1
|
DePoy LM, Vadnie CA, Petersen KA, Scott MR, Zong W, Yin R, Matthaei RC, Anaya FJ, Kampe CI, Tseng GC, McClung CA. Adolescent circadian rhythm disruption increases reward and risk-taking. Front Neurosci 2024; 18:1478508. [PMID: 39737435 PMCID: PMC11683121 DOI: 10.3389/fnins.2024.1478508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Circadian rhythm disturbances have long been associated with the development of psychiatric disorders, including mood and substance use disorders. Adolescence is a particularly vulnerable time for the onset of psychiatric disorders and for circadian rhythm and sleep disruptions. Preclinical studies have found that circadian rhythm disruption (CRD) impacts the brain and behavior, but this research is largely focused on adult disruptions. Here, we hypothesized that adolescent CRD would have a greater effect on psychiatric-related behaviors, relative to adult disruption. Methods We determined the long-term behavioral and neurobiological effects of CRD during early adolescence by exposing mice to 12 h shifts in the light/dark cycle. Adult mice were exposed to the same CRD paradigm. Behavior testing began approximately 4 weeks later for both groups. To identify possible mechanisms, we also measured gene expression in brain regions relevant to circadian rhythms, mood and reward. Results CRD during early adolescence, but not adulthood, persistently increased exploratory drive (risk-taking behavior) and cocaine preference when tested later in life. Interestingly, we found sex differences when intravenous cocaine self-administration was tested. While female mice with a history of adolescent CRD had a greater propensity to self-administer cocaine, as well as increased motivation and cue-induced reinstatement, male adolescent CRD mice had reduced motivation and extinction responding. Importantly, we found that transcripts in the SCN were affected by adolescent CRD and these were largely distinct across sex. Conclusion Overall, adolescent CRD in mice caused persistent increases in risky behavior, cocaine reward and cocaine self-administration, which suggests that CRD during adolescence may predispose individuals toward substance use disorders. Future research is required to elucidate how adolescent CRD affects behaviors relevant to mood-and substance use-related disorders across the 24-h day, as well as to identify intervention strategies to alleviate disruption during adolescence and novel therapeutic approaches once symptoms have begun.
Collapse
Affiliation(s)
- Lauren M. DePoy
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Kaitlyn A. Petersen
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madeline R. Scott
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ross C. Matthaei
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Callie I. Kampe
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| |
Collapse
|
2
|
Li Z, Peng HY, Lee CS, Lin TB, Hsieh MC, Lai CY, Wu HF, Chen LC, Chen MC, Chou D. Methylone produces antidepressant-relevant actions and prosocial effects. Neuropharmacology 2024; 242:109787. [PMID: 37913982 DOI: 10.1016/j.neuropharm.2023.109787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Methylone (3,4-methylenedioxy-N-methylcathinone) is a rapid-acting entactogen that has been shown to have significant benefits in patients with post-traumatic stress disorder and major depressive disorder and is well tolerated in phase 1 clinical trials. A recent preclinical study reported that methylone produced robust antidepressant-like actions in naïve rats. However, its antidepressant effects on various stress-related psychopathologies and other neuropsychological actions remain unclear. In the present study, we examined the antidepressant-relevant effects of methylone in learned helplessness (LH) and social defeat stress C57BL/6J male mouse models and further explored its sociability-relevant neuropsychological actions. Our results indicate that methylone produces antidepressant-relevant effects on the helpless phenotype, LH-evoked depressive-like behaviors, and psychosocial stress-induced social avoidance, and induced depressive-like behaviors. In addition, methylone was found to enhance social preference and increase various social behaviors, including social contact, sniffing, allogrooming, and following. Moreover, methylone appeared to elevate empathy-like phenotypes and was also found to increase helping-like behavior. Overall, the present results suggest that methylone plays an antidepressant-like role in various stress-relevant psychopathologies and could be an ideal antidepressant candidate. In addition, novel findings on the elevated tendencies of social preference and empathy-like and helping-like phenotypes reveal that methylone may have potential application in patients with social deficits.
Collapse
Affiliation(s)
- Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei, Taiwan.
| | - Lih-Chyang Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Mei-Ci Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan.
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
3
|
Liu X, He J, Jiang W, Wen S, Xiao Z. The Roles of Periaqueductal Gray and Dorsal Raphe Nucleus Dopaminergic Systems in the Mechanisms of Thermal Hypersensitivity and Depression in Mice. THE JOURNAL OF PAIN 2023; 24:1213-1228. [PMID: 36796500 DOI: 10.1016/j.jpain.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Depression and thermal hypersensitivity share pathogenic features and symptomology, but their pathophysiologic interactions have not been fully elucidated. Dopaminergic systems in the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus have been implicated in these conditions due to their antinociception and antidepression effects, although their specific roles and underlying mechanisms remain obscure. In this study, chronic unpredictable mild stress (CMS) was used to induce depression-like behaviors and thermal hypersensitivity in C57BL/6J (wild-type) or dopamine transporter promoter mice to establish a mouse model of pain and depression comorbidity. Microinjections of quinpirole, a dopamine D2 receptor agonist, up-regulated D2 receptor expression in dorsal raphe nucleus and reduced depressive behaviors and thermal hypersensitivity with CMS, while dorsal raphe nucleus injections of JNJ-37822681, an antagonist of D2 receptors, had the reciprocal effect on dopamine D2 receptor expression and behaviors. Moreover, using a chemical genetics approach to activate or inhibit dopaminergic neurons in vlPAG ameliorated or exacerbated depression-like behaviors and thermal hypersensitivity, respectively, in dopamine transporter promoter-Cre CMS mice. Collectively these results demonstrated the specific role of vlPAG and dorsal raphe nucleus dopaminergic systems in the regulation of pain and depression comorbidity in mice. PERSPECTIVE: The current study provides insights into the complex mechanisms underlying thermal hypersensitivity induced by depression, and the findings suggest that pharmacological and chemogenetic modulation of dopaminergic systems in the vlPAG and dorsal raphe nucleus may be a promising therapeutic strategy to simultaneously mitigate pain and depression.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Jiang
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder. Mol Neurobiol 2022; 59:6713-6723. [PMID: 35999325 PMCID: PMC9525429 DOI: 10.1007/s12035-022-03001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we summarize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic mechanism in depression.
