1
|
Shen J, Wang Y, Liu Y, Lan J, Long S, Li Y, Chen D, Yu P, Zhao J, Wang Y, Wang S, Yang F. Behavioral Abnormalities, Cognitive Impairments, Synaptic Deficits, and Gene Replacement Therapy in a CRISPR Engineered Rat Model of 5p15.2 Deletion Associated With Cri du Chat Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415224. [PMID: 39965128 PMCID: PMC11984882 DOI: 10.1002/advs.202415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The Cri du Chat Syndrome (CdCS), a devastating genetic disorder caused by a deletion on chromosome 5p, faces challenges in finding effective treatments and accurate animal models. Using CRISPR-Cas9, a novel CdCS rat model with a 2q22 deletion is developed, mirroring a common genetic alteration in CdCS patients. This model exhibits pronounced deficits in social behavior, cognition, and anxiety, accompanied by neuronal abnormalities and immune dysregulation in key brain regions such as the hippocampus and medial prefrontal cortex (mPFC). The immunostaining and RNA-seq analyses provide new insights into CdCS pathogenesis, revealing inflammatory and immune processes. Importantly, it is demonstrated that early gene replacement therapy with AAV-Ctnnd2 alleviates cognitive impairments in CdCS rats, highlighting the potential for early intervention. However, the effectiveness of this therapy is confined to the early developmental stages and does not fully restore all CdCS symptoms. The findings deepen the understanding of CdCS pathogenesis and suggest promising therapeutic directions.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yan Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yang Liu
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Junying Lan
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| | - Shuang Long
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yingbo Li
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Di Chen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Peng Yu
- Chinese Institutes for Medical ResearchCapital Medical UniversityBeijing100069China
| | - Jing Zhao
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Clinical Center for Precision Medicine in StrokeCapital Medical UniversityBeijing100070China
- Center of Excellence for Omics Research (CORe)Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Shali Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Feng Yang
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
2
|
Franklin CE, Achtyes E, Altinay M, Bailey K, Bhati MT, Carr BR, Conroy SK, Husain MM, Khurshid KA, Lencz T, McDonald WM, Mickey BJ, Murrough J, Nestor S, Nickl-Jockschat T, Nikayin S, Reeves K, Reti IM, Selek S, Sanacora G, Trapp NT, Viswanath B, Wright JH, Sullivan P, Zandi PP, Potash JB. The genetics of severe depression. Mol Psychiatry 2025; 30:1117-1126. [PMID: 39406997 DOI: 10.1038/s41380-024-02731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 02/20/2025]
Abstract
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have recently achieved extremely large sample sizes and yielded substantial numbers of genome-wide significant loci. Because of the approach to ascertainment and assessment in many of these studies, some of these loci appear to be associated with dysphoria rather than with MDD, potentially decreasing the clinical relevance of the findings. An alternative approach to MDD GWAS is to focus on the most severe forms of MDD, with the hope that this will enrich for loci of larger effect, rendering their identification plausible, and providing potentially more clinically actionable findings. Here we review the genetics of severe depression by using clinical markers of severity including: age of onset, recurrence, degree of impairment, and treatment with ECT. There is evidence for increased family-based and Single Nucleotide Polymorphism (SNP)-based estimates of heritability in recurrent and early-onset illness as well as severe functional impariment. GWAS have been performed looking at severe forms of MDD and a few genome-wide loci have been identified. Several whole exome sequencing studies have also been performed, identifying associated rare variants. Although these findings have not yet been rigorously replicated, the elevated heritability seen in severe MDD phenotypes suggests the value of pursuing additional genome-wide interrogation of samples from this population. The challenge now is generating a cohort of adequate size with consistent phenotyping that will allow for careful and robust classifications and distinctions to be made. We are currently pursuing such a strategy in our 50-site worldwide Gen-ECT-ics consortium.
Collapse
Affiliation(s)
- Clio E Franklin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Achtyes
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Murat Altinay
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Bailey
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Brent R Carr
- Department of Psychiatry, University of Florida Health, Gainsville, FL, USA
| | - Susan K Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Khurshid A Khurshid
- Department of Psychiatry, University of Massachusetts Memorial Health, Worchester, MA, USA
| | - Todd Lencz
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY, USA
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah Health School of Medicine, Salt Lake City, UT, USA
| | - James Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sean Nestor
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Sina Nikayin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Reeves
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, OH, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Salih Selek
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Care Center at Houston, Houston, TX, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas T Trapp
- Department of Psychiatry, Carver College of Medicine, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jesse H Wright
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick Sullivan
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Liu S, Liu D, Bender CM, Erickson KI, Sereika SM, Shaffer JR, Weeks DE, Conley YP. Associations between DNA methylation and cognitive function in early-stage hormone receptor-positive breast cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317299. [PMID: 39606386 PMCID: PMC11601744 DOI: 10.1101/2024.11.17.24317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Approximately one-third of breast cancer (BC) patients show poorer cognitive function (CF) before receiving adjuvant therapy compared with age-matched healthy controls. However, the biological mechanisms driving CF variation in the context of BC remain unclear. In this study, we aimed to identify genes and biological pathways associated with CF in postmenopausal women with early-stage hormone receptor-positive (HR+) BC using DNA methylation (DNAm) data, a dynamic regulator of gene activity. Methods Epigenome-wide association studies (EWAS) and differentially methylated region analyses were performed for each CF phenotype (seven objective domains and one subjective phenotype) using DNAm data from whole blood samples (n=109) taken at time of enrollment. Post-EWAS functional analyses were performed to enhance the understanding of the CF-related cytosine-phosphate-guanine (CpG) sites. Results When adjusting for age, verbal IQ scores, and global DNAm signature, cg10331779 near CTNND2 (p-value= 9.65 × 10 -9 ) and cg25906741 in MLIP (p-value= 2.01 × 10 -8 ) were associated with processing speed and subjective CF, respectively, while regions in/near SLC6A11 , PRKG1/CSTF2T , and FAM3B for processing speed, and regions in/near PI4KB and SGCE/PEG10 for mental flexibility were differentially methylated. In addition, beta-estradiol was identified as a common upstream regulator for all the CF phenotypes, suggesting an essential role of estrogen in explaining variation in CF of HR+ BC patients. Conclusions In our EWAS of 8 CF phenotypes, we found two epigenome-wide significant signals, one at cg10331779 near CTNND2 with processing speed and the other at cg25906741 in MLIP with subjective CF. We also found three differentially methylated regions associated with processing speed and two associated with mental flexibility. These findings need replication in larger cohorts.
