter Sizes During Pregnancy. Front Vet Sci 2021; 8:793174. [PMID: 35004929 PMCID: PMC8733392 DOI: 10.3389/fvets.2021.793174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The experiment was conducted to compare the differences of gut microbiota and metabolic status of sows with different litter sizes on days 30 and 110 of gestation, and uncover the relationship between the composition of maternal gut microbiota during gestation and sow reproductive performance. Twenty-six Large White × Landrace crossbred multiparous sows (2nd parity) with similar back fat thickness and body weight were assigned to two groups [high-reproductive performance group (HP group) and low-reproductive performance group (LP group)] according to their litter sizes and fed a common gestation diet. Results showed that compared with LP sows, HP sows had significantly lower plasma levels of triglyceride (TG) on gestation d 30 (P < 0.05), but had significantly higher plasma levels of TG, non-esterified fatty acid, tumor necrosis factor-α, and immunoglobulin M on gestation d 110 (P < 0.05). Consistently, HP sows revealed increased alpha diversity and butyrate-producing genera, as well as fecal butyrate concentration, on gestation d 30; HP sows showed significantly different microbiota community structure with LP sows (P < 0.05) and had markedly higher abundance of Firmicutes (genera Christensenellaceae_R-7_group and Terrisporobacter) which were positively related with litter size on gestation d 110 than LP sows (P < 0.05). In addition, plasma biochemical parameters, plasma cytokines, and fecal microbiota shifted dramatically from gestation d 30 to d 110. Therefore, our findings demonstrated that microbial abundances and community structures differed significantly between sows with different litter sizes and gestation stages, which was associated with changes in plasma biochemical parameters, inflammatory factors, and immunoglobulin. Moreover, these findings revealed that there was a significant correlation between litter size and gut microbiota of sows, and provided a microbial perspective to improve sow reproductive performance in pig production.
Collapse
Affiliation(s)
| | | | | | | | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
35
|
Oluranti OI, Agboola EA, Fubara NE, Ajayi MO, Michael OS. Cadmium exposure induces cardiac glucometabolic dysregulation and lipid accumulation independent of pyruvate dehydrogenase activity. Ann Med 2021; 53:1108-1117. [PMID: 34259114 PMCID: PMC8280890 DOI: 10.1080/07853890.2021.1947519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/20/2021] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Suppressed glucose metabolism, elevated fatty acid metabolism and lipid deposition within myocardial cells are the key pathological features of diabetic cardiomyopathy. Studies have associated cadmium exposure with metabolic disturbances. OBJECTIVE To examine the effects of cadmium exposure on cardiac glucose homeostasis and lipid accumulation in male Wistar rats. METHODS Male Wistar rats were treated for 21 days as (n = 5): Control, cadmium chloride Cd5 (5 mg/kg, p.o.), cadmium chloride Cd30 (30 mg/kg, p.o). RESULTS The fasting serum insulin level in this study decreased significantly. Pyruvate and hexokinase activity reduced significantly in the Cd5 group while no significant change in lactate and glycogen levels. The activity of pyruvate dehydrogenase enzyme significantly increased with an increasing dosage of cadmium. The free fatty acid, total cholesterol and triglyceride levels in the heart increased significantly with increasing dosage of cadmium when compared with the control. Lipoprotein lipase activity in the heart showed no difference in the Cd5 group but a reduction in the activity in the Cd30 group was observed. CONCLUSION This study indicates that cadmium exposure interferes with cardiac substrate handling resulting in impaired glucometabolic regulation and lipid accumulation which could reduce cardiac efficiency.
