1
|
Duval C, Criscuolo F, Bertile F. Glycation resistance and life-history traits: lessons from non-conventional animal models. Biol Lett 2024; 20:20230601. [PMID: 38863347 DOI: 10.1098/rsbl.2023.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
Glycation reactions play a key role in the senescence process and are involved in numerous age-related pathologies, such as diabetes complications or Alzheimer's disease. As a result, past studies on glycation have mostly focused on human and laboratory animal models for medical purposes. Very little is known about glycation and its link to senescence in wild animal species. Yet, despite feeding on high-sugar diets, several bat and bird species are long-lived and seem to escape the toxic effects of high glycaemia. The study of these models could open new avenues both for understanding the mechanisms that coevolved with glycation resistance and for treating the damaging effects of glycations in humans. Our understanding of glycaemia's correlation to proxies of animals' pace of life is emerging in few wild species; however, virtually nothing is known about their resistance to glycation, nor on the relationship between glycation, species' life-history traits and individual fitness. Our review summarizes the scarce current knowledge on the links between glycation and life-history traits in non-conventional animal models, highlighting the predominance of avian research. We also investigate some key molecular and physiological parameters involved in glycation regulation, which hold promise for future research on fitness and senescence of individuals.
Collapse
Affiliation(s)
- Cyrielle Duval
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| | - François Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| |
Collapse
|
2
|
Hastings KK, Jemison LA, Pendleton GW, Johnson DS, Gelatt TS. Age-specific reproduction in female Steller sea lions in Southeast Alaska. Ecol Evol 2023; 13:e10515. [PMID: 37780535 PMCID: PMC10533480 DOI: 10.1002/ece3.10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Age-, region-, and year-specific estimates of reproduction are needed for monitoring wildlife populations during periods of ecosystem change. Population dynamics of Steller sea lions (Eumetopias jubatus) in Southeast Alaska varied regionally (with high population growth and survival in the north vs. the south) and annually (with reduced adult female survival observed following a severe marine heatwave event), but reproductive performance is currently unknown. We used mark-resighting data from 1006 Steller sea lion females marked as pups at ~3 weeks of age from 1994 to 1995 and from 2001 to 2005 and resighted from 2002 to 2019 (to a maximum age of 25) to examine age-, region-, and year-specific reproduction. In the north versus the south, age of first reproduction was earlier (beginning at age 4 vs. age 5, respectively) but annual birth probabilities of parous females were reduced by 0.05. In an average year pre-heatwave, the proportion of females with pup at the end of the pupping season peaked at ages 12-13 with ~0.60/0.65 (north/south) with pup, ~0.30/0.25 with juvenile, and ~0.10 (both regions) without a dependent. In both regions, reproductive senescence was gradual after age 12: ~0.40, 0.40, and 0.20 of females were in these reproductive states, respectively, by age 20. Correcting for neonatal mortality, true birth probabilities at peak ages were 0.66/0.72 (north/south). No cost of reproduction on female survival was detected, but pup production remained lower (-0.06) after the heatwave event, which if sustained could result in population decline in the south. Reduced pup production and greater retention of juveniles during periods of poor prey conditions may be an important strategy for Steller sea lions in Southeast Alaska, where fine-tuning reproduction based on nutritional status may improve the lifetime probability of producing pups under good conditions in a variable and less productive environment.
Collapse
Affiliation(s)
| | | | | | - Devin S. Johnson
- Protected Resources Division, National Marine Fisheries ServicePacific Islands Fisheries Science CenterHonoluluHawaiiUSA
| | - Thomas S. Gelatt
- Marine Mammal Laboratory, National Marine Fisheries ServiceAlaska Fisheries Science CenterSeattleWashingtonUSA
| |
Collapse
|
3
|
Nicol‐Harper A, Doncaster CP, Hilton GM, Wood KA, Ezard THG. Conservation implications of a mismatch between data availability and demographic impact. Ecol Evol 2023; 13:e10269. [PMID: 37475724 PMCID: PMC10353920 DOI: 10.1002/ece3.10269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
Cost-effective use of limited conservation resources requires understanding which data most contribute to alleviating biodiversity declines. Interventions might reasonably prioritise life-cycle transitions with the greatest influence on population dynamics, yet some contributing vital rates are particularly challenging to document. This risks managers making decisions without sufficient empirical coverage of the spatiotemporal variation experienced by the species. Here, we aimed to explore whether the number of studies contributing estimates for a given life-stage transition aligns with that transition's demographic impact on population growth rate, λ. We parameterised a matrix population model using meta-analysis of vital rates for the common eider (Somateria mollissima), an increasingly threatened yet comparatively data-rich species of seaduck, for which some life stages are particularly problematic to study. Female common eiders exhibit intermittent breeding, with some established breeders skipping one or more years between breeding attempts. Our meta-analysis yielded a breeding propensity of 0.72, which we incorporated into our model with a discrete and reversible 'nonbreeder' stage (to which surviving adults transition with a probability of 0.28). The transitions between breeding and nonbreeding states had twice the influence on λ than fertility (summed matrix-element elasticities of 24% and 11%, respectively), whereas almost 15 times as many studies document components of fertility than breeding propensity (n = 103 and n = 7, respectively). The implications of such mismatches are complex because the motivations for feasible on-the-ground conservation actions may be different from what is needed to reduce uncertainty in population projections. Our workflow could form an early part of the toolkit informing future investment of finite resources, to avoid repeated disconnects between data needs and availability thwarting evidence-led conservation.
