1
|
Oyanagi T, Kawanabe S, Tsukiyama H, Nishine A, Nakamura Y, Nakagawa T, Kanou M, Kubota J, Tsunemi S, Yokota K, Sone M. The Effects of Imeglimin on Muscle Strength in Patients with Type 2 Diabetes: A Prospective Cohort Study. Diabetes Ther 2024; 15:2323-2336. [PMID: 39245759 PMCID: PMC11466917 DOI: 10.1007/s13300-024-01639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION A bidirectional relationship has been observed between type 2 diabetes mellitus and sarcopenia, especially among older adults. While previous studies have reported that imeglimin improves mitochondrial function, they have not assessed its effects on muscle strength in patients with type 2 diabetes. Therefore, we aimed to investigate the effects of imeglimin on muscle strength in patients with type 2 diabetes. METHODS In this prospective cohort study, we recruited consenting patients with type 2 diabetes (20-75 years). Changes in lean body mass (LBM), fat mass, quadriceps muscle strength, and grip strength from baseline (week 0) to week 24 were evaluated and compared between patients treated with imeglimin therapy (group I) and those who did not take imeglimin (controls, group C). RESULTS We recruited 27 patients treated with imeglimin (group I) and 29 controls (group C), and 50 of them completed the study (group I: n = 23; group C: n = 27). The change in LBM, total body fat mass, or skeletal muscle index from baseline to week 24 did not differ significantly between the two groups. However, group I exhibited a significantly higher percent change in quadriceps knee extension strength from baseline to week 24 than group C (13 ± 19% and 2.1 ± 14%, p = 0.022). Conversely, the difference in percent change in grip strength was not significant. Multivariable analysis showed that imeglimin use was significantly associated with a percent change in quadriceps knee extension strength, independent of age, sex, body mass index, and skeletal mass index (β = 0.325, p = 0.0014). CONCLUSIONS Imeglimin positively affected muscle strength in patients with type 2 diabetes without altering LBM. Therefore, imeglimin exerts a unique effect on skeletal muscles in humans. Further randomized controlled trials are needed to validate these findings. TRIAL REGISTRATION This research was registered in the University Hospital Medical Information Network (UMIN, UMIN000054715).
Collapse
Affiliation(s)
- Takeshi Oyanagi
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shin Kawanabe
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Hidekazu Tsukiyama
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Ami Nishine
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuta Nakamura
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Tomoko Nakagawa
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Mayuko Kanou
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Juri Kubota
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shingo Tsunemi
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kenichi Yokota
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masakatsu Sone
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
2
|
Tajima T, Kaga H, Ito N, Kogai T, Naito H, Kakehi S, Kadowaki S, Nishida Y, Kawamori R, Tamura Y, Watada H. Rationale and Design of the Study to Investigate the Metabolic Action of Imeglimin on Patients with Type 2 Diabetes Mellitus (SISIMAI). Diabetes Ther 2024:10.1007/s13300-024-01655-x. [PMID: 39347897 DOI: 10.1007/s13300-024-01655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Imeglimin is a first-in-class, novel, oral glucose-lowering agent for the treatment of type 2 diabetes mellitus. The efficacy and safety of imeglimin as an antidiabetic agent have been investigated in clinical trials. However, its metabolic effects in humans have not yet been fully elucidated. METHODS The Study to InveStIgate the Metabolic Action of Imeglimin on patients with type 2 diabetes mellitus (SISIMAI) is a single-arm intervention study. In this study, we have recruited 25 patients with type 2 diabetes to receive 2000 mg/day imeglimin for 20 weeks. We perform a 75-g oral glucose tolerance test (OGTT) with double-glucose tracers, a two-step hyperinsulinemic-euglycemic clamp with glucose tracer, ectopic fat measurement by proton magnetic resonance spectroscopy, visceral/subcutaneous fat area measurement by magnetic resonance imaging, muscle biopsy, and evaluation of fitness level by cycle ergometer before and after imeglimin administration. PLANNED OUTCOMES The primary outcome is the change in area under the curve of glucose levels during the OGTT after 20 weeks of imeglimin treatment. We also calculate the endogenous glucose production, rate of oral glucose appearance, and rate of glucose disappearance from the data during the 75-g OGTT and compare them between pre- and post-treatment. Additionally, we will compare other parameters, such as the changes in tissue-specific insulin sensitivity, ectopic fat accumulation, visceral/subcutaneous fat area accumulation, and fitness level between each point. This is the first study to investigate the organ-specific metabolic action of imeglimin in patients with type 2 diabetes mellitus using the 75-g OGTT with the double tracer method. The results of this study are expected to provide useful information for drug selection based on the pathophysiology of individual patients with type 2 diabetes mellitus. TRIAL REGISTRATION jRCTs031210600.
Collapse
Affiliation(s)
- Tsubasa Tajima
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Naoaki Ito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiki Kogai
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Saori Kakehi
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sports Medicine and Sportology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Sardu C, Vetrano E, Monda M, Marfella R, Rinaldi L, Sasso FC. Modern Challenges in Type 2 Diabetes: Balancing New Medications with Multifactorial Care. Biomedicines 2024; 12:2039. [PMID: 39335551 PMCID: PMC11429233 DOI: 10.3390/biomedicines12092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder characterized by insulin resistance and progressive beta cell dysfunction, presenting substantial global health and economic challenges. This review explores recent advancements in diabetes management, emphasizing novel pharmacological therapies and their physiological mechanisms. We highlight the transformative impact of Sodium-Glucose Cotransporter 2 inhibitor (SGLT2i) and Glucagon-Like Peptide 1 Receptor Agonist (GLP-1RA), which target specific physiological pathways to enhance glucose regulation and metabolic health. A key focus of this review is tirzepatide, a dual agonist of the glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors. Tirzepatide illustrates how integrating innovative mechanisms with established physiological pathways can significantly improve glycemic control and support weight management. Additionally, we explore emerging treatments such as glimins and glucokinase activators (GKAs), which offer novel strategies for enhancing insulin secretion and reducing glucose production. We also address future perspectives in diabetes management, including the potential of retatrutide as a triple receptor agonist and evolving guidelines advocating for a comprehensive, multifactorial approach to care. This approach integrates pharmacological advancements with essential lifestyle modifications-such as dietary changes, physical activity, and smoking cessation-to optimize patient outcomes. By focusing on the physiological mechanisms of these new therapies, this review underscores their role in enhancing T2DM management and highlights the importance of personalized care plans to address the complexities of the disease. This holistic perspective aims to improve patient quality of life and long-term health outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
4
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Hagi K, Kochi K, Watada H, Kaku K, Ueki K. Differences in imeglimin response in subgroups of patients with type 2 diabetes stratified by data-driven cluster analysis: A post-hoc analysis of imeglimin clinical trial data. Diabetes Obes Metab 2024; 26:3732-3742. [PMID: 38924336 DOI: 10.1111/dom.15716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
AIM To explore differences in imeglimin response among type 2 diabetes (T2D) patient clusters using data-driven cluster analysis. METHODS Data-driven cluster analysis (non-hierarchical k-means clustering) was performed on randomized, double-blind, imeglimin monotherapy and adjunctive (to insulin) therapy trials based on four baseline variables: (1) disease duration; (2) body mass index (BMI); (3) HbA1c; and (4a) homeostatic model assessment of β-cell function (HOMA-β) (monotherapy trials) or (4b) insulin total daily dose (adjunctive trial). RESULTS Four clusters were identified with distinct clinical characteristics in both monotherapy (1-4) and adjunctive therapy (I-IV) trials; clusters 1 and I had lower values across all four indices versus the overall population, clusters 2 and II had a longer diabetes duration, cluster 3 had higher baseline BMI and HOMA-β, and cluster III had higher baseline BMI and insulin total daily dose, while clusters 4 and IV had higher baseline HbA1c. Between-group differences in HbA1c change (95% confidence interval) and effect size (ES) at week 24 varied considerably by cluster (cluster 1: -0.82 [-1.00, -0.63], ES = 1.47; cluster 2: -0.64 [-0.89, -0.39], ES = 1.18; cluster 3: -0.86 [-1.38, -0.33], ES = 0.84; cluster 4: -1.27 [-1.73, -0.82], ES = 1.44). For imeglimin adjunctive therapy, HbA1c improvements were significant versus placebo at week 16, excluding cluster III (cluster I: -0.63 [-0.95, -0.31], ES = 0.88; cluster II: -0.66 [-1.02, -0.30], ES = 1.13; cluster III: -0.31 [-0.73, 0.11], ES = 0.46; cluster IV: -0.82 [-1.29, -0.35], ES = 0.99). CONCLUSIONS Differences in imeglimin response were observed among T2D patient clusters. Patient stratification may help with selection of those most probable to respond to imeglimin.
