1
|
Liu D, Esquivel-Muelbert A, Acil N, Astigarraga J, Cienciala E, Fridman J, Kunstler G, Matthews TJ, Ruiz-Benito P, Sadler JP, Schelhaas MJ, Suvanto S, Talarczyk A, Woodall CW, Zavala MA, Zhang C, Pugh TAM. Mapping multi-dimensional variability in water stress strategies across temperate forests. Nat Commun 2024; 15:8909. [PMID: 39414780 PMCID: PMC11484845 DOI: 10.1038/s41467-024-53160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
Collapse
Affiliation(s)
- Daijun Liu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK.
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK.
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| | - Adriane Esquivel-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
| | - Nezha Acil
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
- National Centre for Earth Observation, University of Leicester, LE4 5SP, Leicester, UK
- Institute for Environmental Futures, School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, Leicester, UK
| | - Julen Astigarraga
- Universidad de Alcalá, Departamento de Ciencias de la Vida, Grupo de Ecología y Restauración Forestal (FORECO), 28805, Alcalá de Henares, Spain
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Cs. Armady 655, 254 01, Jilove u Prahy, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4b, 603 00, Brno, Czech Republic
| | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE901-83, Umeå, Sweden
| | - Georges Kunstler
- Univ. Grenoble Alpes, INRAE, LESSEM, F-38402, St-Martin-d'Hères, France
| | - Thomas J Matthews
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group/CHANGE-Global Change and Sustainability Institute and Universidade dos Açores-Faculty of Agricultural Sciences and Environment, PT-9700-042, Angra do Heroísmo, Azores, Portugal
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Departamento de Ciencias de la Vida, Grupo de Ecología y Restauración Forestal (FORECO), 28805, Alcalá de Henares, Spain
- Universidad de Alcalá, Departamento de Geología, Geografía y Medio Ambiente, Grupo de Investigación en Teledetección Ambiental, 28801, Alcalá de Henares, Madrid, Spain
| | - Jonathan P Sadler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
| | - Mart-Jan Schelhaas
- Wageningen University and Research, Wageningen Environmental Research (WENR), Droevendaalsesteeg 3, 6708PB, Wageningen, The Netherlands
| | - Susanne Suvanto
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Andrzej Talarczyk
- Forest and Natural Resources Research Centre/Taxus IT, ul. Płomyka 56A, 02-491, Warszawa, Poland
| | - Christopher W Woodall
- The United States Department of Agriculture (USDA) Forest Service, Northern Research Station, NH 03824, Durham, USA
| | - Miguel A Zavala
- Universidad de Alcalá, Departamento de Ciencias de la Vida, Grupo de Ecología y Restauración Forestal (FORECO), 28805, Alcalá de Henares, Spain
| | - Chao Zhang
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Thomas A M Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Birmingham, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 22362, Lund, Sweden
| |
Collapse
|
2
|
Chen X, Reich PB, Taylor AR, An Z, Chang SX. Resource availability enhances positive tree functional diversity effects on carbon and nitrogen accrual in natural forests. Nat Commun 2024; 15:8615. [PMID: 39366994 PMCID: PMC11452543 DOI: 10.1038/s41467-024-53004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Forests harbor extensive biodiversity and act as a strong global carbon and nitrogen sink. Although enhancing tree diversity has been shown to mitigate climate change by sequestering more carbon and nitrogen in biomass and soils in manipulative experiments, it is still unknown how varying environmental gradients, such as gradients in resource availability, mediate the effects of tree diversity on carbon and nitrogen accrual in natural forests. Here, we use Canada's National Forest Inventory data to explore how the relationships between tree diversity and the accumulation of carbon and nitrogen in tree biomass and soils vary with resource availability and environmental stressors in natural forests. We find that the positive relationship between tree functional diversity (rather than species richness) and the accumulation of carbon in tree biomass strengthens with increasing light and soil nutrient availability. Moreover, the positive relationship between tree functional diversity and the accumulation of carbon and nitrogen in both organic and mineral soil horizons is more pronounced at sites with greater water and nutrient availabilities. Our results highlight that conserving and promoting functionally diverse forests in resource-rich environments could play a greater role than in resource-poor environments in enhancing carbon and nitrogen sequestration in Canada's forests.
Collapse
Affiliation(s)
- Xinli Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - Peter B Reich
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Anthony R Taylor
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Zhengfeng An
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Song C, Fu Y, Zhu S, Xu W, Ye Q, Yuan W. Linkages between stem vulnerability curves and tree demography and their implications for plant physiological modeling. TREE PHYSIOLOGY 2024; 44:tpae078. [PMID: 38959856 DOI: 10.1093/treephys/tpae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Vulnerability curves (VCs) have been measured extensively to describe the differences in plant vulnerability to cavitation. Although the roles of hydraulic conductivity (Ks,max) and hydraulic safety (P50, embolism resistance), both of which are parameters of VCs ('sigmoidal' type), in tree demography have been evaluated across different forests, the direct linkages between VCs and tree demography are rarely explored. In this study, we combined measured VCs and plot data of 16 tree species in Panamanian seasonal tropical forests to investigate the connections between VCs and tree mortality, recruitment and growth. We found that the mortality and recruitment rates of evergreen species were most significantly positively correlated with P50. However, the mortality and recruitment rates of deciduous species only exhibited significant positive correlations with parameter a, which describes the steepness of VCs and indicates the sensitivity of conductivity loss with water potential decline, but is often neglected. These differences among evergreen and deciduous species may contribute to the poor performance of existing quantitative relationships (such as the fitting relationships for all 16 species) in capturing tree mortality and recruitment dynamics. Additionally, evergreen species presented a significant positive relationship between relative growth rate (RGR) and Ks,max, while deciduous species did not display such relationship. The RGR of both evergreen and deciduous species also displayed no significant correlations with P50 and a. Further analysis demonstrated that species with steeper VCs tended to have high mortality and recruitment rates, while species with flatter VCs were usually those with low mortality and recruitment rates. Our results highlight the important role of parameter a in tree demography, especially for deciduous species. Given that VC is a key component of plant hydraulic models, integrating measured VC rather than optimizing its parameters will help improve the ability to simulate and predict forest response to water availability.