Collapse
Affiliation(s)
- Alex Nicol‐Harper
- Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
- Wildfowl & Wetlands TrustSlimbridgeUK
| | | | | | | | - Thomas H. G. Ezard
- Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
4
|
Landsem TL, Yoccoz NG, Layton-Matthews K, Hilde CH, Harris MP, Wanless S, Daunt F, Reiertsen TK, Erikstad KE, Anker-Nilssen T. Raising offspring increases ageing: Differences in senescence among three populations of a long-lived seabird, the Atlantic puffin. J Anim Ecol 2023; 92:774-785. [PMID: 36633069 DOI: 10.1111/1365-2656.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Actuarial senescence, the decline of survival with age, is well documented in the wild. Rates of senescence vary widely between taxa, to some extent also between sexes, with the fastest life histories showing the highest rates of senescence. Few studies have investigated differences in senescence among populations of the same species, although such variation is expected from population-level differences in environmental conditions, leading to differences in vital rates and thus life histories. We predict that, within species, populations differing in productivity (suggesting different paces of life) should experience different rates of senescence, but with little or no sexual difference in senescence within populations of monogamous, monomorphic species where the sexes share breeding duties. We compared rates of actuarial senescence among three contrasting populations of the Atlantic puffin Fratercula arctica. The dataset comprised 31 years (1990-2020) of parallel capture-mark-recapture data from three breeding colonies, Isle of May (North Sea), Røst (Norwegian Sea) and Hornøya (Barents Sea), showing contrasting productivities (i.e. annual breeding success) and population trends. We used time elapsed since first capture as a proxy for bird age, and productivity and the winter North Atlantic Oscillation Index (wNAO) as proxies for the environmental conditions experienced by the populations within and outside the breeding season, respectively. In accordance with our predictions, we found that senescence rates differed among the study populations, with no evidence for sexual differences. There was no evidence for an effect of wNAO, but the population with the lowest productivity, Røst, showed the lowest rate of senescence. As a consequence, the negative effect of senescence on the population growth rate (λ) was up to 3-5 times smaller on Røst (Δλ = -0.009) than on the two other colonies. Our findings suggest that environmentally induced differences in senescence rates among populations of a species should be accounted for when predicting effects of climate variation and change on species persistence. There is thus a need for more detailed information on how both actuarial and reproductive senescence influence vital rates of populations of the same species, calling for large-scale comparative studies.
Collapse
Affiliation(s)
- Terje L Landsem
- Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Tromsø, Norway.,Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Tromsø, Norway
| | | | - Christoffer H Hilde
- Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | - Tone K Reiertsen
- Norwegian Institute for Nature Research (NINA), FRAM Centre, Tromsø, Norway
| | - Kjell E Erikstad
- Norwegian Institute for Nature Research (NINA), FRAM Centre, Tromsø, Norway.,Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
5
|
Valenzuela-Sánchez A, Schmidt BR, Azat C, Delgado S, Cunningham AA, Lemaître JF, Gaillard JM, Cayuela H. Variable rate of ageing within species: insights from Darwin’s frogs. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Actuarial senescence, the increase in adult mortality risk with increasing age, is a widespread phenomenon across the animal kingdom. Although between-species variation in the rate of increase in mortality as organisms age (i.e. ageing rate) is now well documented, the occurrence of variation in ageing rate within a given species remains much more debatable. We evaluated the level of within-species variation in ageing rate in four populations of the southern Darwin’s frog (Rhinoderma darwinii) from Chile. Our results revealed strong among-population variation in ageing rates, and these were correlated with the population-specific generation time. A higher ageing rate occurred in populations where individuals exhibited a faster pace of life. Our results, along with recent studies in evolutionarily distant amphibian species, indicate that there can be substantial within-species variation in the rate of ageing, highlighting amphibians as emerging models to study the patterns and mechanisms of intraspecific variation in ageing rate.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- ONG Ranita de Darwin , Ruta T-340 s/n, Valdivia , Chile
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile , Valdivia 5110566 , Chile
- Sustainability Research Centre & PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello , República 440, Santiago , Chile
| | - Benedikt R Schmidt
- Info fauna karch, Bâtiment G , Bellevaux 51, 2000 Neuchâtel , Switzerland
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich , Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Claudio Azat
- Sustainability Research Centre & PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello , República 440, Santiago , Chile
| | | | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London , Regent’s Park, London NW1 4RY , UK
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS , UMR 5558, Villeurbanne F-769622 , France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS , UMR 5558, Villeurbanne F-769622 , France
| | - Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS , UMR 5558, Villeurbanne F-769622 , France
- Department of Ecology and Evolution, Biophore, University of Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
6
|
Le Coeur C, Yoccoz NG, Salguero-Gómez R, Vindenes Y. Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability. Ecol Lett 2022; 25:2107-2119. [PMID: 35986627 DOI: 10.1111/ele.14071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Demographic buffering and lability have been identified as adaptive strategies to optimise fitness in a fluctuating environment. These are not mutually exclusive, however, we lack efficient methods to measure their relative importance for a given life history. Here, we decompose the stochastic growth rate (fitness) into components arising from nonlinear responses and variance-covariance of demographic parameters to an environmental driver, which allows studying joint effects of buffering and lability. We apply this decomposition for 154 animal matrix population models under different scenarios to explore how these main fitness components vary across life histories. Faster-living species appear more responsive to environmental fluctuations, either positively or negatively. They have the highest potential for strong adaptive demographic lability, while demographic buffering is a main strategy in slow-living species. Our decomposition provides a comprehensive framework to study how organisms adapt to variability through buffering and lability, and to predict species responses to climate change.
Collapse
Affiliation(s)
- Christie Le Coeur
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Genovart M, Klementisová K, Oro D, Fernández-López P, Bertolero A, Bartumeus F. Inferring the age of breeders from easily measurable variables. Sci Rep 2022; 12:15851. [PMID: 36151237 PMCID: PMC9508115 DOI: 10.1038/s41598-022-19381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Age drives differences in fitness components typically due to lower performances of younger and senescent individuals, and changes in breeding age structure influence population dynamics and persistence. However, determining age and age structure is challenging in most species, where distinctive age features are lacking and available methods require substantial efforts or invasive procedures. Here we explore the potential to assess the age of breeders, or at least to identify young and senescent individuals, by measuring some breeding parameters partially driven by age (e.g. egg volume in birds). Taking advantage of a long-term population monitored seabird, we first assessed whether age influenced egg volume, and identified other factors driving this trait by using general linear models. Secondly, we developed and evaluated a machine learning algorithm to assess the age of breeders using measurable variables. We confirmed that both younger and older individuals performed worse (less and smaller eggs) than middle-aged individuals. Our ensemble training algorithm was only able to distinguish young individuals, but not senescent breeders. We propose to test the combined use of field monitoring, classic regression analysis and machine learning methods in other wild populations were measurable breeding parameters are partially driven by age, as a possible tool for assessing age structure in the wild.
