1
|
Bao Z, Zhang F, Zhao Q, Han Q, Liu J, Xue F, Zhang D, Hou D, Zhang H. Microbial community assembly and co-occurrence patterns in Sanmen bay: A comparative analysis before and after nuclear power plant operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178189. [PMID: 39721531 DOI: 10.1016/j.scitotenv.2024.178189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB. This suggests that short-term thermal discharge does not significantly alter the composition of microbial communities. The co-occurrence networks were primarily composed of Gammaproteobacteria, Alphaproteobacteria, Dinoflagellates, Diatoms, and Cryptophyta, with similar network topological properties across sampling groups. Homogeneous selection and dispersal limitation were the main mechanisms that controlled the assembly of microbial communities. Homogeneous selection was more significant for prokaryotes, while dispersal limitation was the dominant factor in microeukaryotes, irrespective of a thermal discharge. Prokaryotic β-diversity and nutrients showed substantially positive effects on the functional potential of the prokaryotic community. The findings indicate that short-term thermal discharge from the NPP, as long as they do not cause a significant overall temperature increase in the bay, are unlikely to impact the microbial communities within the coastal bay ecosystem.
Collapse
Affiliation(s)
- Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fengyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qunfen Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Junfeng Liu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Feng Xue
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Huajun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Huang M, Chen Y, Zhou W, Wei F. Assessing the response of marine fish communities to climate change and fishing. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14291. [PMID: 38745485 DOI: 10.1111/cobi.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024]
Abstract
Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities' temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.
Collapse
Affiliation(s)
- Mingpan Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiting Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Jiangxi Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Holland MM, Atkinson A, Best M, Bresnan E, Devlin M, Goberville E, Hélaouët P, Machairopoulou M, Faith M, Thompson MSA, McQuatters-Gollop A. Predictors of long-term variability in NE Atlantic plankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175793. [PMID: 39191329 DOI: 10.1016/j.scitotenv.2024.175793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-to‑phosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.
Collapse
Affiliation(s)
- Matthew M Holland
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Mike Best
- Environment Agency, Quay House, Floor 6, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Eileen Bresnan
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Pierre Hélaouët
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Margarita Machairopoulou
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Matthew Faith
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Murray S A Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | | |
Collapse
|
4
|
Guibourd de Luzinais V, Gascuel D, Reygondeau G, Cheung WWL. Large potential impacts of marine heatwaves on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17437. [PMID: 39054881 DOI: 10.1111/gcb.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, The University of Miami, Florida, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Denis V, Ferrier-Pagès C, Schubert N, Coppari M, Baker DM, Camp EF, Gori A, Grottoli AG, Houlbrèque F, Maier SR, Mancinelli G, Martinez S, Yalçın Özdilek Ş, Radice VZ, Ribes M, Richter C, Viladrich N, Rossi S. Heterotrophy in marine animal forests in an era of climate change. Biol Rev Camb Philos Soc 2024; 99:965-978. [PMID: 38284299 DOI: 10.1111/brv.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Marine animal forests (MAFs) are benthic ecosystems characterised by biogenic three-dimensional structures formed by suspension feeders such as corals, gorgonians, sponges and bivalves. They comprise highly diversified communities among the most productive in the world's oceans. However, MAFs are in decline due to global and local stressors that threaten the survival and growth of their foundational species and associated biodiversity. Innovative and scalable interventions are needed to address the degradation of MAFs and increase their resilience under global change. Surprisingly, few studies have considered trophic interactions and heterotrophic feeding of MAF suspension feeders as an integral component of MAF conservation. Yet, trophic interactions are important for nutrient cycling, energy flow within the food web, biodiversity, carbon sequestration, and MAF stability. This comprehensive review describes trophic interactions at all levels of ecological organisation in tropical, temperate, and cold-water MAFs. It examines the strengths and weaknesses of available tools for estimating the heterotrophic capacities of the foundational species in MAFs. It then discusses the threats that climate change poses to heterotrophic processes. Finally, it presents strategies for improving trophic interactions and heterotrophy, which can help to maintain the health and resilience of MAFs.