Collapse
|
6
|
Schoettner K, Alonso M, Button M, Goldfarb C, Herrera J, Quteishat N, Meyer C, Bergdahl A, Amir S. Characterization of Affective Behaviors and Motor Functions in Mice With a Striatal-Specific Deletion of Bmal1 and Per2. Front Physiol 2022; 13:922080. [PMID: 35755440 PMCID: PMC9216244 DOI: 10.3389/fphys.2022.922080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The expression of circadian clock genes, either centrally or in the periphery, has been shown to play an integral role in the control of behavior. Brain region-specific downregulation of clock genes revealed behavioral phenotypes associated with neuropsychiatric disorders and neurodegenerative disease. The specific function of the clock genes as well as the underlying mechanisms that contribute to the observed phenotypes, however, are not yet fully understood. We assessed anxiety- and depressive-like behavior and motor functions in male and female mice with a conditional ablation of Bmal1 or Per2 from medium spiny neurons (MSNs) of the striatum as well as mice lacking one copy of Gpr88. Whereas the conditional knockout of Bmal1 and Per2 had mild effects on affective behaviors, a pronounced effect on motor functions was found in Bmal1 knockout mice. Subsequent investigation revealed an attenuated response of Bmal1 knockout mice to dopamine receptor type 1 agonist treatment, independently of the expression of targets of the dopamine signaling pathway or mitochondrial respiration in MSNs. The study thus suggests a potential interaction of Bmal1 within the direct dopamine signaling pathway, which may provide the link to a shared, MSN-dependent mechanism regulating affective behavior and motor function in mice.
Collapse
Affiliation(s)
- Konrad Schoettner
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Mariana Alonso
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Margo Button
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Cassandra Goldfarb
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Juliana Herrera
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Nour Quteishat
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Christiane Meyer
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Shimon Amir
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
7
|
Pradel K, Drwięga G, Chrobok L, Błasiak T. Racing and Pacing in the Reward System: A Multi-Clock Circadian Control Over Dopaminergic Signalling. Front Physiol 2022; 13:932378. [PMID: 35812323 PMCID: PMC9259884 DOI: 10.3389/fphys.2022.932378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Level of motivation, responsiveness to rewards and punishment, invigoration of exploratory behaviours, and motor performance are subject to daily fluctuations that emerge from circadian rhythms in neuronal activity of the midbrain’s dopaminergic system. While endogenous circadian rhythms are weak in the ventral tegmental area and substantia nigra pars compacta, daily changes in expression of core clock genes, ion channels, neurotransmitter receptors, dopamine-synthesising enzymes, and dopamine transporters, accompanied by changes in electrical activity, are readily observed in these nuclei. These processes cause dopamine levels released in structures innervated by midbrain dopaminergic neurons (e.g., the striatum) to oscillate in a circadian fashion. Additionally, growing evidence show that the master circadian clock located in the suprachiasmatic nucleus of the hypothalamus (SCN) rhythmically influences the activity of the dopaminergic system through various intermediate targets. Thus, circadian changes in the activity of the dopaminergic system and concomitant dopamine release observed on a daily scale are likely to be generated both intrinsically and entrained by the master clock. Previous studies have shown that the information about the value and salience of stimuli perceived by the animal is encoded in the neuronal activity of brain structures innervating midbrain dopaminergic centres. Some of these structures themselves are relatively autonomous oscillators, while others exhibit a weak endogenous circadian rhythm synchronised by the SCN. Here, we place the dopaminergic system as a hub in the extensive network of extra-SCN circadian oscillators and discuss the possible consequences of its daily entrainment for animal physiology and behaviour.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Gniewosz Drwięga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lukasz Chrobok
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, United Kingdom
- *Correspondence: Lukasz Chrobok, ; Tomasz Błasiak,
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
- *Correspondence: Lukasz Chrobok, ; Tomasz Błasiak,
| |
Collapse
|
8
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Becker-Krail DD, Parekh PK, Ketchesin KD, Yamaguchi S, Yoshino J, Hildebrand MA, Dunham B, Ganapathiraiu MK, Logan RW, McClung CA. Circadian transcription factor NPAS2 and the NAD + -dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward. Eur J Neurosci 2022; 55:675-693. [PMID: 35001440 PMCID: PMC9355311 DOI: 10.1111/ejn.15596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.
Collapse
Affiliation(s)
- Darius D. Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Puja K. Parekh
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Brandon Dunham
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi K. Ganapathiraiu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA,Correspondence: Colleen A. McClung,
| |
Collapse
|
10
|
Vadnie CA, Petersen KA, Eberhardt LA, Hildebrand MA, Cerwensky AJ, Zhang H, Burns JN, Becker-Krail DD, DePoy LM, Logan RW, McClung CA. The Suprachiasmatic Nucleus Regulates Anxiety-Like Behavior in Mice. Front Neurosci 2022; 15:765850. [PMID: 35126036 PMCID: PMC8811036 DOI: 10.3389/fnins.2021.765850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Individuals suffering from mood and anxiety disorders often show significant disturbances in sleep and circadian rhythms. Animal studies indicate that circadian rhythm disruption can cause increased depressive- and anxiety-like behavior, but the underlying mechanisms are unclear. One potential mechanism to explain how circadian rhythms are contributing to mood and anxiety disorders is through dysregulation of the suprachiasmatic nucleus (SCN) of the hypothalamus, known as the "central pacemaker." To investigate the role of the SCN in regulating depressive- and anxiety-like behavior in mice, we chronically manipulated the neural activity of the SCN using two optogenetic stimulation paradigms. As expected, chronic stimulation of the SCN late in the active phase (circadian time 21, CT21) resulted in a shortened period and dampened amplitude of homecage activity rhythms. We also repeatedly stimulated the SCN at unpredictable times during the active phase of mice when SCN firing rates are normally low. This resulted in dampened, fragmented, and unstable homecage activity rhythms. In both chronic SCN optogenetic stimulation paradigms, dampened homecage activity rhythms (decreased amplitude) were directly correlated with increased measures of anxiety-like behavior. In contrast, we only observed a correlation between behavioral despair and homecage activity amplitude in mice stimulated at CT21. Surprisingly, the change in period of homecage activity rhythms was not directly associated with anxiety- or depressive-like behavior. Finally, to determine if anxiety-like behavior is affected during a single SCN stimulation session, we acutely stimulated the SCN in the active phase (zeitgeber time 14-16, ZT14-16) during behavioral testing. Unexpectedly this also resulted in increased anxiety-like behavior. Taken together, these results indicate that SCN-mediated dampening of rhythms is directly correlated with increased anxiety-like behavior. This work is an important step in understanding how specific SCN neural activity disruptions affect depressive- and anxiety-related behavior.