Collapse
Affiliation(s)
| | - Kenji Kochi
- Data Science, Sumitomo Pharma Co., Ltd, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Hagi K, Kochi K, Watada H, Kaku K, Ueki K. Factors contributing to the clinical effectiveness of imeglimin monotherapy in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig 2024; 15:1239-1247. [PMID: 38794986 PMCID: PMC11363113 DOI: 10.1111/jdi.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024] Open
Abstract
AIMS/INTRODUCTION To investigate the effect of patient characteristics on imeglimin effectiveness in Japanese patients with type 2 diabetes mellitus. MATERIALS AND METHODS Data were pooled from two randomized, placebo-controlled, 24-week, double-blind studies of imeglimin monotherapy in Japanese adults with type 2 diabetes mellitus, with the proportion of responders (glycated hemoglobin [HbA1c] < 7.0%) and sustained responders (i.e., achieved and maintained response) in the imeglimin 1,000 mg twice daily group calculated at each visit. Patient factors significantly (P < 0.05) correlated with response were explored through multivariate logistic regression. Subgroup analyses compared the efficacy of imeglimin in patients with a HbA1c improvement less than or equal to -0.3% (early responders) versus greater than -0.3% (early non-responders) at week 4. RESULTS A total of 38.0% of imeglimin-treated patients and 7.2% of placebo-treated patients were responders (P < 0.001, number needed to treat = 4). The proportion of sustained responders at weeks 4, 8, 12, 16 and 20 was 10.6, 19.0, 24.0, 25.7 and 29.1%, respectively (>70% of responders at each visit). Improvements in HbA1c and fasting glucose were significantly greater in early responders versus early non-responders from week 4; between-group differences remained significant to week 24. Older age (odds ratio 1.09, 95% confidence interval 1.04-1.14; P < 0.001); treatment-naïve status vs previous treatment (odds ratio 3.70, 95% confidence interval 1.55-8.82; P = 0.003), and lower baseline HbA1c (odds ratio 0.06, 95% confidence interval 0.02-0.16; P < 0.001) predicted response. CONCLUSIONS A significantly higher proportion of patients receiving imeglimin 1,000 mg twice daily monotherapy were responders versus placebo. Most (>70%) were sustained responders, suggesting that response is fairly predictable. Older age, treatment-naïve status and early treatment response significantly predicted imeglimin effectiveness.
Collapse
Affiliation(s)
- Katsuhiko Hagi
- Medical Science, Sumitomo Pharma Co., Ltd., Tokyo, Japan
| | - Kenji Kochi
- Data Science, Sumitomo Pharma Co., Ltd., Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
8
|
Shinohara Y, Jojima T, Kamiga Y, Sakurai S, Iijima T, Tomaru T, Akutsu I, Inoue T, Usui I, Aso Y. Acute Effect of Imeglimin Add-on Therapy on 24-h Glucose Profile and Glycemic Variability in Patients with Type 2 Diabetes Receiving Metformin. Med Princ Pract 2024:1-9. [PMID: 39134001 DOI: 10.1159/000540852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
INTRODUCTION Imeglimin is a novel antidiabetic drug with insulinotropic and insulin-sensitizing effects that targets mitochondrial bioenergetics. We investigated acute effects of add-on therapy with imeglimin to preceding metformin on the 24-h glucose profile and glycemic variability assessed by continuous glucose monitoring (CGM) in patients with type 2 diabetes. METHODS We studied 30 outpatients with type 2 diabetes inadequately controlled with metformin. CGM was used for 14 days straight during the research period. Imeglimin 2,000 mg/day was started on day 7 after initiating CGM. Several CGM parameters were compared between days 4-6 (prior to imeglimin treatment) and 11-13 (following the initiation of imeglimin treatment). RESULTS After treatment with imeglimin, 24-h mean glucose was acutely decreased from 161.6 ± 48.0 mg/dL to 138.9 ± 32.2 mg/dL (p < 0.0001), while time in range (i.e., at a glucose level of 70-180 mg/dL) was significantly increased from 69.9 ± 23.9% to 80.6 ± 21.0% (p < 0.0001). Addition of imeglimin to metformin significantly decreased the standard deviation (SD) of 24-h glucose and mean amplitude of glycemic excursions, 2 indexes of glycemic variability. Baseline serum high-density lipoprotein (HDL) cholesterol was negatively correlated with changes in mean 24-h glucose (r = -0.3859, p = 0.0352) and those in SD (r = -0.4015, p = 0.0309). CONCLUSIONS Imeglimin add-on therapy to metformin acutely lowered 24-h glucose levels and improved glycemic variability in patients with type 2 diabetes on metformin. A higher serum HDL cholesterol at baseline was associated with a better response to acute effects of imeglimin on 24-h glucose levels and glycemic variability.
Collapse
Affiliation(s)
- Yasutake Shinohara
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
- Japanese Red Cross Nasu Hospital, Otawara, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| | | | - Shintaro Sakurai
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| | - Toshie Iijima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| | - Takuya Tomaru
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| | - Ikuo Akutsu
- Japanese Red Cross Nasu Hospital, Otawara, Japan
| | - Teruo Inoue
- Japanese Red Cross Nasu Hospital, Otawara, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
9
|
Takahashi A, Nomoto H, Onishi K, Manda S, Miya A, Kameda H, Nakamura A, Atsumi T. A comparative study of the effects of imeglimin add-on or metformin dose escalation on glycaemic variability in subjects with type 2 diabetes treated with low-dose metformin (MEGMI-CGM study). Diabetes Obes Metab 2024; 26:3471-3474. [PMID: 38699794 DOI: 10.1111/dom.15639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Akihiro Takahashi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kinnosuke Onishi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Manda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aika Miya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Rudzki G, Knop-Chodyła K, Piasecka Z, Kochanowska-Mazurek A, Głaz A, Wesołek-Bielaska E, Woźniak M. Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals (Basel) 2024; 17:987. [PMID: 39204092 PMCID: PMC11357592 DOI: 10.3390/ph17080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Kidney transplantation is the most effective treatment for end-stage renal failure but is associated with complications, including post-transplant diabetes mellitus (PTDM). It affects the quality of life and survival of patients and the transplanted organ. It can cause complications, including infections and episodes of acute rejection, further threatening graft survival. The prevalence of PTDM, depending on the source, can range from 4 to 30% in transplant patients. This article aims to discuss issues related to diabetes in kidney transplant patients and the latest treatments. Knowledge of the mechanisms of action of immunosuppressive drugs used after transplantation and their effect on carbohydrate metabolism is key to the rapid and effective detection of PTDM. Patient therapy should not only include standard management such as lifestyle modification, insulin therapy or pharmacotherapy based on well-known oral and injection drugs. New opportunities are offered by hypoglycemic drugs still in clinical trials, including glucokinase activators, such as dorzagliatin, ADV-1002401, LY2608204, TMG-123, imeglimine, amycretin and pramlintide. Although many therapeutic options are currently available, PTDM often creates uncertainty about the most appropriate treatment strategy. Therefore, more research is needed to individualize therapeutic plans and monitor these patients.
Collapse
Affiliation(s)
- Grzegorz Rudzki
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Kinga Knop-Chodyła
- University Clinical Hospital No. 4 in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.K.-C.); (E.W.-B.)
| | - Zuzanna Piasecka
- Saint Queen Jadwiga’s Regional Clinical Hospital No. 2 in Rzeszow, Lwowska 60, 35-301 Rzeszów, Poland;
| | - Anna Kochanowska-Mazurek
- Stefan Cardinal Wyszynski Province Specialist Hospital, al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Aneta Głaz
- Faculty of medicine, Medical University of Lublin, al. Racławickie 1, 20-059 Lublin, Poland;
| | - Ewelina Wesołek-Bielaska
- University Clinical Hospital No. 4 in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.K.-C.); (E.W.-B.)
| | - Magdalena Woźniak
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
11
|
Takahashi N, Kimura AP, Yoshizaki T, Ohmura K. Imeglimin modulates mitochondria biology and facilitates mitokine secretion in 3T3-L1 adipocytes. Life Sci 2024; 349:122735. [PMID: 38768776 DOI: 10.1016/j.lfs.2024.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
AIMS Imeglimin, a novel antidiabetic drug, has recently been reported to affect pancreatic β-cells and hepatocytes. Adipose tissue plays a crucial role in systemic metabolism. However, its effect on adipocytes remains unexplored. Herein, we investigated the effects of imeglimin on adipocytes, particularly in the mitochondria. MAIN METHODS The 3T3-L1 adipocytes were treated with imeglimin. Mitochondrial respiratory complex I activity and NAD+, NADH, and AMP levels were measured. Protein expression levels were determined by western blotting, mitochondrial DNA and mRNA expression levels were determined using quantitative polymerase chain reaction, and secreted adipocytokine and mitokine levels were determined using adipokine array and enzyme-linked immunosorbent assay. KEY FINDINGS Imeglimin inhibited complex I activity, decreased the NAD+/NADH ratio, and increased AMP levels, which were associated with the enhanced phosphorylation of AMP-activated protein kinase. In addition, imeglimin increased the mitochondrial DNA content and levels of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-γ coactivator 1-α mRNA, which were abolished by Ly294002, a phosphoinositide 3-kinase inhibitor. Furthermore, imeglimin facilitated the expression levels of markers of the mitochondrial unfolded protein response, and the gene expression and secretion of two mitokines, fibroblast growth factor 21 and growth differentiation factor 15. The production of both mitokines was transcriptionally regulated and abolished by phosphoinositide 3-kinase and Akt inhibitors. SIGNIFICANCE Imeglimin modulates mitochondrial biology in adipocytes and may exert a mitohormetic effect through mitokine secretion.