Collapse
Affiliation(s)
- Vianney Denis
- Institute of Oceanography, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | | | - Nadine Schubert
- CCMAR-Center of Marine Sciences, University of Algarve, Campus Gambelas, Bld. 7, Faro, 8005-139, Portugal
| | - Martina Coppari
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche snc, Ancona, 60131, Italy
| | - David M Baker
- School of Biological Sciences & Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andrea Gori
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Andréa G Grottoli
- School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH, 43210, USA
| | - Fanny Houlbrèque
- Entropie UMR 9220, Institut de Recherche pour le Développement, Nouméa, 98848, New Caledonia
| | - Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2 PO Box 570, Nuuk, 3900, Greenland
| | - Giorgio Mancinelli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni s/n, Lecce, 73100, Italy
| | - Stephane Martinez
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Şükran Yalçın Özdilek
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Veronica Z Radice
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Marta Ribes
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - Claudio Richter
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany
- Department of Biology/Chemistry, University of Bremen, Leobener Str., NW 2, Bremen, 28359, Germany
| | - Nuria Viladrich
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Sergio Rossi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni s/n, Lecce, 73100, Italy
- Universidade Federal do Ceara, Instituto de Ciencias do Mar (Labomar), Av. da Abolicao 3207, Fortaleza, Brazil
| |
Collapse
|
6
|
Fehrenbach GW, Murphy E, Pogue R, Carter F, Clifford E, Major I. Comprehensive analysis and assessment of exposure to enteric viruses and bacteria in shellfish. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106404. [PMID: 38341981 DOI: 10.1016/j.marenvres.2024.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Shellfish species, including oysters, clams, and mussels, are extensively cultured in coastal waters. Its location is determined by factors such as nutrient availability, water temperature, tidal cycle, and the presence of contaminants such as Escherichia coli and enteric viruses. With the expansion and intensification of human activities at vicinities, the presence of anthropogenic contaminants has increased, threatening shellfish farms and consumer safety give the prevalent consumption of raw shellfish. This literature review aims to provide a comprehensive analysis of the dietary exposure and assess the risk associated with enteric viruses and bacteria detected in shellfish. The predominant bacteria and viruses detected in shellfish are reported, and the potential interrelation is discussed. The main characteristics of each contaminant and shellfish were reviewed for a more comprehensive understanding. To facilitate a direct estimation of exposure, the estimated daily intake (EDI) of bacteria was calculated based on the average levels of E. coli in shellfish, as reported in the literature. The mean daily ingestion of seafood in each of the five continents was considered. Asia exhibited the highest intake of contaminants, with an average of ±5.6 E. coli units/day.kg body weight in cockles. Simulations were conducted using recommended shellfish consumption levels established by state agencies, revealing significantly lower (p < 0.01) EDI for all continents compared to estimations based on recommended levels. This indicates a higher risk associated with healthy shellfish ingestion, potentially leading to increased intoxication incidents with a change in dietary habits. To promote a healthier lifestyle through increased shellfish consumptions, it is imperative to reduce the exposure of shellfish species to bacteria and enteric viruses. The conventional use of E. coli as the sole indicator for consumption safety and water quality in shellfish farms has been deemed insufficient. Instances where shellfish met E. coli limits established by state agencies were often found to be contaminated with human enteric viruses. Therefore, a holistic approach considering the entire production chain is necessary to support the shellfish industry and ensure food safety.
Collapse
Affiliation(s)
- Gustavo Waltzer Fehrenbach
- Materials Research Institute, Technological University of the Shannon, Midlands Campus, N37 HD68, Athlone, Ireland.