Collapse
Affiliation(s)
- Chelsea A. Vadnie
- Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren A. Eberhardt
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Allison J. Cerwensky
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darius D. Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Hühne A, Echtler L, Kling C, Stephan M, Schmidt MV, Rossner MJ, Landgraf D. Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice. Addict Biol 2022; 27:e13105. [PMID: 34672045 DOI: 10.1111/adb.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Alcohol use disorder (AUD) is a widespread addiction disorder with severe consequences for health. AUD patients often suffer from sleep disturbances and irregular daily patterns. Conversely, disruptions of circadian rhythms are considered a risk factor for AUD and alcohol relapses. In this study, we investigated the extent to which circadian genetic and environmental disruptions and their interaction alter alcohol drinking behaviour in mice. As a model of genetic circadian disruption, we used Cryptochrome1/2-deficient (Cry1/2-/- ) mice with strongly suppressed circadian rhythms and found that they exhibit significantly reduced preference for alcohol but increased incentive motivation to obtain it. Similarly, we found that low circadian SCN amplitude correlates with reduced alcohol preference in WT mice. Moreover, we show that the low alcohol preference of Cry1/2-/- mice concurs with high corticosterone and low levels of the orexin precursor prepro-orexin and that WT and Cry1/2-/- mice respond differently to alcohol withdrawal. As a model of environmentally induced disruption of circadian rhythms, we exposed mice to a "shift work" light/dark regimen, which also leads to a reduction in their alcohol preference. Interestingly, this effect is even more pronounced when genetic and environmental circadian perturbations interact in Cry1/2-/- mice under "shift work" conditions. In conclusion, our study demonstrates that in mice, disturbances in circadian rhythms have pronounced effects on alcohol consumption as well as on physiological factors and other behaviours associated with AUD and that the interaction between circadian genetic and environmental disturbances further alters alcohol consumption behaviour.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Lisa Echtler
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Charlotte Kling
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
| | - Marius Stephan
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience Max Planck Institute of Psychiatry Munich Germany
| | - Moritz J. Rossner
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
| |
Collapse
|
12
|
Battiti FO, Zaidi SA, Katritch V, Newman AH, Bonifazi A. Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D 2 or D 3 Receptor Agonists. J Med Chem 2021; 64:16088-16105. [PMID: 34699207 PMCID: PMC11091832 DOI: 10.1021/acs.jmedchem.1c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Linkers are emerging as a key component in regulating the pharmacology of bitopic ligands directed toward G-protein coupled receptors (GPCRs). In this study, the role of regio- and stereochemistry in cyclic aliphatic linkers tethering well-characterized primary and secondary pharmacophores targeting dopamine D2 and D3 receptor subtypes (D2R and D3R, respectively) is described. We introduce several potent and selective D2R (rel-trans-16b; D2R Ki = 4.58 nM) and D3R (rel-cis-14a; D3R Ki = 5.72 nM) agonists while modulating subtype selectivity in a stereospecific fashion, transferring D2R selectivity toward D3R via inversion of the stereochemistry around these cyclic aliphatic linkers [e.g., (-)-(1S,2R)-43 and (+)-(1R,2S)-42]. Pharmacological observations were supported with extensive molecular docking studies. Thus, not only is it an innovative approach to modulate the pharmacology of dopaminergic ligands described, but a new class of optically active cyclic linkers are also introduced, which can be used to expand the bitopic drug design approach toward other GPCRs.
Collapse
Affiliation(s)
- Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Saheem A. Zaidi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Vsevolod Katritch
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
13
|
Bumgarner JR, Walker WH, Nelson RJ. Circadian rhythms and pain. Neurosci Biobehav Rev 2021; 129:296-306. [PMID: 34375675 PMCID: PMC8429267 DOI: 10.1016/j.neubiorev.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The goal of this review is to provide a perspective on the nature and importance of the relationship between the circadian and pain systems. We provide: 1) An overview of the circadian and pain systems, 2) a review of direct and correlative evidence that demonstrates diurnal and circadian rhythms within the pain system; 3) a perspective highlighting the need to consider the role of a proposed feedback loop of circadian rhythm disruption and maladaptive pain; 4) a perspective on the nature of the relationship between circadian rhythms and pain. In summary, we propose that there is no single locus responsible for producing the circadian rhythms of the pain system. Instead, circadian rhythms of pain are a complex result of the distributed rhythms present throughout the pain system, especially those of the descending pain modulatory system, and the rhythms of the systems with which it interacts, including the opioid, endocrine, and immune systems.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
14
|
Ni RJ, Shu YM, Luo PH, Zhou JN. Whole-brain mapping of afferent projections to the suprachiasmatic nucleus of the tree shrew. Tissue Cell 2021; 73:101620. [PMID: 34411776 DOI: 10.1016/j.tice.2021.101620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
The suprachiasmatic nucleus (SCN) is essential for the neural control of mammalian circadian timing system. The circadian activity of the SCN is modulated by its afferent projections. In the present study, we examine neuroanatomical characteristics and afferent projections of the SCN in the tree shrew (Tupaia belangeri chinensis) using immunocytochemistry and retrograde tracer Fluoro-Gold (FG). Distribution of the vasoactive intestinal peptide was present in the SCN from rostral to caudal, especially concentrated in its ventral part. FG-labeled neurons were observed in the lateral septal nucleus, septofimbrial nucleus, paraventricular thalamic nucleus, posterior hypothalamic nucleus, posterior complex of the thalamus, ventral subiculum, rostral linear nucleus of the raphe, periaqueductal gray, mesencephalic reticular formation, dorsal raphe nucleus, pedunculopontine tegmental nucleus, medial parabrachial nucleus, locus coeruleus, parvicellular reticular nucleus, intermediate reticular nucleus, and ventrolateral reticular nucleus. In summary, the morphology of the SCN in tree shrews is described from rostral to caudal. In addition, our data demonstrate for the first time that the SCN in tree shrews receives inputs from numerous brain regions in the telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon. This comprehensive knowledge of the afferent projections of the SCN in tree shrews provides further insights into the neural organization and physiological processes of circadian rhythms.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yu-Mian Shu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610041, China
| | - Peng-Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
15
|
Hasler BP, Soehner AM, Wallace ML, Logan RW, Ngari W, Forbes EE, Buysse DJ, Clark DB. Experimentally imposed circadian misalignment alters the neural response to monetary rewards and response inhibition in healthy adolescents. Psychol Med 2021; 52:1-9. [PMID: 33729109 PMCID: PMC8935965 DOI: 10.1017/s0033291721000787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sleep and circadian timing shifts later during adolescence, conflicting with early school start times, and resulting in circadian misalignment. Although circadian misalignment has been linked to depression, substance use, and altered reward function, a paucity of experimental studies precludes the determination of causality. Here we tested, for the first time, whether experimentally-imposed circadian misalignment alters the neural response to monetary reward and/or response inhibition. METHODS Healthy adolescents (n = 25, ages 13-17) completed two in-lab sleep schedules in counterbalanced order: An 'aligned' condition based on typical summer sleep-wake times (0000-0930) and a 'misaligned' condition mimicking earlier school year sleep-wake times (2000-0530). Participants completed morning and afternoon functional magnetic resonance imaging scans during each condition, including monetary reward (morning only) and response inhibition (morning and afternoon) tasks. Total sleep time and circadian phase were assessed via actigraphy and salivary melatonin, respectively. RESULTS Bilateral ventral striatal (VS) activation during reward outcome was lower during the Misaligned condition after accounting for the prior night's total sleep time. Bilateral VS activation during reward anticipation was lower during the Misaligned condition, including after accounting for covariates, but did not survive correction for multiple comparisons. Right inferior frontal gyrus activation during response inhibition was lower during the Misaligned condition, before and after accounting for total sleep time and vigilant attention, but only during the morning scan. CONCLUSIONS Our findings provide novel experimental evidence that circadian misalignment analogous to that resulting from school schedules may have measurable impacts on healthy adolescents' reward processing and inhibition of prepotent responses.