Collapse
Affiliation(s)
- Olufemi I. Oluranti
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Ebunoluwa A. Agboola
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Nteimam E. Fubara
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Mercy O. Ajayi
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Olugbenga S. Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| |
Collapse
|
36
|
The Effects of Butyrate on Induced Metabolic-Associated Fatty Liver Disease in Precision-Cut Liver Slices. Nutrients 2021; 13:nu13124203. [PMID: 34959755 PMCID: PMC8703944 DOI: 10.3390/nu13124203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) starts with hepatic triglyceride accumulation (steatosis) and can progress to more severe stages such as non-alcoholic steatohepatitis (NASH) and even cirrhosis. Butyrate, and butyrate-producing bacteria, have been suggested to reduce liver steatosis directly and systemically by increasing liver β-oxidation. This study aimed to examine the influence of butyrate directly on the liver in an ex vivo induced MAFLD model. To maintain essential intercellular interactions, precision-cut liver slices (PCLSs) were used. These PCLSs were prepared from male C57BL/6J mice and cultured in varying concentrations of fructose, insulin, palmitic acid and oleic acid, to mimic metabolic syndrome. Dose-dependent triglyceride accumulation was measured after 24 and 48 h of incubation with the different medium compositions. PCLSs viability, as indicated by ATP content, was not affected by medium composition or the butyrate concentration used. Under induced steatotic conditions, butyrate did not prevent triglyceride accumulation. Moreover, it lowered the expression of genes encoding for fatty acid oxidation and only increased C4 related carnitines, which indicate butyrate oxidation. Nevertheless, butyrate lowered the fibrotic response of PCLSs, as shown by reduced gene expression of fibronectin, alpha-smooth muscle actin and osteopontin, and protein levels of type I collagen. These results suggest that in the liver, butyrate alone does not increase lipid β-oxidation directly but might aid in the prevention of MAFLD progression to NASH and cirrhosis.
Collapse
|
37
|
Ha X, Cai X, Cao H, Li J, Yang B, Jiang R, Li X, Li B, Xin Y. Docking protein 1 and free fatty acids are associated with insulin resistance in patients with type 2 diabetes mellitus. J Int Med Res 2021; 49:3000605211048293. [PMID: 34727748 PMCID: PMC8573522 DOI: 10.1177/03000605211048293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin resistance (IR) is a key defect in type 2 diabetes mellitus (T2DM); therefore, effective means of ameliorating IR are sought. METHODS We performed a retrospective cohort study of 154 patients with T2DM and 39 with pre-diabetes (pre-DM). The effects of IR and a high concentration of FFA on gene expression were determined using microarray analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) in patients with T2DM or pre-DM. RESULTS Serum FFA concentration and homeostasis model assessment of IR (HOMA-IR) were significantly higher in patients with T2DM but no obesity and in those with pre-DM than in controls. HOMA-IR was significantly associated with T2DM. RT-qPCR showed that the expression of FBJ murine osteosarcoma viral oncogene homolog (FOS) and AE binding protein 1 (AEBP1) was much lower in the circulation of participants with obesity and diabetes. RT-qPCR showed that the expression of docking protein 1 (DOK1) was significantly lower in the blood of participants with diabetes but no obesity and in those with pre-DM than in controls. CONCLUSIONS FFA and DOK1 are associated with IR in patients with T2DM but no obesity or pre-DM. The downregulation of DOK1 might inhibit lipid synthesis and induce lipolysis, inducing or worsening IR.
