1
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Erbakan AN, Mutlu HH, Uzunlulu M, Caştur L, Akbaş MM, Kaya FN, Erbakan M, İşman FK, Oğuz A. Follistatin as a Potential Biomarker for Identifying Metabolically Healthy and Unhealthy Obesity: A Cross-Sectional Study. J Pers Med 2024; 14:487. [PMID: 38793069 PMCID: PMC11122067 DOI: 10.3390/jpm14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolically healthy obesity (MHO) refers to obese individuals with a favorable metabolic profile, without severe metabolic abnormalities. This study aimed to investigate the potential of follistatin, a regulator of metabolic balance, as a biomarker to distinguish between metabolically healthy and unhealthy obesity. This cross-sectional study included 30 metabolically healthy and 32 metabolically unhealthy individuals with obesity. Blood samples were collected to measure the follistatin levels using an enzyme-linked immunosorbent assay (ELISA). While follistatin did not significantly differentiate between metabolically healthy (median 41.84 [IQR, 37.68 to 80.09]) and unhealthy (median 42.44 [IQR, 39.54 to 82.55]) individuals with obesity (p = 0.642), other biochemical markers, such as HDL cholesterol, triglycerides, C-peptide, and AST, showed significant differences between the two groups. Insulin was the most significant predictor of follistatin levels, with a coefficient of 0.903, followed by C-peptide, which exerted a negative influence at -0.624. Quantile regression analysis revealed nuanced associations between the follistatin levels and metabolic parameters in different quantiles. Although follistatin may not serve as a biomarker for identifying MHO and metabolically unhealthy obesity, understanding the underlying mechanisms that contribute to metabolic dysfunction could provide personalized strategies for managing obesity and preventing associated complications.
Collapse
Affiliation(s)
- Ayşe N. Erbakan
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - H. Hicran Mutlu
- Department of Family Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Mehmet Uzunlulu
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Lütfullah Caştur
- Department of Internal Medicine, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, 34303 Istanbul, Turkey;
| | - Muhammet Mikdat Akbaş
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Fatoş N. Kaya
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Mehmet Erbakan
- Department of Family Medicine, Health Sciences University, Kartal Dr. Lutfi Kirdar City Hospital, Kartal, 34865 Istanbul, Turkey
| | - Ferruh K. İşman
- Department of Biochemistry, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Aytekin Oğuz
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| |
Collapse
|
5
|
Kokkinos A, Tsilingiris D, Simati S, Stefanakis K, Angelidi AM, Tentolouris N, Anastasiou IA, Connelly MA, Alexandrou A, Mantzoros CS. Bariatric surgery, through beneficial effects on underlying mechanisms, improves cardiorenal and liver metabolic risk over an average of ten years of observation: A longitudinal and a case-control study. Metabolism 2024; 152:155773. [PMID: 38181882 PMCID: PMC10872266 DOI: 10.1016/j.metabol.2023.155773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Bariatric surgery has long-term beneficial effects on body weight and metabolic status, but there is an apparent lack of comprehensive cardiometabolic, renal, liver, and metabolomic/lipidomic panels, whereas the underlying mechanisms driving the observed postoperative ameliorations are still poorly investigated. We aimed to study the long-term effects of bariatric surgery on metabolic profile, cardiorenal and liver outcomes in association with underlying postoperative gut hormone adaptations. METHODS 28 individuals who underwent bariatric surgery [17 sleeve gastrectomy (SG), 11 Roux-en-Y gastric bypass (RYGB)] were followed up 3, 6 and 12 and at 10 years following surgery. Participants at 10 years were cross-sectionally compared with an age-, sex- and adiposity-matched group of non-operated individuals (n = 9) and an age-matched pilot group of normal-weight individuals (n = 4). RESULTS There were durable effects of surgery on body weight and composition, with an increase of lean mass percentage persisting despite some weight regain 10 years postoperatively. The improvements in metabolic and lipoprotein profiles, cardiometabolic risk markers, echocardiographic and cardiorenal outcomes persisted over the ten-year observation period. The robust improvements in insulin resistance, adipokines, activin/follistatin components and postprandial gastrointestinal peptide levels persisted 10 years postoperatively. These effects were largely independent of surgery type, except for a lasting reduction of ghrelin in the SG subgroup, and more pronounced increases in proglucagon products, mainly glicentin and oxyntomodulin, and in the cardiovascular risk marker Trimethylamine-N-oxide (TMAO) within the RYGB subgroup. Despite similar demographic and clinical features, participants 10 years after surgery showed a more favorable metabolic profile compared with the control group, in conjunction with a dramatic increase of postprandial proglucagon product secretion. CONCLUSIONS We demonstrate that cardiorenal and metabolic benefits of bariatric surgery remain robust and largely unchanged ten years postoperatively and are associated with durable effects on gastrointestinal- muscle- and adipose tissue-secreted hormones. TRIAL REGISTRATION ClinicalTrials.gov: NCT04170010.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos Stefanakis
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece; Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Angeliki M Angelidi
- Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna A Anastasiou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | | | - Andreas Alexandrou