| | - Emma Murphy
- Materials Research Institute, Technological University of the Shannon, Midlands Campus, N37 HD68, Athlone, Ireland; LIFE - Health and Biosciences Research Institute, Technological University of the Shannon, Midwest Campus, V94 EC5T, Limerick, Ireland
| | - Robert Pogue
- Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, 71966-700, Brasilia, Brazil
| | - Frank Carter
- Coney Island Shellfish Ltd., F91 YH56, Sligo, Ireland
| | - Eoghan Clifford
- School of Engineering, National University of Ireland Galway, H91 HX31, Galway, Ireland; Ryan Institute, National University of Ireland Galway, H91 HX31, Galway, Ireland
| | - Ian Major
- Materials Research Institute, Technological University of the Shannon, Midlands Campus, N37 HD68, Athlone, Ireland
| |
Collapse
|
7
|
Talbot E, Jontila JBS, Gonzales BJ, Dolorosa RG, Jose ED, Sajorne R, Sailley S, Kay S, Queirós AM. Incorporating climate-readiness into fisheries management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170684. [PMID: 38320704 DOI: 10.1016/j.scitotenv.2024.170684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tropical oceans are among the first places to exhibit climate change signals, affecting the habitat distribution and abundance of marine fish. These changes to stocks, and subsequent impacts on fisheries production, may have considerable implications for coastal communities dependent on fisheries for food security and livelihoods. Understanding the impacts of climate change on tropical marine fisheries is therefore an important step towards developing sustainable, climate-ready fisheries management measures. We apply an established method of spatial meta-analysis to assess species distribution modelling datasets for key species targeted by the Philippines capture fisheries. We analysed datasets under two global emissions scenarios (RCP4.5 and RCP8.5) and varying degrees of fishing pressure to quantify potential climate vulnerability of the target community. We found widespread responses to climate change in pelagic species in particular, with abundances projected to decline across much of the case study area, highlighting the challenges of maintaining food security in the face of a rapidly changing climate. We argue that sustainable fisheries management in the Philippines in the face of climate change can only be achieved through management strategies that allow for the mitigation of, and adaptation to, pressures already locked into the climate system for the near term. Our analysis may support this, providing fisheries managers with the means to identify potential climate change hotspots, bright spots and refugia, thereby supporting the development of climate-ready management plans.
Collapse
Affiliation(s)
- Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom.
| | - Jean-Beth S Jontila
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Benjamin J Gonzales
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Roger G Dolorosa
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Edgar D Jose
- College of Arts and Sciences, North Eastern Mindanao State University, Lianga, Surigao Del Sur, Philippines
| | - Recca Sajorne
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Sevrine Sailley
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Susan Kay
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ana M Queirós
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
8
|
Dickson CA, Ergun-Longmire B, Greydanus DE, Eke R, Giedeman B, Nickson NM, Hoang LN, Adabanya U, Payares DVP, Chahin S, McCrary J, White K, Moon JH, Haitova N, Deleon J, Apple RW. Health equity in pediatrics: Current concepts for the care of children in the 21st century (Dis Mon). Dis Mon 2024; 70:101631. [PMID: 37739834 DOI: 10.1016/j.disamonth.2023.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
This is an analysis of important aspects of health equity in caring for children and adolescents written by a multidisciplinary team from different medical centers. In this discussion for clinicians, we look at definitions of pediatric health equity and the enormous impact of social determinants of health in this area. Factors involved with pediatric healthcare disparities that are considered include race, ethnicity, gender, age, poverty, socioeconomic status, LGBT status, living in rural communities, housing instability, food insecurity, access to transportation, availability of healthcare professionals, the status of education, and employment as well as immigration. Additional issues involved with health equity in pediatrics that are reviewed will include the impact of the COVID-19 pandemic, behavioral health concepts, and the negative health effects of climate change. Recommendations that are presented include reflection of one's own attitudes on as well as an understanding of these topics, consideration of the role of various healthcare providers (i.e., community health workers, peer health navigators, others), the impact of behavioral health integration, and the need for well-conceived curricula as well as multi-faceted training programs in pediatric health equity at the undergraduate and postgraduate medical education levels. Furthermore, ongoing research in pediatric health equity is needed to scrutinize current concepts and stimulate the development of ideas with an ever-greater positive influence on the health of our beloved children. Clinicians caring for children can serve as champions for the optimal health of children and their families; in addition, these healthcare professionals are uniquely positioned in their daily work to understand the drivers of health inequities and to be advocates for optimal health equity in the 21st century for all children and adolescents.