Collapse
Affiliation(s)
- Chaoqing Song
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-Sen University, Daxue Road, Gaoxin District, Zhuhai, 519082, Guangdong, China
| | - Yangyang Fu
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-Sen University, Daxue Road, Gaoxin District, Zhuhai, 519082, Guangdong, China
| | - Shidan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Daxuedong Road 100, Xixiangtang District, Nanning, 530004, Guangxi, China
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, Guangdong, China
| | - Wenping Yuan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Zhongguancun North Street 100, Haidian District, Beijing, 100871, China
| |
Collapse
|
4
|
Hisano M, Ghazoul J, Chen X, Chen HYH. Functional diversity enhances dryland forest productivity under long-term climate change. SCIENCE ADVANCES 2024; 10:eadn4152. [PMID: 38657059 PMCID: PMC11042740 DOI: 10.1126/sciadv.adn4152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Short-term experimental studies provided evidence that plant diversity increases ecosystem resilience and resistance to drought events, suggesting diversity to serve as a nature-based solution to address climate change. However, it remains unclear whether the effects of diversity are momentary or still hold over the long term in natural forests to ensure that the sustainability of carbon sinks. By analyzing 57 years of inventory data from dryland forests in Canada, we show that productivity of dryland forests decreased at an average rate of 1.3% per decade, in concert with the temporally increasing temperature and decreasing water availability. Increasing functional trait diversity from its minimum (monocultures) to maximum value increased productivity by 13%. Our results demonstrate the potential role of tree functional trait diversity in alleviating climate change impacts on dryland forests. While recognizing that nature-based climate mitigation (e.g., planting trees) can only be partial solutions, their long-term (decadal) efficacy can be improved by enhancing functional trait diversity across the forest community.
Collapse
Affiliation(s)
- Masumi Hisano
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto, 606-8501, Japan
- Ecosystem Management, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jaboury Ghazoul
- Ecosystem Management, Institute of Terrestrial Ecosystems, Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Xinli Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
5
|
Wang X, Xu T, Xu C, Liu H, Chen Z, Li Z, Li X, Wu X. Enhanced growth resistance but no decline in growth resilience under long-term extreme droughts. GLOBAL CHANGE BIOLOGY 2024; 30:e17038. [PMID: 37987223 DOI: 10.1111/gcb.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The frequency, intensity, and duration of extreme droughts, with devastating impacts on tree growth and survival, have increased with climate change over the past decades. Assessing growth resistance and resilience to drought is a crucial prerequisite for understanding the responses of forest functioning to drought events. However, the responses of growth resistance and resilience to extreme droughts with different durations across different climatic zones remain unclear. Here, we investigated the spatiotemporal patterns in growth resistance and resilience in response to extreme droughts with different durations during 1901-2015, relying on tree-ring chronologies from 2389 forest stands over the mid- and high-latitudinal Northern Hemisphere, species-specific plant functional traits, and diverse climatic factors. The findings revealed that growth resistance and resilience under 1-year droughts were higher in humid regions than in arid regions. Significant higher growth resistance was observed under 2-year droughts than under 1-year droughts in both arid and humid regions, while growth resilience did not show a significant difference. Temporally, tree growth became less resistant and resilient to 1-year droughts in 1980-2015 than in 1901-1979 in both arid and humid regions. As drought duration lengthened, the predominant impacts of climatic factors on growth resistance and resilience weakened and instead foliar economic traits, plant hydraulic traits, and soil properties became much more important in both climatic regions; in addition, such trends were also observed temporally. Finally, we found that most of the Earth system models (ESMs) used in this study overestimated growth resistance and underestimated growth resilience under both 1-year and 2-year droughts. A comprehensive ecophysiological understanding of tree growth responses to longer and intensified drought events is urgently needed, and a specific emphasis should be placed on improving the performance of ESMs.
Collapse
Affiliation(s)
- Xiaona Wang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Taoran Xu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Chenxi Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhenju Chen
- Tree-Ring Laboratory, Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China
| |
Collapse
|
6
|
Zhang X, Tong C, Fang D, Mei T, Li Y. Different hydraulic and photosynthetic responses to summer drought between newly sprouted and established Moso bamboo culms. FRONTIERS IN PLANT SCIENCE 2023; 14:1252862. [PMID: 37900750 PMCID: PMC10602750 DOI: 10.3389/fpls.2023.1252862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
The subtropical regions in China are prone to recurrent summer droughts induced by the Western Pacific Subtropical High-Pressure, which has induced the death of tens of millions of culms of Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), a widely distributed giant bamboo with high economic and ecological values. In the future, the intensity and frequency of the summer drought are projected to increase in these areas due to global climate change, which may lead to significant age-specific mortality of Moso bamboo. So far, it is still unclear about the age-specific response mechanisms of hydraulic traits and carbon balance of Moso bamboo when it is suffering to an ongoing summer drought. This study aimed to investigate the hydraulic and photosynthetic responses of newly sprouted (1 year old) and established (2-5 years old) culms of Moso bamboo to summer drought, which was manipulated by throughfall reduction in Lin'an of Zhejiang. The results showed that both newly sprouted and established culms had a gradually weakening hydraulic conductivity and photosynthesis during the whole drought process. In the early stage of the manipulated drought, the established culms had more loss of hydraulic conductivity than the newly sprouted culms. However, the newly sprouted culms had significant more loss of hydraulic conductivity and lower photosynthetic rates and stomatal conductance in the middle and late stages of the manipulated drought. The results suggest that the newly sprouted culms were more susceptible to summer drought than established culms due to the combined effects of hydraulic damage and photosynthetic restriction, explaining why the newly sprouted culms have higher mortality than elder culms when subjected to extreme drought. These findings provided insights into the mechanisms of Moso bamboo's age-specific drought-induced mortality, which will help for the anti-drought management of bamboo.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Chazi Tong
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Dongming Fang
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- College of Horticulture, Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| |
Collapse
|
7
|
Chen X, Taylor AR, Reich PB, Hisano M, Chen HYH, Chang SX. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 2023:10.1038/s41586-023-05941-9. [PMID: 37100916 DOI: 10.1038/s41586-023-05941-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.