Collapse
Affiliation(s)
- Brant P. Hasler
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Adriane M. Soehner
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Meredith L. Wallace
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics,
Boston University School of Medicine, Boston, MA
| | - Wambui Ngari
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Daniel J. Buysse
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| | - Duncan B. Clark
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA
| |
Collapse
|
16
|
Effects of inflammatory pain on CB1 receptor in the midbrain periaqueductal gray. Pain Rep 2021; 6:e897. [PMID: 33693301 PMCID: PMC7939232 DOI: 10.1097/pr9.0000000000000897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Western blot and GTPγS analyses reveal inflammatory pain–induced adaptations in the midbrain periaqueductal gray, which is critically involved in descending pain modulation. Pain upregulates the expression of the CB1 receptor and increases G-protein coupling in the periaqueductal gray. Introduction: The periaqueductal gray (PAG) mediates the antinociceptive properties of analgesics, including opioids and cannabinoids. Administration of either opioids or cannabinoids into the PAG induces antinociception. However, most studies characterizing the antinociceptive properties of cannabinoids in the PAG have been conducted in naive animals. Few studies have reported on the role of CB1 receptors in the PAG during conditions which would prompt the administration of analgesics, namely, during pain states. Objectives: To examine inflammatory pain-induced changes in CB1 receptor expression and function in the midbrain periaqueductal gray. Methods: In this study, we used the Complete Freund Adjuvant model to characterize CB1 receptor expression and G-protein coupling during persistent inflammatory pain. Results: Inflammatory pain induced an upregulation in the expression of synaptic CB1 receptors in the PAG. Despite this pain-induced change in CB1 expression, there was no corresponding upregulation of CB1 mRNA after the induction of inflammatory pain, suggesting a pain-induced recruitment of CB1 receptors to the synaptic sites within PAG neurons or increased coupling efficiency between the receptor and effector systems. Inflammatory pain also enhanced ventrolateral PAG CB1 receptor activity, as there was an increase in CP55,940-stimulated G-protein activation compared with pain-naïve control animals. Conclusion: These findings complement a growing body of evidence which demonstrate pain-induced changes in brain regions that are responsible for both the analgesic and rewarding properties of analgesic pharmacotherapies. Because much of our understanding of the pharmacology of cannabinoids is based on studies which use largely pain-naïve male animals, this work fills in important gaps in the knowledge base by incorporating pain-induced adaptations and cannabinoid pharmacology in females.
Collapse
|
17
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2021; 204:173156. [PMID: 33675839 DOI: 10.1016/j.pbb.2021.173156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established. Circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using free-running wheel test and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that CUS results in both changes in diurnal rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei 230032, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
18
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
19
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|
20
|
Hühne A, Volkmann P, Stephan M, Rossner M, Landgraf D. An in-depth neurobehavioral characterization shows anxiety-like traits, impaired habituation behavior, and restlessness in male Cryptochrome-deficient mice. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12661. [PMID: 32348614 DOI: 10.1111/gbb.12661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Many psychiatric disorders, for example, anxiety, are accompanied by disturbances of circadian rhythms, including disturbed sleep/wake cycles, changes in locomotor activity, and abnormal endocrine function. Conversely, alternations of circadian rhythms are a risk factor for the development of psychiatric disorders. This assumption is supported by animals with clock gene mutations which often display behaviors that resemble human psychiatric disorders. In this study, we performed an in-depth behavioral analysis with male mice lacking the central clock genes Cryptochrome 1 and 2 (Cry1/2-/- ), which are thus unable to express endogenous circadian rhythms. With wild-type and Cry1/2-/- mice, we performed an extensive behavioral analysis to study their cognitive abilities, social behavior, and their expression of depression-like and anxiety-like behavior. While Cry1/2-/- mice showed only mild abnormalities at cognitive and social behavioral levels, they were consistently more anxious than wildtype mice. Anxiety-like behavior was particularly evident in reduced mobility in new environments, altered ability to habituate, compensatory behavior, and consistent restless behavior across many behavioral tests. In line with their anxiety-like behavioral phenotype, Cry1/2-/- mice have higher c-Fos activity in the amygdala after exposure to an anxiogenic stressor than wild-type mice. In our study, we identified Cry1/2-/- mice as animals that qualify as a translational mouse model for anxiety disorder in humans because of its consistent behavior of restlessness, increased immobility, and dysfunctional habituation in new environments.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
- Munich Medical Research School, Ludwig Maximilian University, Munich, Germany
| | - Paul Volkmann
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Marius Stephan
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Moritz Rossner
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
21
|
Kordestani-Moghadam P, Nasehi M, Vaseghi S, Khodagholi F, Zarrindast MR. The role of sleep disturbances in depressive-like behavior with emphasis on α-ketoglutarate dehydrogenase activity in rats. Physiol Behav 2020; 224:113023. [PMID: 32574661 DOI: 10.1016/j.physbeh.2020.113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Sleep disorders may induce anxiety- and depressive-like behaviors. Furthermore, sleep disorders can alter the function of α-KGDH (α-ketoglutarate dehydrogenase), which is involved in the citric acid cycle. In this study, we evaluated the effect of two models of sleep deprivation (SD) including total SD (TSD) and partial SD (PSD), and two models of napping combined with each models of SD on rats' performance in Forced Swim Test (FST) and α-KGDH activity in both hemispheres of the amygdala. 64 male Wistar rats were used in this study. A modified water box was also used to induce SD. The results showed that, immobility was increased in 48-hour PSD group, indicating a possible depressive-like behavior. Swimming time was also increased following 48-hour TSD. However, climbing time was decreased in 48-hour PSD/TSD groups. Additionally, α-KGDH activity was increased in the left amygdala in 48-hour TSD and PSD groups. In conclusion, PSD may increase depressive-like behavior. TSD and PSD can decrease swimming time but increase climbing time, and these effects may be related to serotonergic and noradrenergic transmissions, respectively. Increase in α-KGDH activity in the left amygdala may be related to the brain's need for more energy during prolonged wakefulness. α-KGDH activity in the right amygdala was unaffected probably due to a decrease in alertness following SD.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Koch CE, Begemann K, Kiehn JT, Griewahn L, Mauer J, M E Hess, Moser A, Schmid SM, Brüning JC, Oster H. Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nat Commun 2020; 11:3071. [PMID: 32555162 PMCID: PMC7299974 DOI: 10.1038/s41467-020-16882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice. While homeostatic intake peaks in the active phase, conditioned place preference and choice experiments show an increased sensitivity to overeating on palatable food during the rest phase. This hedonic appetite rhythm is driven by endogenous circadian clocks in dopaminergic neurons of the ventral tegmental area (VTA). Mice with disrupted clock function in the VTA lose their hedonic overconsumption rhythms without affecting homeostatic intake. These findings assign a functional role of VTA clocks in modulating palatable feeding behaviors and identify a potential therapeutic route to counteract hyperphagy in an obesogenic environment. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, which further augments metabolic dysfunction. Here, the authors find that in mice, circadian clocks in dopaminergic neurons in the ventral tegmental area drive hedonic appetite rhythms.