Collapse
|
4
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
5
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
6
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
7
|
Vaz R, Edwards S, Dueñas-Rey A, Hofmeister W, Lindstrand A. Loss of ctnnd2b affects neuronal differentiation and behavior in zebrafish. Front Neurosci 2023; 17:1205653. [PMID: 37465584 PMCID: PMC10351287 DOI: 10.3389/fnins.2023.1205653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Delta-catenin (CTNND2) is an adhesive junction associated protein belonging to the family of p120 catenins. The human gene is located on the short arm of chromosome 5, the region deleted in Cri-du-chat syndrome (OMIM #123450). Heterozygous loss of CTNND2 has been linked to a wide spectrum of neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we studied how heterozygous loss of ctnnd2b affects zebrafish embryonic development, and larvae and adult behavior. First, we observed a disorganization of neuronal subtypes in the developing forebrain, namely the presence of ectopic isl1-expressing cells and a local reduction of GABA-positive neurons in the optic recess region. Next, using time-lapse analysis, we found that the disorganized distribution of is1l-expressing forebrain neurons resulted from an increased specification of Isl1:GFP neurons. Finally, we studied the swimming patterns of both larval and adult heterozygous zebrafish and observed an increased activity compared to wildtype animals. Overall, this data suggests a role for ctnnd2b in the differentiation cascade of neuronal subtypes in specific regions of the vertebrate brain, with repercussions in the animal's behavior.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alfredo Dueñas-Rey
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Fernández-Teruel A. From Phenomes to Genes: Phenotype-based Strategies in Rodents for Research on the Neurobiological and Genetic Bases of Psychiatric-relevant Traits. Curr Neuropharmacol 2023; 21:1836-1839. [PMID: 37439333 PMCID: PMC10514527 DOI: 10.2174/1570159x2109230518164435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and
Forensic Medicine & Institute of Neurosciences,
School of Medicine, Autonomous University of Barcelona,
08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Chen Z, Li X, Cui X, Zhang L, Liu Q, Lu Y, Wang X, Shi H, Ding M, Yang Y, Li W, Lv L. Association of CTNND2 gene polymorphism with schizophrenia: Two-sample case-control study in Chinese Han population. Int J Psychiatry Med 2023:912174231164669. [PMID: 36930964 DOI: 10.1177/00912174231164669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Genetic factors play an important role in the etiology of schizophrenia (SZ). Catenin Delta 2 (CTNND2) is one of the genes regulating neuronal development in the brain. It is unclear whether CTNND2 is involved in SZ. With the hypothesis that CTNND2 may be a risk gene for SZ, we performed a case-control association analysis to investigate if CTNND2 gene single nucleotide polymorphisms (SNPs) are implicated in SZ in a Han Chinese northern population. MATERIALS AND METHODS We recruited subjects from 2010 to 2022 from the Han population of northern Henan and divided them into two case-control samples, including a discovery sample (SZ = 528 and control = 528) and replication sample (SZ = 2458 and control = 6914). Twenty-one SNPs were genotyped on the Illumina BeadStation 500G platform using GoldenGate technology and analyzed by PLINK. Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. RESULTS Rs16901943, rs7733427, and rs2168878 SNPs were associated with SZ (Chi2 = 7.484, 11.576, and 5.391, respectively, df = 1; p = 0.006, 0.00067, and 0.02, respectively) in two samples. Rs10058868 was associated with SZ in male patients in the discovery sample (Chi2 = 6.264, df = 1, p = .044). Only rs7733427 survived Bonferroni correction. Linkage disequilibrium block three haplotypes were associated with SZ in the discovery and total sample. PANSS analysis of the four SNPs implicated rs10058868 and rs2168878 with symptoms of depression and excitement, respectively, in the SZ patients. CONCLUSION Four SNPs were identified as being correlated with SZ. The CTNND2 gene may be involved in susceptibility to SZ.
Collapse
Affiliation(s)
- Zhaonian Chen
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangzheng Cui
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luwen Zhang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
11
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
12
|
Wang RS, Lembo AJ, Kaptchuk TJ, Cheng V, Nee J, Iturrino J, Rao M, Loscalzo J, Silvester JA, Hall KT. Genomic Effects Associated With Response to Placebo Treatment in a Randomized Trial of Irritable Bowel Syndrome. FRONTIERS IN PAIN RESEARCH 2022; 2:775386. [PMID: 35295415 PMCID: PMC8915627 DOI: 10.3389/fpain.2021.775386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Irritable bowel syndrome (IBS), a functional pain disorder of gut-brain interactions, is characterized by a high placebo response in randomized clinical trials (RCTs). Catechol-O-methyltransferase (COMT) rs4680, which encodes high-activity (val) or low-activity (met) enzyme variants, was previously associated with placebo response to sham-acupuncture in an IBS RCT. Examining COMT effects and identifying novel genomic factors that influence response to placebo pills is critical to identifying underlying mechanisms and predicting and managing placebos in RCTs. Methods: Participants with IBS (N = 188) were randomized to three placebo-related interventions, namely, double-blind placebo (DBP), open-label placebo (OLP), or simply trial enrollment without placebo treatment [no placebo (i.e., no pill) treatment control (NPC)], for 6 weeks. COMT rs4680, gene-set, and genome-wide suggestive (p < 10-5) loci effects on irritable bowel symptom severity score (IBS-SSS) across all participants were examined. Results: Participants with IBS homozygous for rs4680 met (met/met) had the greatest improvement across all arms, with significantly greater improvement compared to val/val in DBP (beta (SE), -89.4 (42.3); p = 0.04). Twelve genome-wide suggestive loci formed a gene regulatory network highly connected to EGR1, a transcription factor involved in placebo-related processes of learning, memory, and response to stress and reward. EGR1 gene expression in peripheral blood mononuclear cells (PBMC) was significantly reduced at the endpoint across all treatment arms (log fold-change, -0.15; p = 0.02). Gene-set enrichment analysis returned three genome-wide significant ontology terms (GO:0032968, GO:0070934, and GO:0070937) linked to transcription regulation and GO:0003918 associated with DNA topoisomerase regulation. Conclusion: These results suggest common molecular mechanisms in response to varying forms of placebo that may inform personalized IBS treatment and placebo response prediction. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT0280224.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Anthony J. Lembo
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ted J. Kaptchuk
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of General Medicine Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vivian Cheng
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Judy Nee
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Johanna Iturrino
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joseph Loscalzo
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jocelyn A. Silvester
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Celiac Disease Program, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn T. Hall
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
13
|
Su X, Li W, Lv L, Li X, Yang J, Luo XJ, Liu J. Transcriptome-Wide Association Study Provides Insights Into the Genetic Component of Gene Expression in Anxiety. Front Genet 2021; 12:740134. [PMID: 34650599 PMCID: PMC8505959 DOI: 10.3389/fgene.2021.740134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
Anxiety disorders are common mental disorders that often result in disability. Recently, large-scale genome-wide association studies (GWASs) have identified several novel risk variants and loci for anxiety disorders (or anxiety traits). Nevertheless, how the reported risk variants confer risk of anxiety remains unknown. To identify genes whose cis-regulated expression levels are associated with risk of anxiety traits, we conducted a transcriptome-wide association study (TWAS) by integrating genome-wide associations from a large-scale GWAS (N = 175,163) (which evaluated anxiety traits based on Generalized Anxiety Disorder 2-item scale (GAD-2) score) and brain expression quantitative trait loci (eQTL) data (from the PsychENCODE and GTEx). We identified 19 and 17 transcriptome-wide significant (TWS) genes in the PsychENCODE and GTEx, respectively. Intriguingly, 10 genes showed significant associations with anxiety in both datasets, strongly suggesting that genetic risk variants may confer risk of anxiety traits by regulating the expression of these genes. Top TWS genes included RNF123, KANSL1-AS1, GLYCTK, CRHR1, DND1P1, MAPT and ARHGAP27. Of note, 25 TWS genes were not implicated in the original GWAS. Our TWAS identified 26 risk genes whose cis-regulated expression were significantly associated with anxiety, providing important insights into the genetic component of gene expression in anxiety disorders/traits and new clues for future drug development.