Collapse
Affiliation(s)
- Meritxell Genovart
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain. .,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.
| | | | - Daniel Oro
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain
| | - Pol Fernández-López
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain
| | - Albert Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, Amposta, Catalonia, Spain
| | - Frederic Bartumeus
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain.,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Aburto JM, Basellini U, Baudisch A, Villavicencio F. Drewnowski's index to measure lifespan variation: Revisiting the Gini coefficient of the life table. Theor Popul Biol 2022; 148:1-10. [PMID: 36084792 DOI: 10.1016/j.tpb.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
The Gini coefficient of the life table is a concentration index that provides information on lifespan variation. Originally proposed by economists to measure income and wealth inequalities, it has been widely used in population studies to investigate variation in ages at death. We focus on the complement of the Gini coefficient, Drewnowski's index, which is a measure of equality. We study its mathematical properties and analyze how changes over time relate to changes in life expectancy. Further, we identify the threshold age below which mortality improvements are translated into decreasing lifespan variation and above which these improvements translate into increasing lifespan inequality. We illustrate our theoretical findings simulating scenarios of mortality improvement in the Gompertz model, and showing an example of application to Swedish life table data. Our experiments demonstrate how Drewnowski's index can serve as an indicator of the shape of mortality patterns. These properties, along with our analytical findings, support studying lifespan variation alongside life expectancy trends in multiple species.
Collapse
Affiliation(s)
- José Manuel Aburto
- Department of Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Leverhulme Centre for Demographic Science, Department of Sociology and Nuffield College, University of Oxford, Oxford OX1 1JD, UK; Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense, Denmark
| | - Ugofilippo Basellini
- Laboratory of Digital and Computational Demography, Max Planck Institute for Demographic Research, 18057 Rostock, Germany; Mortality, Health and Epidemiology Unit, Institut national d'études démographiques (INED), 93322 Aubervilliers, France
| | - Annette Baudisch
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense, Denmark
| | - Francisco Villavicencio
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense, Denmark; Centre for Demographic Studies (CED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Telomeres as a sentinel of population decline in the context of global warming. Proc Natl Acad Sci U S A 2022; 119:e2211349119. [PMID: 35947638 PMCID: PMC9436358 DOI: 10.1073/pnas.2211349119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Montgomery RA, Pointer AM, Jingo S, Kasozi H, Ogada M, Mudumba T. Integrating Social Justice into Higher Education Conservation Science. Bioscience 2022; 72:549-559. [PMID: 35677291 PMCID: PMC9169897 DOI: 10.1093/biosci/biac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Because biodiversity loss has largely been attributed to human actions, people, particularly those in the Global South, are regularly depicted as threats to conservation. This context has facilitated rapid growth in green militarization, with fierce crackdowns against real or perceived environmental offenders. We designed an undergraduate course to assess student perspectives on biodiversity conservation and social justice and positioned those students to contribute to a human heritage-centered conservation (HHCC) initiative situated in Uganda. We evaluated changes in perspectives using pre- and postcourse surveys and reflection instruments. Although the students started the course prioritizing biodiversity conservation, even when it was costly to human well-being, by the end of the course, they were recognizing and remarking on the central importance of social justice within conservation. We present a framework for further integration of HHCC approaches into higher education courses so as to conserve the integrity of coupled human and natural systems globally.
Collapse
Affiliation(s)
- Robert A Montgomery
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom, and with The Recanati-Kaplan Centre, Tubney, England, United Kingdom
| | | | - Sophia Jingo
- Michigan State University, East Lansing, Michigan, United States
| | - Herbert Kasozi
- Michigan State University, East Lansing, Michigan, United States
| | | | - Tutilo Mudumba
- Michigan State University, East Lansing, Michigan, United States
- Department of Zoology, Entomology, and Fisheries Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
11
|
Research on Supply and Demand of Aged Services Resource Allocation in China: A System Dynamics Model. SYSTEMS 2022. [DOI: 10.3390/systems10030059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
With the rapid growth of the elderly population of China in recent years, the service demands of older Chinese people continue to increase. The increasingly severe situation with respect to the elderly population is an important social problem that China will face for a long time into the future. It is urgent to solve the problem of how to scientifically carry out allocation planning of service resources for the aged and guide the effective supply of service resources. This paper analyzes the factors affecting service resources for the aged, divides China’s service resource supply and demand system into a supply subsystem, a demand subsystem, and a population and economy subsystem. Using system dynamics methods to analyze the causal relationship between variables and the state space method to build a mathematical model and perform simulation analysis, we research the the current situation of China’s service resources supply and demand balance for the aged. In addition, we put forward resource configuration optimization measures for the future allocation of service resources for the aged, providing a practical basis for future decision-making.