Collapse
Affiliation(s)
- C E Koch
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - K Begemann
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J T Kiehn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - L Griewahn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - M E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - A Moser
- Department of Neurology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - S M Schmid
- Institute of Endocrinology and Diabetes, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.,Deutsches Zentrum für Diabetesforschung e. V. (DZD), Neuherberg, Deutschland
| | - J C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - H Oster
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
23
|
Porcu A, Vaughan M, Nilsson A, Arimoto N, Lamia K, Welsh DK. Vulnerability to helpless behavior is regulated by the circadian clock component CRYPTOCHROME in the mouse nucleus accumbens. Proc Natl Acad Sci U S A 2020; 117:13771-13782. [PMID: 32487727 PMCID: PMC7306774 DOI: 10.1073/pnas.2000258117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleus accumbens (NAc), a central component of the midbrain dopamine reward circuit, exhibits disturbed circadian rhythms in the postmortem brains of depressed patients. We hypothesized that normal mood regulation requires proper circadian timing in the NAc, and that mood disorders are associated with dysfunctions of the NAc cellular circadian clock. In mice exhibiting stress-induced depression-like behavior (helplessness), we found altered circadian clock function and high nighttime expression of the core circadian clock component CRYPTOCHROME (CRY) in the NAc. In the NAc of helpless mice, we found that higher expression of CRY is associated with decreased activation of dopamine 1 receptor-expressing medium spiny neurons (D1R-MSNs). Furthermore, D1R-MSN-specific CRY-knockdown in the NAc reduced susceptibility to stress-induced helplessness and increased NAc neuronal activation at night. Finally, we show that CRY inhibits D1R-induced G protein activation, likely by interacting with the Gs protein. Altered circadian rhythms and CRY expression were also observed in human fibroblasts from major depressive disorder patients. Our data reveal a causal role for CRY in regulating the midbrain dopamine reward system, and provide a mechanistic link between the NAc circadian clock and vulnerability to depression.
Collapse
Affiliation(s)
- Alessandra Porcu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161;
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Megan Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - Anna Nilsson
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Natsuko Arimoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Katja Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - David K Welsh
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
24
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2020; 194:172939. [PMID: 32437704 DOI: 10.1016/j.pbb.2020.172939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established, circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using various methods, including free-running wheel test, enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and the amplitude of melatonin secretion rhythm. We also found that CUS induced rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that stress results in both changes in circadian rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei230032, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China; Chinese Center for Disease Control and Prevention, Beijing102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China.
| |
Collapse
|
25
|
Begemann K, Neumann A, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020; 229:e13446. [PMID: 31965726 DOI: 10.1111/apha.13446] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.
Collapse
Affiliation(s)
| | | | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|
26
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Horsey EA, Maletta T, Turner H, Cole C, Lehmann H, Fournier NM. Chronic Jet Lag Simulation Decreases Hippocampal Neurogenesis and Enhances Depressive Behaviors and Cognitive Deficits in Adult Male Rats. Front Behav Neurosci 2020; 13:272. [PMID: 31969809 PMCID: PMC6960209 DOI: 10.3389/fnbeh.2019.00272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
There is a long history that protracted periods of circadian disruption, such as through frequent transmeridian travel or rotating shift work, can have a significant impact on brain function and health. In addition, several studies have shown that chronic periods of circadian misalignment can be a significant risk factor for the development of depression and anxiety in some individuals with a history of psychiatric illness. In animal models, circadian disruption can be introduced through either phase advances or delays in the light-dark cycle. However, the impact of chronic phase shifts on affective behavior in rats has not been well-studied. In the present study, male rats were subjected to either weekly 6 h phase advances (e.g., traveling eastbound from New York to Paris) or 6 h phase delays (e.g., traveling westbound from New York to Hawaii) in their light/dark cycle for 8 weeks. The effect of chronic phase shifts was then examined on a range of emotional and cognitive behaviors. We found that rats exposed to frequent phase advances, which mirror conditions of chronic jet lag in humans, exhibited impairments in object recognition memory and showed signature symptoms of depression, including anhedonia, increased anxiety behavior, and higher levels of immobility in the forced swim test. In addition, rats housed on the phase advance schedule also had lower levels of hippocampal neurogenesis and immature neurons showed reduced dendritic complexity compared to controls. These behavioral and neurogenic changes were direction-specific and were not observed after frequent phase delays. Taken together, these findings support the view that circadian disruption through chronic jet lag exposure can suppress hippocampal neurogenesis, which can have a significant impact on memory and mood-related behaviors.
Collapse
Affiliation(s)
- Emily A Horsey
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Teresa Maletta
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Holly Turner
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Chantel Cole
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
28
|
Northeast RC, Chrobok L, Hughes ATL, Petit C, Piggins HD. Keeping time in the lamina terminalis: Novel oscillator properties of forebrain sensory circumventricular organs. FASEB J 2019; 34:974-987. [PMID: 31914667 PMCID: PMC6972491 DOI: 10.1096/fj.201901111r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Lukasz Chrobok
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Alun T L Hughes
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Cheryl Petit
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Porcu A, Gonzalez R, McCarthy MJ. Pharmacological Manipulation of the Circadian Clock: A Possible Approach to the Management of Bipolar Disorder. CNS Drugs 2019; 33:981-999. [PMID: 31625128 DOI: 10.1007/s40263-019-00673-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bipolar disorder (BD) is a mood disorder with genetic and neurobiological underpinnings, characterized primarily by recurrent episodes of mania and depression, with notable disruptions in rhythmic behaviors such as sleep, energy, appetite and attention. The chronobiological links to BD are further supported by the effectiveness of various treatment modalities such as bright light, circadian phase advance, and mood-stabilizing drugs such as lithium that have effects on the circadian clock. Over the past 30 years, the neurobiology of the circadian clock has been exquisitely described and there now exists a detailed knowledge of key signaling pathways, neurotransmitters and signaling mechanisms that regulate various dimensions of circadian clock function. With this new wealth of information, it is becoming increasingly plausible that new drugs for BD could be made by targeting molecular elements of the circadian clock. However, circadian rhythms are multidimensional and complex, involving unique, time-dependent factors that are not typically considered in drug development. We review the organization of the circadian clock in the central nervous system and briefly summarize data implicating the circadian clock in BD. We then consider some of the unique aspects of the circadian clock as a drug target in BD, discuss key methodological considerations and evaluate some of the candidate clock pathways and systems that could serve as potential targets for novel mood stabilizers. We expect this work will serve as a roadmap to facilitate the development of compounds acting on the circadian clock for the treatment of BD.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert Gonzalez
- Department of Psychiatry, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0850, USA
| | - Michael J McCarthy
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA. .,Psychiatry Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA, 92161, USA.