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan.
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takayuki Yoshizaki
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Hiroshima 729-0292, Japan
| | - Kazumasa Ohmura
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan
| |
Collapse
|
12
|
Katsuyama H, Hakoshima M, Heshiki T, Iida S, Adachi H, Yanai H. Real-world effectiveness of imeglimin in patients with type 2 diabetes: A retrospective longitudinal study in Japan. Diabetes Res Clin Pract 2024; 213:111752. [PMID: 38908549 DOI: 10.1016/j.diabres.2024.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To examine the real-world effects of imeglimin on glycemic control and other metabolic factors in patients with type 2 diabetes (T2DM). METHODS A retrospective longitudinal study was conducted based on a chart review. We recruited patients with T2DM who took imeglimin continuously for at least 3 months. Data on various metabolic parameters were collected at the first prescription of imeglimin and at 3, 6 and 12 months after the initiation of imeglimin. Statistical comparisons were performed using paired t-tests. RESULTS 68 patients were eligible for this study. HbA1c decreased by 0.7 % at 3 months, 1.1 % at 6 months and 1.0 % by 12 months after the initiation of imeglimin. The decreases in HbA1c were observed regardless of age, gender, body mass index, duration of diabetes, renal function and concomitant use of hypoglycemic agents. There were also significant decreases in body weight, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and non-HDL-C during imeglimin treatment. CONCLUSIONS This is the first report showing the long-term effects of imeglimin in a real-world setting. We confirmed the glucose-lowering effects of imeglimin. Furthermore, favorable effects of imeglimin on body weight and serum lipids were also suggested.
Collapse
Affiliation(s)
- Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan.
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Takahiro Heshiki
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Sakura Iida
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
13
|
Schwartz SS, Herman ME. Gluco-regulation & type 2 diabetes: entrenched misconceptions updated to new governing principles for gold standard management. Front Endocrinol (Lausanne) 2024; 15:1394805. [PMID: 38933821 PMCID: PMC11199379 DOI: 10.3389/fendo.2024.1394805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Our understanding of type 2 diabetes (T2D) has evolved dramatically. Advances have upended entrenched dogmas pertaining to the onset and progression of T2D, beliefs that have prevailed from the early era of diabetes research-and continue to populate our medical textbooks and continuing medical education materials. This review article highlights key insights that lend new governing principles for gold standard management of T2D. From the historical context upon which old beliefs arose to new findings, this article outlines evidence and perspectives on beta cell function, the underlying defects in glucoregulation, the remediable nature of T2D, and, the rationale supporting the shift to complication-centric prescribing. Practical approaches translate this rectified understanding of T2D into strategies that fill gaps in current management practices of prediabetes through late type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S. Schwartz
- Main Line Health, Wynnewood, PA, and University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Herman
- Social Alchemy: Building Physician Competency Across the Globe, Sacatepéquez, Guatemala
| |
Collapse
|
14
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
15
|
Lee JY, Kang Y, Jeon JY, Kim HJ, Kim DJ, Lee KW, Han SJ. Imeglimin attenuates NLRP3 inflammasome activation by restoring mitochondrial functions in macrophages. J Pharmacol Sci 2024; 155:35-43. [PMID: 38677784 DOI: 10.1016/j.jphs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1β secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1β production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
16
|
Awazawa M, Matsushita M, Nomura I, Kobayashi N, Tamura-Nakano M, Sorimachi Y, Takubo K, Ueki K. Imeglimin improves systemic metabolism by targeting brown adipose tissue and gut microbiota in obese model mice. Metabolism 2024; 153:155796. [PMID: 38262576 DOI: 10.1016/j.metabol.2024.155796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Imeglimin is a recently developed anti-diabetic drug that could concurrently promote insulin secretion and insulin sensitivity, while its mechanisms of action are not fully understood. Here we show that imeglimin administration could protect mice from high fat diet-induced weight gain with enhanced energy expenditure and attenuated whitening of brown adipose tissue. Imeglimin administration led to significant alteration of gut microbiota, which included an increase of Akkermansia genus, with attenuation of obesity-associated gut pathologies. Ablation of microbiota by antibiotic treatment partially abrogated the insulin sensitizing effects of imeglimin, while not affecting its actions on body weight gain or brown adipose tissue. Collectively, our results characterize imeglimin as a potential agent promoting energy expenditure and gut integrity, providing new insights into its mechanisms of action.
Collapse
Affiliation(s)
- Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan.
| | - Maya Matsushita
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Ikumi Nomura
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Miwa Tamura-Nakano
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan; Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, 3-7-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
17
|
Newman DJ. Non-Insulin-Based Drug Entities Used to Treat Diabetes Type 2 Disease (T2DM), Based on Natural Products from All Sources. JOURNAL OF NATURAL PRODUCTS 2024; 87:629-637. [PMID: 38364770 DOI: 10.1021/acs.jnatprod.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Diabetes type 2 (T2DM) is the non-insulin-linked disease that is now becoming a major problem not only in the West but also in Asia (particularly in China and close geographic areas). Unlike the childhood onset diabetic disease (T1DM), which is effectively due to lack of insulin production and is maintained by insulin injection, T2DM is best thought of as an adult disease often being caused by what is now considered "metabolic syndrome" or the culmination of too many insults to the body, in particular obesity and its "coupled diseases" including heart problems. Its symptoms were described in ancient times not only in Europe but also in Asia and with later (1600s) anecdotal reports from South America. In all cases, the diagnostic was "sweet urine" due to the excretion of large amounts of glucose in the urine. This review covers the non-insulin agents approved from 1990 to 2021 from a historical aspect and discussions of the latest agents and can be considered an extension of the author's previous drug source reviews, but this time concentrating on nominally one disease entity, though metabolic syndrome is a collection of ailments.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| |
Collapse
|
18
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Gallo G, Rubattu S, Volpe M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2024; 25:2667. [PMID: 38473911 DOI: 10.3390/ijms25052667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | | |
Collapse
|
20
|
Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, Tanaka M, Satoh-Asahara N. Imeglimin Exhibits Novel Anti-Inflammatory Effects on High-Glucose-Stimulated Mouse Microglia through ULK1-Mediated Suppression of the TXNIP-NLRP3 Axis. Cells 2024; 13:284. [PMID: 38334676 PMCID: PMC10854746 DOI: 10.3390/cells13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemiological risk factor for dementia and has been implicated in multifactorial pathologies, including neuroinflammation. In the present study, we aimed to elucidate the potential anti-inflammatory effects of imeglimin, a novel antidiabetic agent, on high-glucose (HG)-stimulated microglia. Mouse microglial BV2 cells were stimulated with HG in the presence or absence of imeglimin. We examined the effects of imeglimin on the levels of proinflammatory cytokines, intracellular reactive oxygen species (ROS), mitochondrial integrity, and components related to the inflammasome or autophagy pathways in these cells. Our results showed that imeglimin suppressed the HG-induced production of interleukin-1beta (IL-1β) by reducing the intracellular ROS levels, ameliorating mitochondrial dysfunction, and inhibiting the activation of the thioredoxin-interacting protein (TXNIP)-NOD-like receptor family pyrin domain containing 3 (NLRP3) axis. Moreover, the inhibitory effects of imeglimin on the TXNIP-NLRP3 axis depended on the imeglimin-induced activation of ULK1, which also exhibited novel anti-inflammatory effects without autophagy induction. These findings suggest that imeglimin exerted novel suppressive effects on HG-stimulated microglia through the ULK1-TXNIP-NLRP3 axis, and may, thereby, contribute to the development of innovative strategies to prevent T2DM-associated cognitive impairment.
