1
|
Zhao Y, Duan M, Lin X, Li W, Liu H, Meng K, Liu F, Hu W, Luo D. Molecular underpinnings underlying behaviors changes in the brain of juvenile common carp (Cyrinus carpio) in response to warming. J Adv Res 2024; 63:43-56. [PMID: 37956862 PMCID: PMC11380011 DOI: 10.1016/j.jare.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Global warming is increasing interest in how aquatic animals can adjust their physiological performance and cope with temperature changes. Therefore, understanding the behavioral changes and molecular underpinnings in fish under warming is crucial for both the individual and groups survival. This could provide experimental evidence and resource for evaluating the impact of global warming. OBJECTIVE Three genetic families of common carp (Cyprinus carpio) were generated. These juveniles were constructed short-term (4 days) and long-term (30 days) warming groups to investigate the effects of warming on behavioral responses and to elucidate the potential underlying mechanisms of warming-driven behavior. METHODS Behavioral tests were used to explore the effects of short- and long-term exposure to warming on the swimming behavior of C. carpio. Brain transcriptome combined with measurement of nervous system activity was used to further investigated the comprehensive neuromolecular mechanisms under warming. RESULTS Long-term warming groups had a more significant impact on the decline of swimming behavior in juvenile C. carpio. Furthermore, brain comparative transcriptomic analysis combined with measurement of nervous system activity revealed that genes involved in cytoskeletal organization, mitochondrial regulation, and energy metabolism are major regulators of behavior in the juvenile under warming. Importantly, especially in the long-term warming groups, enrichment analysis of associated gene expression suggested functional alterations of synaptic transmission and signal transduction leading to swimming function impairment in the central nervous system, as revealed by behavioral tests. CONCLUSIONS Our study provides evidence of the neurogenomic mechanism underlying the decreased swimming activity in juvenile C. carpio under warming. These findings have important implications for understanding the impacts of climate change on aquatic ecosystems and the organisms that inhabit them.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Weiwei Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hairong Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaifeng Meng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Johansen JL, Mitchell MD, Vaughan GO, Ripley DM, Shiels HA, Burt JA. Impacts of ocean warming on fish size reductions on the world's hottest coral reefs. Nat Commun 2024; 15:5457. [PMID: 38951524 PMCID: PMC11217398 DOI: 10.1038/s41467-024-49459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, HI, USA.
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Matthew D Mitchell
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Grace O Vaughan
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- BiOrbic, Bioeconomy SFI Research Centre, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Daniel M Ripley
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - John A Burt
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Hinz H, Terrados J, Moranta J, Reñones O, Ruiz-Frau A, Catalán IA. A risk-based approach to the analysis of potential climate change effects on fish communities associated to Posidonia oceanica in the Mediterranean. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106618. [PMID: 38959782 DOI: 10.1016/j.marenvres.2024.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The Mediterranean is recognized as a climate change hotspot, with ongoing warming anticipated to impact its habitats and their associated fish fauna. Among these habitats, the seagrass Posidonia oceanica stands out as a foundational species, critical for the stability of coastal fish communities. However, our understanding of climate change consequences on P. oceanica associated fish fauna to date remains limited in part due to a lack of long-term data. This study aimed to highlight potential climate change risks to fish species associated with Posidonia, integrating data on species' thermal envelopes with their habitat and depth preferences into a climate change risk index. Specifically, 9 species, including three pipefish and several wrasse species of the genus Symphodus, emerged as being at higher potential risk from climatic change. A historical time series from Palma Bay (Balearic Islands, Spain), spanning 45 years and providing clear evidence of warming, was employed to evaluate trends in species abundance and occurrence in relation to their relative climate risk score. While certain high-risk species like Symphodus cinereus and Diplodus annularis showed an increase in abundance over time, others, such as the pipefish Syngnathus acus, Syngnathus typhle and Nerophis maculatus experienced declines. The absence of observed declines in some high-risk species could be attributed to several factors, such as acclimation, adaptation, or unmet response thresholds. However, this does not rule out the potential for future changes in these species. Factors such as increased nutrient influx due to growing human populations and changes in fishing regulations may also have contributed to the observed trends. These findings underscore the intricate interplay of environmental and anthropogenic factors and accentuate the pressing need for sustained, long-term data acquisition to fathom the implications of climate change on this highly important marine ecosystem.
Collapse
Affiliation(s)
- Hilmar Hinz
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain.
| | - Jorge Terrados
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| | - Joan Moranta
- Centre Oceanogràfic de Balears (COB, IEO-CSIC) Moll de Ponent, s/n, 07015, Palma, Balearic Islands, Spain
| | - Olga Reñones
- Centre Oceanogràfic de Balears (COB, IEO-CSIC) Moll de Ponent, s/n, 07015, Palma, Balearic Islands, Spain
| | - Ana Ruiz-Frau
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| | - Ignacio A Catalán
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| |
Collapse
|
4
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
5
|
Luongo SM, Schneider EVC, Harborne AR, Kessel ST, Papastamatiou YP. Habitat-specific impacts of climate change on the trophic demand of a marine predator. Ecology 2024; 105:e4222. [PMID: 38032348 DOI: 10.1002/ecy.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Metabolic ecology predicts that ectotherm metabolic rates, and thus consumption rates, will increase with body size and temperature. Predicted climatic increases in temperature are likely to increase the consumption rates of ectothermic predators; however, the ecological impact of these increases will partly depend on whether prey productivity changes with temperature at a similar rate. Furthermore, total predator consumption and prey productivity will depend on species abundances that vary across habitat types. Here we combine energetics and biotelemetry to measure consumption rates in a critically endangered coral reef predator, the Nassau grouper (Epinephelus striatus), in The Bahamas. We estimate that, at present, the Nassau grouper needs to consume 2.2% ± 1.0% body weight day-1 , but this could increase up to 24% with a predicted 3.1°C increase in ocean temperature by the end of the century. We then used surveys of prey communities in two major reef habitat types (Orbicella reef and Gorgonian plain), to predict the proportion of prey productivity consumed by grouper and how this varied by habitat with changing climates. We found that at present, the predicted proportion of prey productivity consumed by Nassau grouper decreased with increasing prey productivity and averaged 1.2% across all habitats, with a greater proportion of prey productivity consumed (maximum of 5%) in Gorgonian plain habitats. However, because temperature increases consumption rates faster than prey productivity, the proportion of prey productivity consumed in a Gorgonian plain habitat could increase up to 24% under future climate change scenarios. Our results suggest that increasing ocean temperatures will lead to significant energetic challenges for the Nassau grouper because of differential impacts within reef food webs, but the magnitude of these impacts will probably vary across prey productivity gradients.