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Can U, Akdu S, Bağcı Z, Buyukinan M. Investigation of cardiovascular risk parameters in adolescents with metabolic syndrome. Cardiol Young 2024; 34:308-313. [PMID: 37385726 DOI: 10.1017/s1047951123001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND Metabolic syndrome leading to type 2 diabetes mellitus and cardiovascular diseases is a chronic multifactorial syndrome, associated with low-grade inflammation status. In our study, we aimed at assessing the serum levels of follistatin (FST), pregnancy-associated plasma protein-A (PAPP-A), and platelet/endothelial cell adhesion molecule-1 (PECAM-1) in adolescent patients with metabolic syndrome. METHODS This study was performed in 43 (19 males, 24 females) metabolic syndrome adolescents and 37 lean controls matched for age and sex. The serum levels of FST, PECAM-1, and PAPP-A were measured by using ELISA method. RESULTS Serum FST and PAPP-A levels in metabolic syndrome were significantly higher than those of controls (p < 0.005 and p < 0.05). However, there was no difference in serum PECAM-1 levels between metabolic syndrome and control groups (p = 0.927). There was a significant positive correlation between serum FST and triglyceride (r = 0.252; p < 0.05), and PAPP-A and weight, (r = 0.252; p < 0.05) in metabolic syndrome groups. Follistatin was determined statistically significant in both univariate (p = 0,008) and multivariate (p = 0,011) logistic regression analysis. CONCLUSIONS Our findings indicated a significant relationship between FST and PAPP-A levels and metabolic syndrome. These findings offer the possibility of using these markers in diagnosis of metabolic syndrome in adolescents as the prevention of the future complications.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Turkey
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| | - Zafer Bağcı
- Department of Pediatric, Konya City Hospital, Konya, Turkey
| | - Muammer Buyukinan
- Department of Pediatric Endocrinology, Konya City Hospital, Konya, Turkey
| |
Collapse
|
7
|
Tarabeih N, Kalinkovich A, Ashkenazi S, Cherny SS, Shalata A, Livshits G. Relationships between Circulating Biomarkers and Body Composition Parameters in Patients with Metabolic Syndrome: A Community-Based Study. Int J Mol Sci 2024; 25:881. [PMID: 38255954 PMCID: PMC10815336 DOI: 10.3390/ijms25020881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex disease involving multiple physiological, biochemical, and metabolic abnormalities. The search for reliable biomarkers may help to better elucidate its pathogenesis and develop new preventive and therapeutic strategies. In the present population-based study, we looked for biomarkers of MetS among obesity- and inflammation-related circulating factors and body composition parameters in 1079 individuals (with age range between 18 and 80) belonging to an ethnically homogeneous population. Plasma levels of soluble markers were measured by using ELISA. Body composition parameters were assessed using bioimpedance analysis (BIA). Statistical analysis, including mixed-effects regression, with MetS as a dependent variable, revealed that the most significant independent variables were mainly adipose tissue-related phenotypes, including fat mass/weight (FM/WT) [OR (95% CI)], 2.77 (2.01-3.81); leptin/adiponectin ratio (L/A ratio), 1.50 (1.23-1.83); growth and differentiation factor 15 (GDF-15) levels, 1.32 (1.08-1.62); inflammatory markers, specifically monocyte to high-density lipoprotein cholesterol ratio (MHR), 2.53 (2.00-3.15), and a few others. Additive Bayesian network modeling suggests that age, sex, MHR, and FM/WT are directly associated with MetS and probably affect its manifestation. Additionally, MetS may be causing the GDF-15 and L/A ratio. Our novel findings suggest the existence of complex, age-related, and possibly hierarchical relationships between MetS and factors associated with obesity.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Stacey S. Cherny
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| |
Collapse
|
8
|
Kizer JR, Patel S, Ganz P, Newman AB, Bhasin S, Lee SJ, Cawthon PM, LeBrasseur NK, Shah SJ, Psaty BM, Tracy RP, Cummings SR. Circulating Growth Differentiation Factors 11 and 8, Their Antagonists Follistatin and Follistatin-Like-3, and Risk of Heart Failure in Elders. J Gerontol A Biol Sci Med Sci 2024; 79:glad206. [PMID: 37624693 PMCID: PMC10733168 DOI: 10.1093/gerona/glad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Heterochronic parabiosis has identified growth differentiation factor (GDF)-11 as a potential means of cardiac rejuvenation, but findings have been inconsistent. A major barrier has been lack of assay specificity for GDF-11 and its homolog GDF-8. METHODS We tested the hypothesis that GDF-11 and GDF-8, and their major antagonists follistatin and follistatin-like (FSTL)-3, are associated with incident heart failure (HF) and its subtypes in elders. Based on validation experiments, we used liquid chromatography-tandem mass spectrometry to measure total serum GDF-11 and GDF-8, along with follistatin and FSTL-3 by immunoassay, in 2 longitudinal cohorts of older adults. RESULTS In 2 599 participants (age 75.2 ± 4.3) followed for 10.8 ± 5.6 years, 721 HF events occurred. After adjustment, neither GDF-11 (HR per doubling: 0.93 [0.67, 1.30]) nor GDF-8 (HR: 1.02 per doubling [0.83, 1.27]) was associated with incident HF or its subtypes. Positive associations with HF were detected for follistatin (HR: 1.15 [1.00, 1.32]) and FLST-3 (HR: 1.38 [1.03, 1.85]), and with HF with preserved ejection fraction for FSTL-3 (HR: 1.77 [1.03, 3.02]). (All HRs per doubling of biomarker.) FSTL-3 associations with HF appeared stronger at higher follistatin levels and vice versa, and also for men, Blacks, and lower kidney function. CONCLUSIONS Among older adults, serum follistatin and FSTL-3, but not GDF-11 or GDF-8, were associated with incident HF. These findings do not support the concept that low serum levels of total GDF-11 or GDF-8 contribute to HF late in life, but do implicate transforming growth factor-β superfamily pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Peter Ganz
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Cardiology Division, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peggy M Cawthon
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, and Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Steven R Cummings
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| |
Collapse
|
9
|
Bielka W, Przezak A, Pawlik A. Follistatin and follistatin-like 3 in metabolic disorders. Prostaglandins Other Lipid Mediat 2023; 169:106785. [PMID: 37739334 DOI: 10.1016/j.prostaglandins.2023.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Follistatin (FST) is a glycoprotein which main role is antagonizing activity of transforming growth factor β superfamily members. Folistatin-related proteins such as follistatin-like 3 (FSTL3) also reveal these properties. The exact function of them has still not been established, but it can be bound to the pathogenesis of metabolic disorders. So far, there were performed a few studies about their role in type 2 diabetes, obesity or gestational diabetes and even less in type 1 diabetes. The outcomes are contradictory and do not allow to draw exact conclusions. In this article we summarize the available information about connections between follistatin, as well as follistatin-like 3, and metabolic disorders. We also emphasize the strong need of performing further research to explain their exact role, especially in the pathogenesis of diabetes and obesity.