Collapse
Affiliation(s)
- Xiaoqin Ha
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China.,The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Cai
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Huizhe Cao
- The Second Medical Centre of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Li
- The First People's Hospital of Baiyin, China
| | - Bo Yang
- Department of Obstetrics and Gynaecology, Reproductive Medicine Centre, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ruru Jiang
- Department of Haematology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Li
- The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| | - Yuan Xin
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| |
Collapse
|
38
|
Ma Y, Xiong J, Zhang X, Qiu T, Pang H, Li X, Zhu J, Wang J, Pan C, Yang X, Chu X, Yang B, Wang C, Zhang J. Potential biomarker in serum for predicting susceptibility to type 2 diabetes mellitus: Free fatty acid 22:6. J Diabetes Investig 2021; 12:950-962. [PMID: 33068491 PMCID: PMC8169352 DOI: 10.1111/jdi.13443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is closely linked to increased levels of free fatty acids (FFAs) in obese individuals, although which FFA is most associated with type 2 diabetes mellitus is unclear. This study aimed to identify the specific FFAs that best predict the occurrence of type 2 diabetes mellitus in obese individuals, and assess their potential application value. MATERIALS AND METHODS Participants were divided into three groups: a normal weight group (n = 20), an obese group (n = 10) and a type 2 diabetes mellitus group (n = 10). FFAs in serum samples were determined by ultra-high-pressure liquid chromatography-mass spectrometry, and orthogonal partial least squares discriminant analysis models were used to study the FFA profile among the three groups. RESULTS Compared with the normal weight group, 14 FFAs (C8:0/10:0/14:0/16:1/18:1/20:2/ 20:3 /20:4/ 20:5/ 22:6/7:0/9:0/11:0 and C13:0) were significantly increased in the obese group, and nine FFAs (C14:0, C18:1, C20:1, C 18:2, C20:2, C20:3, C18:3, C20:5 and C22:6) were significantly increased in the type 2 diabetes mellitus group. Subsequently, the Venn diagram results showed that six FFAs (C14:0, C18:1, C20:2, C20:3, C20:5 and C22:6) were significantly increased in both the obese and type 2 diabetes mellitus groups. Among these six, C22:6 was finally identified as an independent risk factor for type 2 diabetes mellitus, and had a great potential to predict the susceptibility to type 2 diabetes mellitus (area under the curve 0.803). CONCLUSIONS C22:6 can be an independent risk factor for type 2 diabetes mellitus, and it has a great potential to predict the susceptibility to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Ma
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jianyu Xiong
- Department of GeneticsShihezi University School of MedicineShiheziChina
| | - Xueting Zhang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Tongtong Qiu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Huai Pang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xue Li
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jiaojiao Zhu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jingzhou Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Chongge Pan
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xin Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xiaolong Chu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Bingqi Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Cuizhe Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jun Zhang
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic DiseaseShiheziChina
| |
Collapse
|
39
|
Chen K, Hua H, Zhu Z, Wu T, Jia Z, Liu Q. Artemisinin and dihydroartemisinin promote β-cell apoptosis induced by palmitate via enhancing ER stress. Apoptosis 2021; 25:192-204. [PMID: 31894447 DOI: 10.1007/s10495-019-01587-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artemisinin (ART) and dihydroartemisinin (DHA) are first-line antimalarial drugs and have been reported to have anti-obesity effects. Hyperlipidemia is associated with β-cell damage in obese subjects, which could contribute to the pathogenesis of type 2 diabetes. In addition to their anti-obesity effects, ART and DHA also have protective roles in some diseases. Thus, we investigated the effects of ART and DHA in palmitate-induced β-cell apoptosis and the underlying mechanism. In this study, the rat pancreatic β-cell line INS-1 and mouse pancreatic β-cell line MIN6 were cultured with palmitate (PA) (0.1 mM) to induce cell apoptosis in the presence or absence of ART or DHA. Cell apoptosis was investigated by using flow cytometry, and the expression of ER stress markers, including CHOP, GRP78 and PDI, was detected by Western blotting and/or qRT-PCR. The results showed that ART and DHA significantly increased the apoptosis of β-cells induced by PA and exacerbated the ER stress caused by PA. An inhibitor of ER stress, 4-phenylbutyric acid (4-PBA), significantly ameliorated cell apoptosis caused by ART and DHA in PA-treated β-cells, consistent with the inhibition of ER stress. Together, the findings from the current study suggested that ART and DHA may promote lipid disorder-associated β-cell injury via enhancing ER stress when they were used to treat obesity.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
| | - Hu Hua
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
| | - Tong Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China.
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China.