Collapse
Affiliation(s)
- Sarah M Luongo
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| | - Eric V C Schneider
- Exuma Sound Ecosystem Research Project, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| | - Steven T Kessel
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| |
Collapse
|
6
|
Candolin U, Rahman T. Behavioural responses of fishes to anthropogenic disturbances: Adaptive value and ecological consequences. JOURNAL OF FISH BIOLOGY 2023; 103:773-783. [PMID: 36647916 DOI: 10.1111/jfb.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/14/2023] [Indexed: 05/17/2023]
Abstract
Aquatic ecosystems are changing at an accelerating rate because of human activities. The changes alter the abundance and distribution of fishes, with potential consequences for ecosystem structure and function. Behavioural responses often underlie these changes in population dynamics, such as altered habitat choice or foraging activity. Here, we present a framework for understanding how and why behaviour is affected by human activities and how the behavioural responses in turn influence higher ecological levels. We further review the literature to assess the present state of the field and identify gaps in our knowledge. We begin with discussing the factors that determine how an individual responds to a change in the environment and whether the response is adaptive or not. In particular, we explain the importance of the evolutionary history of the species. We then search the literature to assess our current knowledge of the impact of human disturbances on the behaviour of fishes and the consequences for ecosystems. The search reveals that much attention has been directed to the impact of human activities on the behaviour of fishes, but that worryingly little is known about the consequences of these responses for populations, communities and ecosystems. Yet, behavioural responses can have profound ecological consequences given that behaviour underly many, if not most, species interactions. Thus, more attention should be paid to the mechanisms and pathways through which behavioural responses influence higher ecological levels. Such information is needed if we are to determine the ultimate effects of human activities on biodiversity and the function and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Tawfiqur Rahman
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
8
|
Manning JC. Movement, Space Use, and the Responses of Coral Reef Fish to Climate Change. Integr Comp Biol 2022; 62:1725-1733. [PMID: 35883230 DOI: 10.1093/icb/icac128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Anthropogenic climate change and other localized stressors have led to the widespread degradation of coral reefs, characterized by losses of live coral, reduced structural complexity, and shifts in benthic community composition. These changes have altered the composition of reef fish assemblages with important consequences for ecosystem function. Animal movement and space use are critically important to population dynamics, community assembly, and species coexistence. In this perspective, I discuss how studies of reef fish movement and space use could help us to elucidate the effects of climate change on reef fish assemblages and the functions they provide. In addition to describing how reef fish space use relates to resource abundance and the intrinsic characteristics of reef fish (e.g., body size), we should begin to take a mechanistic approach to understanding movement in reef fish and to investigate the role of movement in mediating species interactions on coral reefs. Technological advances in animal tracking and biotelemetry, as well as methodological advances in the analysis of movement, will aid in this endeavor. Baseline studies of reef fish movement and space use and their effect on community assembly and species coexistence will provide us with important information for predicting how climate change will influence reef fish assemblages.
Collapse
Affiliation(s)
- J C Manning
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
9
|
Clark TD, Scheuffele H, Pratchett MS, Skeeles MR. Behavioural temperature regulation is a low priority in a coral reef fish (Plectropomus leopardus): insights from a novel behavioural thermoregulation system. J Exp Biol 2022; 225:276686. [PMID: 36039674 DOI: 10.1242/jeb.244212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
Current understanding of behavioural thermoregulation in aquatic ectotherms largely stems from systems such as "shuttle boxes", which are generally limited in their capacity to test large-bodied species. Here, we introduce a controlled system that allows large aquatic ectotherms to roam freely in a tank at sub-optimal temperatures, using thermal refuges to increase body temperature to their thermal optimum as desired. Of the 10 coral grouper (Plectropomus leopardus; length ∼400 mm) implanted with thermal loggers, three fish maintained themselves at the ambient tank temperature of 17.5-20.5oC for the entire 2-4 d trial. Of the other seven fish, body temperature never exceeded ∼21.5oC, which was well below the temperature available in the thermal refuges (∼31oC) and below the species' optimal temperature of ∼27oC. This study adds to a growing literature documenting an unexpected lack of behavioural thermoregulation in aquatic ectotherms in controlled, heterothermal environments.
Collapse
Affiliation(s)
- T D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - H Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - M S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - M R Skeeles
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
10
|
Payet SD, Pratchett MS, Saenz‐Agudelo P, Berumen ML, DiBattista JD, Harrison HB. Demographic histories shape population genomics of the common coral grouper ( Plectropomus leopardus). Evol Appl 2022; 15:1221-1235. [PMID: 36051464 PMCID: PMC9423088 DOI: 10.1111/eva.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Many coral reef fishes display remarkable genetic and phenotypic variation across their geographic ranges. Understanding how historical and contemporary processes have shaped these patterns remains a focal question in evolutionary biology since they reveal how diversity is generated and how it may respond to future environmental change. Here, we compare the population genomics and demographic histories of a commercially and ecologically important coral reef fish, the common coral grouper (Plectropomus leopardus [Lacépède 1802]), across two adjoining regions (the Great Barrier Reef; GBR, and the Coral Sea, Australia) spanning approximately 14 degrees of latitude and 9 degrees of longitude. We analysed 4548 single nucleotide polymorphism (SNP) markers across 11 sites and show that genetic connectivity between regions is low, despite their relative proximity (~100 km) and an absence of any obvious geographic barrier. Inferred demographic histories using 10,479 markers suggest that the Coral Sea population was founded by a small number of GBR individuals and that divergence occurred ~190 kya under a model of isolation with asymmetric migration. We detected population expansions in both regions, but estimates of contemporary effective population sizes were approximately 50% smaller in Coral Sea sites, which also had lower genetic diversity. Our results suggest that P. leopardus in the Coral Sea have experienced a long period of isolation that precedes the recent glacial period (~10-120 kya) and may be vulnerable to localized disturbances due to their relative reliance on local larval replenishment. While it is difficult to determine the underlying events that led to the divergence of the Coral Sea and GBR lineages, we show that even geographically proximate populations of a widely dispersed coral reef fish can have vastly different evolutionary histories.
Collapse
Affiliation(s)
- Samuel D. Payet
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Michael L. Berumen
- Division of Biological and Environmental Science and Engineering, Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Joseph D. DiBattista
- Australian Museum Research Institute, Australian MuseumSydneyNew South WalesAustralia
| | - Hugo B. Harrison
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| |
Collapse
|
11
|
Heinichen M, McManus MC, Lucey SM, Aydin K, Humphries A, Innes-Gold A, Collie J. Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Sartori G, Taylor ML, Sebastian P, Prasetyo R. Coral reef carnivorous fish biomass relates to oceanographic features depending on habitat and prey preference. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105504. [PMID: 34717129 DOI: 10.1016/j.marenvres.2021.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Carnivorous fish are a key part of the Indonesian human population sustenance, and it is important to design marine protected areas that include environmental features that allow these species to thrive. Many studies report the role of coral cover and habitat complexity in determining fish distribution on coral reefs but broader environmental factors such as current velocity and productivity are less studied. Southern Indonesia is characterised by upwellings and strong currents, stemming from the tidal cycle and the Indonesian Throughflow. In this study we investigate how current velocity, chlorophyll-a (chl-a), sea surface height and temperature relate to the biomass of carnivorous fish, considering the influence of habitat complexity and coral cover. Data were collected by surveying seven sites around Nusa Penida MPA for a total of 97 h of observation. Serranids and Lutjanids showed higher dependency on coral cover than fish from family Lethrinidae, Carangidae and Scombridae for which current, sea surface height, chl-a, and temperature were more influential predictors. Considering the similar trophic ecology of these species, the different relationship with oceanographic factors is likely related to different body shapes, living, and feeding habits between fish families. Changes in sea surface temperature and current velocity induced by vertical mixing are affecting coral reef fisheries-targeted species distribution in Nusa Penida and investigating these relationships on a broader scale will better inform marine spatial planning decisions.