Collapse
|
12
|
Jenouvrier S, Long MC, Coste CFD, Holland M, Gamelon M, Yoccoz NG, Sæther B. Detecting climate signals in populations across life histories. GLOBAL CHANGE BIOLOGY 2022; 28:2236-2258. [PMID: 34931401 PMCID: PMC9303565 DOI: 10.1111/gcb.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics ( ToE pop ). We identify the dependence of ToE pop on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on ToE pop . We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
Collapse
Affiliation(s)
- Stéphanie Jenouvrier
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Christophe F. D. Coste
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Marika Holland
- National Center for Atmospheric ResearchBoulderColoradoUSA
| | - Marlène Gamelon
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Laboratoire de Biométrie et Biologie ÉvolutiveCNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de LyonVilleurbanneFrance
| | - Nigel G. Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Bernt‐Erik Sæther
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
13
|
Rose JP, Kim R, Schoenig EJ, Lien PC, Halstead BJ. Integrating growth and survival models for flexible estimation of size-dependent survival in a cryptic, endangered snake. Ecol Evol 2022; 12:e8799. [PMID: 35414900 PMCID: PMC8987119 DOI: 10.1002/ece3.8799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
Estimates of demographic rates for animal populations and individuals have many applications for ecological and conservation research. In many animals, survival is size-dependent, but estimating the form of the size-survival relationship presents challenges. For elusive species with low recapture rates, individuals' size will be unknown at many points in time. Integrating growth and capture-mark-recapture models in a Bayesian framework empowers researchers to impute missing size data, with uncertainty, and include size as a covariate of survival, capture probability, and presence on-site. If there is no theoretical expectation for the shape of the size-survival relationship, spline functions can allow for fitting flexible, data-driven estimates. We use long-term capture-mark-recapture data from the endangered San Francisco gartersnake (Thamnophis sirtalis tetrataenia) to fit an integrated growth-survival model. Growth models showed that females reach longer asymptotic lengths than males and that the magnitude of sexual size dimorphism differed among populations. The capture probability and availability of San Francisco gartersnakes for capture increased with snout-vent length. The survival rate of female snakes exhibits a nonlinear relationship with snout-vent length (SVL), with survival flat between 300 mm and 550 mm SVL before decreasing for females between 550 mm and 700 mm SVL. For male snakes, survival decreased for adult males >550 mm SVL. The survival rates of the smallest and largest San Francisco gartersnakes were highly uncertain because recapture rates were very low for these sizes. By integrating growth and survival models and using penalized splines, we found support for size-dependent survival in San Francisco gartersnakes. Our results have applications for devising management activities for this endangered subspecies, and our methods could be applied broadly to the study of size-dependent demography among animals.
Collapse
Affiliation(s)
- Jonathan P. Rose
- U.S. Geological SurveyWestern Ecological Research CenterSanta Cruz Field StationSanta CruzCaliforniaUSA
| | - Richard Kim
- U.S. Geological SurveyWestern Ecological Research CenterDixonCaliforniaUSA
| | - Elliot J. Schoenig
- U.S. Geological SurveyWestern Ecological Research CenterDixonCaliforniaUSA
| | - Patrick C. Lien
- U.S. Geological SurveyWestern Ecological Research CenterDixonCaliforniaUSA
| | - Brian J. Halstead
- U.S. Geological SurveyWestern Ecological Research CenterDixonCaliforniaUSA
| |
Collapse
|
14
|
Smeele SQ, Conde DA, Baudisch A, Bruslund S, Iwaniuk A, Staerk J, Wright TF, Young AM, McElreath MB, Aplin L. Coevolution of relative brain size and life expectancy in parrots. Proc Biol Sci 2022; 289:20212397. [PMID: 35317667 PMCID: PMC8941425 DOI: 10.1098/rspb.2021.2397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitivebuffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans.
Collapse
Affiliation(s)
- Simeon Q Smeele
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Dalia A Conde
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark.,Department of Biology, University of Southern Denmark, Odense, Denmark.,Species360 Conservation Science Alliance, Bloomington, IN, USA
| | - Annette Baudisch
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Simon Bruslund
- Vogelpark Marlow gGmbH, Marlow, Germany.,Parrot Taxon Advisory Group, European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Andrew Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Johanna Staerk
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark.,Department of Biology, University of Southern Denmark, Odense, Denmark.,Species360 Conservation Science Alliance, Bloomington, IN, USA
| | - Timothy F Wright
- Biology Department, New Mexico State University, Las Cruces, NM, USA
| | - Anna M Young
- The Living Desert Zoo and GardensPalm Desert, Palm Desert, CA, USA
| | - Mary Brooke McElreath
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lucy Aplin
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Farid RH, Karelus DL, Hull V. Age‐ and sex‐specific survival of the Gunnison's prairie dog (
Cynomys gunnisoni
). Ecosphere 2022. [DOI: 10.1002/ecs2.3937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rashidah H. Farid
- Department of Agricultural and Environmental Sciences Tuskegee University Tuskegee Alabama USA
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Dana L. Karelus
- Natural Resources Institute Texas A&M University College Station Texas USA
| | - Vanessa Hull
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
16
|
Holden KG, Gangloff EJ, Miller DAW, Hedrick AR, Dinsmore C, Basel A, Kutz G, Bronikowski AM. Over a decade of field physiology reveals life-history specific strategies to drought in garter snakes ( Thamnophis legans). Proc Biol Sci 2022; 289:20212187. [PMID: 35078358 PMCID: PMC8790353 DOI: 10.1098/rspb.2021.2187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Changing climates and severe weather events can affect population viability. Individuals need to buffer such negative fitness consequences through physiological plasticity. Whether certain life-history strategies are more conducive to surviving changing climates is unknown, but theory predicts that strategies prioritizing maintenance and survival over current reproduction should be better able to withstand such change. We tested this hypothesis in a meta-population of garter snakes having naturally occurring variation in life-history strategies. We tested whether slow pace-of-life (POL) animals, that prioritize survival over reproduction, are more resilient than fast POL animals as measured by several physiological biomarkers. From 2006 to 2019, which included two multi-year droughts, baseline and stress-induced reactivity of plasma corticosterone and glucose varied annually with directionalities consistent with life-history theory. Slow POL animals exhibited higher baseline corticosterone and lower baseline glucose, relative to fast POL animals. These patterns were also observed in stress-induced measures; thus, reactivity was equivalent between ecotypes. However, in drought years, measures of corticosterone did not differ between different life histories. Immune cell distribution showed annual variation independent of drought or life history. These persistent physiological patterns form a backdrop to several extirpations of fast POL populations, suggesting a limited physiological toolkit to surviving periods of extreme drought.
Collapse
Affiliation(s)
- Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| | - Eric J. Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| | - David A. W. Miller
- Department of Ecosystem Science and Management, Penn State University, University Park, PA 16802, USA
| | - Ashley R. Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| | - Carli Dinsmore
- Department of Ecosystem Science and Management, Penn State University, University Park, PA 16802, USA
| | - Alison Basel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| | - Greta Kutz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA 50011, USA
| |
Collapse
|
17
|
Thermal conditions predict intraspecific variation in senescence rate in frogs and toads. Proc Natl Acad Sci U S A 2021; 118:2112235118. [PMID: 34845023 DOI: 10.1073/pnas.2112235118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.