Collapse
Affiliation(s)
- Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Psychiatric Disease Susceptibility and Pain in Chronic Pancreatitis: Association or Causation? Am J Gastroenterol 2021; 116:2026-2028. [PMID: 34459451 DOI: 10.14309/ajg.0000000000001491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Pain perception in chronic pancreatitis (CP) is governed by the transmission of nociceptive inputs into the pain processing centers of the brain. These regions of the brain overlap with those that regulate and process emotions and cognition. Disorders in these regions also result in psychiatric conditions such as depression, anxiety, and posttraumatic stress disorder. The present study by Dunbar et al. evaluated 24 single nucleotide polymorphisms associated with anxiety and/or posttraumatic stress disorder and found correlations with constant and severe pain phenotypes in CP patients from a large cross-sectional cohort study. Although causation cannot be proven, the findings suggest that there may be a role for neuromodulator drugs for the treatment of pain in CP based on individual genetic susceptibility.
Collapse
|
15
|
Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Hum Mol Genet 2021; 29:1900-1921. [PMID: 32196547 PMCID: PMC7372553 DOI: 10.1093/hmg/ddaa050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell–cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
Collapse
Affiliation(s)
- Reham Alharatani
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Athina Ververi
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ana Beleza-Meireles
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quinten T Patterson
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - John N Griffin
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nabina Bhujel
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Caitlin A Chang
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Abhijit Dixit
- Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sumayyah Hannan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Natsuko Neo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Alex Cash
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth Bhoj
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruth Cleaver
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Hospital, London SW17 0RE, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospital Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Richard Scott
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Jane A Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ping Yee Billie Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Marie Therese Hosey
- Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Mustafa Khokha
- Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise K Marciano
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
16
|
Lin E, Kuo PH, Lin WY, Liu YL, Yang AC, Tsai SJ. Prediction of Probable Major Depressive Disorder in the Taiwan Biobank: An Integrated Machine Learning and Genome-Wide Analysis Approach. J Pers Med 2021; 11:597. [PMID: 34202750 PMCID: PMC8308113 DOI: 10.3390/jpm11070597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
In light of recent advancements in machine learning, personalized medicine using predictive algorithms serves as an essential paradigmatic methodology. Our goal was to explore an integrated machine learning and genome-wide analysis approach which targets the prediction of probable major depressive disorder (MDD) using 9828 individuals in the Taiwan Biobank. In our analysis, we reported a genome-wide significant association with probable MDD that has not been previously identified: FBN1 on chromosome 15. Furthermore, we pinpointed 17 single nucleotide polymorphisms (SNPs) which show evidence of both associations with probable MDD and potential roles as expression quantitative trait loci (eQTLs). To predict the status of probable MDD, we established prediction models with random undersampling and synthetic minority oversampling using 17 eQTL SNPs and eight clinical variables. We utilized five state-of-the-art models: logistic ridge regression, support vector machine, C4.5 decision tree, LogitBoost, and random forests. Our data revealed that random forests had the highest performance (area under curve = 0.8905 ± 0.0088; repeated 10-fold cross-validation) among the predictive algorithms to infer complex correlations between biomarkers and probable MDD. Our study suggests that an integrated machine learning and genome-wide analysis approach may offer an advantageous method to establish bioinformatics tools for discriminating MDD patients from healthy controls.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10617, Taiwan; (P.-H.K.); (W.-Y.L.)
| | - Wan-Yu Lin
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10617, Taiwan; (P.-H.K.); (W.-Y.L.)
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan;
| | - Albert C. Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA;
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Psychiatry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
17
|
Kang HJ, Kim KT, Park Y, Yoo KH, Kim JW, Lee JY, Kim SW, Shin IS, Kim JH, Kim JM. Genetic markers for depressive disorders with earlier age at onset. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110176. [PMID: 33189858 DOI: 10.1016/j.pnpbp.2020.110176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
Age at onset has been considered a potential indicator of underlying genetic risk in depression research. However, the variants associated with earlier age at onset of depressive disorder have not been elucidated. To evaluate the genetic architecture of depression onset, whole-exome sequencing of samples from 1000 patients with depressive disorder was performed. Cox proportional hazard models with false discovery rate-adjusted P-values were used to estimate the hazard ratios; carriers and non-carriers of individual coding variants were compared in terms of age at onset of depression with adjustment for sociodemographic and clinical characteristics. The clinical relevance of the candidate variants was also examined. Whole-exome sequencing revealed four variants in the CCL14, FYB, GPRASP1, and CTNND2 genes associated with an increased risk of depressive disorder with earlier age at onset. Although no individual variant was associated with any clinical characteristic except AAO, together they were associated with younger AAO, younger age at visit for treatment, and recurrent and atypical depression. Our data suggest novel candidate genes for depressive disorder with earlier age at onset. These genes could serve as markers allowing early identification of patients at risk of depression, and thus earlier intervention.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ki-Tae Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yoomi Park
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hun Yoo
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Yeon Lee
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Min Kim
- Departments of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
18
|
Dunbar EK, Saloman JL, Phillips AE, Whitcomb DC. Severe Pain in Chronic Pancreatitis Patients: Considering Mental Health and Associated Genetic Factors. J Pain Res 2021; 14:773-784. [PMID: 33762844 PMCID: PMC7982558 DOI: 10.2147/jpr.s274276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Pain is the most distressing and disruptive feature of recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP) resulting in low quality of life (QOL) and disabilities. There is no single, characteristic pain pattern in patients with RAP and CP. Abdominal imaging features of CP accurately reflect morphologic features but they do not correlate with pain. Pain is the major driver of poor quality of life (QOL) and it is the constant pain, rather than intermittent pain that drives poor QOL. Furthermore, the most severe constant pain experience in CP is also a complex condition. The ability to target the etiopathogenesis of severe pain requires new methods to detect the exact pain mechanisms in an individual at cellular, tissue, system and psychiatric levels. In patients with complex and severe disease, it is likely that multiple overlapping mechanisms are simultaneously driving pain, anxiety and depression. Quantitative sensory testing (QST) shows promise in detecting alterations in central processing of pain signals and to classify patients for mechanistic and therapeutic studies. New genetic research suggests that genetic loci for severe pain in CP overlap with genetic loci for depression and other psychiatric disorders, providing additional insights and therapeutic targets for individual patients with severe CP pain. Well-designed clinical trials that integrate clinical features, QST, genetics and psychological assessments with targeted treatment and assessment of responses are required for a quantum leap forward. A better understanding of the context and mechanisms contributing to severe pain experiences in individual patients is predicted to lead to better therapies and quality of life.