Collapse
Affiliation(s)
- Weronika Bielka
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Agnieszka Przezak
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.
| |
Collapse
|
10
|
Katsarou A, Kouvari M, Hill MA, Mantzoros CS. Metabolically unhealthy obesity, sarcopenia and their interactions in obesity pathophysiology and therapeutics: Room for improvement in pharmacotherapy. Metabolism 2023; 149:155714. [PMID: 39491165 DOI: 10.1016/j.metabol.2023.155714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Affiliation(s)
- Angeliki Katsarou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matina Kouvari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
11
|
Demir M, Bornstein SR, Mantzoros CS, Perakakis N. Liver fat as risk factor of hepatic and cardiometabolic diseases. Obes Rev 2023; 24:e13612. [PMID: 37553237 DOI: 10.1111/obr.13612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by excessive accumulation of fat in the liver that can progress to liver inflammation (non-alcoholic steatohepatitis [NASH]), liver fibrosis, and cirrhosis. Although most efforts for drug development are focusing on the treatment of the latest stages of NAFLD, where significant fibrosis and NASH are present, findings from studies suggest that the amount of liver fat may be an important independent risk factor and/or predictor of development and progression of NAFLD and metabolic diseases. In this review, we first describe the current tools available for quantification of liver fat in humans and then present the clinical and pathophysiological evidence that link liver fat with NAFLD progression as well as with cardiometabolic diseases. Finally, we discuss current pharmacological and non-pharmacological approaches to reduce liver fat and present open questions that have to be addressed in future studies.
Collapse
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
12
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
13
|
Jürimäe J, Remmel L, Tamm AL, Purge P, Maasalu K, Tillmann V. Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1226. [PMID: 37508723 PMCID: PMC10378065 DOI: 10.3390/children10071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Follistatin is a member of the activin-follistatin-inhibin hormonal system and is proposed to affect bone metabolism. However, data regarding the effect of follistatin on bone are relatively scarce and contradictory in humans. The purpose of the current study was to investigate possible associations of serum follistatin concentration with bone mineral characteristics in lean and physically active adolescent girls. Bone mineral density, body composition, resting energy expenditure and different energy homeostasis hormones in serum including follistatin, leptin and insulin were investigated. Significant relationships (p < 0.05) between serum follistatin (1275.1 ± 263.1 pg/mL) and whole-body (WB) bone mineral content (r = 0.33), WB areal bone mineral density (aBMD) (r = 0.23) and lumbar spine (LS) aBMD (r = 0.29) values were observed. Serum follistatin remained associated with LS aBMD independent of body fat and lean masses (r = 0.21; p < 0.05). However, the follistatin concentration explained only 3% (R2 × 100; p = 0.049) of the total variance in LS aBMD values. In conclusion, serum follistatin concentrations were associated with bone mineral values in lean adolescent girls with increased physical activity. Follistatin was an independent predictor of lumbar spine areal bone mineral density, which predominantly consists of trabecular bone.
Collapse
Affiliation(s)
- Jaak Jürimäe
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Liina Remmel
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Anna-Liisa Tamm
- Department of Physiotherapy and Environmental Health, Tartu Health Care College, 50411 Tartu, Estonia
| | - Priit Purge
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Katre Maasalu
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vallo Tillmann
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| |
Collapse
|
14
|
Richter MM, Svane MS, Kristiansen VB, Holst JJ, Madsbad S, Bojsen-Møller KN. Postprandial secretion of follistatin after gastric bypass surgery and sleeve gastrectomy. Peptides 2023; 163:170978. [PMID: 36842630 DOI: 10.1016/j.peptides.2023.170978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Follistatin is secreted from the liver and may regulate muscle growth and insulin sensitivity. Protein intake stimulates follistatin secretion, which may be mediated by increased glucagon in the context of low insulin concentrations. We investigated circulating follistatin after mixed-meals in two cohorts of patients who were part of previously published studies and had undergone bariatric surgery with either simultaneous assessment of amino acid absorption or administration of the GLP-1 receptor antagonist exendin-(9-39), which increased glucagon concentrations and impaired insulin secretion. Study 1 comprised obese matched subjects with previous Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery and unoperated controls who underwent 6-hour mixed-meal tests with intravenous and oral tracers including intrinsically labelled caseinate in the meal. Study 2 comprised obese subjects with previous RYGB who underwent two 5-hour mixed-meal tests with concomitant exendin-(9-39) or saline infusion. In study 1, the secretion of follistatin as well as the amino acid absorption was accelerated after RYGB compared with SG and controls, but the glucagon-to-C-peptide ratios did not differ between the groups. In study 2, exendin-(9-39) administration increased postprandial glucagon concentrations and lowered insulin secretion, whereas the concentration of follistatin was unchanged. In conclusion, postprandial follistatin secretion is accelerated in patients after RYGB which might be explained by an accelerated protein absorption rate rather than the glucagon-to-insulin ratio.