Collapse
|
18
|
Climate Change and the Spatiotemporal Variation in Survival of a Long-Distance Migrant (White Stork, Ciconia ciconia) across Western Europe. BIRDS 2021. [DOI: 10.3390/birds2040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The spatial variation in the strength of climate change may lead to different impacts on migratory birds using different breeding areas across a region. We used a long-term data series of White Stork ring recoveries to study the temporal and spatial variation of annual survival rates of White Stork across western Europe between 1960 and 2009 in relation to climatic and environmental conditions at their breeding and wintering grounds. White Stork survival was estimated from the Cormack–Jolly–Seber (CJS) model using a cohort-based analysis. Our results support that climate change has caused a gradual decline in the survival performance of western European White Storks during the study period. Both the shape and the strength of the relationship between climate warming and survival differ among different life-stages of the individual development, with juvenile White Storks more strongly affected. The decline in survival is particularly marked for those storks breeding in southern Europe. The large-scale effect of climatic conditions identified in this widespread long-distance migrant species represents a highly likely scenario for other migratory birds in Europe.
Collapse
|
19
|
Hecht L. The importance of considering age when quantifying wild animals' welfare. Biol Rev Camb Philos Soc 2021; 96:2602-2616. [PMID: 34155749 DOI: 10.1111/brv.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023]
Abstract
Wild animals experience different challenges and opportunities as they mature, and this variety of experiences can lead to different levels of welfare characterizing the day-to-day lives of individuals of different ages. At the same time, most wild animals who are born do not survive to adulthood. Individuals who die as juveniles do not simply experience a homogeneous fraction of the lifetimes of older members of their species; rather, their truncated lives may be characterized by very different levels of welfare. Here, I propose the concept of welfare expectancy as a framework for quantifying wild animal welfare at a population level, given individual-level data on average welfare with respect to age. This concept fits conveniently alongside methods of analysis already used in population ecology, such as demographic sensitivity analysis, and is applicable to evaluating the welfare consequences of human interventions and natural pressures that disproportionately affect individuals of different ages. In order to understand better and improve the state of wild animal welfare, more attention should be directed towards young animals and the particular challenges they face.
Collapse
Affiliation(s)
- Luke Hecht
- Wild Animal Initiative, 115 Elm Street, Suite I, PMB 2321, Farmington, MN, 55024, U.S.A.,Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, U.K
| |
Collapse
|
20
|
Tidière M, Müller P, Sliwa A, Siberchicot A, Douay G. Sex-specific actuarial and reproductive senescence in zoo-housed tiger (Panthera tigris): The importance of sub-species for conservation. Zoo Biol 2021; 40:320-329. [PMID: 33861886 DOI: 10.1002/zoo.21610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 11/07/2022]
Abstract
A fifth of all known species are currently classified as threatened in the wild: the rate of biodiversity loss is rapid, continuous, and mostly due to anthropogenic activities. To slow down this decline, the accurate estimation of demographic parameters for threatened species is critical. With this aim, zoo institutions play an important role, giving access to data on zoo-housed animals, which aids researchers working on species life-history traits and intrinsic factors influencing the fitness of both sexes, such as age. While tigers (Panthera tigris) are particularly threatened in their natural environment, few of their demographic parameters have been determined because of their solitary and elusive nature as well as low population density. Using individual-based information for more than 9200 tigers (from 1938 to 2018) recorded in the International Tiger Studbook 2018, we aimed to determine sub-species and sex-specific variability of survival and reproductive parameters with age. No significant sex-difference in actuarial senescence (i.e., decline of survival probabilities with age) was observed but males tended to have a higher juvenile mortality and a faster senescence than females. Reproductive senescence (i.e., decline of reproductive parameters with age) was more pronounced in females than males. Moreover, we observed sub-species-specific variation in mortality and reproductive patterns, pointing out the necessity to consider them independently for conservation goals. Our findings can provide meaningful improvements to the husbandry of zoo-housed tigers, emphasizing the importance of adult breeding females of 7-9 years-old to control zoo-housed population size, but also providing accurate demographic estimates, crucial to set up effective conservation plans.
Collapse
Affiliation(s)
- Morgane Tidière
- Conservation Science Alliance, Species360, Minneapolis, Minnesota, 55425, USA.,Interdisciplinary Center on Population Dynamics, Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Aurélie Siberchicot
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS, Université de Lyon, Villeurbanne, France
| | - Guillaume Douay
- Conservation, Research, and Veterinary Department, Wildlife Reserves Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Colchero F, Eckardt W, Stoinski T. Evidence of demographic buffering in an endangered great ape: Social buffering on immature survival and the role of refined sex-age classes on population growth rate. J Anim Ecol 2021; 90:1701-1713. [PMID: 33759185 DOI: 10.1111/1365-2656.13486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Theoretical and empirical research has shown that increased variability in demographic rates often results in a decline in the population growth rate. In order to reduce the adverse effects of increased variability, life-history theory predicts that demographic rates that contribute disproportionately to population growth should be buffered against environmental variation. To date, evidence of demographic buffering is still equivocal and limited to analyses on a reduced number of age classes (e.g. juveniles and adults), and on single sex models. Here we used Bayesian inference models for age-specific survival and fecundity on a long-term dataset of wild mountain gorillas. We used these estimates to parameterize two-sex, age-specific stochastic population projection models that accounted for the yearly covariation between demographic rates. We estimated the sensitivity of the long-run stochastic population growth rate to reductions in survival and fecundity on ages belonging to nine sex-age classes for survival and three age classes for female fecundity. We found a statistically significant negative linear relationship between the sensitivities and variances of demographic rates, with strong demographic buffering on young adult female survival and low buffering on older female and silverback survival and female fecundity. We found moderate buffering on all immature stages and on prime-age females. Previous research on long-lived slow species has found high buffering of prime-age female survival and low buffering on immature survival and fecundity. Our results suggest that the moderate buffering of the immature stages can be partially due to the mountain gorilla social system and the relative stability of their environment. Our results provide clear support for the demographic buffering hypothesis and its predicted effects on species at the slow end of the slow-fast life-history continuum, but with the surprising outcome of moderate social buffering on the survival of immature stages. We also demonstrate how increasing the number of sex-age classes can greatly improve the detection of demographic buffering in wild populations.