Collapse
Affiliation(s)
- Ellyn K Dunbar
- Departments of Human Genetics and Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jami L Saloman
- Departments of Neurobiology and Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Evans Phillips
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Whitcomb
- Departments of Human Genetics, Cell Biology and Molecular Physiology, and Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
20
|
Pasman JA, Verweij KJH, Abdellaoui A, Hottenga JJ, Fedko IO, Willemsen G, Boomsma DI, Vink JM. Substance use: Interplay between polygenic risk and neighborhood environment. Drug Alcohol Depend 2020; 209:107948. [PMID: 32151880 DOI: 10.1016/j.drugalcdep.2020.107948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tobacco, alcohol, and cannabis use are prevalent behaviors that pose considerable health risks. Genetic vulnerability and characteristics of the neighborhood of residence form important risk factors for substance use. Possibly, these factors do not act in isolation. This study tested the interaction between neighborhood characteristics and genetic risk (gene-environment interaction, GxE) and the association between these classes of risk factors (gene-environment correlation, rGE) in substance use. METHODS Two polygenic scores (PGS) each (based on different discovery datasets) were created for smoking initiation, cigarettes per day, and glasses of alcohol per week based on summary statistics of different genome-wide association studies (GWAS). For cannabis initiation one PGS was created. These PGS were used to predict their respective phenotype in a large population-based sample from the Netherlands Twin Register (N = 6,567). Neighborhood characteristics as retrieved from governmental registration systems were factor analyzed and resulting measures of socioeconomic status (SES) and metropolitanism were used as predictors. RESULTS There were (small) main effects of neighborhood characteristics and PGS on substance use. One of the 14 tested GxE effects was significant, such that the PGS was more strongly associated with alcohol use in individuals with high SES. This was effect was only significant for one out of two PGS. There were weak indications of rGE, mainly with age and cohort covariates. CONCLUSION We conclude that both genetic and neighborhood-level factors are predictors for substance use. More research is needed to establish the robustness of the findings on the interplay between these factors.
Collapse
Affiliation(s)
- Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, the Netherlands.
| | - Karin J H Verweij
- Behavioural Science Institute, Radboud University Nijmegen, the Netherlands; Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Iryna O Fedko
- Netherlands Twin Register, Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health, EMGO+ Institute for Health and Care Research, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
21
|
Treur JL, Verweij KJH, Abdellaoui A, Fedko IO, de Zeeuw EL, Ehli EA, Davies GE, Hottenga JJ, Willemsen G, Boomsma DI, Vink JM. Testing Familial Transmission of Smoking With Two Different Research Designs. Nicotine Tob Res 2018; 20:836-842. [PMID: 28575460 PMCID: PMC6685054 DOI: 10.1093/ntr/ntx121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/26/2017] [Indexed: 01/10/2023]
Abstract
Introduction Classical twin studies show that smoking is heritable. To determine if shared family environment plays a role in addition to genetic factors, and if they interact (G×E), we use a children-of-twins design. In a second sample, we measure genetic influence with polygenic risk scores (PRS) and environmental influence with a question on exposure to smoking during childhood. Methods Data on smoking initiation were available for 723 children of 712 twins from the Netherlands Twin Register (64.9% female, median birth year 1985). Children were grouped in ascending order of risk, based on smoking status and zygosity of their twin-parent and his/her co-twin: never smoking twin-parent with a never smoking co-twin; never smoking twin-parent with a smoking dizygotic co-twin; never smoking twin-parent with a smoking monozygotic co-twin; and smoking twin-parent with a smoking or never smoking co-twin. For 4072 participants from the Netherlands Twin Register (67.3% female, median birth year 1973), PRS for smoking were computed and smoking initiation, smoking heaviness, and exposure to smoking during childhood were available. Results Patterns of smoking initiation in the four group children-of-twins design suggested shared familial influences in addition to genetic factors. PRS for ever smoking were associated with smoking initiation in all individuals. PRS for smoking heaviness were associated with smoking heaviness in individuals exposed to smoking during childhood, but not in non-exposed individuals. Conclusions Shared family environment influences smoking, over and above genetic factors. Genetic risk of smoking heaviness was only important for individuals exposed to smoking during childhood, versus those not exposed (G×E). Implications This study adds to the very few existing children-of-twins (CoT) studies on smoking and combines a CoT design with a second research design that utilizes polygenic risk scores and data on exposure to smoking during childhood. The results show that shared family environment affects smoking behavior over and above genetic factors. There was also evidence for gene-environment interaction (G×E) such that genetic risk of heavy versus light smoking was only important for individuals who were also exposed to (second-hand) smoking during childhood. Together, these findings give additional incentive to recommending parents not to expose their children to cigarette smoking.
Collapse
Affiliation(s)
- Jorien L Treur
- Radboud University Nijmegen, Behavioural Science Institute, the Netherlands
| | - Karin J H Verweij
- Radboud University Nijmegen, Behavioural Science Institute, the Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Iryna O Fedko
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Eveline L de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Erik A Ehli
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
- Avera Institute for Human Genetics, Sioux Falls, SD
| | - Gareth E Davies
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
- Avera Institute for Human Genetics, Sioux Falls, SD
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacqueline M Vink
- Radboud University Nijmegen, Behavioural Science Institute, the Netherlands
| |
Collapse
|
22
|
Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Breen G, Curtis C, Sang-Hyuk L, Newhouse S, Patel H, Guipponi M, Perroud N, Bondolfi G, O'Donovan M, Lewis G, Biernacka JM, Weinshilboum RM, Farmer A, Aitchison KJ, Craig I, McGuffin P, Uher R, Lewis CM. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. THE PHARMACOGENOMICS JOURNAL 2018; 18:413-421. [PMID: 29160301 PMCID: PMC10204124 DOI: 10.1038/tpj.2017.44] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (P=1.80e-08, ITGA9 (integrin α9)) and rs76191705 (P=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P=0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - R H Perlis
- Department of Psychiatry, Center for Experimental Drugs and Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - J Hauser
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - N Henigsberg
- Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - A Placentino
- Biological Psychiatry Unit and Dual Diagnosis Ward, Istituto Di Ricovero e Cura a Carattere Scientifico, Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - M Rietschel
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - D Souery
- Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel-Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - G Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - L Sang-Hyuk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - H Patel
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, Geneva, Switzerland
| | - N Perroud
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - G Bondolfi
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - M O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - G Lewis
- Division of Psychiatry, University College London (UCL), London, UK
| | - J M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - A Farmer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K J Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - I Craig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P McGuffin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Uher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - C M Lewis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry 2018; 8:55. [PMID: 29507296 PMCID: PMC5838215 DOI: 10.1038/s41398-018-0102-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt signaling pathway plays a crucial role in neurodevelopment and in regulating the function and structure of the adult nervous system. Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders with evidence of subtle neurodevelopmental, structural and functional neuronal abnormalities. We aimed to elucidate the role of aberrant regulation of the Wnt system in these disorders by evaluating plasma levels of secreted Wnt modulators in patients (SCZ = 551 and BD = 246) and healthy controls (HCs = 639) using enzyme immune-assay. We also investigated the expression of 141 Wnt-related genes in whole blood in a subsample (SCZ = 338, BD = 241, and HCs = 263) using microarray analysis. Both SCZ and BD had dysregulated mRNA expression of Wnt-related genes favoring attenuated canonical (beta-catenin-dependent) signaling, and there were also indices of enhanced non-canonical Wnt signaling. In particular, FZD7, which may activate all Wnt pathways, but favors non-canonical signaling, and NFATc3, a downstream transcription factor and readout of the non-canonical Wnt/Ca2+ pathway, were significantly increased in SCZ and BD (p < 3 × 10-4). Furthermore, patients had lower plasma levels of soluble dickkopf 1 and sclerostin (p < 0.01) compared with HC. Our findings suggest that SCZ and BD are characterized by abnormal Wnt gene expression and plasma protein levels, and we propose that drugs targeting the Wnt pathway may have a role in the treatment of severe mental disorders.