Collapse
Affiliation(s)
- Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Anthony R Taylor
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Peter B Reich
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Masumi Hisano
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
8
|
Ssekuubwa E, van Goor W, Snoep M, Riemer K, Wanyama F, Waiswa D, Yikii F, Tweheyo M. Tree functional composition, functional diversity, and aboveground biomass show dissimilar trajectories in a tropical secondary forest restored through assisted natural regeneration. Ecol Evol 2023; 13:e9870. [PMID: 36919016 PMCID: PMC10008352 DOI: 10.1002/ece3.9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
The growing trend of agricultural abandonment requires an understanding of the development of secondary forests on old fields in the context of restoration. However, few studies examine the regeneration trajectories of functional composition and functional diversity in afrotropical secondary forests. We tested how functional composition, diversity, and aboveground biomass (AGB) change with age and determined restoration success for a secondary forest restored through assisted natural regeneration in Uganda. We assessed the influence of distance to forests on regeneration. We sampled trees in 63 plots (2000 m2 each) in the secondary forest (16-22-year old) and five plots in an old-growth forest in 2011, 2014 and 2017. We computed functional composition (community-weighted means-CWM) and diversity using categorical (habitat type, dispersal mode, fruit size, and successional group) and continuous traits (wood density and maximum height) of the species and calculated AGB. The secondary forest showed dissimilar trajectories of functional composition, diversity, and AGB. After 16-22 years, the secondary forest had not yet reached equivalent values of most attributes of functional composition, diversity and AGB in the old-growth forest. The distance to forests had a negative effect on CWM of forest-dependent species, nonpioneer light demanders, and functional divergence and a positive effect on CWM of pioneer species. We show that assisted natural regeneration can enhance the functional composition, functional diversity, and AGB of degraded forests and that continued monitoring is needed to attain full recovery. In planning passive restoration, sites closer to existing forests should be prioritized in order to achieve faster recovery.
Collapse
Affiliation(s)
- Enock Ssekuubwa
- Department of Forestry, Biodiversity and TourismMakerere UniversityKampalaUganda
| | | | | | | | | | - Daniel Waiswa
- Department of Geography, Geo‐informatics and Climatic SciencesMakerere UniversityKampalaUganda
| | - Fred Yikii
- Department of Environmental ManagementMakerere UniversityKampalaUganda
| | - Mnason Tweheyo
- Department of Forestry, Biodiversity and TourismMakerere UniversityKampalaUganda
| |
Collapse
|
9
|
Díaz‐Martínez P, Ruiz‐Benito P, Madrigal‐González J, Gazol A, Andivia E. Positive effects of warming do not compensate growth reduction due to increased aridity in Mediterranean mixed forests. Ecosphere 2023. [DOI: 10.1002/ecs2.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Paloma Díaz‐Martínez
- Instituto de Ciencias Agrarias Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Paloma Ruiz‐Benito
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida Universidad de Alcala Alcalá de Henares Spain
- Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment University of Alcala Alcalá de Henares Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE‐CSIC) Zaragoza Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
10
|
Meyer P, Spînu AP, Mölder A, Bauhus J. Management alters drought-induced mortality patterns in European beech (Fagus sylvatica L.) forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1157-1170. [PMID: 35137514 DOI: 10.1111/plb.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The high tree mortality during the dry and hot years of 2018-2019 in Europe has triggered concerns on the future of European beech (Fagus sylvatica L.) forests under climate change and raised questions as to whether forest management may increase tree mortality. We compared long-term mortality rates of beech between managed and unmanaged stands including the years 2018-2019 at 11 sites in Hesse, Germany. We hypothesized that mortality would increase with climate water deficits during the growing season, initial stand density, decreasing dominance of trees, and decreasing intensity of tree removals. Initial stand density, tree removals, the climate water balance and the competitive status of trees were used as predictor variables. Mean annual natural mortality rates ranged between 0.5% and 2.1%. Even in the drought years, we observed no signs of striking canopy disintegration. The significantly higher mortality (1.6-2.1%) in unmanaged stands during the drought years 2018 and 2019 was largely confined to suppressed trees. There was no significant increase of mortality in managed stands during the drought years, but a shift in mortality towards larger canopy trees. Our study did not confirm a general influence of management, in the form of tree removals, on mortality rates. Yet, we found that during drought years, management changed the distribution of mortality within the tree community. To analyse the effects of management on mortality rates more comprehensively, a wider gradient in site moisture conditions, including sites drier than in this study, and longer post-drought periods should be employed.
Collapse
Affiliation(s)
- P Meyer
- Department of Forest Nature Conservation, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - A P Spînu
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - A Mölder
- Department of Forest Nature Conservation, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - J Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Yu J, Zhang X, Xu C, Hao M, Choe C, He H. Thinning can increase shrub diversity and decrease herb diversity by regulating light and soil environments. FRONTIERS IN PLANT SCIENCE 2022; 13:948648. [PMID: 35991461 PMCID: PMC9389291 DOI: 10.3389/fpls.2022.948648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Tree thinning affects the light environment, which in turn affects the growth and survival of understory vegetation, thus improving species diversity and nutrient cycling, as well as the ecological habitat factors. However, the response of understory vegetation to the thinning intensity and short-time effects in the temperate broadleaf-conifer mixed forest is not completely clear. In this study, four permanent plots with a total area of 4 hm2 were established in a mixed broadleaf-conifer forest in northeast China, with thinning intensities of 20% (light thinning, LT), 35% (medium thinning, MT), 55% (heavy thinning, HT) and the unthinned plot (CK), respectively, in accordance with the basal area. The responses of species diversity to changes in understory vegetation were conducted by a structural equation model (SEM). The results showed that compared with CK, thinning significantly increased the photosynthetically active radiation (PAR) and the light quality (R/FR) (p < 0.05), while decreased the contents of soil total nitrogen (TN), total phosphorous (TP), organic matter (OM), nitrate nitrogen (NN), ammonia nitrogen (AN) and pH. The degree of fragmentation of light factors among the treatment plots gradually decreased as thinning intensity increased. Among all the thinning treatments, PAR and R/FR were found to be the optimal light condition when the forest thinning intensity was 55%. The light condition was found to have a significant negative correlation with soil TN, TP, OM, and AN. While the soil nutrients were positively correlated with herbaceous layer diversity but negatively correlated with shrub layer diversity. The soil nutrients were lost after thinning in a short time and herb diversity decreased, but shrub diversity increased significantly compared with unthinned plots. For the understory vegetation, the species diversity of shrub and herb layer were showed to be more sensitive to soil nutrients than light environment.