Collapse
Affiliation(s)
- Hisashi Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Kaori Iwashita
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Masayo Iwasa
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Sayaka Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Rehabilitation, Health Science University, Minamitsuru-gun 401-0380, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
21
|
Sultan J, Agarwal N, Sharma S. Characteristics and Biological Properties of Imeglimin Hydrochlo ride, A Novel Antidiabetic Agent: A Systematic Review. Curr Diabetes Rev 2024; 20:e171023222286. [PMID: 37855361 DOI: 10.2174/0115733998260331231009104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND WHO indicates that diabetes will become the 7th leading reason for death by 2030. The physiopathology of dysfunctioning is associated with obesity, weight gain and predominantly insulin resistance in insulin-sensitive cells and continuous deterioration of pancreatic beta cell function..Imeglimin is an investigational novel oral anti-diabetic drug. OBJECTIVES The motive of the review is to comprehensively explore the chemistry, biological and analytical analysis of the Imeglimin hydrochloride. METHODS To enhance the understanding, a systematic review was conducted by forming a database of relevant existing studies from electronic resources like Web of Science, ScienceDirect and PubMed. The methodology is reflected in the PRISMA design. RESULT The drug was approved in the year 2021 for therapeutic purposes in Japan. It is the novel and first approved drug for this type of Anti-diabetic treatment. It is a small molecular drug whose molecular weight is 191.6 grams per mole utilized for oral administration. Imeglimin is thought to have both activities, as the amount of glucose is dependent on insulin secretory impact and insulin sensitivity is increased. CONCLUSION Therapeutic, pharmacological, and analytical considerations for the novel drug Imeglimin hydrochloride are discussed in this review.
Collapse
Affiliation(s)
- Jasira Sultan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nikhil Agarwal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| |
Collapse
|
22
|
Shrestha SC, Gupta S. Imeglimin: the New Kid on the Block. Curr Diab Rep 2024; 24:13-18. [PMID: 38051432 DOI: 10.1007/s11892-023-01531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW This review aims to collect all the data regarding imeglimin and present it as one of the options for managing diabetes. RECENT FINDINGS It is a new drug that has recently been approved as an oral anti-diabetic drug, either as monotherapy or in combination with other oral antidiabetic drugs including insulin, with modest HbA1c reduction, and a fairly safe profile. Imeglimin was first approved in 2021 in Japan and China and is available in India from October 2022. Imeglimin is the first compound in a new class of oral anti-diabetic medications known as "glimins" that include a tetrahydrotriazine ring. Glimins act by amplifying glucose-stimulated insulin secretion (GSIS) and preserving β-cell mass, leading to augmented insulin secretion. Furthermore, It also intensifies insulin action by inhibiting of hepatic glucose output and recovery of altered insulin signalling in both hepatocytes (liver) and myocytes (skeletal muscle). This is a unique mode of action than has been demonstrated to be distinct from other classes of drugs, as it targets both insulin secretion and insulin resistance by correcting the mitochondrial dysfunction. Imeglimin has been studied in various phase III trials which have equivocally shown it to be effective in lowering glucose levels and improving pancreatic function and its recommended dose set at 1000 mg bid.
Collapse
Affiliation(s)
| | - Setu Gupta
- Department of Endocrinology, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
23
|
Permana H, Soetedjo NNM, Yanto TA, Tendean M, Hariyanto TI, Suastika K. Different doses of imeglimin for management of type 2 diabetes mellitus: a systematic review, meta-analysis, and meta-regression of randomized clinical trials. Expert Rev Endocrinol Metab 2024; 19:89-98. [PMID: 38047423 DOI: 10.1080/17446651.2023.2290488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND A new medication for type 2 diabetes mellitus (T2DM) called imeglimin can target all three organs involved in the pathogenesis of DM, namely the liver, skeletal muscles, and pancreas. This research seeks to examine the most efficacious and safe dose of imeglimin for the management of T2DM. RESEARCH DESIGN AND METHODS Using particular keywords, we searched the CENTRAL, Medline, Scopus, and ClinicalTrials.gov databases for pertinent literature. The results of continuous variables were pooled into the mean difference (MD) and dichotomous variables into odds ratio (OR) along with their 95% confidence intervals (95% CI) using fixed-effect models. RESULTS Our pooled analysis revealed that imeglimin 1000 mg twice daily [MD -0.90% p < 0.00001] and 1500 mg twice daily [MD -0.84% p = 0.0003] as monotherapy was associated with a higher reduction in the HbA1c compared to placebo. This superiority was still maintained when given as combination therapy. Regrettably, there was an observed escalation in gastrointestinal AEs as the dosage of imeglimin was raised, despite the absence of a corresponding improvement in its efficacy in decreasing HbA1c levels. CONCLUSIONS Our study suggests that imeglimin 1000 mg twice daily may offer the most optimum therapeutic effects for glycemic control without compromising its safety profiles.
Collapse
Affiliation(s)
- Hikmat Permana
- Division of Endocrinology, Metabolic Disorders and Diabetes, Department of Internal Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | - Nanny Natalia Mulyani Soetedjo
- Division of Endocrinology, Metabolic Disorders and Diabetes, Department of Internal Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | - Theo Audi Yanto
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, Indonesia
| | - Marshell Tendean
- Division of Endocrinology, Metabolic Disorders and Diabetes, Department of Internal Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | | | - Ketut Suastika
- Division of Endocrinology, Metabolic Disorders and Diabetes, Department of Internal Medicine, Udayana University, Denpasar, Bali, Indonesia
| |
Collapse
|
24
|
Swain J, Jadhao P, Sravya SL, Teli B, Lavanya K, Singh J, Sahoo A, Das S. Mitochondrial Dysfunction and Imeglimin: A New Ray of Hope for the Treatment of Type-2 Diabetes Mellitus. Mini Rev Med Chem 2024; 24:1575-1589. [PMID: 37861052 DOI: 10.2174/0113895575260225230921062013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023]
Abstract
Diabetes is a rapidly growing health challenge and epidemic in many developing countries, including India. India, being the diabetes capital of the world, has the dubious dual distinction of being the leading nations for both undernutrition and overnutrition. Diabetes prevalence has increased in both rural and urban areas, affected the younger population and increased the risk of complications and economic burden. These alarming statistics ring an alarm bell to achieve glycemic targets in the affected population in order to decrease diabetes-related morbidity and mortality. In the recent years, diabetes pathophysiology has been extended from an ominous triad through octet and dirty dozen etc. There is a new scope to target multiple pathways at the molecular level to achieve a better glycemic target and further prevent micro- and macrovascular complications. Mitochondrial dysfunction has a pivotal role in both β-cell failure and insulin resistance. Hence, targeting this molecular pathway may help with both insulin secretion and peripheral tissue sensitization to insulin. Imeglimin is the latest addition to our anti-diabetic armamentarium. As imeglimin targets, this root cause of defective energy metabolism and insulin resistance makes it a new add-on therapy in different diabetic regimes to achieve the proper glycemic targets. Its good tolerability and efficacy profiles in recent studies shows a new ray of hope in the journey to curtail diabetes-related morbidity.
Collapse
Affiliation(s)
- Jayshree Swain
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Pooja Jadhao
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - S L Sravya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Brij Teli
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Kasukurti Lavanya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Jaspreet Singh
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Abhay Sahoo
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
25
|
Okada S, Okada K, Okada J, Yamada E. Imeglimin Improved Plasma Glucose Levels in Patients With Latent Autoimmune Diabetes of Adults: Report of 2 Cases. JCEM CASE REPORTS 2024; 2:luad161. [PMID: 38116160 PMCID: PMC10729848 DOI: 10.1210/jcemcr/luad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
Imeglimin has not been well studied as an oral agent for the treatment of latent autoimmune diabetes of adults (LADA). We treated 2 cases of LADA with imeglimin. The case 1 patient was originally diagnosed with type 2 diabetes (T2D) at age 50 years and was treated with sulfonylurea, biguanide, canagliflozin, imeglimin, and dulaglutide. Before imeglimin, his glycated hemoglobin A1c (HbA1c) change was 94.0 mmol/mol (8.6%) in November 2022, but it dropped to 71.0 mmol/mol (6.5%) in May 2023 after imeglimin was added. The case 2 patient was originally diagnosed with T2D when she was aged 48 years. She was treated with vildagliptin, biguanide, luseogliflozin, and imeglimin. Her HbA1c before imeglimin was 92.9 mmol/mol (8.5%) in January 2023, which decreased to 75.4 mmol/mol (6.9%) in July 2023 after imeglimin was added. Although imeglimin has not been approved for treating type 1 diabetes and LADA, adding imeglimin to the current medication was effective in improving and controlling the patients' plasma glucose.