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing, 210008, China.
| |
Collapse
|
40
|
Li Q, Zhao M, Wang Y, Zhong F, Liu J, Gao L, Zhao J. Associations Between Serum Free Fatty Acid Levels and Incident Diabetes in a 3-Year Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2743-2751. [PMID: 34168474 PMCID: PMC8216696 DOI: 10.2147/dmso.s302681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE High circulating free fatty acid (FFA) is associated with the development of diabetes. This study was designed to evaluate longitudinal associations between FFA levels, changes in FFA levels, and mean FFA levels and incident diabetes. PARTICIPANTS AND METHODS This 3-year cohort study was conducted in Ningyang between 2011 and 2014. Serum FFA, fasting blood glucose (FPG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin (HbA1c) levels were measured at baseline and at the end of follow-up. A multivariate stepwise logistic regression model was used to evaluate associations between serum FFA levels in various groups and the risk of incident diabetes. RESULTS Of the 2905 individuals without baseline diabetes, 290 developed diabetes by the 3-year follow-up. With increasing baseline FFA levels, the mean FPG, 2hPG, and HbA1c levels, and the prevalence of diabetes at the end of follow-up increased. The trend of FPG and HbA1c increase was not statistically significant. Higher baseline FFA levels were not significantly associated with greater risk of incident diabetes. However, longitudinal changes in serum FFA levels showed that individuals with serum FFA levels from normal to high (OR = 2.956, 95% CI: 2.089-4.184) or from high to high (OR = 3.343, 95% CI: 2.300-4.857) had greater risk of incident diabetes compared with those with normal to normal FFA levels. Similarly, individuals with ΔFFA ≥ 0 mmol/L (OR = 1.762, 95% CI: 1.373-2.262) or high mean serum FFA levels (OR = 2.120, 95% CI: 1.620-2.775) were at higher risk of incident diabetes than those with ΔFFA < 0 mmol/L or normal mean serum FFA levels. CONCLUSION The longitudinal status of serum FFA levels, including chronic increases and sustained high levels, was more closely associated with high risk of incident diabetes than was high baseline FFA levels.
Collapse
Affiliation(s)
- Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Meng Zhao
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yupeng Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Fang Zhong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Liu
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Jiajun Zhao Tel +86 15168889899 Email
| |
Collapse
|
41
|
Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. J Clin Med 2020; 9:jcm9072257. [PMID: 32708684 PMCID: PMC7409008 DOI: 10.3390/jcm9072257] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM. Approximately 300–400 such metabolites have been reported in the literature and are considered as predicting or risk factor-reporting metabolic biomarkers for this metabolic disorder. Most of these metabolites belong to major classes of lipids, amino acids and glucose. Therefore, this review represents a snapshot of these perturbed plasma/serum/urinary metabolic biomarkers showing a significant correlation with the future onset of diabetes and providing a foundation for novel early diagnosis and monitoring the progress of metabolic syndrome at early symptomatic stages. As most metabolites also find their origin from gut microflora, metabolism and composition of gut microflora also vary between healthy and diabetic persons, so we also summarize the early changes in the gut microbiome which can be used for the early diagnosis of diabetes.
Collapse
|
42
|
Gutierrez-Monreal MA, Harmsen JF, Schrauwen P, Esser KA. Ticking for Metabolic Health: The Skeletal-Muscle Clocks. Obesity (Silver Spring) 2020; 28 Suppl 1:S46-S54. [PMID: 32468732 PMCID: PMC7381376 DOI: 10.1002/oby.22826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
To be prepared for alternating metabolic demands occurring over the 24-hour day, the body preserves information on time in skeletal muscle, and in all cells, through a circadian-clock mechanism. Skeletal muscle can be considered the largest collection of peripheral clocks in the body, with a major contribution to whole-body energy metabolism. Comparison of circadian-clock gene expression between skeletal muscle of nocturnal rodents and diurnal humans reveals very common patterns based on rest/active cycles rather than light/dark cycles. Rodent studies in which the circadian clock is disrupted in skeletal muscle demonstrate impaired glucose handling and insulin resistance. Experimental circadian misalignment in humans modifies the skeletal-muscle clocks and leads to disturbed energy metabolism and insulin resistance. Preclinical studies have revealed that timing of exercise over the day can influence the beneficial effects of exercise on skeletal-muscle metabolism, and studies suggest similar applicability in humans. Current strategies to improve metabolic health (e.g., exercise) should be reinvestigated in their capability to modify the skeletal-muscle clocks by taking timing of the intervention into account.