Collapse
Affiliation(s)
- Jiatong Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, China
| | - Xinna Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, China
| | - Minhui Hao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - CholHo Choe
- Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea
| | - Huaijiang He
- Jilin Provincial Academy of Forestry Sciences Faculty of Life Science, Changchun, China
| |
Collapse
|
12
|
Zhang X, Fan Z, Shi Z, Pan L, Kwon S, Yang X, Liu Y. Tree characteristics and drought severity modulate the growth resilience of natural Mongolian pine to extreme drought episodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154742. [PMID: 35341836 DOI: 10.1016/j.scitotenv.2022.154742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Global climate change and the increase in the frequency and intensity of drought have led to widespread forest decline and tree mortality. Studying the resilience components of tree growth to drought, including resistance (Rt), recovery (Rc), and resilience (Rs) and the influencing factors, helps assess forests' production and ecological stability under a changing climate. This study analyzed the responses of three resilience components of natural Mongolian pine (Pinus sylvestris var. mongolica) to drought events by examining individual-tree characteristics in two sites of Hulunbuir using the linear mixed effect model. The result showed that drought severity, diameter at breast height (dbh), pre-drought growth, and growth variability prior to drought had significant effects on the three resilience components of Mongolian pine growth. Specifically, as drought severity, dbh and growth variability increased, the Rt and Rs decreased, but Rc increased, showing a trade-off relationship with Rt. However, the Rt, Rc, and Rs decreased with pre-drought growth. Inter-tree competition and tree age also significantly impacted two resilience components. Besides, the interaction term between tree competition and tree age negatively affects Rt and Rs but positively affects Rc. Our findings highlight the influence of drought severity and individual-tree characteristics on drought resilience components, which can serve the adaptive management of natural Mongolian pine forests in the future.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, China
| | - Zhaofei Fan
- School of Forestry and Wildlife Science, Auburn University, AL 36830, United States
| | - Zhongjie Shi
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, China.
| | - Leilei Pan
- Institute of Ecological Restoration, Kongju National University, Chungcheongnam-do 32439, Republic of Korea
| | - SeMyung Kwon
- Institute of Ecological Restoration, Kongju National University, Chungcheongnam-do 32439, Republic of Korea
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, China
| | - Yanshu Liu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, China
| |
Collapse
|
13
|
Gazol A, Camarero JJ, Sánchez-Salguero R, Zavala MA, Serra-Maluquer X, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martínez Del Castillo E, Ribas M, García-González I, Silla F, Camison Á, Génova M, Olano JM, Hereş AM, Yuste JC, Longares LA, Hevia A, Galván JD, Ruiz-Benito P. Tree growth response to drought partially explains regional-scale growth and mortality patterns in Iberian forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2589. [PMID: 35333426 DOI: 10.1002/eap.2589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | | | - Raúl Sánchez-Salguero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento Ciencias de la Vida, Campus Universitario, Madrid, Spain
| | | | - Emilia Gutiérrez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Martín de Luis
- Departamento de Geografía y Ordenación del Territorio - IUCA, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriel Sangüesa-Barreda
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Klemen Novak
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Vicente Rozas
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Pedro A Tíscar
- Centro de Capacitación y Experimentación Forestal, Cazorla, Spain
| | - Juan C Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | | | - Montse Ribas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio García-González
- Departamento de Botánica, Escola Politécnica Superior de Enxeñaría, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Fernando Silla
- Departamento de Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, Universidad de Salamanca, Salamanca, Spain
| | - Álvaro Camison
- Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Plasencia, Spain
| | - Mar Génova
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Olano
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Braşov, Braşov, Romania
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Jorge Curiel Yuste
- Basque Centre for Climate Change (BC3), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis A Longares
- Departamento de Geografía y Ordenación del Territorio - IUCA, Universidad de Zaragoza, Zaragoza, Spain
| | - Andrea Hevia
- Departamento de Ciencias Agroforestales, Universidad de Huelva, Huelva, Spain
| | | | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento Ciencias de la Vida, Campus Universitario, Madrid, Spain
- Remote Sensing Research Group, Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
14
|
Searle EB, Chen HYH, Paquette A. Higher tree diversity is linked to higher tree mortality. Proc Natl Acad Sci U S A 2022; 119:e2013171119. [PMID: 35500110 PMCID: PMC9171344 DOI: 10.1073/pnas.2013171119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Examining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration. Neglecting tree mortality leaves a large part of the picture undocumented. Here we show that increasingly diverse forest stands have increasingly high mortality probabilities. We found that the most species-rich stands in temperate biomes had mortality probabilities more than sevenfold higher than monospecific stands (∼0.6% year−1 in monospecific stands to 4.0% year−1 in the most species-rich stands) while in boreal stands increases were less pronounced but still significant (∼1.1% year−1 in monospecific stands to 1.8% year−1 in the most species-rich stands). Tree species richness was the third-most-important predictor of mortality in our models in temperate forests and the fifth-most-important predictor in boreal forests. Our results highlight that while the promotion of tree diversity undoubtedly has many positive effects on ecosystem functioning and the services that trees provide to humanity, it remains important to consider all aspects of forest dynamics in order to properly predict the implications of maintaining and promoting tree diversity.
Collapse
Affiliation(s)
- Eric B. Searle
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal, QC, Canada H3C 3P8
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal, QC, Canada H3C 3P8
| |
Collapse
|
15
|
Hacket‐Pain A, Foest JJ, Pearse IS, LaMontagne JM, Koenig WD, Vacchiano G, Bogdziewicz M, Caignard T, Celebias P, van Dormolen J, Fernández‐Martínez M, Moris JV, Palaghianu C, Pesendorfer M, Satake A, Schermer E, Tanentzap AJ, Thomas PA, Vecchio D, Wion AP, Wohlgemuth T, Xue T, Abernethy K, Aravena Acuña M, Daniel Barrera M, Barton JH, Boutin S, Bush ER, Donoso Calderón S, Carevic FS, de Castilho CV, Manuel Cellini J, Chapman CA, Chapman H, Chianucci F, da Costa P, Croisé L, Cutini A, Dantzer B, Justin DeRose R, Dikangadissi J, Dimoto E, da Fonseca FL, Gallo L, Gratzer G, Greene DF, Hadad MA, Herrera AH, Jeffery KJ, Johnstone JF, Kalbitzer U, Kantorowicz W, Klimas CA, Lageard JGA, Lane J, Lapin K, Ledwoń M, Leeper AC, Vanessa Lencinas M, Lira‐Guedes AC, Lordon MC, Marchelli P, Marino S, Schmidt Van Marle H, McAdam AG, Momont LRW, Nicolas M, de Oliveira Wadt LH, Panahi P, Martínez Pastur G, Patterson T, Luis Peri P, Piechnik Ł, Pourhashemi M, Espinoza Quezada C, Roig FA, Peña Rojas K, Micaela Rosas Y, Schueler S, Seget B, Soler R, Steele MA, Toro‐Manríquez M, Tutin CEG, Ukizintambara T, White L, Yadok B, Willis JL, Zolles A, Żywiec M, Ascoli D. MASTREE+: Time-series of plant reproductive effort from six continents. GLOBAL CHANGE BIOLOGY 2022; 28:3066-3082. [PMID: 35170154 PMCID: PMC9314730 DOI: 10.1111/gcb.16130] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.