Collapse
Affiliation(s)
- Shuichi Okada
- Department of Diabetes, Soleiyu Asahi Clinic, Maebashi Gunma 371-0014, Japan
| | - Kazuya Okada
- Department of Orthopedic Surgery, Tone Chuo Hospital, Numata Gunma 378-0012, Japan
| | - Junichi Okada
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi Gunma 371-8511, Japan
| |
Collapse
|
26
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
27
|
Hagi K, Kochi K, Watada H, Kaku K, Ueki K. Effect of patient characteristics on the efficacy and safety of imeglimin monotherapy in Japanese patients with type 2 diabetes mellitus: A post-hoc analysis of two randomized, placebo-controlled trials. J Diabetes Investig 2023; 14:1101-1109. [PMID: 37264517 PMCID: PMC10445191 DOI: 10.1111/jdi.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
AIMS/INTRODUCTION Substantial variability in demographic and clinical characteristics exists among patients with type 2 diabetes mellitus, which may impact treatment. This post-hoc analysis evaluated the efficacy and safety of imeglimin 1,000 mg twice daily (BID) monotherapy in type 2 diabetes mellitus patients according to demographic and clinical characteristics. MATERIALS AND METHODS Data were pooled from two placebo-controlled, 24 week, randomized, double-blind studies in adults with type 2 diabetes mellitus. Outcomes (least squares mean [LSM] change in HbA1c from baseline to week 24, and safety) were analyzed according to subgroups based on demographics, clinical characteristics, and comorbidities. RESULTS The difference in LSM change in HbA1c from baseline to week 24 was statistically significant for imeglimin vs placebo in all patient subgroups analyzed (P < 0.05 each), including demographics (age, body mass index), clinical characteristics (duration of type 2 diabetes mellitus, chronic kidney disease [CKD] stage, and prior medication use) and comorbidities (hypertension, dyslipidemia, risk of hepatic fibrosis and liver function parameter status). A statistically significant separation from placebo in HbA1c was observed at week 4 and maintained through week 24. No new safety concerns were identified with imeglimin in any patient subpopulations. CONCLUSIONS The efficacy and safety of imeglimin was demonstrated across patient subgroups, irrespective of baseline demographic and clinical characteristics. Our findings confirm the efficacy and safety of imeglimin across a broad spectrum of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kohei Kaku
- Department of MedicineKawasaki Medical SchoolOkayamaJapan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology and MetabolismNational Center for Global Health and MedicineTokyoJapan
| |
Collapse
|
28
|
McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2021. J Med Chem 2023; 66:10150-10201. [PMID: 37528515 DOI: 10.1021/acs.jmedchem.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
Collapse
Affiliation(s)
- Emma L McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott P France
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carolyn A Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Simon Berritt
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing, 100085, China
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Road, Suite 8, San Diego, California 92121, United States
| | - Rebecca B Watson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J O'Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
Iwasa M, Kato H, Iwashita K, Yamakage H, Kato S, Saito S, Ihara M, Nishimura H, Kawamoto A, Suganami T, Tanaka M, Satoh-Asahara N. Taxifolin Suppresses Inflammatory Responses of High-Glucose-Stimulated Mouse Microglia by Attenuating the TXNIP-NLRP3 Axis. Nutrients 2023; 15:2738. [PMID: 37375642 DOI: 10.3390/nu15122738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus is associated with an increased risk of dementia, potentially through multifactorial pathologies, including neuroinflammation. Therefore, there is a need to identify novel agents that can suppress neuroinflammation and prevent cognitive impairment in diabetes. In the present study, we demonstrated that a high-glucose (HG) environment elevates the intracellular reactive oxygen species (ROS) levels and triggers inflammatory responses in the mouse microglial cell line BV-2. We further found that thioredoxin-interacting protein (TXNIP), a ROS-responsive positive regulator of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, was also upregulated, followed by NLRP3 inflammasome activation and subsequent interleukin-1beta (IL-1β) production in these cells. Conversely, caspase-1 was not significantly activated, suggesting the involvement of noncanonical pathways in these inflammatory responses. Moreover, our results demonstrated that taxifolin, a natural flavonoid with antioxidant and radical scavenging activities, suppressed IL-1β production by reducing the intracellular ROS levels and inhibiting the activation of the TXNIP-NLRP3 axis. These findings suggest the novel anti-inflammatory effects of taxifolin on microglia in an HG environment, which could help develop novel strategies for suppressing neuroinflammation in diabetes.
Collapse
Affiliation(s)
- Masayo Iwasa
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hisashi Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kaori Iwashita
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Sayaka Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Hideo Nishimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Rehabilitation, Health Science University, Minamitsuru-gun 401-0380, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
30
|
Osonoi T, Shirabe S, Saito M, Hosoya M, Douguchi S, Ofuchi K, Katoh M. Comparative evaluation of clinical glycemic control markers treated with imeglimin and its effect on erythrocytes in patients with type 2 diabetes mellitus: study protocol of a single-arm, open-label, prospective, exploratory trial. Front Pharmacol 2023; 14:1205021. [PMID: 37351507 PMCID: PMC10282941 DOI: 10.3389/fphar.2023.1205021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Imeglimin is a novel type 2 diabetes (T2D) drug that is expected to improve mitochondrial function. In its phase 3 clinical trials in Japanese patients with T2D, the hemoglobin A1c (HbA1c) decrease following imeglimin administration was slow, reaching a plateau after 20-24 weeks of treatment. In general, the erythrocyte lifespan may be a factor when HbA1c shows an abnormal value. Therefore, this study will comparatively evaluate HbA1c and other markers of glycemic control in patients with T2D after imeglimin administration and also examine the effects of imeglimin on erythrocytes. Methods: This single-arm, open-label, prospective, exploratory study is designed to evaluate the divergence between HbA1c and glycoalbumin (GA) or 1,5-anhydroglucitol (1,5-AG) and the glycemic reduction rate in 30 patients with T2D with inadequate glycemic control when imeglimin 2,000 mg is administered for 6 months. In addition, we will examine the effect on erythrocytes, the presumed cause of this divergence. We will measure sustained glycemic variability using flash glucose monitoring and examine the relationship between changes in these indices and HbA1c. Moreover, because prolonged erythrocyte lifespan is a possible cause of falsely high HbA1c levels, erythrocyte lifespan, erythrocyte deformability, and hemoglobin concentration will be evaluated as effects of imeglimin on erythrocytes. Furthermore, if imeglimin has an ameliorative effect on erythrocyte deformability, it may improve peripheral arterial disease; thus, we will also evaluate the toe-brachial pressure index, a measure of this effect. Discussion: In this study, if imeglimin administration results in diverging rates of hypoglycemic effect between HbA1c and GA or 1,5-AG and prolongs erythrocyte lifespan, GA and 1,5-AG, rather than HbA1c, will be considered appropriate measures of the hypoglycemic effect in the early stages of imeglimin administration. If imeglimin improves erythrocyte deformability, it may also be a new treatment strategy for peripheral arterial disease, a chronic complication of T2D. Ethics and dissemination: The study protocol was scientifically and ethically reviewed and approved by the Certified Clinical Research Review Board of Toho University (approval number: THU22002). The study protocol was registered in the Japan Registry of Clinical Trials (jRCT) in December 2022 (jRCTs031220489).