Collapse
Affiliation(s)
- Greta Sartori
- School of Life Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
| | - Michelle L Taylor
- School of Life Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
| | - Pascal Sebastian
- Indo Ocean Project, Banjar Adegan Kawan, Desa Ped, Nusa Penida, Klungkung, Bali, 80771, Indonesia.
| | - Rahmadi Prasetyo
- Faculty of Health Sciences, Science and Technology, Dhyana Pura University, Jl. Raya Padang Luwih, Dalung, Kuta Utara, Badung, Bali, 80351, Indonesia.
| |
Collapse
|
13
|
Creighton C, Waterhouse J, Day JC, Brodie J. Criteria for effective regional scale catchment to reef management: A case study of Australia's Great Barrier Reef. MARINE POLLUTION BULLETIN 2021; 173:112882. [PMID: 34534939 DOI: 10.1016/j.marpolbul.2021.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Many coastal and marine ecosystems around the world are under increasing threat from a range of anthropogenic influences. The management of these threats continues to present ongoing challenges, with many ecosystems increasingly requiring active restoration to support or re-establish the ecosystem's biological, cultural, social and economic values. The current condition of Australia's Great Barrier Reef (GBR) and its threats, including water quality, climate change and the loss of wetlands, causing the continuing decline in the GBR's ecological condition and function, has received global attention. Activities aimed at halting these declines and system restoration have been underway for over forty years. These activities are challenging to implement, and much has been learnt from their various outcomes. This paper considers the GBR and the associated management activities as a case study for regional scale catchment to reef management. It summarises the management approaches to date, describing the key role that science, policy and community have played in underpinning various investments. Four criteria for success are proposed: the lead role of the community, the need for a systems approach, the need for targeted, cost-effective and sustainable long-term investment, and importantly, building knowledge and maintaining consensus and political commitment.
Collapse
Affiliation(s)
- Colin Creighton
- Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia
| | - Jane Waterhouse
- Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia; C(2)O Consulting coasts climate oceans, Townsville, Australia.
| | - Jon C Day
- ARC Centre for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Jon Brodie
- C(2)O Consulting coasts climate oceans, Townsville, Australia; ARC Centre for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
14
|
Species interactions alter the selection of thermal environment in a coral reef fish. Oecologia 2021; 196:363-371. [PMID: 34036440 DOI: 10.1007/s00442-021-04942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Increasing ocean temperatures and the resulting poleward range shifts of species has highlighted the importance of a species preferred temperature and thermal range in shaping ecological communities. Understanding the temperatures preferred and avoided by individual species, and how these are influenced by species interactions is critical in predicting the future trajectories of populations, assemblages, and ecosystems. Using an automated shuttlebox system, we established the preferred temperature and upper and lower threshold temperatures (i.e., avoided temperatures) of a common coral reef fish, the black-axil chromis, Chromis atripectoralis. We then investigated how the presence of conspecifics, heterospecifics (Neopomacentrus bankieri), or a predator (Cephalopholis spiloparaea) influenced the selection of these temperatures. Control C. atripectoralis preferred 27.5 ± 1.0 °C, with individuals avoiding temperatures below 23.5 ± 0.9 °C and above 29.7 ± 0.7 °C. When associating with either conspecifics or heterospecifics, C. atripectoralis selected significantly lower temperatures (conspecifics: preferred = 21.2 ± 1.4 °C, lower threshold = 18.1 ± 0.8 °C; heterospecifics: preferred = 21.1 ± 1.1 °C, lower threshold = 19.2 ± 0.9 °C), but not higher temperatures (conspecifics: preferred = 28.9 ± 1.2 °C, upper threshold = 30.8 ± 0.9 °C; heterospecifics: preferred = 29.7 ± 1.1 °C, upper threshold = 31.4 ± 0.8 °C). The presence of the predator, however, had a significant effect on both lower and upper thresholds. Individual C. atripectoralis exposed themselves to temperatures ~ 5.5 °C cooler or warmer (lower threshold: 18.6 ± 0.5 °C, upper threshold: 35.2 ± 0.5 °C) than control fish before moving into the chamber containing the predator. These findings demonstrate how behavioural responses due to species interactions influence the thermal ecology of a tropical reef fish; however, there appears to be limited scope for individuals to tolerate higher temperatures unless faced with the risk of predation.
Collapse
|
15
|
Gervais CR, Brown C. Impact of conspecific necromones on the oxygen uptake rates of a benthic elasmobranch. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Brown CJ, Mellin C, Edgar GJ, Campbell MD, Stuart-Smith RD. Direct and indirect effects of heatwaves on a coral reef fishery. GLOBAL CHANGE BIOLOGY 2021; 27:1214-1225. [PMID: 33340216 DOI: 10.1111/gcb.15472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) data from the commercial fishery to evaluate changes in the fishery resulting from the 2016 heatwave. The heatwave caused widespread, yet locally patchy, declines in coral cover, but we observed little effect of local coral loss on coral trout biomass. Instead, a pattern of decreasing biomass at northern sites and stable or increasing biomass at southern sites suggested a direct response of populations to the heatwave. Analysis of the fishery-independent data and CPUE found that in-water coral trout biomass estimates were positively related to CPUE, and that coral trout catch rates increased with warmer temperatures. Temperature effects on catch rates were consistent with the thermal affinities of the multiple species contributing to this fishery. Scaling-up the effect of temperature on coral trout catch rates across the region suggests that GBR-wide catches were 18% higher for a given level of effort during the heatwave year relative to catch rates under the mean temperatures in the preceding 6 years. These results highlight a potentially large effect of heatwaves on catch rates of reef fishes, independent of changes in reef habitats, that can add substantial uncertainty to estimates of stock trends inferred from fishery-dependent (CPUE) data. Overestimation of CPUE could initiate declines in reef fisheries that are currently fully exploited, and threaten sustainable management of reef stocks.
Collapse
Affiliation(s)
- Christopher J Brown
- Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Camille Mellin
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Max D Campbell
- Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
17
|
Nay TJ, Longbottom RJ, Gervais CR, Johansen JL, Steffensen JF, Rummer JL, Hoey AS. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum. JOURNAL OF FISH BIOLOGY 2021; 98:723-732. [PMID: 33206373 DOI: 10.1111/jfb.14616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15-34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.