Collapse
Affiliation(s)
- Eva Z. Hoseth
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,Division of Mental Health and Addiction, Møre and Romsdal Hospital Trust, Kristiansund, Norway
| | - Florian Krull
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Dieset
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ragni H. Mørch
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Departent of Neurohabilitation, Division of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erlend S. Gardsjord
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Hans-Richard Brattbakk
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Vidar M. Steen
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Pål Aukrust
- 0000 0004 0389 8485grid.55325.34Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 1936 8921grid.5510.1K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway. .,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
24
|
Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity. J Hum Genet 2018; 63:605-619. [DOI: 10.1038/s10038-018-0418-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022]
|
25
|
Rivera M, Locke AE, Corre T, Czamara D, Wolf C, Ching-Lopez A, Milaneschi Y, Kloiber S, Cohen-Woods S, Rucker J, Aitchison KJ, Bergmann S, Boomsma DI, Craddock N, Gill M, Holsboer F, Hottenga JJ, Korszun A, Kutalik Z, Lucae S, Maier W, Mors O, Müller-Myhsok B, Owen MJ, Penninx BWJH, Preisig M, Rice J, Rietschel M, Tozzi F, Uher R, Vollenweider P, Waeber G, Willemsen G, Craig IW, Farmer AE, Lewis CM, Breen G, McGuffin P. Interaction between the FTO gene, body mass index and depression: meta-analysis of 13701 individuals. Br J Psychiatry 2017; 211. [PMID: 28642257 PMCID: PMC5537566 DOI: 10.1192/bjp.bp.116.183475] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BackgroundDepression and obesity are highly prevalent, and major impacts on public health frequently co-occur. Recently, we reported that having depression moderates the effect of the FTO gene, suggesting its implication in the association between depression and obesity.AimsTo confirm these findings by investigating the FTO polymorphism rs9939609 in new cohorts, and subsequently in a meta-analysis.MethodThe sample consists of 6902 individuals with depression and 6799 controls from three replication cohorts and two original discovery cohorts. Linear regression models were performed to test for association between rs9939609 and body mass index (BMI), and for the interaction between rs9939609 and depression status for an effect on BMI. Fixed and random effects meta-analyses were performed using METASOFT.ResultsIn the replication cohorts, we observed a significant interaction between FTO, BMI and depression with fixed effects meta-analysis (β = 0.12, P = 2.7 × 10-4) and with the Han/Eskin random effects method (P = 1.4 × 10-7) but not with traditional random effects (β = 0.1, P = 0.35). When combined with the discovery cohorts, random effects meta-analysis also supports the interaction (β = 0.12, P = 0.027) being highly significant based on the Han/Eskin model (P = 6.9 × 10-8). On average, carriers of the risk allele who have depression have a 2.2% higher BMI for each risk allele, over and above the main effect of FTOConclusionsThis meta-analysis provides additional support for a significant interaction between FTO, depression and BMI, indicating that depression increases the effect of FTO on BMI. The findings provide a useful starting point in understanding the biological mechanism involved in the association between obesity and depression.
Collapse
Affiliation(s)
- Margarita Rivera
- Margarita Rivera, PhD, Department of Biochemistry and Molecular Biology II and Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, Spain, and MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, Kinǵs College London, UK; Adam E. Locke, PhD, Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Tanguy Corre, PhD, Department of Medical Genetics, University of Lausanne, Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland; Darina Czamara, PhD, Christiane Wolf, PhD, Max Planck Institute of Psychiatry, Munich, Germany; Ana Ching-Lopez, Department of Psychiatry, School of Medicine, University of Granada, and Institute of Neurosciences Federico Olóriz, Centra de Investigación Biomédica, University of Granada, Spain; Yuri Milaneschi, PhD, Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ in Geest, Amsterdam, The Netherlands; Stefan Kloiber, MD, Max Planck Institute of Psychiatry, Munich, Germany; Sara Cohen-Woods, PhD, School of Psychology, Flinders University, Adelaide, South Australia, Australia; James Rucker, MD, PhD, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Katherine J. Aitchison, MD, PhD, Department of Psychiatry, University of Alberta, Alberta, Canada; Sven Bergmann, PhD, Department of Medical Genetics, University of Lausanne, Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland; Dorret I. Boomsma, PhD, Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands; Nick Craddock, MB, PhD, FMedSci, Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Henry Wellcome Building, Cardiff, UK; Michael Gill, MD, Department of Psychiatry, Trinity Centre for Health Sciences, Dublin 8, Ireland; Florian Holsboer, MD, PhD, Max Planck Institute of Psychiatry, Munich, Germany; Jouke-Jan Hottenga, PhD, Department of Psychiatry, University of Alberta, Alberta, Canada; Ania Korszun, PhD, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Zoltan Kutalik, PhD, Department of Medical Genetics, University of Lausanne, Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland; Susanne Lucae, MD, PhD, Max Planck Institute of Psychiatry, Munich, Germany; Wolfgang Maier, MD, Department of Psychiatry, University of Bonn, Bonn, Germany; Ole Mors, MD, PhD, Research Department P, Aarhus University Hospital, Risskov, Denmark; Bertram Müller-Myhsok MD, Max Planck Institute of Psychiatry, Munich, Germany; Michael J. Owen, MB, PhD, FMedSci, MRC Centre for Neuropsychiatry Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK; Brenda W. J. H. Penninx, PhD, Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ in Geest, Amsterdam, The Netherlands; Martin Preisig, MD, Department of Psychiatry, Lausanne University Hospital, 1008 Prilly-Lausanne, Switzerland; John Rice, PhD, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Marcella Rietschel, MD, Central Institute of Mental Health, Mannheim, Germany; Federica Tozzi, MD, Genetics Division, Drug Discovery, GlaxoSmithKline Research and Development, Verona, Italy; Rudolf Uher, MD, PhD, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK, and Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Peter Vollenweider, MD, PhD, Gerard Waeber, MD, PhD, Division of Internal Medicine, CHUV, Lausanne, Switzerland; Gonneke Willemsen, PhD, Department of Psychiatry, University of Alberta, Alberta, Canada; Ian W. Craig, PhD, Anne E. Farmer, MD, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Cathryn M. Lewis, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, and Department of Medical and Molecular Genetics, School of Medicine, King's College London, UK; Gerome Breen, PhD, Peter McGuffin, MB, PhD, FMedSci, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Treur JL, Taylor AE, Ware JJ, Nivard MG, Neale MC, McMahon G, Hottenga J, Baselmans BML, Boomsma DI, Munafò MR, Vink JM. Smoking and caffeine consumption: a genetic analysis of their association. Addict Biol 2017; 22:1090-1102. [PMID: 27027469 PMCID: PMC5045318 DOI: 10.1111/adb.12391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/10/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine. First, bivariate genetic models were applied to data of 10 368 twins from the Netherlands Twin Register in order to estimate genetic and environmental correlations between smoking