Collapse
Affiliation(s)
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark; Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Viggo B Kristiansen
- Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
15
|
Bloomgarden ZT. The World Congress of Insulin Resistance, Diabetes and Cardiovascular Disease (WCIRDC). J Diabetes 2023; 15:4-6. [PMID: 36610044 PMCID: PMC9870730 DOI: 10.1111/1753-0407.13349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
|
16
|
Perakakis N, Kokkinos A, Angelidi AM, Tsilingiris D, Gavrieli A, Yannakoulia M, Tentolouris N, Mantzoros CS. Changes in circulating levels of five proglucagon-derived peptides in response to intravenous or oral administration of glucose and lipids and in response to a mixed-meal in subjects with normal weight, overweight, and obesity. Clin Nutr 2022; 41:1969-1976. [PMID: 35961260 DOI: 10.1016/j.clnu.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
|
17
|
Perakakis N, Kalra B, Angelidi AM, Kumar A, Gavrieli A, Yannakoulia M, Mantzoros CS. Methods paper: Performance characteristics of novel assays for circulating levels of proglucagon-derived peptides and validation in a placebo controlled cross-over randomized clinical trial. Metabolism 2022; 129:155157. [PMID: 35114286 DOI: 10.1016/j.metabol.2022.155157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The measurement of proglucagon-derived peptides (PGDPs) is a challenging task mainly due to major overlaps in their molecular sequence in addition to their low circulating levels. Here, we present the technical characteristics of novel ELISA assays measuring C-peptide and all six PGDPs including, for the first time, major proglucagon fragment (MPGF), and we validate them by performing a pilot in vivo cross-over randomized clinical trial on whether coffee consumption may affect levels of circulating PGDPs. METHODS The performance and technical characteristics of novel ELISA assays from Ansh measuring GLP-1, GLP-2, oxyntomodulin, glicentin, glucagon, MPGF and C-peptide were first evaluated in vitro in procured samples from a commercial vendor as well as in deidentified human samples from three previously performed clinical studies. Their performance was further evaluated in vivo in the context of a cross-over randomized controlled trial, in which 33 subjects consumed in random order and together with a standardized meal, 200 ml of either (a) instant coffee with 3 mg/kg caffeine, or (b) instant coffee with 6 mg/kg caffeine, (c) or water. RESULTS All assays demonstrated high accuracy (spike and recovery and average linearity recovery ±15%), precision (inter-assay CV ≤ 6.4%), specificity (no significant cross-reactivities) and they were sensitive in low concentrations. Measurements of glicentin in archived random human samples using the Ansh assay correlated strongly with the glicentin measurements of Mercodia assay (r = 0.968) and of GLP-1 modestly with Millipore GLP-1 assay (r = 0.440). Oxyntomodulin, glicentin and glucagon concentrations were 2-5 fold higher in plasma compared to serum and serum concentrations correlated modestly (for oxyntomodulin and glicentin) or poorly (for glucagon) with the plasma concentrations. The evaluated assays detected a postprandial increase of gut-secreted PGDPs (GLP-1, GLP-2, oxyntomodulin and glicentin) and a postprandial decrease of pancreas-secreted PGDPs (glucagon, MPGF) in response to consuming coffee in comparison to consuming water with breakfast (enter here composition of breakfast). Only coffee consumption at the high dose alter levels of gut-secreted PGDPs and both at low and high dose to lower levels of pancreas-secreted PGDPs compared to water consumption during breakfast. CONCLUSION Accurate, precise and specific measurement of six PGDPs is possible with novel assays. A randomized controlled trial demonstrated in vivo utility of those assays and supports the notion that coffee may exert part of its beneficial effects on glucose homeostasis in the short term through the regulation of PGDPs.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | | | - Angeliki M Angelidi
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | | | - Anna Gavrieli
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | - Mary Yannakoulia
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Garcia LA, Zapata-Bustos R, Day SE, Campos B, Hamzaoui Y, Wu L, Leon AD, Krentzel J, Coletta RL, De Filippis E, Roust LR, Mandarino LJ, Coletta DK. Can Exercise Training Alter Human Skeletal Muscle DNA Methylation? Metabolites 2022; 12:metabo12030222. [PMID: 35323665 PMCID: PMC8953782 DOI: 10.3390/metabo12030222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is highly plastic and dynamically regulated by the body’s physical demands. This study aimed to determine the plasticity of skeletal muscle DNA methylation in response to 8 weeks of supervised exercise training in volunteers with a range of insulin sensitivities. We studied 13 sedentary participants and performed euglycemic hyperinsulinemic clamps with basal vastus lateralis muscle biopsies and peak aerobic activity (VO2 peak) tests before and after training. We extracted DNA from the muscle biopsies and performed global methylation using Illumina’s Methylation EPIC 850K BeadChip. Training significantly increased peak aerobic capacity and insulin-stimulated glucose disposal. Fasting serum insulin and insulin levels during the steady state of the clamp were significantly lower post-training. Insulin clearance rates during the clamp increased following the training. We identified 13 increased and 90 decreased differentially methylated cytosines (DMCs) in response to 8 weeks of training. Of the 13 increased DMCs, 2 were within the following genes, FSTL3, and RP11-624M8.1. Of the 90 decreased DMCs, 9 were within the genes CNGA1, FCGR2A, KIF21A, MEIS1, NT5DC1, OR4D1, PRPF4B, SLC26A7, and ZNF280C. Moreover, pathway analysis showed an enrichment in metabolic and actin-cytoskeleton pathways for the decreased DMCs, and for the increased DMCs, an enrichment in signal-dependent regulation of myogenesis, NOTCH2 activation and transmission, and SMAD2/3: SMAD4 transcriptional activity pathways. Our findings showed that 8 weeks of exercise training alters skeletal muscle DNA methylation of specific genes and pathways in people with varying degrees of insulin sensitivity.