Collapse
Affiliation(s)
- Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Rohan J Longbottom
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Connor R Gervais
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
18
|
Pauly D. The gill-oxygen limitation theory (GOLT) and its critics. SCIENCE ADVANCES 2021; 7:7/2/eabc6050. [PMID: 33523964 PMCID: PMC7787657 DOI: 10.1126/sciadv.abc6050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
The gill-oxygen limitation theory (GOLT) provides mechanisms for key aspects of the biology (food conversion efficiency, growth and its response to temperature, the timing of maturation, and others) of water-breathing ectotherms (WBEs). The GOLT's basic tenet is that the surface area of the gills or other respiratory surfaces of WBE cannot, as two-dimensional structures, supply them with sufficient oxygen to keep up with the growth of their three-dimensional bodies. Thus, a lower relative oxygen supply induces sexual maturation, and later a slowing and cessation of growth, along with an increase of physiological processes relying on glycolytic enzymes and a declining role of oxidative enzymes. Because the "dimensional tension" underlying this argument is widely misunderstood, emphasis is given to a detailed refutation of objections to the GOLT. This theory still needs to be put on a solid quantitative basis, which will occur after the misconceptions surrounding it are put to rest.
Collapse
Affiliation(s)
- Daniel Pauly
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Gervais CR, Huveneers C, Rummer JL, Brown C. Population variation in the thermal response to climate change reveals differing sensitivity in a benthic shark. GLOBAL CHANGE BIOLOGY 2021; 27:108-120. [PMID: 33118308 DOI: 10.1111/gcb.15422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Many species with broad distributions are exposed to different thermal regimes which often select for varied phenotypes. This intraspecific variation is often overlooked but may be critical in dictating the vulnerability of different populations to environmental change. We reared Port Jackson shark (Heterodontus portusjacksoni) eggs from two thermally discrete populations (i.e. Jervis Bay and Adelaide) under each location's present-day mean temperatures, predicted end-of-century temperatures and under reciprocal-cross conditions to establish intraspecific thermal sensitivity. Rearing temperatures strongly influenced ṀO2 Max and critical thermal limits, regardless of population, indicative of acclimation processes. However, there were significant population-level effects, such that Jervis Bay sharks, regardless of rearing temperature, did not exhibit differences in ṀO2 Rest , but under elevated temperatures exhibited reduced maximum swimming activity with step-wise increases in temperature. In contrast, Adelaide sharks reared under elevated temperatures doubled their ṀO2 Rest , relative to their present-day temperature counterparts; however, maximum swimming activity was not influenced. With respect to reciprocal-cross comparisons, few differences were detected between Jervis Bay and Adelaide sharks reared under ambient Jervis Bay temperatures. Similarly, juveniles (from both populations) reared under Adelaide conditions had similar thermal limits and swimming activity (maximum volitional velocity and distance) to each other, indicative of conserved acclimation capacity. However, under Adelaide temperatures, the ṀO2 Rest of Jervis Bay sharks was greater than that of Adelaide sharks. This indicates that the energetics of cooler water population (Adelaide) is likely more thermally sensitive than that of the warmer population (Jervis Bay). While unique to elasmobranchs, these data provide further support that by treating species as static, homogeneous populations, we ignore the impacts of thermal history and intraspecific variation on thermal sensitivity. With climate change, intraspecific variation will manifest as populations move, demographics change or extirpations occur, starting with the most sensitive populations.
Collapse
Affiliation(s)
- Connor R Gervais
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
Payet SD, Lowe JR, Mapstone BD, Pratchett MS, Sinclair-Taylor TH, Taylor BM, Waldie PA, Harrison HB. Comparative demography of commercially important species of coral grouper, Plectropomus leopardus and P. laevis, from Australia's great barrier reef and Coral Sea marine parks. JOURNAL OF FISH BIOLOGY 2020; 97:1165-1176. [PMID: 32785930 DOI: 10.1111/jfb.14491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Understanding the spatial and environmental variation in demographic processes of fisheries target species, such as coral grouper (Genus: Plectropomus), is important for establishing effective management and conservation strategies. Herein we compare the demography of Plectropomus leopardus and P. laevis between Australia's Great Barrier Reef Marine Park (GBRMP), which has been subject to sustained and extensive fishing pressure, and the oceanic atolls of Australia's Coral Sea Marine Park (CSMP), where there is very limited fishing for reef fishes. Coral grouper length-at-age data from contemporary and historical otolith collections across 9.4 degrees of latitude showed little difference in lifetime growth between GBRMP and CSMP regions. Plectropomus laevis populations in GBRMP reefs had significantly higher rates of total mortality than populations in the CSMP. Mean maximum lengths and mean maximum ages of P. laevis were also smaller in the GBRMP than in the CSMP, even when considering populations sampled within GBRMP no-take marine reserves (NTMRs). Plectropomus leopardus, individuals were on average smaller on fished reefs than NTMRs in the GBRMP, but all other aspects of demography were broadly similar between regions despite the negligible levels of fishing pressure in the CSMP. Similarities between regions in growth profiles and length-at-age comparisons of P. laevis and P. leopardus suggest that the environmental differences between the CSMP and the GBRMP may not have significant impacts on lifetime growth. Our results show that fishing may have influenced the demography of coral grouper on the GBR, particularly for the slower growing and longer lived species, P. laevis.
Collapse
Affiliation(s)
- Samuel D Payet
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Jake R Lowe
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | | | - Brett M Taylor
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia (M096), Crawley, Western Australia, Australia
| | - Peter A Waldie
- The Nature Conservancy Asia Pacific Resource Centre, Brisbane, Queensland, Australia
| | - Hugo B Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
21
|
Johansen JL, Akanyeti O, Liao JC. Oxygen consumption of drift-feeding rainbow trout: the energetic tradeoff between locomotion and feeding in flow. ACTA ACUST UNITED AC 2020; 223:223/12/jeb220962. [PMID: 32591340 DOI: 10.1242/jeb.220962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
To forage in fast, turbulent flow environments where prey is abundant, fishes must deal with the high associated costs of locomotion. Prevailing theory suggests that many species exploit hydrodynamic refuges to minimize the cost of locomotion while foraging. Here, we challenge this theory based on direct oxygen consumption measurements of drift-feeding trout (Oncorhynchus mykiss) foraging in the freestream and from behind a flow refuge at velocities up to 100 cm s-1 We demonstrate that refuging is not energetically beneficial when foraging in fast flows because of a high attack cost and low prey capture success associated with leaving a station-holding refuge to intercept prey. By integrating optimum foraging theory with empirical data from respirometry and video tracking, we developed a mathematical model to predict when drift-feeding fishes should exploit or avoid refuges based on prey density, size and flow velocity. Our optimum foraging and refuging model provides new mechanistic insights into locomotor costs, habitat use and prey choice of fish foraging in current-swept habitats.