Collapse
Affiliation(s)
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Florida, USA
| |
Collapse
|
43
|
Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev 2020; 297:108-122. [PMID: 32562313 DOI: 10.1111/imr.12891] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammasomes are multi-protein complexes that regulate the cleavage of cysteine protease caspase-1, secretion of inflammatory cytokines, and induction of inflammatory cell death, pyroptosis. Several members of the nod-like receptor family assemble inflammasome in response to specific ligands. An exception to this is the NLRP3 inflammasome which is activated by structurally diverse entities. Recent studies have suggested that NLRP3 might be a sensor of cellular homeostasis, and any perturbation in distinct metabolic pathways results in the activation of this inflammasome. Lipid metabolism is exceedingly important in maintaining cellular homeostasis, and it is recognized that cells and tissues undergo extensive lipid remodeling during activation and disease. Some lipids are involved in instigating chronic inflammatory diseases, and new studies have highlighted critical upstream roles for lipids, particularly cholesterol, in regulating inflammasome activation implying key functions for inflammasomes in diseases with defective lipid metabolism. The focus of this review is to highlight how lipids regulate inflammasome activation and how this leads to the progression of inflammatory diseases. The key roles of cholesterol metabolism in the activation of inflammasomes have been comprehensively discussed. Besides, the roles of oxysterols, fatty acids, phospholipids, and lipid second messengers are also summarized in the context of inflammasomes. The overriding theme is that lipid metabolism has numerous but complex functions in inflammasome activation. A detailed understanding of this area will help us develop therapeutic interventions for diseases where dysregulated lipid metabolism is the underlying cause.
Collapse
Affiliation(s)
- Paras K Anand
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
44
|
Transcriptome profiling reveals multiple pathways responsible for the beneficial metabolic effects of Smilax glabra flavonoids in mouse 3T3-L1 adipocytes. Biomed Pharmacother 2020; 125:110011. [DOI: 10.1016/j.biopha.2020.110011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
|
45
|
Lv W, Wang L, Xuan Q, Zhao X, Liu X, Shi X, Xu G. Pseudotargeted Method Based on Parallel Column Two-Dimensional Liquid Chromatography-Mass Spectrometry for Broad Coverage of Metabolome and Lipidome. Anal Chem 2020; 92:6043-6050. [DOI: 10.1021/acs.analchem.0c00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
46
|
Jiménez-González S, Marín-Royo G, Jurado-López R, Bartolomé MV, Romero-Miranda A, Luaces M, Islas F, Nieto ML, Martínez-Martínez E, Cachofeiro V. The Crosstalk between Cardiac Lipotoxicity and Mitochondrial Oxidative Stress in the Cardiac Alterations in Diet-Induced Obesity in Rats. Cells 2020; 9:E451. [PMID: 32079154 PMCID: PMC7072852 DOI: 10.3390/cells9020451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the cardiac alterations associated with obesity. Male Wistar rats were fed either a high fat diet (HFD, 35% fat) or a standard diet (CT, 3.5% fat) for 7 weeks and treated with MitoQ (200 µM). The effect of MitoQ (5 nM) in rat cardiac myoblasts treated for 24 h with palmitic acid (PA, 200 µM) was evaluated. MitoQ reduced cardiac oxidative stress and prevented the development of cardiac fibrosis, hypertrophy, myocardial 18-FDG uptake reduction, and mitochondrial lipid remodeling in HFD rats. It also ameliorated cardiac mitochondrial protein level changes observed in HFD: reductions in fumarate hydratase, complex I and II, as well as increases in mitofusin 1 (MFN1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha, and cyclophilin F (cycloF). In vitro, MitoQ prevented oxidative stress and ameliorated alterations in mitochondrial proteins observed in palmitic acid (PA)-stimulated cardiac myoblasts: increases in carnitine palmitoyltransferase 1A, cycloF, and cytochrome C. PA induced phosphorylation of extracellular signal-regulated kinases and nuclear factor-κB p65. Therefore, the data show the beneficial effects of MitoQ in the cardiac damage induced by obesity and suggests a crosstalk between lipotoxicity and mitochondrial oxidative stress in this damage.