Collapse
Affiliation(s)
- Cheryl A Dickson
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Berrin Ergun-Longmire
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Donald E Greydanus
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Ransome Eke
- Department of Community Medicine, Mercer University School of Medicine, Columbus, GA, United States
| | - Bethany Giedeman
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nikoli M Nickson
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Linh-Nhu Hoang
- Department of Psychology, Western Michigan University, Kalamazoo, MI, United States
| | - Uzochukwu Adabanya
- Department of Community Medicine, Mercer University School of Medicine, Columbus, GA, United States
| | - Daniela V Pinto Payares
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Summer Chahin
- Department of Psychology, C.S. Mott Children's Hospital/Michigan Medicine, Ann Arbor, MI, United States
| | - Jerica McCrary
- Center for Rural Health and Health Disparities, Mercer University School of Medicine, Columbus, GA, United States
| | - Katie White
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jin Hyung Moon
- Department of Community Medicine, Mercer University School of Medicine, Columbus, GA, United States
| | - Nizoramo Haitova
- Department of Educational Leadership, Research and Technology, Western Michigan University, Kalamazoo, MI, United States
| | - Jocelyn Deleon
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Roger W Apple
- Department of Pediatric & Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
9
|
Atkinson A, Rossberg AG, Gaedke U, Sprules G, Heneghan RF, Batziakas S, Grigoratou M, Fileman E, Schmidt K, Frangoulis C. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat Commun 2024; 15:381. [PMID: 38195697 PMCID: PMC10776571 DOI: 10.1038/s41467-023-44406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors.
Collapse
Affiliation(s)
- Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK.
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Gary Sprules
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6, Canada
| | - Ryan F Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stratos Batziakas
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| | | | - Elaine Fileman
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
| | - Katrin Schmidt
- University of Plymouth, School of Geography, Earth and Environmental Sciences, Plymouth, PL4 8AA, UK
| | - Constantin Frangoulis
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| |
Collapse
|
10
|
Thompson MSA, Couce E, Schratzberger M, Lynam CP. Climate change affects the distribution of diversity across marine food webs. GLOBAL CHANGE BIOLOGY 2023; 29:6606-6619. [PMID: 37814904 PMCID: PMC10946503 DOI: 10.1111/gcb.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/11/2023]
Abstract
Many studies predict shifts in species distributions and community size composition in response to climate change, yet few have demonstrated how these changes will be distributed across marine food webs. We use Bayesian Additive Regression Trees to model how climate change will affect the habitat suitability of marine fish species across a range of body sizes and belonging to different feeding guilds, each with different habitat and feeding requirements in the northeast Atlantic shelf seas. Contrasting effects of climate change are predicted for feeding guilds, with spatially extensive decreases in the species richness of consumers lower in the food web (planktivores) but increases for those higher up (piscivores). Changing spatial patterns in predator-prey mass ratios and fish species size composition are also predicted for feeding guilds and across the fish assemblage. In combination, these changes could influence nutrient uptake and transformation, transfer efficiency and food web stability, and thus profoundly alter ecosystem structure and functioning.
Collapse
Affiliation(s)
- Murray S. A. Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Elena Couce
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Michaela Schratzberger
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Christopher P. Lynam
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| |
Collapse
|
11
|
Forcada J, Hoffman JI, Gimenez O, Staniland IJ, Bucktrout P, Wood AG. Ninety years of change, from commercial extinction to recovery, range expansion and decline for Antarctic fur seals at South Georgia. GLOBAL CHANGE BIOLOGY 2023; 29:6867-6887. [PMID: 37839801 DOI: 10.1111/gcb.16947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023]
Abstract
With environmental change, understanding how species recover from overharvesting and maintain viable populations is central to ecosystem restoration. Here, we reconstruct 90 years of recovery trajectory of the Antarctic fur seal at South Georgia (S.W. Atlantic), a key indicator species in the krill-based food webs of the Southern Ocean. After being harvested to commercial extinction by 1907, this population rebounded and now constitutes the most abundant otariid in the World. However, its status remains uncertain due to insufficient and conflicting data, and anthropogenic pressures affecting Antarctic krill, an essential staple for millions of fur seals and other predators. Using integrated population models, we estimated simultaneously the long-term abundance for Bird Island, northwest South Georgia, epicentre of recovery of the species after sealing, and population adjustments for survey counts with spatiotemporal applicability. Applied to the latest comprehensive survey data, we estimated the population at South Georgia in 2007-2009 as 3,510,283 fur seals [95% CI: 3,140,548-3,919,604] (ca. 98% of global population), after 40 years of maximum growth and range expansion owing to an abundant krill supply. At Bird Island, after 50 years of exponential growth followed by 25 years of slow stable growth, the population collapsed in 2009 and has thereafter declined by -7.2% [-5.2, -9.1] per annum, to levels of the 1970s. For the instrumental record, this trajectory correlates with a time-varying relationship between coupled climate and sea surface temperature cycles associated with low regional krill availability, although the effects of increasing krill extraction by commercial fishing and natural competitors remain uncertain. Since 2015, fur seal longevity and recruitment have dropped, sexual maturation has retarded, and population growth is expected to remain mostly negative and highly variable. Our analysis documents the rise and fall of a key Southern Ocean predator over a century of profound environmental and ecosystem change.