Collapse
|
31
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucose-Lowering Effects of Imeglimin and Its Possible Beneficial Effects on Diabetic Complications. BIOLOGY 2023; 12:biology12050726. [PMID: 37237539 DOI: 10.3390/biology12050726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Mitochondrial dysfunction is a prominent pathological feature of type 2 diabetes, which contributes to β-cell mass reduction and insulin resistance. Imeglimin is a novel oral hypoglycemic agent with a unique mechanism of action targeting mitochondrial bioenergetics. Imeglimin reduces reactive oxygen species production, improves mitochondrial function and integrity, and also improves the structure and function of endoplasmic reticulum (ER), changes which enhance glucose-stimulated insulin secretion and inhibit the apoptosis of β-cells, leading to β-cell mass preservation. Further, imeglimin inhibits hepatic glucose production and ameliorates insulin sensitivity. Clinical trials into the effects of imeglimin monotherapy and combination therapy exhibited an excellent hypoglycemic efficacy and safety profile in type 2 diabetic patients. Mitochondrial impairment is closely associated with endothelial dysfunction, which is a very early event in atherosclerosis. Imeglimin improved endothelial dysfunction in patients with type 2 diabetes via both glycemic control-dependent and -independent mechanisms. In experimental animals, imeglimin improved cardiac and kidney function via an improvement in mitochondrial and ER function or/and an improvement in endothelial function. Furthermore, imeglimin reduced ischemia-induced brain damage. In addition to glucose-lowering effects, imeglimin can be a useful therapeutic option for diabetic complications in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
32
|
Marunaka Y. Molecular Mechanisms of Obesity-Induced Development of Insulin Resistance and Promotion of Amyloid-β Accumulation: Dietary Therapy Using Weak Organic Acids via Improvement of Lowered Interstitial Fluid pH. Biomolecules 2023; 13:biom13050779. [PMID: 37238649 DOI: 10.3390/biom13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the etiologies of type 2 diabetes mellitus (T2DM) and has been suggested to contribute to the development of Alzheimer's disease by promoting amyloid-β accumulation. Various causes of insulin resistance have been suggested; however, mechanisms of insulin resistance development remain to be elucidated in many respects. Elucidating the mechanisms underlying the development of insulin resistance is one of the key factors in developing methods to prevent the onset of T2DM and Alzheimer's disease. It has been suggested that the body pH environment plays an important role in the control of cellular functions by regulating the action of hormones including insulin and the activity of enzymes and neurons, thereby maintaining homeostatic conditions of the body. This review introduces: (1) Mitochondrial dysfunction through oxidative stress caused by obesity-induced inflammation. (2) Decreased pH of interstitial fluid due to mitochondrial dysfunction. (3) Development of insulin resistance due to diminution of insulin affinity to its receptor caused by the lowered interstitial fluid pH. (4) Accelerated accumulation of amyloid-β due to elevated activities of β- and γ-secretases caused by the lowered interstitial fluid pH. (5) Diet therapies for improving insulin resistance with weak organic acids that act as bases in the body to raise the pH of lowered interstitial fluid and food factors that promote absorption of weak organic acids in the gut.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
33
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|
34
|
Alamer AA, Alsaleh NB, Aodah AH, Alshehri AA, Almughem FA, Alqahtani SH, Alfassam HA, Tawfik EA. Development of Imeglimin Electrospun Nanofibers as a Potential Buccal Antidiabetic Therapeutic Approach. Pharmaceutics 2023; 15:pharmaceutics15041208. [PMID: 37111693 PMCID: PMC10144366 DOI: 10.3390/pharmaceutics15041208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has been growing worldwide; hence, safe and effective antidiabetics are critically warranted. Recently, imeglimin, a novel tetrahydrotriazene compound, has been approved for use in T2D patients in Japan. It has shown promising glucose-lowering properties by improving pancreatic beta-cell function and peripheral insulin sensitivity. Nevertheless, it has several drawbacks, including suboptimal oral absorption and gastrointestinal (GI) discomfort. Therefore, this study aimed to fabricate a novel formulation of imeglimin loaded into electrospun nanofibers to be delivered through the buccal cavity to overcome the current GI-related adverse events and to provide a convenient route of administration. The fabricated nanofibers were characterized for diameter, drug-loading (DL), disintegration, and drug release profiles. The data demonstrated that the imeglimin nanofibers had a diameter of 361 ± 54 nm and DL of 23.5 ± 0.2 μg/mg of fibers. The X-ray diffraction (XRD) data confirmed the solid dispersion of imeglimin, favoring drug solubility, and release with improved bioavailability. The rate of drug-loaded nanofibers disintegration was recorded at 2 ± 1 s, indicating the rapid disintegration ability of this dosage form and its suitability for buccal delivery, with a complete drug release after 30 min. The findings of this study suggest that the developed imeglimin nanofibers have the potential to be given via the buccal route, thereby achieving optimal therapeutic outcomes and improving patient compliance.
Collapse
Affiliation(s)
- Ali A Alamer
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sarah H Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Haya A Alfassam
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
35
|
Ghosh N, Chacko L, Bhattacharya H, Vallamkondu J, Nag S, Dey A, Karmakar T, Reddy PH, Kandimalla R, Dewanjee S. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines 2023; 11:biomedicines11041126. [PMID: 37189744 DOI: 10.3390/biomedicines11041126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes mellitus (DM) and cardiovascular complications are two unmet medical emergencies that can occur together. The rising incidence of heart failure in diabetic populations, in addition to apparent coronary heart disease, ischemia, and hypertension-related complications, has created a more challenging situation. Diabetes, as a predominant cardio-renal metabolic syndrome, is related to severe vascular risk factors, and it underlies various complex pathophysiological pathways at the metabolic and molecular level that progress and converge toward the development of diabetic cardiomyopathy (DCM). DCM involves several downstream cascades that cause structural and functional alterations of the diabetic heart, such as diastolic dysfunction progressing into systolic dysfunction, cardiomyocyte hypertrophy, myocardial fibrosis, and subsequent heart failure over time. The effects of glucagon-like peptide-1 (GLP-1) analogues and sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiovascular (CV) outcomes in diabetes have shown promising results, including improved contractile bioenergetics and significant cardiovascular benefits. The purpose of this article is to highlight the various pathophysiological, metabolic, and molecular pathways that contribute to the development of DCM and its significant effects on cardiac morphology and functioning. Additionally, this article will discuss the potential therapies that may be available in the future.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Sagnik Nag
- Department of Biotechnology, Vellore Institute of Technology (VIT), School of Biosciences & Technology, Tiruvalam Road, Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Tanushree Karmakar
- Dr. B C Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
36
|
Zhang L, Wu J, Zhu Z, He Y, Fang R. Mitochondrion: A bridge linking aging and degenerative diseases. Life Sci 2023; 322:121666. [PMID: 37030614 DOI: 10.1016/j.lfs.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Aging is a natural process, characterized by progressive loss of physiological integrity, impaired function, and increased vulnerability to death. For centuries, people have been trying hard to understand the process of aging and find effective ways to delay it. However, limited breakthroughs have been made in anti-aging area. Since the hallmarks of aging were summarized in 2013, increasing studies focus on the role of mitochondrial dysfunction in aging and aging-related degenerative diseases, such as neurodegenerative diseases, osteoarthritis, metabolic diseases, and cardiovascular diseases. Accumulating evidence indicates that restoring mitochondrial function and biogenesis exerts beneficial effects in extending lifespan and promoting healthy aging. In this paper, we provide an overview of mitochondrial changes during aging and summarize the advanced studies in mitochondrial therapies for the treatment of degenerative diseases. Current challenges and future perspectives are proposed to provide novel and promising directions for future research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ziguan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renpeng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Uchida T, Ueno H, Konagata A, Taniguchi N, Kogo F, Nagatomo Y, Shimizu K, Yamaguchi H, Shimoda K. Improving the Effects of Imeglimin on Endothelial Function: A Prospective, Single-Center, Observational Study. Diabetes Ther 2023; 14:569-579. [PMID: 36732433 PMCID: PMC9981829 DOI: 10.1007/s13300-023-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction is a risk factor for cardiovascular disease in patients with diabetes. We hypothesized that imeglimin, a novel oral hypoglycemic agent, would improve endothelial function. METHODS In this study, imeglimin was administered to patients with type 2 diabetes and HbA1c ≥ 6.5% who were not receiving insulin therapy. A meal tolerance test (592 kcal, glucose 75.0 g, fat 28.5 g) was performed before and 3 months after administration, and endothelial function, blood glucose, insulin, glucagon, and triglycerides were evaluated. Endothelial function was assessed by flow-mediated dilation (FMD). RESULTS Twelve patients (50% male) with a median age of 55.5 years old (interquartile range [IQR] 51.3-66.0) were enrolled. Fasting FMD did not differ before or 3 months after imeglimin administration (from 6.1 [3.9-8.5] to 6.6 [3.9-9.0], p = 0.092), but 2 h postprandial FMD was significantly improved 3 months after imeglimin administration (from 2.3 [1.9-3.4] to 2.9 [2.4-4.7], p = 0.013). In terms of the glucose profile, imeglimin administration significantly improved HbA1c (from 7.2 ± 0.6% to 6.9 ± 0.6%, p = 0.007), fasting glucose (from 138 ± 19 mg/dL to 128 ± 20 mg/dL, p = 0.020), and 2 h postprandial glucose (from 251 ± 47 mg/dL to 215 ± 68 mg/dL, p = 0.035). The change in 2 h postprandial FMD between before and 3 months after imeglimin administration (Δ2 h postprandial FMD) was negatively correlated with Δ2 h postprandial glucose (r = - 0.653, p = 0.021) in a univariate correlation coefficient analysis. Both patients with and without decreased postprandial glucose 3 months after imeglimin administration had improved postprandial FMD. CONCLUSION In this small study, imeglimin administration improved 2 h postprandial FMD. Both glycemic control-dependent and -independent mechanisms might contribute to improved endothelial function. TRIAL REGISTRATION This research was registered in the University Hospital Medical Information Network (UMIN, UMIN000046311).