and caffeine use. Second, from the summary statistics of meta-analyses of genome-wide association studies on smoking and caffeine, the genetic correlation was calculated by LD-score regression. Third, causal effects were tested using Mendelian randomization analysis in 6605 Netherlands Twin Register participants and 5714 women from the Avon Longitudinal Study of Parents and Children. Through twin modelling, a genetic correlation of r0.47 and an environmental correlation of r0.30 were estimated between current smoking (yes/no) and coffee use (high/low). Between current smoking and total caffeine use, this was r0.44 and r0.00, respectively. LD-score regression also indicated sizeable genetic correlations between smoking and coffee use (r0.44 between smoking heaviness and cups of coffee per day, r0.28 between smoking initiation and coffee use and r0.25 between smoking persistence and coffee use). Consistent with the relatively high genetic correlations and lower environmental correlations, Mendelian randomization provided no evidence for causal effects of smoking on caffeine or vice versa. Genetic factors thus explain most of the association between smoking and caffeine consumption. These findings suggest that quitting smoking may be more difficult for heavy caffeine consumers, given their genetic susceptibility.
Collapse
Affiliation(s)
- Jorien L. Treur
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
| | - Amy E. Taylor
- UK Centre for Tobacco and Alcohol Studies, School of Experimental PsychologyUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
| | - Jennifer J. Ware
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- School of Social and Community MedicineUniversity of BristolBristolUK
| | - Michel G. Nivard
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - George McMahon
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- School of Social and Community MedicineUniversity of BristolBristolUK
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Bart M. L. Baselmans
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Marcus R. Munafò
- UK Centre for Tobacco and Alcohol Studies, School of Experimental PsychologyUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
| | - Jacqueline M. Vink
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
27
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
28
|
Further evidence for genetic variation at the serotonin transporter gene SLC6A4 contributing toward anxiety. Psychiatr Genet 2017; 27:96-102. [DOI: 10.1097/ypg.0000000000000171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Jansen R, Hottenga JJ, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, Wright FA, Penninx BWJH, Boomsma DI. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet 2017; 26:1444-1451. [PMID: 28165122 DOI: 10.1093/hmg/ddx043] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
In recent years, multiple eQTL (expression quantitative trait loci) catalogs have become available that can help understand the functionality of complex trait-related single nucleotide polymorphisms (SNPs). In eQTL catalogs, gene expression is often strongly associated with multiple SNPs, which may reflect either one or multiple independent associations. Conditional eQTL analysis allows a distinction between dependent and independent eQTLs. We performed conditional eQTL analysis in 4,896 peripheral blood microarray gene expression samples. Our analysis showed that 35% of genes with a cis eQTL have at least two independent cis eQTLs; for several genes up to 13 independent cis eQTLs were identified. Also, 12% (671) of the independent cis eQTLs identified in conditional analyses were not significant in unconditional analyses. The number of GWAS catalog SNPs identified as eQTL in the conditional analyses increases with 24% as compared to unconditional analyses. We provide an online conditional cis eQTL mapping catalog for whole blood (https://eqtl.onderzoek.io/), which can be used to lookup eQTLs more accurately than in standard unconditional whole blood eQTL databases.
Collapse
Affiliation(s)
- Rick Jansen
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Bram Laport
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eco J de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, Bioinformatics Research Center, North Carolina State University, NC, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Abstract
Identifying genes and pathways that contribute to differences in neurobehavioural traits is a key goal in psychiatric research. Despite considerable success in identifying quantitative trait loci (QTLs) associated with behaviour in laboratory rodents, pinpointing the causal variants and genes is more challenging. For a long time, the main obstacle was the size of QTLs, which could encompass tens if not hundreds of genes. However, recent studies have exploited mouse and rat resources that allow mapping of phenotypes to narrow intervals, encompassing only a few genes. Here, we review these studies, showcase the rodent resources they have used and highlight the insights into neurobehavioural traits provided to date. We discuss what we see as the biggest challenge in the field - translating QTLs into biological knowledge by experimentally validating and functionally characterizing candidate genes - and propose that the CRISPR/Cas genome-editing system holds the key to overcoming this obstacle. Finally, we challenge traditional views on inbred versus outbred resources in the light of recent resource and technology developments.
Collapse
Affiliation(s)
- Amelie Baud
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1761, USA
| |
Collapse
|
31
|
Verweij KJ, Abdellaoui A, Nivard MG, Sainz Cort A, Ligthart L, Draisma HH, Minică CC, Gillespie NA, Willemsen G, Hottenga JJ, Boomsma DI, Vink JM. Short communication: Genetic association between schizophrenia and cannabis use. Drug Alcohol Depend 2017; 171:117-121. [PMID: 28086176 PMCID: PMC5753881 DOI: 10.1016/j.drugalcdep.2016.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Previous studies have shown a relationship between schizophrenia and cannabis use. As both traits are substantially heritable, a shared genetic liability could explain the association. We use two recently developed genomics methods to investigate the genetic overlap between schizophrenia and cannabis use. METHODS Firstly, polygenic risk scores for schizophrenia were created based on summary statistics from the largest schizophrenia genome-wide association (GWA) meta-analysis to date. We analysed the association between these schizophrenia polygenic scores and multiple cannabis use phenotypes (lifetime use, regular use, age at initiation, and quantity and frequency of use) in a sample of 6,931 individuals. Secondly, we applied LD-score regression to the GWA summary statistics of schizophrenia and lifetime cannabis use to calculate the genome-wide genetic correlation. RESULTS Polygenic risk scores for schizophrenia were significantly (α<0.05) associated with five of the eight cannabis use phenotypes, including lifetime use, regular use, and quantity of use, with risk scores explaining up to 0.5% of the variance. Associations were not significant for age at initiation of use and two measures of frequency of use analyzed in lifetime users only, potentially because of reduced power due to a smaller sample size. The LD-score regression revealed a significant genetic correlation of rg=0.22 (SE=0.07, p=0.003) between schizophrenia and lifetime cannabis use. CONCLUSIONS Common genetic variants underlying schizophrenia and lifetime cannabis use are partly overlapping. Individuals with a stronger genetic predisposition to schizophrenia are more likely to initiate cannabis use, use cannabis more regularly, and consume more cannabis over their lifetime.