Collapse
Affiliation(s)
- Sara Jiménez-González
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
| | - Gema Marín-Royo
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
| | - Raquel Jurado-López
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
| | - María Visitación Bartolomé
- Department of Immunology, Ophthalmology and Oto-Rhino-Laringology, Faculty of Psychology, Universidad Complutense, 28223 Madrid, Spain;
| | - Ana Romero-Miranda
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
| | - María Luaces
- Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.L.); (F.I.)
| | - Fabián Islas
- Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.L.); (F.I.)
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernesto Martínez-Martínez
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
| | - Victoria Cachofeiro
- Department of Physiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain; (S.J.-G.); (G.M.-R.); (R.J.-L.); (A.R.-M.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
47
|
Wang X, Huang H, Su C, Zhong Q, Wu G. Cilostazol ameliorates high free fatty acid (FFA)-induced activation of NLRP3 inflammasome in human vascular endothelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3704-3710. [PMID: 31514535 DOI: 10.1080/21691401.2019.1665058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is recognized as a leading cause of death worldwide, but the risk of death is 2-3 times higher for individuals with diabetes. NLRP3 inflammasome activation is a leading pathway of vascular damage, and new treatment methods are needed to reduce NLRP3 inflammasome expression, along with a detailed understanding of how those treatments work. In a series of assays on human vascular endothelial cells that were exposed to high concentrations of free fatty acids (FFA) to induce a diabetes-like environment, we found a significant impact of cilostazol, a vasodilator widely used to treat blood flow problems and well-tolerated medication. To our knowledge, this study is the first to demonstrate the effects of cilostazol in primary human aortic endothelial cells. We found that cilostazol significantly reduced NLRP3 inflammasome activation, as well as the activity of other related and harmful factors, including oxidative stress, expression of NADPH oxidase 4 (NOX-4), thioredoxin-interacting protein (TxNIP), high mobility group box 1 (HMGB-1), interleukin 1β (IL-1β) and IL-18. Cilostazol also protected the functionality of sirtuin 1 (SIRT1), which serves to restrict NLRP3 inflammasome activity, when exposure to FFAs would have otherwise impaired its function. Thus, it appears that cilostazol's mechanism of action in reducing NLRP3 inflammasome activation is an indirect one; it protects SIRT1, which then allows SIRT1 to perform its regulatory job. Cilostazol has potential as an already-available, well-tolerated preventive medication that may alleviate some of the adverse vascular effects of living with diabetes. The findings of the present study lay the groundwork for further research on the potential of cilostazol as a safe and effective treatment against diabetic endothelial dysfunction and vacular disease.