Collapse
Affiliation(s)
- Taisuke Uchida
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroaki Ueno
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Ayaka Konagata
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Norifumi Taniguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fumiko Kogo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yuma Nagatomo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichiro Shimizu
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Yamaguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
38
|
MacCann R, Landay AL, Mallon PWG. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway. Curr Opin HIV AIDS 2023; 18:102-110. [PMID: 36722199 PMCID: PMC7614535 DOI: 10.1097/coh.0000000000000782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review alterations in microbiota composition, diversity, and functional features in the context of chronic inflammation and comorbidities associated with HIV infection. RECENT FINDINGS The gut microbiome is an important mediator of host immunity, and disruption of gut homeostasis can contribute to both systemic inflammation and immune activation. Ageing and HIV share features of intestinal damage, microbial translocation and alterations in bacterial composition that contribute to a proinflammatory state and development of age-related comorbidities. One such inflammatory pathway reviewed is the nicotinamide adenine dinucleotide (NAD+) producing kynurenine pathway (KP). Kynurenine metabolites regulate many biological processes including host-microbiome communication, immunity and oxidative stress and the KP in turn is influenced by the microbiome environment. Age-associated decline in NAD+ is implicated as a driving factor in many age-associated diseases, including those seen in people with HIV (PWH). Recent studies have shown that KP can influence metabolic changes in PWH, including increased abdominal adiposity and cardiovascular disease. Furthermore, KP activity increases with age in the general population, but it is elevated in PWH at all ages compared to age-matched controls. Host or microbiome-mediated targeting of this pathway has merits to increase healthy longevity and has potential therapeutic applications in PWH. SUMMARY As a growing proportion of PWH age, many face increased risks of developing age-related comorbidities. Chronic inflammation, a pillar of geroscience, the science of ageing and of age-related disease, is influenced by the gut microbiome and its metabolites. Combined, these contribute to a systemic inflammatory signature. Advances in geroscience-based approaches and therapeutics offer a novel paradigm for addressing age-related diseases and chronic inflammation in HIV infection. Whether targeted inhibition of KP activity alleviates pathological conditions or promotes successful ageing in PWH remains to be determined.
Collapse
Affiliation(s)
- Rachel MacCann
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
39
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
40
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
41
|
Singh AK, Singh A, Singh R, Misra A. Efficacy and safety of imeglimin in type 2 diabetes: A systematic review and meta-analysis of randomized placebo-controlled trials. Diabetes Metab Syndr 2023; 17:102710. [PMID: 36702046 DOI: 10.1016/j.dsx.2023.102710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Imeglimin is a novel new oral compound recently approved for treating type 2 diabetes (T2D) in India. We conducted a systematic review and meta-analysis to evaluate the efficacy of imeglimin in people with T2D in the approved dose of 1000 mg twice daily (BID). METHODS We systematically searched the database of PubMed until December 20, 2022, and retrieved all published double-blind, randomized, placebo-controlled trials (RCTs) conducted with imeglimin 1000 mg BID, using appropriate keywords and MeSH terms. A meta-analysis was conducted to study the HbA1c lowering effect of imeglimin 1000 mg BID in people with T2D using the Comprehensive meta-analysis (CMA) software Version 3, Biostat Inc. Englewood, NJ, USA. RESULTS Of the seven Phase 2 studies and three Phase 3 studies conducted so far, only three published double-blind RCTs have reported the efficacy and safety of imeglimin 1000 mg BID against the placebo. Our meta-analysis using the random-effects model from two monotherapy studies (n = 360) showed imeglimin 1000 mg BID reduce HbA1c significantly (Δ -0.9%, 95% Confidence Interval [CI], -1.1 to -0.74%; P < 0.0001) against the placebo, without any heterogeneity (I2 = 0%). The pooled meta-analysis from all three RCTs (n = 574) found a significant reduction in HbA1c with imeglimin 1000 mg BID (Δ -0.79%; 95% CI, -1.00 to -0.59%; P < 0.0001) compared to placebo with high heterogeneity. CONCLUSIONS This meta-analysis found a significant HbA1c lowering effect of imeglimin in people with T2D with an acceptable tolerability profile. Still, larger and longer studies are needed.
Collapse
Affiliation(s)
| | - Akriti Singh
- Jawaharlal Nehru Medical College & Hospital, Kalyani, West Bengal, India
| | - Ritu Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India
| | - Anoop Misra
- Fortis C-DOC Hospital for Diabetes & Allied Sciences, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
42
|
Nakamura Y, Haraguchi A, Horie I, Kawakami A, Abiru N. Pilot Trial on the Effect of 5-Aminolevulinic Acid on Glucose Tolerance in Patients with Maternally Inherited Diabetes and Deafness. Diabetes Ther 2023; 14:447-459. [PMID: 36418716 PMCID: PMC9943925 DOI: 10.1007/s13300-022-01335-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The amino acid 5-aminolevulinic acid (5-ALA) is the first heme biosynthetic precursor. The combination of 5-ALA with sodium ferrous citrate (SFC) enhances heme production, leading to increased adenosine triphosphate (ATP) production in mitochondria. We investigated whether administering 5-ALA/SFC improves glucose tolerance with an increase in insulin secretion in patients with maternally inherited diabetes and deafness (MIDD), which is characterized by an insulin secretory disorder due to impaired mitochondrial ATP production. METHODS This was a single-arm, open-label, interventional study. We prospectively administered the oral glucose tolerance test (OGTT) twice in five patients with MIDD who had received intensive insulin therapy: before and 24 weeks after an administration of 5-ALA/SFC (200/232 mg per day). We measured the concentrations of glucose, insulin, C-peptide, and proinsulin at fasting, and 30, 60, and 120 min after glucose load in each OGTT. The primary endpoint was the changes in the area under the curve (AUC) of serum insulin from 0 to 120 min during OGTT from baseline to 24 weeks. RESULTS The serum insulin AUC (µU/mL) during the 120-min OGTT tended to increase from baseline to 24 weeks but not significantly (17.1 ± 13.7 versus 22.3 ± 13.4, p = 0.077). The plasma glucose AUC (mg/dL) during the 120-min OGTT at 24 weeks was not significantly decreased; the late phase of glucose excursion from 60 to 120 min was significantly decreased compared with baseline (357 ± 42 versus 391 ± 50, p = 0.041). The mean level of glycated hemoglobin (HbA1c) decreased from 8.3 ± 1.2% at baseline to 7.9 ± 0.3% at 24 weeks (p = 0.36) without increasing the daily dose of insulin injections. CONCLUSION The 24-week administration of 5-ALA/SFC did not demonstrate a significant improvement in insulin secretion in patients with MIDD. Further investigations with a larger number of patients and a placebo control group are required to clarify the potential efficacy of 5-ALA/SFC for ameliorating mitochondrial dysfunctions in MIDD. TRIAL REGISTRATION UMIN-CTR000040581 and jRCT071200025.
Collapse
Affiliation(s)
- Yuta Nakamura
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
43
|
Nagamine J. [Pharmacological profile and clinical efficacy of imeglimin hydrochloride (TWYMEEG ®Tablets), the orally drug for type 2 diabetes mellitus with the first dual mode of action in the world]. Nihon Yakurigaku Zasshi 2023; 158:193-202. [PMID: 36858505 DOI: 10.1254/fpj.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Imeglimin hydrochloride (imeglimin) is an orally drug for type 2 diabetes mellitus, which was approved in Japan for the first in the world, with dual mode of actions: pancreatic action means amplifying glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and extrapancreatic action means improving insulin sensitivity by which gluconeogenesis suppresses in hepatocytes and glucose uptake increases in skeletal muscles. Although the molecular target of imeglimin is still unknown, imeglimin exerts some of its actions through modulation of the mitochondrial function. In pancreatic islets, imeglimin enhanced adenosine triphosphate and Ca2+ under high-glucose conditions. Furthermore, imeglimin induced the synthesis of oxidized form nicotinamide adenine dinucleotide (NAD+) via the 'salvage pathway', and NAD+ metabolites may contribute to the increase in intracellular Ca2+. The in vivo studies indicated that imeglimin enhanced the sensitivity to insulin and modulated the mitochondrial function (restoring the deficient Complex III activity, decreasing Complex I activity and reactive oxygen species production), which contribute to the improvement of glucose metabolism in hepatocytes and skeletal muscles. In clinical trials, imeglimin's dual effects were demonstrated in foreign type 2 diabetic patients who received 1500 mg bid, which is different from the domestic approved dose. Imeglimin has been shown to evidence of statistically significant glucose lowering, a generally favorable safety and tolerability profile in patients with type 2 diabetes by monotherapy and combination therapy with 1,000 mg bid in four Japanese trials. Since imeglimin has dual effects, it may have shown a newly effective option, regardless of the pathophysiology of type 2 diabetic patients.