Collapse
Affiliation(s)
- Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Rocio Zapata-Bustos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Samantha E. Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA;
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Yassin Hamzaoui
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Linda Wu
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Alma D. Leon
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Judith Krentzel
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Richard L. Coletta
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lori R. Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Dawn K. Coletta
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
- Correspondence: ; Tel.: +1-(520)-626-9316
| |
Collapse
|
19
|
Tarabeih N, Kalinkovich A, Shalata A, Cherny SS, Livshits G. Deciphering the Causal Relationships Between Low Back Pain Complications, Metabolic Factors, and Comorbidities. J Pain Res 2022; 15:215-227. [PMID: 35125889 PMCID: PMC8809521 DOI: 10.2147/jpr.s349251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Nader Tarabeih
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Maale HaCarmel Mental Health Center, Affiliated to Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stacey S Cherny
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Correspondence: Gregory Livshits, Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel, Tel +972-3-6409494, Fax +972-3-6408287, Email
| |
Collapse
|
20
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
21
|
Paeschke S, Winter K, Bechmann I, Klöting N, Blüher M, Baum P, Kosacka J, Nowicki M. Leptin Receptor-Deficient db/db Mice Show Significant Heterogeneity in Response to High Non-heme Iron Diet. Front Nutr 2021; 8:741249. [PMID: 34646852 PMCID: PMC8503537 DOI: 10.3389/fnut.2021.741249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recent studies have shown an association between iron homeostasis, obesity and diabetes. In this work, we investigated the differences in the metabolic status and inflammation in liver, pancreas and visceral adipose tissue of leptin receptor-deficient db/db mice dependent on high iron concentration diet. 3-month-old male BKS-Leprdb/db/JOrlRj (db/db) mice were divided into two groups, which were fed with different diets containing high iron (29 g/kg, n = 57) or standard iron (0.178 g/kg; n = 42) concentrations for 4 months. As anticipated, standard iron-fed db/db mice developed obesity and diabetes. However, high iron-fed mice exhibited a wide heterogeneity. By dividing into two subgroups at the diabetes level, non-diabetic subgroup 1 (<13.5 mmol/l, n = 30) significantly differed from diabetic subgroup two (>13.5 mmol/l, n = 27). Blood glucose concentration, HbA1c value, inflammation markers interleukin six and tumor necrosis factor α and heme oxygenase one in visceral adipose tissue were reduced in subgroup one compared to subgroup two. In contrast, body weight, C-peptide, serum insulin and serum iron concentrations, pancreatic islet and signal ratio as well as cholesterol, LDL and HDL levels were enhanced in subgroup one. While these significant differences require further studies and explanation, our results might also explain the often-contradictory results of the metabolic studies with db/db mice.
Collapse
Affiliation(s)
- Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum Munchen at the University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum Munchen at the University of Leipzig, Leipzig, Germany.,Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra Baum
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Leipzig, Germany.,Applied Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|
23
|
Wang Y, Yu K, Zhao C, Zhou L, Cheng J, Wang DW, Zhao C. Follistatin Attenuates Myocardial Fibrosis in Diabetic Cardiomyopathy via the TGF-β-Smad3 Pathway. Front Pharmacol 2021; 12:683335. [PMID: 34385917 PMCID: PMC8353454 DOI: 10.3389/fphar.2021.683335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Follistatin (FST) is an endogenous protein that irreversibly inhibits TGF-β superfamily members and plays an anti-fibrotic role in other diseases. However, the role of FST in diabetic cardiomyopathy remains unclear. In this study, we investigated the effects of FST on diabetic cardiomyopathy. The expression of FST was downregulated in the hearts of db/db mice. Remarkably, overexpressing FST efficiently protected against cardiac dysfunction. In addition, overexpression of FST promoted cardiac hypertrophy with an unchanged expression of atrial natriuretic peptide (ANP) and the ratio of myosin heavy chain-β/myosin heavy chain-α (MYH7/MYH6). Furthermore, FST reduced cardiac fibrosis and the production of reactive oxygen species (ROS), and enhanced matrix metallopeptidase 9 (MMP9) activities in db/db mouse hearts. We also observed that overexpressing FST decreased the level of transforming growth factor beta (TGF-β) superfamily members and the phosphorylation of Smad3; consistently, in vitro experiments also verified the above results. Our findings revealed the cardioprotective role of FST in attenuating diabetic cardiomyopathy through its anti-fibrotic effects through the TGF-β–Smad3 pathway and provided a promising therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yinhui Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Cheng
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Bojsen-Møller KN, Svane MS, Jensen CZ, Kjeldsen SAS, Holst JJ, Wewer Albrechtsen NJ, Madsbad S. Follistatin secretion is enhanced by protein, but not glucose or fat ingestion, in obese persons independently of previous gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol 2021; 320:G753-G758. [PMID: 33655762 DOI: 10.1152/ajpgi.00396.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Follistatin is secreted from the liver and is involved in the regulation of muscle mass and insulin sensitivity via inhibition of activin A in humans. The secretion of follistatin seems to be stimulated by glucagon and inhibited by insulin, but only limited knowledge on the postprandial regulation of follistatin exists. Moreover, results on postoperative changes after Roux-en-Y gastric bypass (RYGB) are conflicting with reports of increased, unaltered, and lowered fasting concentrations of follistatin. In this study, we investigated postprandial follistatin and activin A concentrations after intake of isocaloric amounts of protein, fat, or glucose in subjects with obesity with and without previous RYGB to explore the regulation of follistatin by the individual macronutrients. Protein intake enhanced follistatin concentrations similarly in the two groups, whereas glucose and fat ingestion did not change postprandial follistatin concentrations. Concentrations of activin A were lower after protein intake compared with glucose intake in RYGB. Glucagon concentrations were also particularly enhanced by protein intake and tended to correlate with follistatin in RYGB. In conclusion, we demonstrated that protein intake, but not glucose or fat, is a strong stimulus for follistatin secretion in subjects with obesity and that this regulation is maintained after RYGB surgery.NEW & NOTEWORTHY Circulating follistatin and activin A were studied after intake of isocaloric protein, fat, or glucose drinks in subjects with obesity with and without previous Roux-en-Y gastric bypass (RYGB). Protein intake enhanced follistatin similarly in both groups, whereas glucose and fat ingestion did not change follistatin. Activin A was lower after protein compared with glucose in RYGB. The novel finding is that protein intake, but neither glucose nor fat, stimulates follistatin secretion independently of previous RYGB.