Collapse
Affiliation(s)
- Jaume Forcada
- British Antarctic Survey, Natural Environment Research Council, UKRI, Cambridge, UK
| | - Joseph I Hoffman
- British Antarctic Survey, Natural Environment Research Council, UKRI, Cambridge, UK
- Department of Animal Behavior, University of Bielefeld, Bielefeld, Germany
| | - Olivier Gimenez
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | - Pete Bucktrout
- British Antarctic Survey, Natural Environment Research Council, UKRI, Cambridge, UK
| | - Andrew G Wood
- British Antarctic Survey, Natural Environment Research Council, UKRI, Cambridge, UK
| |
Collapse
|
12
|
Garzke J, Forster I, Graham C, Costalago D, Hunt BPV. Future climate change-related decreases in food quality may affect juvenile Chinook salmon growth and survival. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106171. [PMID: 37716280 DOI: 10.1016/j.marenvres.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Global climate change is projected to raise global temperatures by 3.3-5.7 °C by 2100, resulting in changes in species composition, abundance, and nutritional quality of organisms at the base of the marine food web. Predicted increases in prey availability and reductions in prey nutritional quality under climate warming in certain marine systems are expected to impact higher trophic levels, such as fish and humans. There is limited knowledge of the interplay between food quantity and quality under warming, specifically when food availability is high, but quality is low. Here, we conducted an experiment assessing the effects of food quality (fatty acid composition and ratios) on juvenile Chinook salmon's (Oncorhynchus tshawytscha) body and nutritional condition, specifically focusing on RNA:DNA ratio, Fulton's K, growth, mortality and their fatty acid composition. Experimental diets represented three different climate change scenarios with 1) a present-day diet (Euphausia pacifica), 2) a control diet (commercial aquaculture diet), and 3) a predicted Intergovernmental Panel on Climate Change (IPCC) worst-case scenario diet with low essential fatty acid concentrations (IPCC SSP5-8.5). We tested how growth rates, RNA:DNA ratio, Fulton's K index, fatty acid composition and mortality rates in juvenile Chinook salmon compared across diet treatments. Fatty acids were incorporated into the salmon muscle at varying rates but, on average, reflected dietary concentrations. High dietary concentrations of DHA, EPA and high DHA:EPA ratios, under the control and present-day diets, increased fish growth and condition. In contrast, low concentrations of DHA and EPA and low DHA:EPA ratios in the diets under climate change scenario were not compensated for by increased food quantity. This result highlights the importance of considering food quality when assessing fish response to changing ocean conditions.
Collapse
Affiliation(s)
- Jessica Garzke
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, 4160 Marine Dr., West Vancouver, BC V7V 1N6, Canada
| | - Caroline Graham
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Costalago
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
13
|
Guibourd de Luzinais V, du Pontavice H, Reygondeau G, Barrier N, Blanchard JL, Bornarel V, Büchner M, Cheung WWL, Eddy TD, Everett JD, Guiet J, Harrison CS, Maury O, Novaglio C, Petrik CM, Steenbeek J, Tittensor DP, Gascuel D. Trophic amplification: A model intercomparison of climate driven changes in marine food webs. PLoS One 2023; 18:e0287570. [PMID: 37611010 PMCID: PMC10446190 DOI: 10.1371/journal.pone.0287570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 06/08/2023] [Indexed: 08/25/2023] Open
Abstract
Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090-2099 relative to 1995-2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world's oceans) in the model ensemble. In 40% of the world's oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world's oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hubert du Pontavice
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States of America
| | - Gabriel Reygondeau
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Julia L. Blanchard
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, Australia
| | - Virginie Bornarel
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Büchner
- Potsdam-Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tyler D. Eddy
- Centre for Fisheries Ecosystems Research, Fisheries & Marine Institute, Memorial University, St. John’s, NL, Canada
| | - Jason D. Everett
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| | - Jerome Guiet
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, United States of America
| | - Cheryl S. Harrison
- Department of Coastal and Ocean Science and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States of America
| | - Olivier Maury
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Camilla Novaglio
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, Australia