| |
Collapse
|
30
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
31
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
32
|
Residual avoidance: A new, consistent and repeatable readout of chronic stress-induced conflict anxiety reversible by antidepressant treatment. Neuropharmacology 2019; 153:98-110. [DOI: 10.1016/j.neuropharm.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
33
|
George DT, Ameli R, Koob GF. Periaqueductal Gray Sheds Light on Dark Areas of Psychopathology. Trends Neurosci 2019; 42:349-360. [PMID: 30955857 DOI: 10.1016/j.tins.2019.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022]
Abstract
Neurons in the periaqueductal gray (PAG) integrate negative emotions with the autonomic, neuroendocrine, and immune systems to facilitate responses to threat. Modern functional track tracing in animals and optogenetic and chemogenetic techniques show that the PAG is a rich substrate for the integration of active and passive responses to threat. In humans, the same regions of the PAG that give rise to adaptive anger/fight, fear/panic, depression/shutdown, pain, and predatory behaviors in response to challenging situations or overwhelming threats can become activated pathologically, resulting in symptoms that resemble those of psychiatric disorders. This review coalesces human and animal studies to link PAG neuropathways to specific elements of psychiatric diagnoses. The insights gained from this overview may eventually lead to new therapeutic interventions.
Collapse
Affiliation(s)
- David T George
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Rezvan Ameli
- National Institute of Mental Health and NIH Clinical Center, Pain and Palliative Care Service, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda, MD, USA.
| |
Collapse
|
34
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
35
|
Lee HW, Yang SH, Kim JY, Kim H. The Role of the Medial Habenula Cholinergic System in Addiction and Emotion-Associated Behaviors. Front Psychiatry 2019; 10:100. [PMID: 30873055 PMCID: PMC6404551 DOI: 10.3389/fpsyt.2019.00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The habenula is a complex nucleus composed of lateral and medial subnuclei, which connect between the limbic forebrain and midbrain. Over the past few years, the lateral habenula has received considerable attention because of its potential roles in cognition and in the pathogenesis of various psychiatric disorders. Unlike extensively studied lateral habenula, anatomically and histologically distinct medial habenula remains largely understudied. The medial habenula can be further subdivided into a dorsal region containing excitatory neurons that express the tachykinin neuropeptide substance P and a ventral region containing dense cholinergic neurons. Although the medial habenula is the source of one of the major cholinergic pathways in the brain, relatively few studies have been conducted to understand its roles. Recently, however, the medial habenula cholinergic system has attracted more attention because of its potential to provide therapeutic targets for the treatment of nicotine withdrawal symptoms, drug addiction, and various mood disorders. Here, we discuss the role of the medial habenula cholinergic system in brain function.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
36
|
Abstract
Disruption of circadian clocks is strongly associated with mood disorders. Chronotherapies targeting circadian rhythms have been shown to be very effective treatments of mood disorders, but still are not widely used in clinical practice. The mechanisms by which circadian disruption leads to mood disorders are poorly characterized and, therefore, may not convince clinicians to apply chronotherapies. Hence, in this review, we describe specific potential mechanisms, in order to make this connection more credible to clinicians. We believe that four major features of disrupted clocks may contribute to the development of mood disorders: (1) loss of synchronization to environmental 24-h rhythms, (2) internal desynchronization among body clocks, (3) low rhythm amplitude, and (4) changes in sleep architecture. Discussing these attributes and giving plausible examples, we will discuss prospects for relatively simple chronotherapies addressing these features that are easy to implement in clinical practice. Key messages In this review, we describe specific potential mechanisms by which disrupted clocks may contribute to the development of mood disorders: (1) loss of synchronization to environmental 24-h rhythms, (2) internal desynchronization among body clocks, (3) low rhythm amplitude, and (4) changes in sleep architecture. We provide prospects for relatively simple chronotherapies addressing these features that are easy to implement in clinical practice.
Collapse
Affiliation(s)
- Anisja Hühne
- a Circadian Biology Group, Department of Psychiatry , Ludwig Maximilian University , Munich , Germany
| | - David K Welsh
- b Veterans Affairs San Diego Healthcare System , San Diego , CA , USA.,c Department of Psychiatry & Center for Circadian Biology , University of California San Diego , La Jolla , CA , USA
| | - Dominic Landgraf
- a Circadian Biology Group, Department of Psychiatry , Ludwig Maximilian University , Munich , Germany
| |
Collapse
|
37
|
Richetto J, Polesel M, Weber-Stadlbauer U. Effects of light and dark phase testing on the investigation of behavioural paradigms in mice: Relevance for behavioural neuroscience. Pharmacol Biochem Behav 2018; 178:19-29. [PMID: 29782942 DOI: 10.1016/j.pbb.2018.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023]
Abstract
Different timing and light phases are critical factors in behavioural neuroscience, which can greatly affect the experimental outcomes of the performed tests. Despite the fact that time of testing is one of the most common factors that varies across behavioural laboratories, knowledge about the consequences of testing time on behavioural readouts is limited. Thus, in this study we systematically assessed the effect of this factor on the readout of a variety of elementary and recurrent behavioural paradigms in C57Bl/6 mice. Furthermore, we investigated potential neuronal correlates of this phenomenon by analysing how testing time influences the expression pattern of genes relevant for neuronal activation functions and the control of brain circadian rhythms. We show that animals tested in the light phase display reduced social approach behaviour and sensorimotor gating and increased locomotor activity, whereas anxiety-related behaviour and working memory are not affected. In addition, animals tested in the light phase also exhibit increased locomotor response to systemic amphetamine treatment, which is paralleled by alterations in the expression patterns of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the Nucleus Accumbens (NAc) and/or Midbrain (Mid). Lastly, we observed that neuronal activation, indexed by the gene expression levels of cFos, was increased in the NAc and Mid of animals tested during the light phase. Our data thus suggest that daily alterations in gene expression in mesolimbic brain structures might be involved in the different behavioural responses of mice tested in the light- versus the dark-phase. At the same time, our study adds further weight to the notion that the specific timing of testing can indeed strongly affect the readout of a given test. As comparison and reproducibility of findings is pivotal in science, experimental protocols should be clarified in detail to allow appropriate data comparison across different laboratories.
Collapse
Affiliation(s)
- Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| | | | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
38
|
Cleary-Gaffney M, Coogan AN. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol Behav 2018. [PMID: 29540316 DOI: 10.1016/j.physbeh.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters.