Collapse
Affiliation(s)
- Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Winnie Eckardt
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
| | - Tara Stoinski
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
| |
Collapse
|
22
|
Oldfather MF, Koontz MJ, Doak DF, Ackerly DD. Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. Ecol Lett 2021; 24:772-780. [PMID: 33559296 DOI: 10.1111/ele.13693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage-specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Michael J Koontz
- Earth Lab, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA.,Jepson Herbarium, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Rose JP, Kupferberg SJ, Wheeler CA, Kleeman PM, Halstead BJ. Estimating the survival of unobservable life stages for a declining frog with a complex life history. Ecosphere 2021. [DOI: 10.1002/ecs2.3381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jonathan P. Rose
- Santa Cruz Field Station Western Ecological Research Center U.S. Geological Survey 2885 Mission Street Santa Cruz California95060USA
| | - Sarah J. Kupferberg
- Department of Integrative Biology University of California, Berkeley 3040 Valley Life Sciences Building #3140 Berkeley California94720USA
| | - Clara A. Wheeler
- Pacific Southwest Research Station Redwood Science Lab USDA Forest Service Arcata California95521USA
| | - Patrick M. Kleeman
- Point Reyes Field Station Western Ecological Research Center U.S. Geological Survey 1 Bear Valley Road Point Reyes Station California94956USA
| | - Brian J. Halstead
- Dixon Field Station Western Ecological Research Center U.S. Geological Survey 800 Business Park Drive, Suite D Dixon California95620USA
| |
Collapse
|
24
|
Le Coeur C, Storkey J, Ramula S. Population responses to observed climate variability across multiple organismal groups. OIKOS 2021. [DOI: 10.1111/oik.07371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christie Le Coeur
- Dept of Biology, Faculty of Science and Engineering, Univ. of Turku Turku Finland
| | - Jonathan Storkey
- Sustainable Agricultural Sciences, Rothamsted Research Harpenden Hertfordshire UK
| | - Satu Ramula
- Dept of Biology, Faculty of Science and Engineering, Univ. of Turku Turku Finland
| |
Collapse
|
25
|
Genovart M, Gimenez O, Bertolero A, Choquet R, Oro D, Pradel R. Decrease in social cohesion in a colonial seabird under a perturbation regime. Sci Rep 2020; 10:18720. [PMID: 33127979 PMCID: PMC7603481 DOI: 10.1038/s41598-020-75259-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022] Open
Abstract
Social interactions, through influence on behavioural processes, can play an important role in populations’ resilience (i.e. ability to cope with perturbations). However little is known about the effects of perturbations on the strength of social cohesion in wild populations. Long-term associations between individuals may reflect the existence of social cohesion for seizing the evolutionary advantages of social living. We explore the existence of social cohesion and its dynamics under perturbations by analysing long-term social associations, in a colonial seabird, the Audouin’s gull Larus audouinii, living in a site experiencing a shift to a perturbed regime. Our goals were namely (1) to uncover the occurrence of long-term social ties (i.e. associations) between individuals and (2) to examine whether the perturbation regime affected this form of social cohesion. We analysed a dataset of more than 3500 individuals from 25 years of monitoring by means of contingency tables and within the Social Network Analysis framework. We showed that associations between individuals are not only due to philopatry or random gregariousness but that there are social ties between individuals over the years. Furthermore, social cohesion decreased under the perturbation regime. We sustain that perturbations may lead not only to changes in individuals’ behaviour and fitness but also to a change in populations’ social cohesion. The consequences of decreasing social cohesion are still not well understood, but they can be critical for the population dynamics of social species.
Collapse
Affiliation(s)
- M Genovart
- CEAB (CSIC), Accés Cala Sant Francesc 14, 17300, Blanes, Spain. .,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Spain.
| | - O Gimenez
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| | - A Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, 43580, Deltebre, Spain
| | - R Choquet
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| | - D Oro
- CEAB (CSIC), Accés Cala Sant Francesc 14, 17300, Blanes, Spain.,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Spain
| | - R Pradel
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| |
Collapse
|
26
|
Lemaître JF, Ronget V, Gaillard JM. Female reproductive senescence across mammals: A high diversity of patterns modulated by life history and mating traits. Mech Ageing Dev 2020; 192:111377. [PMID: 33031803 DOI: 10.1016/j.mad.2020.111377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Senescence patterns are highly variable across the animal kingdom. However, while empirical evidence of actuarial senescence in vertebrates is accumulating in the wild and life history correlates of actuarial senescence are increasingly identified, both the extent and variation of reproductive senescence across species remain poorly studied. Here, we performed the first large-scale analysis of female reproductive senescence across 101 mammalian species that encompassed a wide range of Orders. We found evidence of reproductive senescence in 68.31 % of the species, which demonstrates that reproductive senescence is pervasive in mammals. As expected from allometric rules, the onset of reproductive senescence occurs later and the rate of reproductive senescence decreases with increasing body mass and delayed age at first reproduction. Moreover, for a given pace of life, females displaying a high level of multiple mating and/or with induced ovulation senesce earlier than females displaying a low level of multiple mating and/or with spontaneous ovulation. These results suggest that both female mating behavior and reproductive physiology shape the diversity of reproductive senescence patterns across mammals. We propose future avenues of research regarding the role played by environmental conditions or reproductive features (e.g. type of placentation) on the evolution of reproductive senescence.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, Villeurbanne, France.