Collapse
Affiliation(s)
- Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Jessie J. Foest
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science CenterFort CollinsColoradoUSA
| | | | - Walter D. Koenig
- Hastings ReservationUniversity of California BerkeleyCarmel ValleyCaliforniaUSA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental SciencesUniversity of MilanMilanItaly
| | - Michał Bogdziewicz
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- INRAELESSEMUniversity Grenoble AlpesGrenobleFrance
| | | | - Paulina Celebias
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | | | | | - Jose V. Moris
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | | | - Mario Pesendorfer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Eliane Schermer
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBEMarseilleFrance
| | - Andrew J. Tanentzap
- Ecosystems and Global Change GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Davide Vecchio
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | - Andreas P. Wion
- Graduate Degree Program in Ecology and The Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Tingting Xue
- College of Civil and Architecture and EngineeringChuzhou UniversityChina
| | - Katharine Abernethy
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
| | - Marie‐Claire Aravena Acuña
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | | | - Jessica H. Barton
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Stan Boutin
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | | | - Sergio Donoso Calderón
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Felipe S. Carevic
- Facultad de Recursos Naturales RenovablesUniversidad Arturo PratIquiqueChile
| | | | - Juan Manuel Cellini
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Colin A. Chapman
- Wilson CenterWashingtonDistrict of ColumbiaUSA
- Department of AnthropologyGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
- Shaanxi Key Laboratory for Animal ConservationNorthwest UniversityXi'anChina
| | - Hazel Chapman
- School of Biological SciencesUniversity of CanterburyCanterburyNew Zealand
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
| | | | - Patricia da Costa
- Brazilian Agricultural Research CorporationEmbrapa Meio AmbienteJaguariúnaBrazil
| | - Luc Croisé
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | - Andrea Cutini
- CREA—Research Centre for Forestry and WoodArezzoItaly
| | - Ben Dantzer
- Department of PsychologyDepartment of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | | | - Edmond Dimoto
- Agence Nationale des Parcs Nationaux (ANPN)LibrevilleGabon
| | | | - Leonardo Gallo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Georg Gratzer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - David F. Greene
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCaliforniaUSA
| | - Martín A. Hadad
- Laboratorio de Dendrocronología de Zonas ÁridasCIGEOBIO (CONICET‐UNSJ)RivadaviaArgentina
| | - Alejandro Huertas Herrera
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | - Jill F. Johnstone
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Urs Kalbitzer
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Władysław Kantorowicz
- Department of Silviculture and Genetics of Forest TreesForest Research InstituteRaszynPoland
| | - Christie A. Klimas
- Environmental Science and Studies DepartmentDePaul UniversityChicagoIllinoisUSA
| | | | - Jeffrey Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Mateusz Ledwoń
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| | - Abigail C. Leeper
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Maria Vanessa Lencinas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Michael C. Lordon
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Paula Marchelli
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Shealyn Marino
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | | | - Andrew G. McAdam
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | | | - Manuel Nicolas
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | | | - Parisa Panahi
- Botany Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | - Guillermo Martínez Pastur
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Thomas Patterson
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Pablo Luis Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA)Universidad Nacional de la Patagonia Austral (UNPA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Río GallegosArgentina
| | - Łukasz Piechnik
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Mehdi Pourhashemi
- Forest Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | | | - Fidel A. Roig
- Laboratorio de Dendrocronología e Historia AmbientalIANIGLA—CONICET‐Universidad Nacional de CuyoMendozaArgentina
- Facultad de CienciasHémera Centro de Observación de la TierraEscuela de Ingeniería ForestalUniversidad MayorSantiagoChile
| | | | - Yamina Micaela Rosas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Barbara Seget
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Rosina Soler
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Michael A. Steele
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Mónica Toro‐Manríquez
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | | | - Lee White
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement chargé du Plan Climat, des Objectifs de Development Durable et du Plan d'Affectation des TerresBoulevard TriomphaleLibrevilleGabon
| | - Biplang Yadok
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
- Biosecurity NZMinistry for Primary IndustriesWellingtonNew Zealand
| | | | - Anita Zolles
- Austrian Research Centre for Forests BFWViennaAustria
| | - Magdalena Żywiec
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| |
Collapse
|
16
|
Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand. Sci Rep 2022; 12:6882. [PMID: 35477746 PMCID: PMC9044374 DOI: 10.1038/s41598-022-10988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Large-scale abandoned agricultural areas in Southeast Asia resulted in patches of forests of multiple successions and characteristics, challenging the study of their responses to environmental changes, especially under climatic water stress. Here, we investigated seasonal variation in leaf water status and drought tolerance of dominant tree species in three multi-aged tropical forests, ranging from 5 to > 200 years old, with contrasting soil moisture in Thailand. Seasonal variation in leaf water status differed among the forests with trees in young and intermediate sites demonstrating larger differences between seasons than the old-growth forest. Although vulnerability to embolism curves revealed that trees in old-growth forest were potentially more sensitive to declining leaf water status than others, they were predicted to lose < 5% of their hydraulic capacity as opposed to 13% for the trees in the younger sites. Our results suggest that the responses to water stress of tree species in different forest ages greatly vary with a tendency of trees in younger sites to be more resilience than those in older sites. Such information would benefit the selection of tree species that could adapt well to specific environments, thus improving the strategies for managing forests of different ages under a warmer future.
Collapse
|
17
|
Griebel A, Peters JMR, Metzen D, Maier C, Barton CVM, Speckman HN, Boer MM, Nolan RH, Choat B, Pendall E. Tapping into the physiological responses to mistletoe infection during heat and drought stress. TREE PHYSIOLOGY 2022; 42:523-536. [PMID: 34612494 DOI: 10.1093/treephys/tpab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.