Collapse
|
44
|
Maternally inherited diabetes and deafness (MIDD)—a series of case reports. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Wronka M, Krzemińska J, Młynarska E, Rysz J, Franczyk B. The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes. Int J Mol Sci 2022; 23:ijms232415743. [PMID: 36555387 PMCID: PMC9778895 DOI: 10.3390/ijms232415743] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activation of the hexosamine pathway, nuclear factor-κB (Nf-κb), p38 mitogen-activated protein kinase (p38 MAPK), c-jun NH2 terminal kinase/stress-activated protein kinase (JNK/SAPK) or toll-like receptors (TLRs), leads to pancreatic β-cell dysfunction. However, there is also the protective mechanism that counteracts oxidative stress and inflammation in diabetes, mitophagy, which is a mitochondrial autophagy. An important part of the strategy to control diabetes is to lead a healthy lifestyle based on, among other things, regular physical activity, giving up smoking, eating a balanced diet containing ingredients with antioxidant potential, including vegetables and fruits, and using hypoglycemic pharmacotherapy. Tobacco smoke is a recognized modifiable risk factor for many diseases including diabetes, and it has been shown that the risk of the disease increases in proportion to the intensity of smoking. Physical activity as another component of therapy can effectively reduce glucose fluctuations, and high intensity interval exercise appears to have the most beneficial effect. A proper diet not only increases cellular sensitivity to insulin, but is also able to reduce inflammation and oxidative stress. Pharmacotherapy for diabetes can also affect oxidative stress and inflammation. Some oral drugs, such as metformin, pioglitazone, vildagliptin, liraglutide, and exenatide, cause a reduction in markers of oxidative stress and/or inflammation, while the new drug Imeglimin reverses pancreatic β-cell dysfunction. In studies of sitagliptin, vildagliptin and exenatide, beneficial effects on oxidative stress and inflammation were achieved by, among other things, reducing glycemic excursions. For insulin therapy, no corresponding correlation was observed. Insulin did not reduce oxidative stress parameters. There was no correlation between glucose variability and oxidative stress in patients on insulin therapy. The data used in this study were obtained by searching PubMed online databases, taking into account recent studies.
Collapse
Affiliation(s)
- Magdalena Wronka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Krzemińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
- Correspondence: ; Tel.: +48-(042)-6393750
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
46
|
Fauzi M, Murakami T, Yabe D, Inagaki N. Current understanding of imeglimin action on pancreatic β-cells: Involvement of mitochondria and endoplasmic reticulum homeostasis. J Diabetes Investig 2022; 14:186-188. [PMID: 36453164 PMCID: PMC9889698 DOI: 10.1111/jdi.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
Recent preclinical studies have provided insight on imeglimin's action on pancreatic β-cells and the mechanisms underlying its clinical benefits. Imeglimin may enhance glucose-induced insulin secretion (GIIS) and inhibit apoptosis of pancreatic ß-cells leading to preserved β-cell mass by maintaining or restoring the functional and structural integrity of the mitochondria and the endoplasmic reticulum homeostasis in pancreatic β-cells.
Collapse
Affiliation(s)
- Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical Immunology, Graduate School of MedicineGifu UniversityGifuJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan,Tazuke Kofukai Medical Research InstituteKitano HospitalOsakaJapan
| |
Collapse
|
47
|
Mingrone G, Castagneto-Gissey L, Bornstein SR. New Horizons: Emerging Antidiabetic Medications. J Clin Endocrinol Metab 2022; 107:e4333-e4340. [PMID: 36106900 DOI: 10.1210/clinem/dgac499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 02/13/2023]
Abstract
Over the past century, since the discovery of insulin, the therapeutic offer for diabetes has grown exponentially, in particular for type 2 diabetes (T2D). However, the drugs in the diabetes pipeline are even more promising because of their impressive antihyperglycemic effects coupled with remarkable weight loss. An ideal medication for T2D should target not only hyperglycemia but also insulin resistance and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and the new class of GLP1 and gastric inhibitory polypeptide dual RAs counteract 2 of these metabolic defects of T2D, hyperglycemia and obesity, with stunning results that are similar to the effects of metabolic surgery. An important role of antidiabetic medications is to reduce the risk and improve the outcome of cardiovascular diseases, including coronary artery disease and heart failure with reduced or preserved ejection fraction, as well as diabetic nephropathy, as shown by SGLT2 inhibitors. This review summarizes the main drugs currently under development for the treatment of type 1 diabetes and T2D, highlighting their strengths and side effects.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome 00169, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00169, Italy
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| | | | - Stefan R Bornstein
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
48
|
Parthasarathy S, Kalra S, Kurdi MS, Bajwa SJS. The battle against perioperative glycaemic control: Hard to win? Indian J Anaesth 2022; 66:753-756. [PMID: 36590185 PMCID: PMC9795503 DOI: 10.4103/ija.ija_923_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- S. Parthasarathy
- Department of Anaesthesiology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Puducherry, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Madhuri S. Kurdi
- Department of Anaesthesiology, Karnataka Institute of Medical Sciences (KIMS), Hubli, Karnataka, India
| | - Sukhminder Jit Singh Bajwa
- Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India
| |
Collapse
|
49
|
Zhang T, Zhang Q, Zheng W, Tao T, Li RL, Wang LY, Peng W, Wu CJ. Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:543-560. [PMID: 35965234 DOI: 10.1016/j.joim.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
50
|
Nomoto H, Takahashi A, Nakamura A, Kurihara H, Takeuchi J, Nagai S, Taneda S, Miya A, Kameda H, Cho KY, Miyoshi H, Atsumi T. Add-on imeglimin versus metformin dose escalation regarding glycemic control in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor plus low-dose metformin: study protocol for a multicenter, prospective, randomized, open-label, parallel-group comparison study (MEGMI study). BMJ Open Diabetes Res Care 2022; 10:10/6/e002988. [PMID: 36379585 PMCID: PMC9667996 DOI: 10.1136/bmjdrc-2022-002988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Imeglimin is a novel anti-hyperglycemic drug that improves both insulin resistance and insulin secretion. The effects of imeglimin on glycemic control were confirmed in phase III clinical trials, but little is known about its effectiveness in daily clinical practice settings, especially compared with metformin. Therefore, we aim to clarify the efficacy of imeglimin in patients with type 2 diabetes (T2D) being treated with a dipeptidyl peptidase-4 (DPP-4) inhibitor plus low-dose metformin. RESEARCH DESIGN AND METHODS This is a multicenter, randomized, prospective, open-label, parallel-group trial. Seventy participants with T2D treated with a DPP-4 inhibitor plus metformin (500-1000 mg/day) for more than 12 weeks and a glycated hemoglobin (HbA1c) level of 52-85 mmol/mol (7.0%-9.9%) will be randomized to receive add-on imeglimin 1000 mg two times per day or metformin dose escalation for 24 weeks. Biochemical analyses and physical assessments will be performed at baseline and at the end of the study, and adverse events will be recorded. The primary endpoint is the change in HbA1c after 24 weeks. The secondary endpoints comprise the changes in blood pressure, pulse rate, body weight, abdominal circumference, and other laboratory parameters; the relationship between improvements of biological parameters including glycemic control and patient background characteristics; and side effects. RESULTS This study will reveal new insights into the incorporation of imeglimin into the diabetes treatment strategy. CONCLUSIONS This will be the first randomized controlled trial to compare the efficacy of adding imeglimin versus metformin dose escalation on glycemic control in patients with T2D. TRIAL REGISTRATION NUMBER jRCT1011220005.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Takahashi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Jun Takeuchi
- Sapporo Diabetes and Thyroid Clinic, Sapporo, Japan
| | - So Nagai
- Division of Diabetes and Endocrinology, Department of Medicine, NTT East Corporation, Sapporo, Japan
| | - Shinji Taneda
- Diabetes Center, Manda Memorial Hospital, Sapporo, Japan
| | - Aika Miya
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyu Yong Cho
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hideaki Miyoshi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Aoki Clinic, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|