Collapse
Affiliation(s)
- Michael Cleary-Gaffney
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland.
| |
Collapse
|
39
|
Ho YC, Lin TB, Hsieh MC, Lai CY, Chou D, Chau YP, Chen GD, Peng HY. Periaqueductal Gray Glutamatergic Transmission Governs Chronic Stress-Induced Depression. Neuropsychopharmacology 2018; 43:302-312. [PMID: 28853438 PMCID: PMC5729570 DOI: 10.1038/npp.2017.199] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying chronic stress-induced dysfunction of glutamatergic transmission that contribute to helplessness-associated depressive disorder are unknown. We investigated the relationship of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and stress, and the neuroplastic changes of stress-induced depression-like behavior in the ventrolateral periaqueductal gray (vlPAG). We conducted whole-cell patch-clamp electrophysiological recordings in the vlPAG neurons. Depression-like behavior was assayed using tail suspension test and sucrose preference test. Surface and cytosolic glutamate receptor 1 (GluR1) AMPA receptor expression was analyzed using western blotting. Phosphorylated GluR1 expression was quantified using western blotting and immunohistochemical analysis. Unpredictable inescapable foot shock stress caused reduction in glutamatergic transmission originating from both presynaptic and postsynaptic loci in the vlPAG that was associated with behavioral despair and anhedonia in chronic stress-induced depression. Pharmacological inhibition of GluR1 function in the vlPAG caused depression-like behavior. Diminished glutamatergic transmission was due to reduced glutamate release presynaptically and enhanced GluR1-endocytosis from the cell surface postsynaptically. Chronic stress-induced neuroplastic changes and maladaptive behavior were reversed and mimicked by administration of glucocorticoid receptor (GR) antagonist and agonist, respectively. However, chronic stress did not affect γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission in the vlPAG. These results demonstrate that depression-like behavior is associated with remarkable reduction in glutamatergic, but not GABAergic, transmission in the vlPAG. These neuroplastic changes and maladaptive behavior are attributed to GR-dependent mechanisms. As reduced GluR1-associated responses in the vlPAG contribute to chronic stress-induced neuroplastic changes, this cellular mechanism may be a critical component in the pathogenesis of stress-associated neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei, 25245, Taiwan, Tel: +886 2 2636 0303 ext 1239, Fax: +886 2 2636 1295, E-mail:
| |
Collapse
|
40
|
Helfrich-Förster C. Interactions between psychosocial stress and the circadian endogenous clock. Psych J 2017; 6:277-289. [DOI: 10.1002/pchj.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics; Theodor-Boveri Institute, Biocenter, University of Würzburg; Würzburg Germany
| |
Collapse
|
41
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
42
|
Park JS, Cederroth CR, Basinou V, Sweetapple L, Buijink R, Lundkvist GB, Michel S, Canlon B. Differential Phase Arrangement of Cellular Clocks along the Tonotopic Axis of the Mouse Cochlea Ex Vivo. Curr Biol 2017; 27:2623-2629.e2. [PMID: 28823676 PMCID: PMC6899219 DOI: 10.1016/j.cub.2017.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022]
Abstract
Topological distributions of individual cellular clocks have not been demonstrated in peripheral organs. The cochlea displays circadian patterns of core clock gene expression [1, 2]. PER2 protein is expressed in the hair cells and spiral ganglion neurons of the cochlea in the spiral ganglion neurons [1]. To investigate the topological organization of cellular oscillators in the cochlea, we recorded circadian rhythms from mouse cochlear explants using highly sensitive real-time tracking of PER2::LUC bioluminescence. Here, we show cell-autonomous and self-sustained oscillations originating from hair cells and spiral ganglion neurons. Multi-phased cellular clocks were arranged along the length of the cochlea with oscillations initiating at the apex (low-frequency region) and traveling toward the base (high-frequency region). Phase differences of 3 hr were found between cellular oscillators in the apical and middle regions and from isolated individual cochlear regions, indicating that cellular networks organize the rhythms along the tonotopic axis. This is the first demonstration of a spatiotemporal arrangement of circadian clocks at the cellular level in a peripheral organ. Cochlear rhythms were disrupted in the presence of either voltage-gated potassium channel blocker (TEA) or extracellular calcium chelator (BAPTA), demonstrating that multiple types of ion channels contribute to the maintenance of coherent rhythms. In contrast, preventing action potentials with tetrodotoxin (TTX) or interfering with cell-to-cell communication the broad-spectrum gap junction blocker (CBX [carbenoxolone]) had no influence on cochlear rhythms. These findings highlight a dynamic regulation and longitudinal distribution of cellular clocks in the cochlea.
Collapse
Affiliation(s)
- Jung-Sub Park
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Otolaryngology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | | | - Vasiliki Basinou
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lara Sweetapple
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Renate Buijink
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Gabriella B Lundkvist
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Stephan Michel
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
43
|
Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017; 162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience, CNRS-UPR 3212 Strasbourg France, 5 rue Blaise Pascal, 67084 cedex Strasbourg, France.
| |
Collapse
|
44
|
Dopamine D 2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances. NPJ SCHIZOPHRENIA 2017; 3:17. [PMID: 28560263 PMCID: PMC5441531 DOI: 10.1038/s41537-017-0018-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Antipsychotic drugs are widely prescribed medications, used for numerous psychiatric illnesses. However, antipsychotic drugs cause serious metabolic side effects that can lead to substantial weight gain and increased risk for type 2 diabetes. While individual drugs differ, all antipsychotic drugs may cause these important side effects to varying degrees. Given that the single unifying property shared by these medications is blockade of dopamine D2 and D3 receptors, these receptors likely play a role in antipsychotic drug-induced metabolic side effects. Dopamine D2 and dopamine D3 receptors are expressed in brain regions critical for metabolic regulation and appetite. Surprisingly, these receptors are also expressed peripherally in insulin-secreting pancreatic beta cells. By inhibiting glucose-stimulated insulin secretion, dopamine D2 and dopamine D3 receptors are important mediators of pancreatic insulin release. Crucially, antipsychotic drugs disrupt this peripheral metabolic regulatory mechanism. At the same time, disruptions to circadian timing have been increasingly recognized as a risk factor for metabolic disturbance. Reciprocal dopamine and circadian signaling is important for the timing of appetitive/feeding behaviors and insulin release, thereby coordinating cell metabolism with caloric intake. In particular, circadian regulation of dopamine D2 receptor/dopamine D3 receptor signaling may play a critical role in metabolism. Therefore, we propose that antipsychotic drugs’ blockade of dopamine D2 receptor and dopamine D3 receptors in pancreatic beta cells, hypothalamus, and striatum disrupts the cellular timing mechanisms that regulate metabolism. Ultimately, understanding the relationships between the dopamine system and circadian clocks may yield critical new biological insights into mechanisms of antipsychotic drug action, which can then be applied into clinical practice.