Collapse
Affiliation(s)
- Anne Griebel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
- Climate Change Science Institute & Environmental Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Daniel Metzen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Heather N Speckman
- Department of Botany, University of Wyoming, 1000 E. Univ. Ave, Laramie, WY 82071, USA
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| |
Collapse
|
18
|
Lloret F, Jaime LA, Margalef-Marrase J, Pérez-Navarro MA, Batllori E. Short-term forest resilience after drought-induced die-off in Southwestern European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150940. [PMID: 34699836 DOI: 10.1016/j.scitotenv.2021.150940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Drought-induced die-off in forests is becoming a widespread phenomenon across biomes, but the factors determining potential shifts in taxonomic and structural characteristics following mortality are largely unknown. We report on short-term patterns of resilience after drought-induced episodes of tree mortality across 48 monospecific forests from Morocco to Slovenia. Field surveys recorded plants growing beneath a canopy of dead, defoliated and healthy trees. Site-level structural characteristics and management legacy were also recorded. Resilience was assessed with reference to forest composition (self-replacement), structure, and changes in the climatic suitability of the replacing community relative to the climatic suitability of the dominant pre-drought species. Species climatic suitability was estimated from species distribution models calculated for the baseline 1970-2000 period. Short-term resilience decreased under higher levels of drought-induced damage to the dominant species and with evidences of management legacy. Greater resilience of structural features (fewer gaps, greater canopy height) was observed overall in forests with a larger basal area. Less gaps were also associated with greater woody species richness after drought. Overall, Fagaceae-dominated forests exhibited greater structural resilience than conifer-dominated ones. On those sites that were more climatically suited to the dominant pre-drought species, replacing communities tended to exhibit lower climatic suitability than pre-drought dominant species. There was a greater loss of climatic suitability under a legacy of management and drought intensity, but less so in the replacing communities with higher woody species richness. Our study reveals that short-term forest resilience is determined by pre-drought stand characteristics, often reflecting previous management legacies, and by the impact of drought on both the dominant pre-drought species and post-drought replacing species in terms of their climatic suitability.
Collapse
Affiliation(s)
- F Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain; Unitat d'Ecologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - L A Jaime
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - J Margalef-Marrase
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - M A Pérez-Navarro
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - E Batllori
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain; Unitat de Botànica i Micologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Hisano M, Ryo M, Chen X, Chen HYH. Rapid functional shifts across high latitude forests over the last 65 years. GLOBAL CHANGE BIOLOGY 2021; 27:3846-3858. [PMID: 33993581 DOI: 10.1111/gcb.15710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global environmental changes have strongly affected forest demographic rates, particularly amplified tree mortality in high latitude forests (e.g., two to five times greater mortality probability over the half-century). Although forest functional composition is critical for multitrophic biodiversity and ecosystem functioning, it remains unclear how functional composition has changed over time across large high latitude regions, which have been warming twice the rate of the globe as a whole. Using extensive spatial and long-term forest inventory data (17,107 plots monitored 1951-2016) across Canada, we found that after accounting for stand age-dependent functional shifts, functional composition shifted toward fast-growing deciduous broadleaved trees and higher drought tolerance over time. The temporal shift toward deciduous broadleaved trees was consistent across the baseline climate. However, over the study period, drought tolerance increased (or shade tolerance decreased) by 300% in colder boreal regions, while drought tolerance did not shift significantly in warmer temperate climates. A further analysis accounting for temporal changes in atmospheric CO2 , temperature, and water availability indicated that the functional composition of colder regions shifted toward drought tolerance more rapidly with rising CO2 than warmer regions, suggesting the greater vulnerability of boreal forests than temperate forests under ongoing global environmental changes. Future ecosystem management practices should consider spatial differences in functional responses to global environmental change, focusing on high latitude forests experiencing higher rates of warming and compositional changes.
Collapse
Affiliation(s)
- Masumi Hisano
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Masahiro Ryo
- Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg, Germany
| | - Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
20
|
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. THE NEW PHYTOLOGIST 2021; 229:2413-2445. [PMID: 32789857 DOI: 10.1111/nph.16866] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Collapse
Affiliation(s)
- Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Bastos
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Ralph F Keeling
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David J P Moore
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania, Caserta, 81100, Italy
| | | | - Kristine G Cabugao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxime Cailleret
- INRAE, UMR RECOVER, Aix-Marseille Université, 3275 route de Cézanne, Aix-en-Provence Cedex 5, 13182, France
- Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elliott Campbell
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Josep G Canadell
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
- Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, Zurich, 8093, Switzerland
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - David C Frank
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Heather Graven
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kelly Heilman
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Martin Heimann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Jürgen Knauer
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Körner
- Department of Environmental Sciences, Botany, University of Basel, Basel, 4056, Switzerland
| | - Victor O Leshyk
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Yao Liu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natasha MacBean
- Department of Geography, Indiana University, Bloomington, IN, 47405, USA
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tim R McVicar
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, 142 Mills Rd, Australian National University, Canberra, ACT, 2601, Australia
| | - Josep Penuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Julia Pongratz
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
| | - A Shafer Powell
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Terhi Riutta
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juergen Schleucher
- Department of Medical Biochemistry & Biophysics, Umeå University, Umea, 901 87, Sweden
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, Laver Building, EX4 4QF, UK
| | - William K Smith
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Benjamin Sulman
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Benton Taylor
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Margaret S Torn
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anna T Trugman
- Department of Geography, 1832 Ellison Hall, Santa Barbara, CA, 93016, USA
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | | | - Steve L Voelker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary E Whelan
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
21
|
Hereş AM, Petritan IC, Bigler C, Curtu AL, Petrea Ş, Petritan AM, Polanco-Martínez JM, Rigling A, Curiel Yuste J. Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141851. [PMID: 32898748 DOI: 10.1016/j.scitotenv.2020.141851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Worldwide increases in droughts- and heat-waves-associated tree mortality events are destabilizing the future of many forests and the ecosystem services they provide. Along with climate, understanding the impact of the legacies of past forest management is key to better explain current responses of different tree species to climate change. We studied tree mortality events that peaked in 2012 affecting one native (silver fir; growing within its natural distribution range) and two introduced (black pine and Scots; growing outside their natural distribution range) conifer species from the Romanian Carpathians. The three conifers were compared in terms of mortality events, growth trends, growth resilience to severe drought events, climate-growth relationships, and regeneration patterns. The mortality rates of the three species were found to be associated with severe drought events. Nevertheless, the native silver fir seems to undergo a self-thinning process, while the future of the remaining living black pine and Scots pine trees is uncertain as they register significant negative growth trends. Overall, the native silver fir showed a higher resilience to severe drought events than the two introduced pine species. Furthermore, and unlike the native silver fir, black pine and Scots pine species do not successfully regenerate. A high diversity of native broadleaf species sprouts and develops instead under them suggesting that we might be witnessing a process of ecological succession, with broadleaves recovering their habitats. As native species seem to perform better in terms of resilience and regeneration than introduced species, the overall effect of the black pine and Scots pine mortality might be compensated. Legacies of past forest management should be taken into account in order to better understand current responses of different tree species to ongoing climate change.