Collapse
Affiliation(s)
- Karin J.H. Verweij
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands,Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands,Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Michel G. Nivard
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Alberto Sainz Cort
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Harmen H.M. Draisma
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands,Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Camelia C. Minică
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | | | - Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E Leigh St, Richmond, Virginia 23219, USA
| | - Gonneke Willemsen
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- Department of Biological Psychology/Netherlands Twin Register, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands,Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| |
Collapse
|
32
|
van Velzen LS, Schmaal L, Jansen R, Milaneschi Y, Opmeer EM, Elzinga BM, van der Wee NJA, Veltman DJ, Penninx BWJH. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology. Soc Cogn Affect Neurosci 2016; 11:1841-1852. [PMID: 27405617 PMCID: PMC5091678 DOI: 10.1093/scan/nsw086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF.
Collapse
Affiliation(s)
- Laura S van Velzen
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Esther M Opmeer
- Department of Neuroscience, University of Groningen, NeuroImaging Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernet M Elzinga
- Institute of Psychology and Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Nic J A van der Wee
- Institute of Psychiatry and Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center and GGZ inGeest, Amsterdam, the Netherlands
- Department of Psychiatry and the EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135:1107-16. [PMID: 27380241 PMCID: PMC5021578 DOI: 10.1007/s00439-016-1705-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Some genes involved in complex human diseases are particularly vulnerable to genetic variations such as single nucleotide polymorphism, copy number variations, and mutations. For example, Ras mutations account for over 30 % of all human cancers. Additionally, there are some genes that can display different variations with functional impact in different diseases that are unrelated. One such gene stands out: δ-catenin/NPRAP/Neurojungin with gene designation as CTNND2 on chromosome 5p15.2. Recent advances in genome wide association as well as molecular biology approaches have uncovered striking involvement of δ-catenin gene variations linked to complex human disorders. These disorders include cancer, bipolar disorder, schizophrenia, autism, Cri-du-chat syndrome, myopia, cortical cataract-linked Alzheimer's disease, and infectious diseases. This list has rapidly grown longer in recent years, underscoring the pivotal roles of δ-catenin in critical human diseases. δ-Catenin is an adhesive junction-associated protein in the delta subfamily of the β-catenin superfamily. δ-Catenin functions in Wnt signaling to regulate gene expression and modulate Rho GTPases of the Ras superfamily in cytoskeletal reorganization. δ-Catenin likely lies where Wnt signaling meets Rho GTPases and is a unique and vulnerable common target for mutagenesis in different human diseases.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China.
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Mingchuan Li
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yongguang Jiang
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Pediatrics, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
34
|
Generaal E, Milaneschi Y, Jansen R, Elzinga BM, Dekker J, Penninx BWJH. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain. Mol Pain 2016; 12:12/0/1744806916646783. [PMID: 27145806 PMCID: PMC4955993 DOI: 10.1177/1744806916646783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/04/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val66met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Methods Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val66met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Results Compared to val66val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. Conclusions This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain.
Collapse
Affiliation(s)
- Ellen Generaal
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernet M Elzinga
- Institute of Psychology, Leiden University, Leiden, The Netherlands Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Joost Dekker
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Candidate genes in panic disorder: meta-analyses of 23 common variants in major anxiogenic pathways. Mol Psychiatry 2016; 21:665-79. [PMID: 26390831 DOI: 10.1038/mp.2015.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed for three variants, TMEM132D rs7370927 (T allele: odds ratio (OR)=1.27, 95% confidence interval (CI): 1.15-1.40, P=2.49 × 10(-6)), rs11060369 (CC genotype: OR=0.65, 95% CI: 0.53-0.79, P=1.81 × 10(-5)) and COMT rs4680 (Val (G) allele: OR=1.27, 95% CI: 1.14-1.42, P=2.49 × 10(-5)) in studies with samples of European ancestry. Nominal associations that did not survive correction for multiple testing were observed for NPSR1 rs324891 (T allele: OR=1.22, 95% CI: 1.07-1.38, P=0.002), TPH1 rs1800532 (AA genotype: OR=1.46, 95% CI: 1.14-1.89, P=0.003) and HTR2A rs6313 (T allele: OR=1.19, 95% CI: 1.07-1.33, P=0.002) in studies with samples of European ancestry and for MAOA-uVNTR in female PD (low-active alleles: OR=1.21, 95% CI: 1.07-1.38, P=0.004). No significant associations were observed in the secondary analyses considering sex, agoraphobia co-morbidity and studies with samples of Asian ancestry. Although these findings highlight a few associations, PD likely involves genetic variation in a multitude of biological pathways that is diverse among populations. Future studies must incorporate larger sample sizes and genome-wide approaches to further quantify the observed genetic variation among populations and subphenotypes of PD.
Collapse
|
36
|
Smoller JW. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders. Neuropsychopharmacology 2016; 41:297-319. [PMID: 26321314 PMCID: PMC4677147 DOI: 10.1038/npp.2015.266] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.