Collapse
|
45
|
Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 2017; 7:47-56. [PMID: 28377991 PMCID: PMC5377486 DOI: 10.1016/j.ynstr.2017.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
The recently proposed Research Domain Criteria (RDoC) system defines psychopathologies as phenomena of multilevel neurobiological existence and assigns them to 5 behavioural domains characterizing a brain in action. We performed an analysis on this contemporary concept of psychopathologies in respect to a brain phylogeny and biological substrates of psychiatric diseases. We found that the RDoC system uses biological determinism to explain the pathogenesis of distinct psychiatric symptoms and emphasises exploration of endophenotypes but not of complex diseases. Therefore, as a possible framework for experimental studies it allows one to evade a major challenge of translational studies of strict disease-to-model correspondence. The system conforms with the concept of a normality and pathology continuum, therefore, supports basic studies. The units of analysis of the RDoC system appear as a novel matrix for model validation. The general regulation and arousal, positive valence, negative valence, and social interactions behavioural domains of the RDoC system show basic construct, network, and phenomenological homologies between human and experimental animals. The nature and complexity of the cognitive behavioural domain of the RDoC system deserve further clarification. These homologies in the 4 domains justifies the validity, reliably and translatability of animal models appearing as endophenotypes of the negative and positive affect, social interaction and general regulation and arousal systems’ dysfunction. The RDoC system encourages endophenotype-oriented experimental studies in human and animals. The system conforms with the normality-pathology continuum concept. The RDoC system appears to be a suitable framework for basic research. Four RDoC domains show construct and phenomenological homology in human and animals. Endophenotype-based models of affective psychopathologies appear most reliable.
Collapse
Affiliation(s)
- Elmira Anderzhanova
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2, 80804 Munich, Germany; FSBI "Zakusov Institute of Pharmacology", Baltiyskaya street, 8, 125315, Moscow, Russia
| | | | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
46
|
Circadian Forced Desynchrony of the Master Clock Leads to Phenotypic Manifestation of Depression in Rats. eNeuro 2017; 3:eN-NWR-0237-16. [PMID: 28090585 PMCID: PMC5216685 DOI: 10.1523/eneuro.0237-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
In mammals, a master circadian clock within the suprachiasmatic nucleus (SCN) of the hypothalamus maintains the phase coherence among a wide array of behavioral and physiological circadian rhythms. Affective disorders are typically associated with disruption of this fine-tuned “internal synchronization,” but whether this internal misalignment is part of the physiopathology of mood disorders is not clear. To date, depressive-like behavior in animal models has been induced by methods that fail to specifically target the SCN regulation of internal synchronization as the mode to generate depression. In the rat, exposure to a 22-h light-dark cycle (LD22) leads to the uncoupling of two distinct populations of neuronal oscillators within the SCN. This genetically, neurally, and pharmacologically intact animal model represents a unique opportunity to assess the effect of a systematic challenge to the central circadian pacemaker on phenotypic manifestations of mood disorders. We show that LD22 circadian forced desynchrony in rats induces depressive-like phenotypes including anhedonia, sexual dysfunction, and increased immobility in the forced swim test (FST), as well as changes in the levels and turnover rates of monoamines within the prefrontal cortex. Desynchronized rats show increased FST immobility during the dark (active) phase but decreased immobility during the light (rest) phase, suggesting a decrease in the amplitude of the normal daily oscillation in this behavioral manifestation of depression. Our results support the notion that the prolonged internal misalignment of circadian rhythms induced by environmental challenge to the central circadian pacemaker may constitute part of the etiology of depression.
Collapse
|
47
|
Landgraf D, Long JE, Proulx CD, Barandas R, Malinow R, Welsh DK. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice. Biol Psychiatry 2016; 80:827-835. [PMID: 27113500 PMCID: PMC5102810 DOI: 10.1016/j.biopsych.2016.03.1050] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. METHODS We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). RESULTS In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. CONCLUSIONS Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression.
Collapse
Affiliation(s)
- Dominic Landgraf
- Veterans Affairs San Diego Healthcare System, San Diego; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, California.
| | - Jaimie E Long
- Veterans Affairs San Diego Healthcare System, San Diego; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, California
| | - Christophe D Proulx
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Rita Barandas
- Veterans Affairs San Diego Healthcare System, San Diego; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, California; Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, University of Lisbon, Lisbon, Portugal; Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Roberto Malinow
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - David K Welsh
- Veterans Affairs San Diego Healthcare System, San Diego; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, California
| |
Collapse
|
48
|
Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington's disease. Neurobiol Sleep Circadian Rhythms 2016; 2:27-38. [PMID: 31236493 PMCID: PMC6575567 DOI: 10.1016/j.nbscr.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
The circadian disruption seen in patients of Huntington's disease (HD) is recapitulated in the R6/2 mouse model. As the disease progresses, the activity of R6/2 mice increases dramatically during the rest (light) period and decreases during the active (dark) period, eventually leading to a complete disintegration of rest-activity rhythms by the age of ~16 weeks. The suprachiasmatic nucleus controls circadian rhythms by entraining the rest-activity rhythms to the environmental light-dark cycle. Since R6/2 mice can shift their rest-activity rhythms in response to a jet-lag paradigm and also respond positively to bright light therapy (1000 lx), we investigated whether or not a prolonged day length exposure could reduce their daytime activity and improve their behavioural circadian rhythms. We found that a long-day photoperiod (16 h light/8 h dark cycle; 100 lx) significantly improved the survival of R6/2 female mice by 2.4 weeks, compared to mice kept under standard conditions (12 h light/12 h dark cycle). Furthermore, a long-day photoperiod improved the nocturnality of R6/2 female mice. Mice kept under long-day photoperiod also maintained acrophase in activity rhythms (a parameter of rhythmicity strength) in phase with that of WT mice, even if they were symptomatic. By contrast, a short-day photoperiod (8 h light/16 h dark cycle) was deleterious to R6/2 female mice and further reduced the survival by ~1 week. Together, our results support the idea that light therapy may be beneficial for improving circadian dysfunction in HD patients. Chronic exposure to a long day (16:8 LD) is beneficial to R6/2 female mice. The 16:8 LD cycle slowed body weight loss and improved survival of R6/2 mice. Lifespan of R6/2 female mice was extended by ~2.4 weeks under 16:8 LD cycle. R6/2 female mice under 16:8 LD had stabilised acrophase in activity rhythms. Lifespan of R6/2 female mice was reduced by chronic exposure to a short day (8:16 LD).
Collapse
Key Words
- ANOVA, analysis of variance
- DD, constant darkness
- Depression
- EEG, electroencephalography
- Estrogen
- HD, Huntington's disease
- HPA axis, hypothalamic-pituitary-adrenal axis
- L-DOPA, levodopa
- LD, light-dark
- Lifespan
- REM sleep, rapid eye movement sleep
- SCN, suprachiasmatic nucleus
- Sleep
- Transgenic mouse
- WT, wild type
Collapse
|
49
|
Verwey M, Dhir S, Amir S. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease. F1000Res 2016; 5. [PMID: 27635233 PMCID: PMC5007753 DOI: 10.12688/f1000research.9180.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease
. For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson’s disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Michael Verwey
- Center for Studies in Behavioural Neurobiology, FRQS Groupe de Recherche en Neurobiologie Comportementale, Concorida University, Montreal, Quebec, Canada
| | | | - Shimon Amir
- Center for Studies in Behavioural Neurobiology, FRQS Groupe de Recherche en Neurobiologie Comportementale, Concorida University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Davis JA, Gamble KL. Synchronized time-keeping is key to healthy mood regulation (Commentary on Landgraf et al.). Eur J Neurosci 2016; 43:1307-8. [PMID: 26660445 DOI: 10.1111/ejn.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jennifer A Davis
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|