Collapse
Affiliation(s)
- Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven -1, 500123 Braşov, Romania; BC3 - Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain.
| | - Ion Catalin Petritan
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven -1, 500123 Braşov, Romania.
| | - Christof Bigler
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Alexandru Lucian Curtu
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven -1, 500123 Braşov, Romania
| | - Ştefan Petrea
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven -1, 500123 Braşov, Romania
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Voluntari, Romania
| | - Josué M Polanco-Martínez
- DeustoTech - Deusto Institute of Technology, Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Jorge Curiel Yuste
- BC3 - Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
22
|
Long-Term Responses of Mediterranean Mountain Forests to Climate Change, Fire and Human Activities in the Northern Apennines (Italy). Ecosystems 2020; 24:1361-1377. [PMID: 33288980 PMCID: PMC7710158 DOI: 10.1007/s10021-020-00587-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/01/2020] [Indexed: 11/11/2022]
Abstract
Fagus sylvatica (beech) dominates the montane forests of the Apennines and builds old-growth high-conservation value stands. However, recent severe drought-induced diebacks raise concern on the future persistence of these forests and of Southern European mesophilous woodlands overall, growing at their dry edge. To explore the history of Apennine beech-dominated forests, we draw on the multiproxy paleoecological record from Lago Verdarolo, which includes a robust vegetation-independent temperature reconstruction. Numerical techniques are used to investigate the drivers of long-term Mediterranean mountain forest dynamics. Specifically, we focus on disentangling the ecological factors that caused the shift from high-diversity mixed forests to beech-dominated stands and on assessing the occurrence of legacy effects on present-day forests. Abrupt climate change largely drove vegetation dynamics during the Late Glacial and Early Holocene. Species-rich mixed Abies alba (silver fir) forests dominated about 10,500—5500 years ago, under rather dry and warmer-than-today conditions (+ 1—2 °C) and limited fire occurrence. Cooler and moister summers and increasing fire activity caused declines in several fire-sensitive temperate deciduous trees (for example, Ulmus, Tilia, Fraxinus) and favored the establishment of fir-beech forests around 5500 years ago. Further enhancement of fire activity and farming around 2000 years ago led to local Abies alba extinction and forest impoverishment. We conclude that the currently widespread monospecific Apennine beech forests are the result of multi-millennial land-use intensification superimposed on Late Holocene cooling and moistening. Given their higher drought-tolerance compared to beech stands, reviving ancient species-rich mixed fir forests represents a feasible and ‘tested’ possibility to adapt forests to climate change.
Collapse
|
23
|
Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente-Serrano SM, Ruiz-Benito P. Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. GLOBAL CHANGE BIOLOGY 2020; 26:5063-5076. [PMID: 32479675 DOI: 10.1111/gcb.15198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e. non-time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above-ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above-ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non-stationary relationships between climate, forest structure and demography. Above-ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.
Collapse
Affiliation(s)
- Julen Astigarraga
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology & Evolution, Complutense University of Madrid, Madrid, Spain
| | - Miguel A Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Franklin Institute, University of Alcala, Alcalá de Henares, Spain
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Verónica Cruz-Alonso
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola de Vallès, Spain
| | | | - Paloma Ruiz-Benito
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Environmental Remote Sensing Group, Department of Geology, Geography and Environment, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
24
|
Ruiz-Benito P, Vacchiano G, Lines ER, Reyer CP, Ratcliffe S, Morin X, Hartig F, Mäkelä A, Yousefpour R, Chaves JE, Palacios-Orueta A, Benito-Garzón M, Morales-Molino C, Camarero JJ, Jump AS, Kattge J, Lehtonen A, Ibrom A, Owen HJ, Zavala MA. Available and missing data to model impact of climate change on European forests. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Regeneration in the Understory of Declining Overstory Trees Contributes to Soil Respiration Homeostasis along Succession in a Sub-Mediterranean Beech Forest. FORESTS 2019. [DOI: 10.3390/f10090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Tree decline can alter soil carbon cycling, given the close relationship between primary production and the activity of roots and soil microbes. Background and Objectives: We studied how tree decline associated to old age and accelerated by land-use change and increased drought in the last decades, affects soil properties and soil respiration (Rs). Materials and Methods: We measured Rs over two years around centennial European beech (Fagus sylvatica L.) trees representing a gradient of decline in a sub-Mediterranean forest stand, where the number of centennial beech trees has decreased by 54% in the last century. Four replicate plots were established around trees (i) with no apparent crown dieback, (ii) less than 40% crown dieback, (iii) more than 50% crown dieback, and (iv) dead. Results: Temporal variations in Rs were controlled by soil temperature (Ts) and soil water content (SWC). The increase in Rs with Ts depended on SWC. The temperature-normalized Rs exhibited a parabolic relationship with SWC, suggesting a reduced root and microbial respiration associated to drought and waterlogging. The response of Rs to SWC did not vary among tree-decline classes. However, the sensitivity of Rs to Ts was higher around vigorous trees than around those with early symptoms of decline. Spatial variations in Rs were governed by soil carbon to nitrogen ratio, which had a negative effect on Rs, and SWC during summer, when drier plots had lower Rs than wetter plots. These variations were independent of the tree vigor. The basal area of recruits, which was three times (although non-significantly) higher under declining and dead trees than under vigorous trees, had a positive effect on Rs. However, the mean Rs did not change among tree-decline classes. These results indicate that Rs and related soil physico-chemical variables are resilient to the decline and death of dominant centennial trees. Conclusions: The development of advanced regeneration as overstory beech trees decline and die contribute to the Rs homeostasis along forest succession.