Collapse
Affiliation(s)
- Jacob L Johansen
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, 9505 Oceanshore Blvd, St Augustine, FL 32080, USA.,Hawaii Institute of Marine Biology, University of Hawaii, Manoa, HI 96744, USA
| | - Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, 9505 Oceanshore Blvd, St Augustine, FL 32080, USA.,Department of Computer Science, Aberystwyth University, Penglais Campus, Aberystwyth SY23 3FL, UK
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, 9505 Oceanshore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
22
|
Pagliaro MD, Knouft JH. Differential effects of the urban heat island on thermal responses of freshwater fishes from unmanaged and managed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138084. [PMID: 32224401 DOI: 10.1016/j.scitotenv.2020.138084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
A lack of understanding exists regarding how freshwater species will respond to increases in temperature associated with ongoing changes in climate. Non-urban to urban thermal gradients generated by urban heat islands can serve as models to characterize the effects of relatively consistent increases in temperature on freshwater ecosystems over several decades. This study investigates the apparent responses of two freshwater fish species, Campostoma anomalum (Central Stoneroller) and Lepomis macrochirus (Bluegill), to directional changes in temperature over the past century across the non-urban to urban gradient in the Saint Louis, Missouri region in the central United States. Differences in air temperature across this gradient have increased by approximately 3 °C since 1920. Critical thermal maximum (CTMax) assays were conducted on individuals from fish populations across this gradient from either streams (C. anomalum) or ponds (L. macrochirus) to assess whether thermal tolerance is associated with water temperature among sites. According to expectations based on the effect of an urban heat island, maximum water temperature at stream sites was positively correlated with percent urban landcover around the sites. Moreover, CTMax among populations of C. anomalum was positively correlated with maximum water temperature at each site, suggesting that this species has likely responded to increases in temperature over the past several decades. There was no relationship between percent urban landcover and maximum water temperature in the pond systems. There was also no relationship between CTMax and maximum water temperature among L. macrochirus populations. The pond systems and populations of L. macrochirus are highly managed, which may limit local physical and biological responses to increases in air temperature. Results suggest that freshwater habitats in urban environments and the species inhabiting these areas are responding differently to recent increases in air temperature, highlighting the complexity of the physical and biological components of these systems.
Collapse
Affiliation(s)
- Megan D Pagliaro
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Jason H Knouft
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| |
Collapse
|
23
|
Spinks RK, Munday PL, Donelson JM. Developmental effects of heatwave conditions on the early life stages of a coral reef fish. ACTA ACUST UNITED AC 2019; 222:222/16/jeb202713. [PMID: 31444281 DOI: 10.1242/jeb.202713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
Abstract
Marine heatwaves, which are increasing in frequency, duration and intensity owing to climate change, are an imminent threat to marine ecosystems. On coral reefs, heatwave conditions often coincide with periods of peak recruitment of juvenile fishes and exposure to elevated temperature may affect their development. However, whether differences in the duration of high temperature exposure have effects on individual performance is unknown. We exposed juvenile spiny damselfish, Acanthochromis polyacanthus, to increasing lengths of time (3, 7, 30 and 108 days post-hatching) of elevated temperature (+2°C). After 108 days, we measured escape performance at present-day control and elevated temperatures, standard length, mass and critical thermal maximum. Using a Bayesian approach, we show that 30 days or more exposure to +2°C leads to improved escape performance, irrespective of performance temperature, possibly owing to developmental effects of high temperature on muscle development and/or anaerobic metabolism. Continued exposure to elevated temperature for 108 days caused a reduction in body size compared with the control, but not in fish exposed to high temperature for 30 days or less. By contrast, exposure to elevated temperatures for any length of time had no effect on critical thermal maximum, which, combined with previous work, suggests a short-term physiological constraint of ∼37°C in this species. Our study shows that extended exposure to increased temperature can affect the development of juvenile fishes, with potential immediate and future consequences for individual performance.
Collapse
Affiliation(s)
- Rachel K Spinks
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| |
Collapse
|
24
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Lou F, Han Z, Gao T. Transcriptomic Responses of Two Ecologically Divergent Populations of Japanese Mantis Shrimp ( Oratosquilla oratoria) under Thermal Stress. Animals (Basel) 2019; 9:ani9070399. [PMID: 31262058 PMCID: PMC6680513 DOI: 10.3390/ani9070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Rising ocean temperature would change the seawater chemistry and affect the external and internal physiology of crustaceans due to their lack of certain efficient temperature regulators. In addition, the infraspecific populations of crustaceans might also have different response strategies to the rising of temperature. Therefore, we identified the transcriptomic variations to the same thermal stress between ecologically divergent populations of Oratosquilla oratoria. The aim of this study was to investigate the population-specific function genes and relevant pathways in response to thermal stress in O. oratoria. The results showed that gene-expressed variation was in a population-specific pattern, which indicated that the local environment could lead to the evolvement of changes in gene regulation, ultimately leading to adaptive divergences. Additionally, we found several genes with large pleiotropic effects in the Zhoushan population, which might indicate that the regulation mechanisms of the Zhoushan population were more efficient than those of the Qingdao population under same thermal stress. The results provided some novel insights into the local adaptive differences of the infraspecific populations of O. oratoria and other crustaceans. Abstract Crustaceans are generally considered more sensitive to ocean warming due to their lack of certain efficient regulators. However, the alterations in the physiology and behavior of crustaceans in response to thermal stress differ vastly even among the infraspecific populations of heterogeneous landscapes. Consequently, understanding the impact of temperature fluctuation on crustacean infraspecific populations might be essential for maintaining a sustainable persistence of populations at existing locations. In the present study, we chose the Japanese mantis shrimp (Oratosquilla oratoria) as the representative crustacean population, and conducted transcriptome analyses in two divergent O. oratoria populations (the Zhoushan and Qingdao populations) under same thermal stress (20–28 °C) to identify the population-specific expression response to thermal stress. The results showed significant differences in gene expressions, GO terms and metabolic pathways between the two populations. We hypothesized that intraspecific mutations in the same or different genes might lead to thermal adaptive divergences. Temperature increases from 20–28 °C produced significant enrichment in GO terms and altered the metabolic pathways in the Zhoushan population despite the lack of differentially expressed unigenes. Therefore, several functional genes with large pleiotropic effects may underlie the response to thermal stress in the Zhoushan population. Furthermore, the most significantly enriched biological processes of the Qingdao population were associated with the state or activity of cells and its significant enriched pathways with genetic information processing as well as immune and environmental information processing. In contrast, the differentially regulated unigenes of the Zhoushan population were primarily involved in the regulatory cellular and transcription processes and the most significant pathways found were metabolic and digestive. Consequently, the regulatory mechanisms of the Zhoushan population are probably more efficient than those of the Qingdao population under the same thermal stress.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
26
|
Ern R. A mechanistic oxygen- and temperature-limited metabolic niche framework. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180540. [PMID: 31203757 DOI: 10.1098/rstb.2018.0540] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The abundance and distribution of fishes and other water-breathing ectotherms are partially shaped by the capacities of individuals to perform ecologically relevant functions, which collectively determine whole-organism performance. Aerobic scope (AS) quantifies the capacity of the cardiorespiratory system to supply tissues with oxygen for fuelling such functions. Aquatic hypoxia and water temperature are principal environmental factors affecting the AS of water-breathing ectotherms. Although it is intuitive that animal energetics will be of ecological significance, many studies argue against a hypothesized overarching link between AS, whole-organism performance, and shifts in the abundance and distribution of water-breathing ectotherms with environmental change. Consequently, relationships between AS and ecologically relevant performance traits must be established for individual species. This article proposes a mechanistic framework for integrating and correlating experimental traits for assessing the AS, anaerobic capacity (AC) and range boundaries of water-breathing ectotherms exposed to progressive aquatic hypoxia and rising water temperature. The framework also describes cardiorespiratory thermal tolerance and proposes an empirical definition of the mechanism underlying the critical thermal maximum in species with oxygen-dependent upper thermal limits. Incorporating performance traits, exemplified with preference and avoidance responses, may provide information about the role of metabolism in shaping whole-organism performance, and the potential applicability of AS and AC in species distribution models. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Collapse
Affiliation(s)
- Rasmus Ern
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, Aalborg 9220 , Denmark
| |
Collapse
|
27
|
Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G, Rodgers GG, Booth DJ, Munday PL. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180186. [PMID: 30966966 PMCID: PMC6365866 DOI: 10.1098/rstb.2018.0186] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | | | - Will F. Figueira
- University of Sydney, School of Life and Environmental Sciences, Sydney 2006, Australia
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Craig R. Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeffrey M. Leis
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
- Australian Museum Research Institute, Sydney, New South Wales 2001, Australia
| | - Scott D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Dustin Marshall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John M. Pandolfi
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gretta Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Giverny G. Rodgers
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David J. Booth
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| |
Collapse
|
28
|
Laubenstein TD, Rummer JL, McCormick MI, Munday PL. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci Rep 2019; 9:4265. [PMID: 30862781 PMCID: PMC6414711 DOI: 10.1038/s41598-018-36747-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.