Collapse
Affiliation(s)
- Xing Wang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University , Shenzhen , China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University , Guangzhou , China
| | - Huiling Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Chen Su
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Qiaoqing Zhong
- Department of Cardiology, The Xiangya Hospital, Central South University , Changsha , China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University , Shenzhen , China
| |
Collapse
|
48
|
Jayaraman S, Baveghems C, Chavez OR, Rivas-Urbina A, Sánchez-Quesada JL, Gursky O. Effects of triacylglycerol on the structural remodeling of human plasma very low- and low-density lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1061-1071. [PMID: 30844432 DOI: 10.1016/j.bbalip.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/01/2023]
Abstract
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Clive Baveghems
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Olivia R Chavez
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), CIBERDEM, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), CIBERDEM, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA; Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
49
|
Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep 2018; 71:319-329. [PMID: 30826573 DOI: 10.1016/j.pharep.2018.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The increased influx of free fatty acids (FFAs) into the kidney is a risk factor for diabetes nephropathy (DN). In the present study we investigated the effects of astragaloside IV (AS-IV) on FFA-induced lipid accumulation, oxidative stress, and activation of TGF-β1 signaling in human glomerular mesangial cells (HMCs). METHODS A DN model was induced in Sprague Dawley rats by the administration of a high-fat diet and streptozocin, and HMCs were stimulated with palmitate. Lipid accumulation and FFA uptake were detected using Oil Red O and BODIPY™ FL C16 staining, respectively. The expression levels of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, p22phox, and CD36 were evaluated by western blotting or immunofluorescence/immunohistochemistry. The level of reactive oxygen species (ROS) was detected using 2',7'-dichlorofluorescein diacetate and dihydroethidium. RESULTS Exposure to palmitate induced marked lipid accumulation in HMCs, whereas co-treatment with AS-IV significantly attenuated this phenomenon. Moreover, AS-IV suppressed palmitate-induced expression of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, and p22phox, in addition to ROS production. Notably, AS-IV reduced the palmitate-induced expression of CD36 in HMCs and DN rats. Treatment of HMCs with the CD36 inhibitor, sulfo-N-succinimidyl oleate (SSO), significantly attenuated FFA uptake, oxidative stress, and fibrosis. Nevertheless, the combined use of SSO and AS-IV did not enhance the efficacy. CONCLUSION AS-IV inhibited palmitate-induced HMCs oxidative stress and fibrosis via the downregulation of CD36 expression, mediating FFA uptake and lipid accumulation.
Collapse
|
50
|
Systemic redox status in lung cancer patients is related to altered glucose metabolism. PLoS One 2018; 13:e0204173. [PMID: 30235348 PMCID: PMC6147499 DOI: 10.1371/journal.pone.0204173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Altered systemic redox status is often observed in lung cancer. However, detailed information on factors other, than smoking, which influence this perturbation is rather scarce. Elevated oxidative stress has been linked with disturbances in glucose metabolism before, but such associations have not been investigated in lung cancer. The aim of this study was to evaluate the relationship between systemic parameters of glucose metabolism and redox status in lung cancer patients (LC). Biochemical variables related to circulating glucose, i.e. glucose, insulin, c-peptide, fructosamine (FA), and glucose metabolism, i.e. β-hydroxybutyrate (BHB), lactate (LACT), non-esterified fatty acids (NEFAs), as well as redox status i.e. total antioxidant status (TAS) and total oxidant status (TOS) were determined for LC (n = 122) and control subjects (CS) (n = 84). HOMA-IR and the oxidative stress index (OSI) were calculated. LC patients had an altered redox status and glucose metabolism compared to CS. Positive correlations in LC were observed between TOS, OSI and circulating glucose as well as FA, while TAS positively correlated with BHB and NEFAs. In contrast, in metastatic LC, NEFAs and BHB positively correlated with OSI. Smoking status additionally stratified the observed relationships. In conclusion, we found that parameters related to circulating glucose or non-enzymatic glycation were correlated with oxidative stress (TOS and OSI), while metabolites such as BHB and NEFAs were correlated with antioxidant capacity (TAS). Metastasis prevalence and smoking seem to influence these correlations. However, the detailed mechanism of this relationship requires further research, in particular as regards the surprising positive correlation between NEFAs and TAS.
Collapse
|