Collapse
Affiliation(s)
- Kirstine N Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Z Jensen
- Department of Endocrinology, Hvidovre Hospital, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Novo Nordic Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Panagiotou G, Ghaly W, Upadhyay J, Pazaitou-Panayiotou K, Mantzoros CS. Serum Follistatin Is Increased in Thyroid Cancer and Is Associated With Adverse Tumor Characteristics in Humans. J Clin Endocrinol Metab 2021; 106:e2137-e2150. [PMID: 33493282 DOI: 10.1210/clinem/dgab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT Obesity and classical growth factors are associated with thyroid cancer (TC). However, less is known regarding novel hormones such as follistatins and activins. We hypothesized that serum follistatin but not activins would be increased in TC. OBJECTIVE This work aimed to assess circulating levels of follistatins, activins, and growth factors in patients with a history of TC vs patients with nonmalignant thyroid diseases. METHODS A hospital-based, unmatched case-control study was conducted with 170 thyroidectomized patients due to well-differentiated TC and 106 thyroidectomized patients without history of malignancy. Anthropometric, biochemical, and histological parameters were recorded. Serum samples were collected in the steady state 45 days after surgery. Multivariate models were used to adjust for baseline differences of the unmatched variables. Serum levels of follistatin (FST), follistatin like-3, activin A, activin B, bioactive insulin-like growth factor-1, and stanniocalcin-2 were assayed with novel, highly specific ELISA kits. RESULTS In unmatched univariate models, TC patients had higher FST serum levels compared to cancer-free individuals, independently of histological subtype. In multivariate models adjusting for covariates, individuals in the highest tertile of FST levels were associated with an increased risk for the presence of any type of TC or specific histological subtypes, including papillary, follicular and Hürthle-cell carcinoma, and medullary TC. Higher postoperative FST concentrations were found in patients with vascular invasion and distant metastases and associated with TNM staging at diagnosis. CONCLUSION FST serum levels are increased in TC patients and correlate with advanced tumor aggressiveness. Future longitudinal studies are needed to confirm and extend our observations.
Collapse
Affiliation(s)
- Grigorios Panagiotou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wael Ghaly
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jagriti Upadhyay
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
26
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
27
|
Bouzoni E, Perakakis N, Mantzoros CS. Circulating profile of Activin-Follistatin-Inhibin Axis in women with hypothalamic amenorrhea in response to leptin treatment. Metabolism 2020; 113:154392. [PMID: 33045195 PMCID: PMC7680407 DOI: 10.1016/j.metabol.2020.154392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chronic energy deficiency observed in women that exercise strenuously affects reproductive function, often leading to hypothalamic amenorrhea (HA). In such conditions, hypoleptinemia and robust changes in the Activin-Follistatin-Inhibin Axis (AFI) are observed. Treatment with leptin restores menstruation in many (60% responders) but not all (40% non-responders) women, suggesting that leptin is not the only regulator of reproductive function related to energy balance. In this work, we aimed to identify differences in hormonal profiles between leptin responders and non-responders among women with HA, with particular focus on the AFI axis. METHODS AFI axis and reproductive hormones (LH, FSH, Estradiol, ΑΜΗ) were measured in blood in: a) An open-label interventional study, b) a randomized placebo-controlled trial, both investigating responders versus non-responders/women with HA treated with leptin. RESULTS Women with HA that responded to leptin treatment have higher circulating levels/peak values of Inhibin A, Estradiol (E2), higher LH/FSH ratio and a trend to lower AMH compared with non-responders. CONCLUSIONS Components of the AFI axis are associated with improvement of reproductive function in women with HA treated with leptin. ΑΜΗ may serve as a marker of ovarian recovery under HA treatment.
Collapse
Affiliation(s)
- Eirini Bouzoni
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.
| | - Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Jamaica Plain, MA, USA
| |
Collapse
|
28
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
29
|
Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Tsilingiris D, Alexandrou A, Mantzoros CS. Metabolic regulation of activins in healthy individuals and in obese patients undergoing bariatric surgery. Diabetes Metab Res Rev 2020; 36:e3297. [PMID: 32026536 DOI: 10.1002/dmrr.3297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/12/2019] [Accepted: 02/02/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Follistatin binds and inactivates activins, which are potent inhibitors of muscle growth and metabolism and are currently being developed for the treatment of obesity and type 2 diabetes (T2D). We have recently reported that follistatin is regulated by glucose (and not lipids) and can prospectively predict the metabolic improvements observed after bariatric surgery. We utilized novel assays herein to investigate whether activins are regulated by glucose or lipids, whether their circulating levels change after bariatric surgery and whether these changes are predictors of metabolic outcomes up to 12 months later. DESIGN AND METHODS Activin A, B, AB and their ratios to follistatin were measured in (a) healthy humans (n = 32) undergoing oral or intravenous lipid or glucose intake over 6 h, (b) morbidly obese individuals with or without type 2 diabetes undergoing three different types of bariatric surgery (gastric banding, Roux-en-Y bypass or sleeve gastrectomy) in two clinical studies (n = 14 for the first and n = 27 for the second study). RESULTS Glucose intake downregulates circulating activin A, B and AB, indicating the presence of a feedback loop. Activin A decreases (~30%), activin AB increases (~25%) and activin B does not change after bariatric surgery. The changes in activin AB and its ratio to follistatin 3 months after bariatric surgery can predict the BMI reduction and the improvement in insulin and HOMA-IR observed 6 months postoperatively. CONCLUSION Activins are implicated in glucose regulation in humans as part of a feedback loop with glucose or insulin and predict metabolic outcomes prospectively after bariatric surgery.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Natia Peradze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Wael Ghaly
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Andreas Alexandrou
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
30
|
Sylow L, Vind BF, Kruse R, Møller PM, Wojtaszewski JFP, Richter EA, Højlund K. Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5766434. [PMID: 32112102 DOI: 10.1210/clinem/dgaa090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Circulating follistatin (Fst) binds activin A and thereby regulates biological functions such as muscle growth and β-cell survival. However, Fst and activin A's implication in metabolic regulation is unclear. OBJECTIVE To investigate circulating Fst and activin A in obesity and type 2 diabetes (T2D) and determine their association with metabolic parameters. Further, to examine regulation of Fst and activin A by insulin and the influence of obesity and T2D hereon. METHODS Plasma Fst and activin A levels were analyzed in obese T2D patients (N = 10) closely matched to glucose-tolerant lean (N = 12) and obese (N = 10) individuals in the fasted state and following a 4-h hyperinsulinemic-euglycemic clamp (40 mU·m-2·min-1) combined with indirect calorimetry. RESULTS Circulating Fst was ~30% higher in patients with T2D compared with both lean and obese nondiabetic individuals (P < .001), while plasma activin A was unaltered. In the total cohort, fasting plasma Fst correlated positively with fasting plasma glucose, serum insulin and C-peptide levels, homeostasis model assessment of insulin resistance, and hepatic and adipose tissue insulin resistance after adjusting for age, gender and group (all r > 0.47; P < .05). However, in the individual groups these correlations only achieved significance in patients with T2D (not plasma glucose). Acute hyperinsulinemia at euglycemia reduced circulating Fst by ~30% (P < .001) and this response was intact in patients with T2D. Insulin inhibited FST expression in human hepatocytes after 2 h and even further after 48 h. CONCLUSIONS Elevated circulating Fst, but not activin A, is strongly associated with measures of insulin resistance in patients with T2D. However, the ability of insulin to suppress circulating Fst is preserved in T2D.