Collapse
Affiliation(s)
- Taryn D Laubenstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
29
|
Scott ME, Heupel MR, Simpfendorfer CA, Matley JK, Pratchett MS. Latitudinal and seasonal variation in space use by a large, predatory reef fish,
Plectropomus leopardus. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Molly E. Scott
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| | | | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Queensland Australia
| | - Jordan K. Matley
- Great Lakes Institute for Environmental Research University of Windsor Windsor Canada
| | - Morgan S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| |
Collapse
|
30
|
Asch RG, Erisman B. Spawning aggregations act as a bottleneck influencing climate change impacts on a critically endangered reef fish. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Rebecca G. Asch
- Department of Biology; East Carolina University; Greenville North Carolina
| | - Brad Erisman
- Marine Science Institute; University of Texas at Austin; Port Aransas Texas
| |
Collapse
|
31
|
Chase TJ, Nowicki JP, Coker DJ. Diurnal foraging of a wild coral-reef fish Parapercis australis in relation to late-summer temperatures. JOURNAL OF FISH BIOLOGY 2018; 93:153-158. [PMID: 29873403 DOI: 10.1111/jfb.13644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
In situ observations of diurnal foraging behaviour of a common site-attached shallow reef mesopredator Parapercis australis during late summer, revealed that although diet composition was unaffected by seawater temperature (range 28.3-32.4°C), feeding strikes and distance moved increased with temperature up to 30.5°C, beyond which they sharply declined, indicative of currently living beyond their thermal optimum. Diel feeding strikes and distance moved were however, tightly linked to ambient temperature as it related to the population's apparent thermal optimum, peaking at times when it was approached (1230 and 1700 h) and declining up to four fold at times deviating from this. These findings suggest that although this population may be currently living beyond its thermal optimum, it copes by down regulating energetically costly foraging movement and consumption and under future oceanic temperatures, these behavioural modifications are probably insufficient to avoid deleterious effects on population viability without the aid of long-term acclimation or adaptation.
Collapse
Affiliation(s)
- Tory John Chase
- Marine Biology and Aquaculture Department, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Jessica P Nowicki
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- Biology Department, Stanford University, Stanford, California
| | - Darren J Coker
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Matis PA, Donelson JM, Bush S, Fox RJ, Booth DJ. Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean? GLOBAL CHANGE BIOLOGY 2018; 24:3158-3169. [PMID: 29658157 DOI: 10.1111/gcb.14166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models.
Collapse
Affiliation(s)
- Paloma A Matis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Jennifer M Donelson
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Stephen Bush
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Rebecca J Fox
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Booth
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
33
|
Davis BE, Flynn EE, Miller NA, Nelson FA, Fangue NA, Todgham AE. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO 2 -acidification. GLOBAL CHANGE BIOLOGY 2018; 24:e655-e670. [PMID: 29155460 DOI: 10.1111/gcb.13987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH ] and ventilation rate [fV ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH , fV and M˙O2 significantly increased with warming, but not with elevated PCO2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2 . Sustained increases in fV and M˙O2 after 28 days exposure to elevated PCO2 indicate additive (fV ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Erin E Flynn
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Nathan A Miller
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Romberg Tiburon Center, San Francisco State University, Tiburon, CA, USA
| | - Frederick A Nelson
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Department of Biology, Howard University, Washington, DC, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
34
|
Pauly D, Cheung WWL. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. GLOBAL CHANGE BIOLOGY 2018; 24:e15-e26. [PMID: 28833977 DOI: 10.1111/gcb.13831] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
One of the main expected responses of marine fishes to ocean warming is decrease in body size, as supported by evidence from empirical data and theoretical modeling. The theoretical underpinning for fish shrinking is that the oxygen supply to large fish size cannot be met by their gills, whose surface area cannot keep up with the oxygen demand by their three-dimensional bodies. However, Lefevre et al. (Global Change Biology, 2017, 23, 3449-3459) argue against such theory. Here, we re-assert, with the Gill-Oxygen Limitation Theory (GOLT), that gills, which must retain the properties of open surfaces because their growth, even while hyperallometric, cannot keep up with the demand of growing three-dimensional bodies. Also, we show that a wide range of biological features of fish and other water-breathing organisms can be understood when gill area limitation is used as an explanation. We also note that an alternative to GOLT, offering a more parsimonious explanation for these features of water-breathers has not been proposed. Available empirical evidence corroborates predictions of decrease in body sizes under ocean warming based on GOLT, with the magnitude of the predicted change increases when using more species-specific parameter values of metabolic scaling.