| | - Colleen M. Petrik
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | | | | | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| |
Collapse
|
14
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
15
|
Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. GLOBAL CHANGE BIOLOGY 2022; 28:6239-6253. [PMID: 35822557 PMCID: PMC9804230 DOI: 10.1111/gcb.16341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 05/29/2023]
Abstract
Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Institute of Coastal ResearchSwedish University of Agricultural SciencesÖregrundSweden
| | - Asta Audzijonyte
- Nature Research CentreVilniusLithuania
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
16
|
Cárdenas-Alayza S, Adkesson MJ, Edwards MR, Hirons AC, Gutiérrez D, Tremblay Y, Franco-Trecu V. Sympatric otariids increase trophic segregation in response to warming ocean conditions in Peruvian Humboldt Current System. PLoS One 2022; 17:e0272348. [PMID: 35951498 PMCID: PMC9371314 DOI: 10.1371/journal.pone.0272348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014–2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used δ13C and δ15N values serially archived in otariid whiskers to construct a monthly time series for 2005–2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005—October 2013; P2: November 2013—December 2019). Reduction in δ15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and δ15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population.
Collapse
Affiliation(s)
- Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- UMR 248 MARBEC: IRD–Univ. Montpellier–CNRS–Ifremer, Sète cedex, France
- * E-mail:
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, Illinois, United States of America
| | - Mickie R. Edwards
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, United States of America
| | - Amy C. Hirons
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, United States of America
| | - Dimitri Gutiérrez
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Programa Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yann Tremblay
- UMR 248 MARBEC: IRD–Univ. Montpellier–CNRS–Ifremer, Sète cedex, France
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Abstract
AbstractTrophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes.
Collapse
|
18
|
Millington RC, Rogers A, Cox P, Bozec Y, Mumby PJ. Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere 2022. [DOI: 10.1002/ecs2.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rebecca C. Millington
- College of Engineering, Mathematics and Physical Science University of Exeter Exeter UK
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Alice Rogers
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| | - Peter Cox
- College of Engineering, Mathematics and Physical Science University of Exeter Exeter UK
| | - Yves‐Marie Bozec
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
19
|
Lebrasse MC, Schaeffer BA, Zimmerman RC, Hill VJ, Coffer MM, Whitman PJ, Salls WB, Graybill DD, Osburn CL. Simulated response of St. Joseph Bay, Florida, seagrass meadows and their belowground carbon to anthropogenic and climate impacts. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105694. [PMID: 35850077 PMCID: PMC9924051 DOI: 10.1016/j.marenvres.2022.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/26/2023]
Abstract
Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020. Model predictions were compared with satellite-derived measurements of seagrass extent and shoot density from the Landsat images for the same period. The GrassLight-derived area of potential seagrass habitat ranged from 36.2 km2 to 39.2 km2, averaging 38.0 ± 0.8 km2 compared to an observed seagrass extent of 23.0 ± 3.0 km2 derived from Landsat (range = 17.9-27.4 km2). GrassLight predicted a mean seagrass LAI of 2.7 m2 leaf m-2 seabed, compared to a mean LAI of 1.9 m2 m-2 estimated from Landsat, indicating that seagrass density in St. Joseph Bay may have been below its light-limited ecological potential. Climate and anthropogenic change simulations using GrassLight predicted the impact of changes in temperature, pH, chlorophyll a, chromophoric dissolved organic matter and turbidity on seagrass meadows. Simulations predicted a 2-8% decline in seagrass extent with rising temperatures that was offset by a 3-11% expansion in seagrass extent in response to ocean acidification when compared to present conditions. Simulations of water quality impacts showed that a doubling of turbidity would reduce seagrass extent by 18% and total leaf area by 21%. Combining climate and water quality scenarios showed that ocean acidification may increase seagrass productivity to offset the negative effects of both thermal stress and declining water quality on the seagrasses growing in St. Joseph Bay. This research highlights the importance of considering multiple limiting factors in understanding the effects of environmental change on seagrass ecosystems.