| | - Victor Ronget
- Unité Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, F-75016, Paris, France
| | - Jean-Michel Gaillard
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, Villeurbanne, France
| |
Collapse
|
27
|
Jackson J, Mar KU, Htut W, Childs DZ, Lummaa V. Changes in age-structure over four decades were a key determinant of population growth rate in a long-lived mammal. J Anim Ecol 2020; 89:2268-2278. [PMID: 32592591 DOI: 10.1111/1365-2656.13290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/04/2020] [Indexed: 11/27/2022]
Abstract
A changing environment directly influences birth and mortality rates, and thus population growth rates. However, population growth rates in the short term are also influenced by population age-structure. Despite its importance, the contribution of age-structure to population growth rates has rarely been explored empirically in wildlife populations with long-term demographic data. Here we assessed how changes in age-structure influenced short-term population dynamics in a semi-captive population of Asian elephants Elephas maximus. We addressed this question using a demographic dataset of female Asian elephants from timber camps in Myanmar spanning 45 years (1970-2014). First, we explored temporal variation in age-structure. Then, using annual matrix population models, we used a retrospective approach to assess the contributions of age-structure and vital rates to short-term population growth rates with respect to the average environment. Age-structure was highly variable over the study period, with large proportions of juveniles in the years 1970 and 1985, and made a substantial contribution to annual population growth rate deviations. High adult birth rates between 1970 and 1980 would have resulted in large positive population growth rates, but these were prevented by a low proportion of reproductive-aged females. We highlight that an understanding of both age-specific vital rates and age-structure is needed to assess short-term population dynamics. Furthermore, this example from a human-managed system suggests that the importance of age-structure may be accentuated in populations experiencing human disturbance where age-structure is unstable, such as those in captivity or for endangered species. Ultimately, changes to the environment drive population dynamics by influencing birth and mortality rates, but understanding demographic structure is crucial for assessing population growth.
Collapse
Affiliation(s)
- John Jackson
- Department of Biology, Interdisciplinary Centre for Population Dynamics, University of Southern Denmark, Odense M, Denmark.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Khyne U Mar
- Department of Biology, University of Turku, Turku, Finland
| | - Win Htut
- Myanma Timber Enterprise, Ministry of Natural Resources and Environment Conservation, Gyogone Forest Compound, Yangon, Myanmar
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Cayuela H, Lemaître J, Bonnaire E, Pichenot J, Schmidt BR. Population position along the fast–slow life‐history continuum predicts intraspecific variation in actuarial senescence. J Anim Ecol 2020; 89:1069-1079. [DOI: 10.1111/1365-2656.13172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Hugo Cayuela
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université LavalPavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558 CNRSUniversité Lyon 1 Villeurbanne France
| | - Eric Bonnaire
- Office National des ForêtsAgence de Verdun Verdun France
| | - Julian Pichenot
- URCACERFECentre de Recherche et Formation en Eco‐éthologie Boult‐aux‐Bois France
| | - Benedikt R. Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften Universität Zürich Zürich Switzerland
- Info Fauna KarchUniMail, Bâtiment G Neuchâtel Switzerland
| |
Collapse
|
29
|
Fay R, Michler S, Laesser J, Jeanmonod J, Schaub M. Can temporal covariation and autocorrelation in demographic rates affect population dynamics in a raptor species? Ecol Evol 2020; 10:1959-1970. [PMID: 32128129 PMCID: PMC7042680 DOI: 10.1002/ece3.6027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/07/2019] [Accepted: 01/06/2020] [Indexed: 11/15/2022] Open
Abstract
Theoretical studies suggest that temporal covariation among and temporal autocorrelation within demographic rates are important features of population dynamics. Yet, empirical studies have rarely focused on temporal covariation and autocorrelation limiting our understanding of these patterns in natural populations. This lack of knowledge restrains our ability to fully understand population dynamics and to make reliable population forecasts. In order to fill this gap, we used a long-term monitoring (15 years) of a kestrel Falco tinnunculus population to investigate covariation and autocorrelation in survival and reproduction at the population level and their impact on population dynamics. Using Bayesian joint analyses, we found support for positive covariation between survival and reproduction, but weak autocorrelation through time. This positive covariation was stronger in juveniles compared with adults. As expected for a specialized predator, we found that the reproductive performance was strongly related to an index of vole abundance explaining 86% of the temporal variation. This very strong relationship suggests that the temporally variable prey abundance may drive the positive covariation between survival and reproduction in this kestrel population. Simulations suggested that the observed effect size of covariation could be strong enough to affect population dynamics. More generally, positive covariation and autocorrelation have a destabilizing effect increasing substantially the temporal variability of population size.
Collapse
Affiliation(s)
- Rémi Fay
- Swiss Ornithological InstituteSempachSwitzerland
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| |
Collapse
|
31
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
32
|
Cayuela H, Olgun K, Angelini C, Üzüm N, Peyronel O, Miaud C, Avcı A, Lemaitre JF, Schmidt BR. Slow life-history strategies are associated with negligible actuarial senescence in western Palaearctic salamanders. Proc Biol Sci 2019; 286:20191498. [PMID: 31455192 DOI: 10.1098/rspb.2019.1498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Actuarial senescence has been viewed for a long time as an inevitable and uniform process. However, the work on senescence has mainly focused on endotherms with deterministic growth and low regeneration capacity during the adult stage, leading to a strong taxonomic bias in the study of ageing. Recent studies have highlighted that senescence could indeed display highly variable trajectories that correlate with species life-history traits. Slow life histories and indeterminate growth seem to be associated with weak and late senescence. Furthermore, high regenerative abilities could lead to negligible senescence in ectotherms. However, demographic data for species that would allow testing of these hypotheses are scarce. Here, we investigated senescence patterns in 'true salamanders' from the western Palaearctic. Our results showed that salamanders have slow life histories and that they experience negligible senescence. This pattern was consistent at both intra- and interspecific levels, suggesting that the absence of senescence may be a phylogenetically conserved trait. The regenerative capacities of salamanders, in combination with other physiological and developmental features such as an indeterminate growth and a low metabolic rate, probably explain why these small ectotherms have lifespans similar to that of large endotherms and, in contrast with most amniotes, undergo negligible senescence. Our study seriously challenges the idea that senescence is a ubiquitous phenomenon in the tree of life.