Collapse
Affiliation(s)
- Daniel Pauly
- Institute for the Oceans and Fisheries, the University of British Columbia, Vancouver, BC, Canada
| | - William W L Cheung
- Institute for the Oceans and Fisheries, the University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
A large predatory reef fish species moderates feeding and activity patterns in response to seasonal and latitudinal temperature variation. Sci Rep 2017; 7:12966. [PMID: 29021605 PMCID: PMC5636919 DOI: 10.1038/s41598-017-13277-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Climate-driven increases in ocean temperatures are expected to affect the metabolic requirements of marine species substantially. To mitigate the impacts of increasing temperatures in the short-term, it may be necessary for ectothermic organisms to alter their foraging behaviour and activity. Herein, we investigate seasonal variation in foraging behaviour and activity of latitudinally distinct populations of a large coral reef predator, the common coral trout, Plectropomus leopardus, from the Great Barrier Reef, Australia. P. leopardus exhibited increased foraging frequency in summer versus winter time, irrespective of latitude, however, foraging frequency substantially declined at water temperatures >30 °C. Foraging frequency also decreased with body size but there was no interaction with temperature. Activity patterns were directly correlated with water temperature; during summer, the low-latitude population of P. leopardus spent up to 62% of their time inactive, compared with 43% for the high-latitude population. The impact of water temperature on activity patterns was greatest for larger individuals. These results show that P. leopardus moderate their foraging behaviour and activity according to changes in ambient temperatures. It seems likely that increasing ocean temperatures may impose significant constraints on the capacity of large-bodied fishes to obtain sufficient prey resources while simultaneously conserving energy.
Collapse
|
36
|
Johansen JL, Esbaugh AJ. Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:82-89. [PMID: 28395197 DOI: 10.1016/j.aquatox.2017.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 05/25/2023]
Abstract
Acute exposure to crude oil polycyclic aromatic hydrocarbons (PAH) can severely impair cardiorespiratory function and swim performance of larval fish; however, the effects of acute oil exposure on later life stages and the capacity for subsequent recovery is less clear. Red drum (Sciaenops ocellatus) is an economically important apex predator native to the Gulf of Mexico, which was directly exposed to the 2010 Deep Water Horizon (DWH) oil spill. Here we examine impact and recovery of young adult red drum from exposure to concentrations of 0, 4.1, and 12.1μgL-1 ΣPAH50 naturally weathered oil-water accommodated fractions (geometric mean), which are well within the range of concentrations measured during the DWH incident. We focused on aerobic scope (ASc), burst- and critical swimming speeds (Uburst and Ucrit), cost of transport (COT), as well as the capacity to repay oxygen debt following exhaustive exercise (EPOC), which are critical parameters for success of all life stages of fishes. A 24h acute exposure to 4.1μgL-1 ΣPAH caused a significant 9.7 and 12.6% reduction of Uburst and Ucrit respectively, but no change in ASc, COT or EPOC, highlighting a decoupled effect on the respiratory and swimming systems. A higher exposure concentration, 12.1μgL-1 ΣPAH, caused an 8.6 and 8.4% impairment of Uburst and Ucrit, as well as an 18.4% reduction in ASc. These impairments persisted six weeks post-exposure, suggesting that recorded impacts are entrenched. Large predatory fishes are critically dependent on the cardiorespiratory and swimming systems for ecological fitness, and long-term impairment of performance due to acute oil exposure suggests that even acute exposure events may have long lasting impacts on the ecological fitness of affected populations.
Collapse
Affiliation(s)
- J L Johansen
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA.
| | - A J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA
| |
Collapse
|
37
|
Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ, Clark TD. Global warming may disproportionately affect larger adults in a predatory coral reef fish. GLOBAL CHANGE BIOLOGY 2017; 23:2230-2240. [PMID: 27809393 DOI: 10.1111/gcb.13552] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.
Collapse
Affiliation(s)
- Vanessa Messmer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Andrew S Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Andrew J Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Darren J Coker
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Kingdom of Saudi Arabia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Timothy D Clark
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
- University of Tasmania, and CSIRO Agriculture and Food, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
38
|
Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming? GLOBAL CHANGE BIOLOGY 2017; 23:566-577. [PMID: 27593976 DOI: 10.1111/gcb.13488] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.
Collapse
Affiliation(s)
- Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
39
|
Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci Rep 2017; 7:40571. [PMID: 28094310 PMCID: PMC5240134 DOI: 10.1038/srep40571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/08/2016] [Indexed: 11/08/2022] Open
Abstract
Climate warming is likely to interact with other stressors to challenge the physiological capacities and survival of phenotypes within populations. This may be especially true for the billions of fishes per year that undergo vigorous exercise prior to escaping or being intentionally released from fishing gear. Using adult coral grouper (Plectropomus leopardus), an important fisheries species throughout the Indo-Pacific, we show that population-level survival following vigorous exercise is increasingly compromised as temperatures increase from current-day levels (100-67% survival at 24-30 °C) to those projected for the end of the century (42% survival at 33 °C). Intriguingly, we demonstrate that high-performance individuals take longer to recover to a resting metabolic state and subsequently have lower survival in warm water compared with conspecifics that exercise less vigorously. Moreover, we show that post-exercise mortality of high-performance phenotypes manifests after 3-13 d at the current summer maximum (30 °C), while mortality at 33 °C occurs within 1.8-14.9 h. We propose that wild populations in a warming climate may become skewed towards low-performance phenotypes with ramifications for predator-prey interactions and community dynamics. Our findings highlight the susceptibility of phenotypic diversity to fishing activities and demonstrate a mechanism that may contribute to fishing-induced evolution in the face of ongoing climate change.
Collapse
|
40
|
Harborne AR, Rogers A, Bozec YM, Mumby PJ. Multiple Stressors and the Functioning of Coral Reefs. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:445-468. [PMID: 27575738 DOI: 10.1146/annurev-marine-010816-060551] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
Collapse
Affiliation(s)
- Alastair R Harborne
- Department of Biological Sciences, Florida International University, North Miami, Florida 33181;
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Alice Rogers
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Yves-Marie Bozec
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Peter J Mumby
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| |
Collapse
|
41
|
Munday PL, Donelson JM, Domingos JA. Potential for adaptation to climate change in a coral reef fish. GLOBAL CHANGE BIOLOGY 2017; 23:307-317. [PMID: 27469983 DOI: 10.1111/gcb.13419] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/08/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.