Collapse
Affiliation(s)
- Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte F Vind
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Pauline M Møller
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
31
|
Modification of Muscle-Related Hormones in Women with Obesity: Potential Impact on Bone Metabolism. J Clin Med 2020; 9:jcm9041150. [PMID: 32316563 PMCID: PMC7230770 DOI: 10.3390/jcm9041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Lean body mass (LBM) is a determinant of areal bone mineral density (aBMD) through its mechanical actions and quite possibly through its endocrine functions. The threefold aims of this study are: to determine the effects of obesity (OB) on aBMD and myokines; to examine the potential link between myokines and bone parameters; and to determine whether the effects of LBM on aBMD are mediated by myokines. aBMD and myokine levels were evaluated in relation to the body mass index (BMI) in 179 women. Compared with normal-weight controls (CON; n = 40), women with OB (n = 139) presented higher aBMD, myostatin and follistatin levels and lower irisin levels. Except for irisin levels, all differences between the OB and CON groups were accentuated with increasing BMI. For the whole population (n = 179), weight, BMI, fat mass (FM) and LBM were positively correlated with aBMD at all bone sites, while log irisin were negatively correlated. The proportion of the LBM effect on aBMD was partially mediated (from 14.8% to 29.8%), by log irisin, but not by follistatin or myosin. This study showed that myokine levels were greatly influenced by obesity. However, irisin excepted, myokines do not seem to mediate the effect of LBM on bone tissue.
Collapse
|
32
|
Polyzos SA, Perakakis N, Boutari C, Kountouras J, Ghaly W, Anastasilakis AD, Karagiannis A, Mantzoros CS. Targeted Analysis of Three Hormonal Systems Identifies Molecules Associated with the Presence and Severity of NAFLD. J Clin Endocrinol Metab 2020; 105:5613670. [PMID: 31690932 PMCID: PMC7112980 DOI: 10.1210/clinem/dgz172] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/05/2019] [Indexed: 01/22/2023]
Abstract
AIMS To investigate circulating levels and liver gene expression of 3 hormonal pathways associated with obesity, insulin resistance, and inflammation to identify leads towards potential diagnostic markers and therapeutic targets in patients with nonalcoholic fatty liver disease (NAFLD). METHODS We compared circulating levels of (1) proglucagon-derived hormones (glucagon-like peptide [GLP]-1, GLP-2, glicentin, oxyntomodulin, glucagon, major proglucagon fragment [MPGF]), (2) follistatins-activins (follistatin-like [FSTL]3, activin B), (3) IGF axis (insulin-like growth factor [IGF]-1, total and intact IGF binding protein [IGFBP]-3 and IGFBP-4, and pregnancy-associated plasma protein [PAPP]-A) in 2 studies: (1) 18 individuals with early stage NAFLD versus 14 controls (study 1; early NAFLD study) and in (2) 31 individuals with biopsy proven NAFLD (15 with simple steatosis [SS] and 16 with nonalcoholic steatohepatitis [NASH]), vs 50 controls (24 lean and 26 obese) (study 2). Liver gene expression was assessed in 22 subjects (12 controls, 5 NASH, 5 NASH-related cirrhosis). RESULTS Patients in early stages of NAFLD demonstrate higher fasting MPGF and lower incremental increase of glicentin during oral glucose tolerance test than controls. In more advanced stages, FSTL3 levels are higher in NASH than simple steatosis and, within NAFLD patients, in those with more severe lobular and portal inflammation. The IGF-1/intact IGFBP-3 ratio is lower in patients with liver fibrosis. Genes encoding follistatin, activin A, activin B, and the IGF-1 receptor are higher in NASH. CONCLUSION MPGF and glicentin may be involved in early stages of NAFLD, whereas FSTL3 and IGF-1/intact IGFBP3 in the progression to NASH and liver fibrosis respectively, suggesting potential as diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki Greece
| | - Jannis Kountouras
- Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Physiology, Fayoum University, Fayoum, Egypt
| | | | - Asterios Karagiannis
- Second Propaedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Correspondence and Reprint Requests: Christos S. Mantzoros, 330 Brookline Avenue, East campus, Beth Israel Deaconess Medical Center, Stoneman Building, ST-820 Boston, MA 02215, USA. E-mail:
| |
Collapse
|
33
|
Perakakis N, Polyzos SA, Yazdani A, Sala-Vila A, Kountouras J, Anastasilakis AD, Mantzoros CS. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study. Metabolism 2019; 101:154005. [PMID: 31711876 DOI: 10.1016/j.metabol.2019.154005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. METHODS We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. RESULTS 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). CONCLUSION We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
| | - Aleix Sala-Vila
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Jannis Kountouras
- Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Pilitsi E, Upadhyay J, Alexandrou A, Mantzoros CS. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: Evidence from two independent trials. Metabolism 2019; 101:153997. [PMID: 31672446 DOI: 10.1016/j.metabol.2019.153997] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