Collapse
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada G1V 0A6
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, Aydin, Turkey
| | - Claudio Angelini
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada G1V 0A6
| | - Nazan Üzüm
- Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, Aydin, Turkey
| | - Olivier Peyronel
- Syndicat de gestion des gorges de l'Ardèche, 07700 Saint-Remèze, France
| | - Claude Miaud
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des vertébrés, Montpellier, France
| | - Aziz Avcı
- Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, Aydin, Turkey
| | - Jean-François Lemaitre
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, 69622 Villeurbanne, France
| | - Benedikt R Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Info fauna karch, UniMail, Bâtiment G, Bellevaux 51, 2000 Neuchâtel, Switzerland
| |
Collapse
|
33
|
Regan JC, Froy H, Walling CA, Moatt JP, Nussey DH. Dietary restriction and insulin‐like signalling pathways as adaptive plasticity: A synthesis and re‐evaluation. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13418] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jennifer C. Regan
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Hannah Froy
- Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Craig A. Walling
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Joshua P. Moatt
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Daniel H. Nussey
- Institute of Immunology and Infection Research, School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute for Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
34
|
Cayuela H, Akani GC, Hema EM, Eniang EA, Amadi N, Ajong SN, Dendi D, Petrozzi F, Luiselli L. Life history and age-dependent mortality processes in tropical reptiles. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Actuarial senescence appears to be a common process, and senescence patterns are highly variable across the tree of life. To date, studies on animal senescence have largely focused on model species, such as as fruit flies, humans and a few other endotherms. In contrast, our knowledge about ageing remains fragmentary in ectotherm vertebrates, such as reptiles. Here, we examined life history and age-dependent mortality patterns in three tropical tortoises (Kinixys erosa, Kinixys homeana and Kinixys nogueyi) and snakes (Bitis gabonica, Bitis nasicornis and Causus maculatus). Our study revealed that tortoises of the genus Kinixys had a higher survival and a lower recruitment than snakes of the genera Bitis and Causus, indicating a slower life history. Furthermore, we confirmed that survival decreased more slowly with age in tortoises than in snakes. In addition, we highlighted contrasting patterns of age-dependent mortality among the three genera. In Kinixys, the relationship between mortality rate and age was positive and linear, suggesting gradual senescence over tortoise lifetime. In contrast, the relationship between mortality rate and age was negative and sharp in Bitis and Causus, possibly owing to a ‘negative senescence’. Our study is one of the few to have examined and compared the demography and age-dependent mortality patterns of tropical reptiles. Among other things, our results suggest that although negative senescence has never been reported in endotherm vertebrates, it could be a common phenomenon in ectotherms.
Collapse
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Godfrey C Akani
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B., Port Harcourt, Rivers State, Nigeria
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa, Rome, Italy
| | - Emmanuel M Hema
- Université de Dédougou, UFR/Sciences Appliquées et Technologiques, Dédougou, Burkina Faso
- Laboratoire de Biologie et Ecologie Animales, Université Ouaga I Prof. Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Edem A Eniang
- Department of Forestry and Wildlife, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Nioking Amadi
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B., Port Harcourt, Rivers State, Nigeria
| | | | - Daniele Dendi
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B., Port Harcourt, Rivers State, Nigeria
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa, Rome, Italy
- Department of Zoology, University of Lomé, Lomé, Togo
| | - Fabio Petrozzi
- Istituto Tecnico di Ecologia Applicata, Fano (PU), Italy
| | - Luca Luiselli
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B., Port Harcourt, Rivers State, Nigeria
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa, Rome, Italy
- Department of Zoology, University of Lomé, Lomé, Togo
| |
Collapse
|
35
|
Conde DA, Staerk J, Colchero F, da Silva R, Schöley J, Baden HM, Jouvet L, Fa JE, Syed H, Jongejans E, Meiri S, Gaillard JM, Chamberlain S, Wilcken J, Jones OR, Dahlgren JP, Steiner UK, Bland LM, Gomez-Mestre I, Lebreton JD, González Vargas J, Flesness N, Canudas-Romo V, Salguero-Gómez R, Byers O, Berg TB, Scheuerlein A, Devillard S, Schigel DS, Ryder OA, Possingham HP, Baudisch A, Vaupel JW. Data gaps and opportunities for comparative and conservation biology. Proc Natl Acad Sci U S A 2019; 116:9658-9664. [PMID: 31004061 PMCID: PMC6511006 DOI: 10.1073/pnas.1816367116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.
Collapse
Affiliation(s)
- Dalia A Conde
- Species360 Conservation Science Alliance, Bloomington, MN 55425;
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Johanna Staerk
- Species360 Conservation Science Alliance, Bloomington, MN 55425
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
- Max Planck Institute for Demographic Research, D-18057 Rostock, Germany
| | - Fernando Colchero
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rita da Silva
- Species360 Conservation Science Alliance, Bloomington, MN 55425
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jonas Schöley
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
| | - H Maria Baden
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lionel Jouvet
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Julia E Fa
- Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, M15 6BH, United Kingdom
| | | | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Shai Meiri
- Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jean-Michel Gaillard
- Département de Génie Biologique, University of Lyon, 69622 Villeurbanne Cedex, France
| | - Scott Chamberlain
- rOpenSci, University of California Museum of Paleontology, Berkeley, CA 94720
| | | | - Owen R Jones
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Johan P Dahlgren
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ulrich K Steiner
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lucie M Bland
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| | - Ivan Gomez-Mestre
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain
| | - Jean-Dominique Lebreton
- CNRS, Centre d'écologie fonctionnelle et évolutive, UMR 5175 1919, 34293 Montpellier Cedex 5, France
| | | | - Nate Flesness
- Species360 Conservation Science Alliance, Bloomington, MN 55425
| | - Vladimir Canudas-Romo
- School of Demography, College of Arts and Social Sciences, Australian National University, Canberra, ACT 2600, Australia
| | | | - Onnie Byers
- Conservation Breeding Specialist Group, Species Survival Commission, Internation Union for Conservation of Nature, Minneapolis, MN 55124
| | | | | | - Sébastien Devillard
- Département de Génie Biologique, University of Lyon, 69622 Villeurbanne Cedex, France
| | - Dmitry S Schigel
- Global Biodiversity Information Facility, 2100 Copenhagen Ø, Denmark
| | - Oliver A Ryder
- San Diego Zoo Global Institute for Conservation Research, Escondido, CA 92027
| | - Hugh P Possingham
- Australian Research Council Centre of Excellence for Environmental Decisions, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Annette Baudisch
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
| | - James W Vaupel
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark;
- Max Planck Institute for Demographic Research, D-18057 Rostock, Germany
- Duke Population Research Institute, Duke University, Durham, NC 27705
| |
Collapse
|