Collapse
|
26
|
Yuan Z, Ali A, Jucker T, Ruiz-Benito P, Wang S, Jiang L, Wang X, Lin F, Ye J, Hao Z, Loreau M. Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests. Ecology 2019; 100:e02650. [PMID: 30742311 PMCID: PMC6849813 DOI: 10.1002/ecy.2650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/08/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
Abstract
Forests play a key role in regulating the global carbon cycle, and yet the abiotic and biotic conditions that drive the demographic processes that underpin forest carbon dynamics remain poorly understood in natural ecosystems. To address this knowledge gap, we used repeat forest inventory data from 92,285 trees across four large permanent plots (4–25 ha in size) in temperate mixed forests in northeast China to ask the following questions: (1) How do soil conditions and stand age drive biomass demographic processes? (2) How do vegetation quality (i.e., functional trait diversity and composition) and quantity (i.e., initial biomass stocks) influence biomass demographic processes independently from soil conditions and stand age? (3) What is the relative contribution of growth, recruitment, and mortality to net biomass change? Using structural equation modeling, we showed that all three demographic processes were jointly constrained by multiple abiotic and biotic factors and that mortality was the strongest determinant on net biomass change over time. Growth and mortality, as well as functional trait diversity and the community‐weighted mean of specific leaf area (CWMSLA), declined with stand age. By contrast, high soil phosphorous concentrations were associated with greater functional diversity and faster dynamics (i.e., high growth and mortality rates), but associated with lower CWMSLA and initial biomass stock. More functionally diverse communities also had higher recruitment rates, but did not exhibit faster growth and mortality. Instead, initial biomass stocks and CWMSLA were stronger predictors of biomass growth and mortality, respectively. By integrating the full spectrum of abiotic and biotic drivers of forest biomass dynamics, our study provides critical system‐level insights needed to predict the possible consequences of regional changes in forest diversity, composition, structure and function in the context of global change.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Arshad Ali
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Tommaso Jucker
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Washington, 6014, Australia
| | - Paloma Ruiz-Benito
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles Madrid, Spain.,Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus Universitario, 28805, Alcalá de Henares Madrid, Spain
| | - Shaopeng Wang
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Zhanqing Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200, Moulis, France
| |
Collapse
|
27
|
Cruz‐Alonso V, Ruiz‐Benito P, Villar‐Salvador P, Rey‐Benayas JM. Long‐term recovery of multifunctionality in Mediterranean forests depends on restoration strategy and forest type. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Verónica Cruz‐Alonso
- Forest Ecology and Restoration GroupDepartamento de Ciencias de la VidaUniversidad de Alcalá Alcalá de Henares Madrid Spain
| | - Paloma Ruiz‐Benito
- Forest Ecology and Restoration GroupDepartamento de Ciencias de la VidaUniversidad de Alcalá Alcalá de Henares Madrid Spain
- Departamento de Biología y GeologíaFísica y Química InorgánicaEscuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan Carlos. Móstoles Madrid Spain
| | - Pedro Villar‐Salvador
- Forest Ecology and Restoration GroupDepartamento de Ciencias de la VidaUniversidad de Alcalá Alcalá de Henares Madrid Spain
| | - José María Rey‐Benayas
- Forest Ecology and Restoration GroupDepartamento de Ciencias de la VidaUniversidad de Alcalá Alcalá de Henares Madrid Spain
| |
Collapse
|
28
|
A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World. SUSTAINABILITY 2019. [DOI: 10.3390/su11020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon storage and sequestration are key ecosystem services critical to human well-being and biodiversity conservation. In a warming context, the quantification and valuation of carbon storage and sequestration is important in ensuring that effective incentives are put in place to tackle climate change. The quantification and valuation of ES such as carbon storage and sequestration requires the calculus of actual values and prediction, however, it usually does not include key processes that can indirectly influence carbon dynamics (i.e., risk, conservation or management). Here, we define a multifactorial approach to value ecosystem services based on two stages: (1) a biophysical approximation that integrates yearly supporting ecosystem services (i.e., quantification of carbon storage and sequestration) and (2) a weighing approach including factors that indirectly influence carbon storage and sequestration or that deserve specific attention (i.e., risk, conservation or management factors). The quantification of carbon storage and sequestration indicated that Spanish forests store on average 43 Mg C ha−1 and sequestrate on average 1.02 Mg C ha−1 year−1. Forest structure was a strong determinant of carbon storage and sequestration in Iberian forests, hence there was a strong spatial variation in the carbon sink. We adapted the weighting values to a financial cap and the monetary value of carbon increased more than four times when the weighting factors were taken into account. Finally, we argue that a multifactorial approach to value supporting ecosystem services incorporating aspects related to conservation and risk prevention can facilitate ecosystem service valuation and assist policy makers and stakeholders to establish payment service policies.
Collapse
|
29
|
Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe. SUSTAINABILITY 2018. [DOI: 10.3390/su10093065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impacts of climate change are likely to be marked in areas with steep climatic transitions. Species turnover, spread of invasive species, altered productivity, and modified processes such as fire regimes can all spread rapidly along ecotones, which challenge the current paradigms of ecosystem management. We conducted a literature review at a continental-wide scale of South-Western European forests, where the drier and warmer conditions of the Mediterranean have been widely used as examples of what is expected in more temperate areas. Results from the literature point to: (a) an expansion of slow-growing evergreen hardwood trees; (b) increased dieback and mortality episodes in forests (both natural and planted) mostly related to competition and droughts, and mainly affecting conifers; and (c) an increase in emergent diseases and pests of keystone-trees used in agroforestry zones. There is no consensus in the literature that fire regimes are directly increasing due to climate change, but available satellite data of fire intensity in the last 17 years has been lower in zones where agroforestry practices are dominant compared to unmanaged forests. In contrast, there is agreement in the literature that the current spread of fire events is probably related to land abandonment patterns. The practice of agroforestry, common in all Mediterranean countries, emerges as a frequent recommendation in the literature to cope with drought, reduce fire risk, and maintain biodiverse landscapes and rural jobs. However, it is unknown the extent to which the open vegetation resulting from agroforestry is of interest to forest managers in temperate areas used to exploiting closed forest vegetation. Hence, many transitional areas surrounding the Mediterranean Basin may be left unmanaged with potentially higher climate-change risks, which require active monitoring in order to understand and help ongoing natural adaptation processes.
Collapse
|
30
|
Sustainability of Forest Cover under Climate Change on the Temperate-Continental Xeric Limits. FORESTS 2018. [DOI: 10.3390/f9080489] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change particularly threatens the xeric limits of temperate-continental forests. In Hungary, annual temperatures have increased by 1.2 °C–1.8 °C in the last 30 years and the frequency of extreme droughts has grown. With the aim to gain stand-level prospects of sustainability, we have used local forest site variables to identify and project effects of recent and expected changes of climate. We have used a climatic descriptor (FAI index) to compare trends estimated from forest datasets with climatological projections; this is likely for the first time such a comparison has been made. Four independent approaches confirmed the near-linear decline of growth and vitality with increasing hot droughts in summer, using sessile oak as model species. The correlation between droughts and the expansion of pest and disease damages was also found to be significant. Projections of expected changes of main site factors predict a dramatic rise of future drought frequency and, consequently, a substantial shift of forest climate classes, especially at low elevation. Excess water-dependent lowland forests may lose supply from groundwater, which may change vegetation cover and soil development processes. The overall change of site conditions not only causes economic losses, but also challenges long-term sustainability of forest cover at the xeric limits.
Collapse
|
31
|
|
32
|
Zhang T, Niinemets Ü, Sheffield J, Lichstein JW. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 2018; 556:99-102. [PMID: 29562235 DOI: 10.1038/nature26152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/21/2018] [Indexed: 11/09/2022]
Abstract
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Justin Sheffield
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA.,Geography and Environment, University of Southampton, Southampton, UK
| | | |
Collapse
|