Collapse
Affiliation(s)
- Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Jose A Domingos
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
42
|
McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C, Killen SS, Lefevre S, Marras S, Michaelidis B, Nilsson GE, Peck MA, Perez-Ruzafa A, Rijnsdorp AD, Shiels HA, Steffensen JF, Svendsen JC, Svendsen MBS, Teal LR, van der Meer J, Wang T, Wilson JM, Wilson RW, Metcalfe JD. Conservation physiology of marine fishes: state of the art and prospects for policy. CONSERVATION PHYSIOLOGY 2016; 4:cow046. [PMID: 27766156 PMCID: PMC5070530 DOI: 10.1093/conphys/cow046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Collapse
Affiliation(s)
- David J. McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095 Montpellier, France
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 413 90 Gothenburg, Sweden
| | - Denis Chabot
- Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, CanadaG5H 3Z4
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, ZI Pointe du Diable. CS 10070, 29280 Plouzané, France
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B6
| | | | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paolo Domenici
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Pedro M. Guerreiro
- CCMAR – Centre for Marine Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, 5020 Bergen, Norway
| | - Shaun S. Killen
- Institute of Biodiversity,Animal Health and Comparative Medicine, College of Medical,Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sjannie Lefevre
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Stefano Marras
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Göran E. Nilsson
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Myron A. Peck
- Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg 22767, Germany
| | - Angel Perez-Ruzafa
- Department of Ecology and Hydrology, Faculty of Biology, Espinardo, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Murcia, Spain
| | - Adriaan D. Rijnsdorp
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Holly A. Shiels
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Jon C. Svendsen
- Section for Ecosystem-based Marine Management, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark
| | - Morten B. S. Svendsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Lorna R. Teal
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Jaap van der Meer
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonathan M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4050-123 Porto, Portugal
| | - Rod W. Wilson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, ExeterEX4 4QD, UK
| | - Julian D. Metcalfe
- Centre for Environment,Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| |
Collapse
|
43
|
Brooker RM, Feeney WE, White JR, Manassa RP, Johansen JL, Dixson DL. Using insights from animal behaviour and behavioural ecology to inform marine conservation initiatives. Anim Behav 2016; 120:211-221. [PMID: 29104297 PMCID: PMC5665575 DOI: 10.1016/j.anbehav.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The impacts of human activities on the natural world are becoming increasingly apparent, with rapid development and exploitation occurring at the expense of habitat quality and biodiversity. Declines are especially concerning in the oceans, which hold intrinsic value due to their biological uniqueness as well as their substantial sociological and economic importance. Here, we review the literature and investigate whether incorporation of knowledge from the fields of animal behaviour and behavioural ecology may improve the effectiveness of conservation initiatives in marine systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be used to inform the design of marine protected areas, (2) how protecting species that hold specific ecological niches may be of particular importance for maximizing the preservation of biodiversity, (3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes of stock populations and whether changes to current practices may lessen this skew and reinforce population persistence, and (4) how understanding the behavioural and physiological responses of species to a changing environment may provide essential insights into areas of particular vulnerability for prioritized conservation attention. The complex nature of conservation programmes inherently results in interdisciplinary responses, and the incorporation of knowledge from the fields of animal behaviour and behavioural ecology may increase our ability to stem the loss of biodiversity in marine environments.
Collapse
Affiliation(s)
- Rohan M. Brooker
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
| | - William E. Feeney
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
- Department of Zoology, University of Cambridge, Cambridge, U.K
| | - James R. White
- College of Tropical and Marine Science, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Rachel P. Manassa
- Water Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Jacob L. Johansen
- Marine Science Institute, University of Texas, Port Aransas, TX, U.S.A
| | - Danielle L. Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, DE, U.S.A
| |
Collapse
|
44
|
Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. DIVERSITY-BASEL 2016. [DOI: 10.3390/d8020012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Hoey AS, Feary DA, Burt JA, Vaughan G, Pratchett MS, Berumen ML. Regional variation in the structure and function of parrotfishes on Arabian reefs. MARINE POLLUTION BULLETIN 2016; 105:524-531. [PMID: 26608505 DOI: 10.1016/j.marpolbul.2015.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Parrotfishes (f. Labridae) are a unique and ubiquitous group of herbivorous reef fishes. We compared the distribution and ecosystem function (grazing and erosion) of parrotfishes across 75 reefs in Arabia. Our results revealed marked regional differences in the abundance, and taxonomic and functional composition of parrotfishes between the Red Sea, Arabian Sea, and Arabian Gulf. High densities and diversity of parrotfishes, and high rates of grazing (210% year(-1)) and erosion (1.57 kgm(-2)year(-1)) characterised Red Sea reefs. Despite Arabian Sea and Red Sea reefs having broadly comparable abundances of parrotfishes, estimates of grazing (150% year(-1)) and erosion (0.43 kgm(-2)year(-1)) were markedly lower in the Arabian Sea. Parrotfishes were extremely rare within the southern Arabian Gulf, and as such rates of grazing and erosion were negligible. This regional variation in abundance and functional composition of parrotfishes appears to be related to local environmental conditions.
Collapse
Affiliation(s)
- Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia; Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - David A Feary
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - John A Burt
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Grace Vaughan
- Biology, New York University, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Q4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Lefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. CONSERVATION PHYSIOLOGY 2016; 4:cow009. [PMID: 27382472 PMCID: PMC4922249 DOI: 10.1093/conphys/cow009] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 05/22/2023]
Abstract
With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences,
University of Oslo, Oslo NO-0316,
Norway
| |
Collapse
|
47
|
Matley JK, Fisk AT, Tobin AJ, Heupel MR, Simpfendorfer CA. Diet-tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:29-44. [PMID: 26661968 DOI: 10.1002/rcm.7406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 05/13/2023]
Abstract
RATIONALE Stable isotope ratios (δ(13)C and δ(15)N values) provide a unique perspective into the ecology of animals because the isotope ratio values of consumers reflect the values in food. Despite the value of stable isotopes in ecological studies, the lack of species-specific experimentally derived diet-tissue discrimination factors (DTDFs) and turnover rates limits their application at a broad scale. Furthermore, most aquatic feeding experiments use temperate, fast-growing fish species and few have considered medium- to large-sized adults with low growth rates from tropical ecosystems. METHODS A controlled-diet stable isotope feeding trial was conducted over a 196-day period for the adult predatory reef fish leopard coralgrouper (Plectropomus leopardus). This study calculated δ(13)C and δ(15)N DTDFs and turnover rates in five tissues (liver, plasma, red blood cells (RBC), fin, and muscle) using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. In addition, the effect of chemical lipid extraction (LE) on stable isotope values was examined for each tissue. RESULTS Turnover was mainly influenced by metabolism (as opposed to growth) with LE δ(15)N half-life values lowest in fin (37 days) and plasma (66 days), and highest in RBC (88 days) and muscle (126 days). The diet-tissue discrimination factors for δ(15)N values in all tissues (Δ(15)N: -0.15 to 1.84‰) were typically lower than commonly reported literature values. Lipid extraction altered both δ(15) N and δ(13)C values compared with untreated samples; however, for the δ(15)N values, the differences were small (mean δ(15)N(LE-Bulk) <0.46‰ in all tissues). CONCLUSIONS This study informs future interpretation of stable isotope data for medium- to large-sized fish and demonstrates that DTDFs developed for temperate fish species, particularly for δ(15)N values, may not apply to tropical species. Sampling of muscle and/or RBC is recommended for a relatively long-term representation of feeding habits, while plasma and/or fin should be used for a more recent indication of diet.
Collapse
Affiliation(s)
- J K Matley
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - A T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada, N9B 3P4
| | - A J Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - M R Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, Qld, 4810, Australia
| | - C A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
48
|
Johansen J, Pratchett M, Messmer V, Coker D, Tobin A, Hoey A. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean. Sci Rep 2015; 5:13830. [PMID: 26345733 PMCID: PMC4561880 DOI: 10.1038/srep13830] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/07/2015] [Indexed: 11/08/2022] Open
Abstract
Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries.
Collapse
Affiliation(s)
- J.L. Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, 32080, Florida, USA
| | - M.S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - V. Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| | - D.J. Coker
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Kingdom of Saudi Arabia
| | - A.J. Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - A.S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
49
|
Animal studies reveal tangible effects of climate change. Lab Anim (NY) 2014; 43:113-4. [PMID: 24651777 DOI: 10.1038/laban.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|