AIMS Bariatric surgery leads to profound and sustainable weight loss. Gastrointestinal hormones are involved in energy and glucose homeostasis, thus postoperative changes of their circulating levels may be mediating future weight loss. To investigate how the circulating concentrations of gastrointestinal hormones change in response to the most common types of bariatric operation and whether these changes can predict future weight loss. MATERIALS AND METHODS We measured circulating GLP-1, GLP-2, oxyntomodulin, glicentin, glucagon, major proglucagon fragment (MPGF), ghrelin, GIP, PYY after overnight fasting and/or after a mixed meal test (MMT) in: a) 14 subjects that have undergone either an adjustable gastric banding [AGB] (n = 9) or a Roux-en-Y bypass (RYGB) (n = 5) (Pilot study 1), b) 28 subjects that have undergone either a vertical sleeve gastrectomy (n = 17) or a RYGB (n = 11) before and three, six and twelve months after surgery. RESULTS In addition to the expected associations with GLP-1, the most robust increases were observed in postprandial levels of oxyntomodulin and glicentin three months after VSG or RYGB (but not after AGB) and are associated with degree of weight loss. Oxyntomodulin and glicentin levels at the third and sixth month postoperative visit are positively associated with feeling of satiety which may be underlying the observed associations with future weight loss. CONCLUSION Beyond GLP-1, early postprandial changes in circulating oxyntomodulin and glicentin are predictors of weight loss after bariatric surgery, possibly through regulation of satiety. Further studies should focus on underlying mechanisms, and their potential as attractive therapeutic tools against obesity and related comorbidities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Eleni Pilitsi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jagriti Upadhyay
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andreas Alexandrou
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, 150 South Huntington Avenue, Boston, MA 02130, USA
| |
Collapse
|
35
|
Short-term treatment with high dose liraglutide improves lipid and lipoprotein profile and changes hormonal mediators of lipid metabolism in obese patients with no overt type 2 diabetes mellitus: a randomized, placebo-controlled, cross-over, double-blind clinical trial. Cardiovasc Diabetol 2019; 18:141. [PMID: 31672146 PMCID: PMC6823961 DOI: 10.1186/s12933-019-0945-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Long-term treatment with up to 1.8 mg liraglutide improves cardiovascular and all-cause mortality in patients with type 2 diabetes at high risk for cardiovascular disease (CVD) and is currently under investigation in subjects without diabetes. Aim of our study was to investigate whether high dose (3 mg) short-term (5 weeks) treatment with liraglutide in obese patients with no overt type 2 diabetes affects metabolites, lipid and lipoprotein profile and components of activin-follistatin axis in cardiovascular beneficial or detrimental way. RESEARCH DESIGN AND METHODS Twenty obese patients participated in a randomized, placebo-controlled, cross-over, double-blind study and were administrated liraglutide 3 mg or placebo for 5 weeks. Metabolites, fatty acids, lipid-lipoprotein profile and concentrations of activins and follistatins (250 parameters) were assessed in serum at start and completion of each treatment. RESULTS Concentrations of important cardiovascular markers such as total, free and remnant cholesterol were reduced with liraglutide before and after adjusting for weight loss. Similarly, reductions in number of small and medium size LDL particles and in their total lipid concentration were observed with liraglutide and partially weight-loss related. Tyrosine levels were reduced and behenic acid levels were increased whereas only minor changes were observed in HDL, VLDL and IDL. Concentrations of activin AB and follistatin were significantly reduced in liraglutide-treated group. CONCLUSIONS Treatment of obese patients without overt type 2 diabetes with high dose of liraglutide for a short period of time induces changes in lipid-lipoprotein and hormonal profile that are suggestive of lower risk of atherosclerosis and CVD. Trial registration ClinicalTrials.gov Identifier: NCT02944500. Study ID Number 2015P000327. Registered November 2016.
Collapse
|
36
|
Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr Rev 2019; 40:1367-1393. [PMID: 31098621 DOI: 10.1210/er.2019-00034] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry "omics" approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of "hepatokine" biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
37
|
Remission of Type 2 Diabetes Mellitus after Bariatric Surgery: Fact or Fiction? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173171. [PMID: 31480306 PMCID: PMC6747427 DOI: 10.3390/ijerph16173171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Although type 2 diabetes mellitus (T2DM) has been traditionally viewed as an intractable chronic medical condition, accumulating evidence points towards the notion that a complete remission of T2DM is feasible following a choice of medical and/or surgical interventions. This has been paralleled by increasing interest in the establishment of a universal definition for T2DM remission which, under given circumstances, could be considered equivalent to a “cure”. The efficacy of bariatric surgery in particular for achieving glycemic control has highlighted surgery as a candidate curative intervention for T2DM. Herein, available evidence regarding available surgical modalities and the mechanisms that drive metabolic amelioration after bariatric surgery are reviewed. Furthermore, reports from observational and randomized studies with regard to T2DM remission are reviewed, along with concepts relevant to the variety of definitions used for T2DM remission and other potential sources of discrepancy in success rates among different studies.
Collapse
|
38
|
Peradze N, Farr OM, Mantzoros CS. Research developments in metabolism 2018. Metabolism 2019; 91:70-79. [PMID: 30503805 DOI: 10.1016/j.metabol.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Natia Peradze
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America.
| | - Olivia M Farr
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| | - Christos S Mantzoros
- Section of Endocrinology, Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|