Collapse
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
37
|
de Moor MH, van den Berg SM, Verweij KJ, Krueger RF, Luciano M, Vasquez AA, Matteson LK, Derringer J, Esko T, Amin N, Gordon SD, Hansell NK, Hart AB, Seppälä I, Huffman JE, Konte B, Lahti J, Lee M, Miller M, Nutile T, Tanaka T, Teumer A, Viktorin A, Wedenoja J, Abecasis GR, Adkins DE, Agrawal A, Allik J, Appel K, Bigdeli TB, Busonero F, Campbell H, Costa PT, Smith GD, Davies G, de Wit H, Ding J, Engelhardt BE, Eriksson JG, Fedko IO, Ferrucci L, Franke B, Giegling I, Grucza R, Hartmann AM, Heath AC, Heinonen K, Henders AK, Homuth G, Hottenga JJ, Janzing J, Jokela M, Karlsson R, Kemp JP, Kirkpatrick MG, Latvala A, Lehtimäki T, Liewald DC, Madden PA, Magri C, Magnusson PK, Marten J, Maschio A, Medland SE, Mihailov E, Milaneschi Y, Montgomery GW, Nauck M, Ouwens KG, Palotie A, Pettersson E, Polasek O, Qian Y, Pulkki-Råback L, Raitakari OT, Realo A, Rose RJ, Ruggiero D, Schmidt CO, Slutske WS, Sorice R, Starr JM, Pourcain BS, Sutin AR, Timpson NJ, Trochet H, Vermeulen S, Vuoksimaa E, Widen E, Wouda J, Wright MJ, Zgaga L, Scotland G, Porteous D, Minelli A, Palmer AA, Rujescu D, Ciullo M, Hayward C, Rudan I, Metspalu A, Kaprio J, Deary IJ, Räikkönen K, Wilson JF, Keltikangas-Järvinen L, Bierut LJ, Hettema JM, Grabe HJ, van Duijn CM, Evans DM, Schlessinger D, Pedersen NL, Terracciano A, McGue M, Penninx BW, Martin NG, Boomsma DI. Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder. JAMA Psychiatry 2015; 72:642-50. [PMID: 25993607 PMCID: PMC4667957 DOI: 10.1001/jamapsychiatry.2015.0554] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). OBJECTIVES To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. MAIN OUTCOMES AND MEASURES Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. RESULTS A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. CONCLUSIONS AND RELEVANCE This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with bipolar disorder and schizophrenia in previous studies. In addition, the study shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism.
Collapse
Affiliation(s)
- Marleen H.M. de Moor
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Child and Family Studies, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Methods, VU University Amsterdam, Amsterdam, The Netherlands
| | - Stéphanie M. van den Berg
- Department of Research Methodology, Measurement and Data-Analysis, University of Twente, Enschede, The Netherlands
| | - Karin J.H. Verweij
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Alejandro Arias Vasquez
- Donders Institute for Cognitive Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Jaime Derringer
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign IL, USA
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Scott D. Gordon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | | | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Finland
| | - Jennifer E. Huffman
- MRC Human Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Bettina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Minyoung Lee
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mike Miller
- Department of Psychology, University of Minnesota, Minneapolis, USA
| | - Teresa Nutile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso” – CNR, Naples, Italy
| | | | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Juho Wedenoja
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Goncalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Daniel E. Adkins
- Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jüri Allik
- Department of Psychology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Katja Appel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Timothy B. Bigdeli
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Harry Campbell
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, UK
| | - Paul T. Costa
- Behavioral Medicine Research Center, Duke University School of Medicine, Durham NC, USA
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, USA
| | - Jun Ding
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore MD USA
| | | | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Unit of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Iryna O. Fedko
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Barbara Franke
- Donders Institute for Cognitive Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ina Giegling
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Richard Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kati Heinonen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Anjali K. Henders
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Joost Janzing
- Department of Psychiatry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Markus Jokela
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John P. Kemp
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | - Antti Latvala
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Finland
| | - David C. Liewald
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Patrik K.E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Marten
- MRC Human Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Sarah E. Medland
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Biotechnology, University of Tartu, Tartu, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO+ Institute, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Klaasjan G. Ouwens
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, University of Helsinki, Finland
| | - Erik Pettersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Faculty of Medicine, University of Split, Split, Croatia
| | - Yong Qian
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore MD USA
| | - Laura Pulkki-Råback
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Anu Realo
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Richard J. Rose
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “A. Buzzati-Traverso” – CNR, Naples, Italy
| | - Carsten O. Schmidt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wendy S. Slutske
- Department of Psychological Sciences and Missouri Alcoholism Research Center, University of Missouri, Columbia, Missouri, USA
| | - Rossella Sorice
- Institute of Genetics and Biophysics “A. Buzzati-Traverso” – CNR, Naples, Italy
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh
- Geriatric Medicine Royal Victoria Hospital, Edinburgh, UK
| | - Beate St Pourcain
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Angelina R. Sutin
- National Institute on Aging, NIH, Baltimore, MD, USA
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Holly Trochet
- MRC Human Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Sita Vermeulen
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eero Vuoksimaa
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, University of Helsinki, Finland
| | - Jasper Wouda
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Research Methodology, Measurement and Data-Analysis, University of Twente, Enschede, The Netherlands
| | | | - Lina Zgaga
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, UK
- Department of Public Health and Primary Care, Trinity College Dublin, Dublin, Ireland
| | - Generation Scotland
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
| | - David Porteous
- Medical Genetics Section, The University of Edinburgh, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Abraham A. Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, USA
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marina Ciullo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso” – CNR, Naples, Italy
| | - Caroline Hayward
- MRC Human Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Igor Rudan
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, UK
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Jaakko Kaprio
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare (THL), Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, University of Helsinki, Finland
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - James F. Wilson
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, UK
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John M. Hettema
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, HELIOS Hospital Stralsund, Stralsund, Germany
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David M. Evans
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore MD USA
| | - Nancy L. Pedersen
- Institute of Genetics and Biophysics “A. Buzzati-Traverso” – CNR, Naples, Italy
| | - Antonio Terracciano
- Folkhälsan Research Center, Helsinki, Finland
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, USA
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, EMGO+ Institute, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Dorret I. Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat Neurosci 2015; 18:953-5. [PMID: 26053403 DOI: 10.1038/nn.4040] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
Abstract
We tested whether polygenic risk scores for schizophrenia and bipolar disorder would predict creativity. Higher scores were associated with artistic society membership or creative profession in both Icelandic (P = 5.2 × 10(-6) and 3.8 × 10(-6) for schizophrenia and bipolar disorder scores, respectively) and replication cohorts (P = 0.0021 and 0.00086). This could not be accounted for by increased relatedness between creative individuals and those with psychoses, indicating that creativity and psychosis share genetic roots.
Collapse
|
39
|
Poletti V, Delli Carri A, Malagoli Tagliazucchi G, Faedo A, Petiti L, Mazza EMC, Peano C, De Bellis G, Bicciato S, Miccio A, Cattaneo E, Mavilio F. Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells. PLoS One 2015; 10:e0126590. [PMID: 25978676 PMCID: PMC4433211 DOI: 10.1371/journal.pone.0126590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/06/2015] [Indexed: 11/21/2022] Open
Abstract
Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome-wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.
Collapse
Affiliation(s)
- Valentina Poletti
- Division of Genetics and Cell Biology, Scientific Institute H. San Raffaele, Milan, Italy
- Genethon, Evry, France
| | | | | | - Andrea Faedo
- Department of Biosciences, University of Milano, Milan, Italy
| | - Luca Petiti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Imagine Institute, Paris, France
| | - Elena Cattaneo
- Department of Biosciences, University of Milano, Milan, Italy
| | - Fulvio Mavilio
- Genethon, Evry, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|
40
|
Milaneschi Y, Lamers F, Mbarek H, Hottenga JJ, Boomsma DI, Penninx BWJH. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol Psychiatry 2014; 19:960-2. [PMID: 24492350 DOI: 10.1038/mp.2014.4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Y Milaneschi
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | - F Lamers
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | - H Mbarek
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - J-J Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - D I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - B W J H Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|