Collapse
Affiliation(s)
- Marie Cindy Lebrasse
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC, USA; Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Blake A Schaeffer
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
| | - Richard C Zimmerman
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| | - Victoria J Hill
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| | - Megan M Coffer
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Peter J Whitman
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Wilson B Salls
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
| | - David D Graybill
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Christopher L Osburn
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
21
|
Tan K, Zhang H, Zheng H. Climate change and n-3 LC-PUFA availability. Prog Lipid Res 2022; 86:101161. [PMID: 35301036 DOI: 10.1016/j.plipres.2022.101161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are essential fatty acids for the growth, development and survival of virtually all organisms. There is increasing evidence that anthropogenic climate change has a direct and indirect impact on the availability of natural n-3 LC-PUFA. However, this information is fragmented and not well organized. Therefore, this article reviewed published data from laboratory experiments, field experiments and model simulations to reveal the impact of climate change on the global supply of natural n-3 LC-PUFA and how this will limit the availability of n-3 LC-PUFA in the future food web. In general, climate change can significantly reduce the availability of natural n-3 LC-PUFA in grazing food webs in the following ways: 1) decrease the total biomass of phytoplankton and shift the plankton community structure to a smaller size, which also reduce the biomass of animals in higher trophics; 2) reduce the n-3 LC-PUFA content and/or quality (n-3: n-6 ratio) of all marine organisms; 3) reduce the transfer efficiency of n-3 LC-PUFA in grazing food web. In addition, as an anthropogenic climate adaptation measure, this review also proposed some alternative sources of n-3 LC-PUFA and determined the direction of future research. The information in this article is very useful for providing a critical analysis of the impact of climate change on the supply of natural n-3 LC-PUFA. Such information will aid to establish climate adaptation or management measures, and determine the direction of future research.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
22
|
Bryndum-Buchholz A, Boerder K, Stanley R, Hurley I, Boyce D, Dunmall K, Hunter K, Lotze H, Shackell N, Worm B, Tittensor D. A climate-resilient marine conservation network for Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Climate change and biodiversity loss are twin crises that are driving global marine conservation efforts. However, if unaccounted for, climate change can undermine the efficacy of such efforts. Despite this, integration of climate change adaptation and resilience into spatial marine conservation and management has been limited in Canada and elsewhere. With climate change impacts becoming increasingly severe, now is the time to anticipate and reduce impacts wherever possible. We provide five recommendations for an inclusive, proactive, climate-ready approach for Canada’s growing marine conservation network: (1) integrating climate-resilience as a universal objective of the Canadian Marine Conservation Network, creating and implementing (2) national transdisciplinary working groups with representation from all knowledge holders and (3) necessary tools that integrate climate change into conservation design, (4) defining operational and climate-relevant monitoring and management objectives, and (5) strengthening communication and increasing knowledge exchange around the roles and benefits of protected areas within government and towards the public. Canada’s extensive marine and coastal areas reflect national and international responsibility to engage on this issue. Canada is well positioned to assume a leading role in climate change adaptation for marine conservation and help accelerate progress towards international commitments around mitigating ongoing biodiversity loss and climate change.
Collapse
Affiliation(s)
- A. Bryndum-Buchholz
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
- Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NB A1C 5R3, Canada
| | - K. Boerder
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - R.R.E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - I. Hurley
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - D.G. Boyce
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - K.M. Dunmall
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Cr., Winnipeg, MB R3T 2N6, Canada
| | - K.L. Hunter
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - H.K. Lotze
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - N.L. Shackell
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - B. Worm
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
- Ocean Frontier Institute, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - D.P. Tittensor
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
23
|
Banc-Prandi G, Evensen NR, Barshis DJ, Perna G, Moussa Omar Y, Fine M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. CONSERVATION PHYSIOLOGY 2022; 10:coac002. [PMID: 35492414 PMCID: PMC9040280 DOI: 10.1093/conphys/coac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- Corresponding author: The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel: +33 7 86 94 72 76.
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Youssouf Moussa Omar
- Center for Studies and Scientific Research of Djibouti, Route de l’Aéroport, BP 1000, Djibouti
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| |
Collapse
|
24
|
Li J, Convertino M. Temperature increase drives critical slowing down of fish ecosystems. PLoS One 2021; 16:e0246222. [PMID: 34669703 PMCID: PMC8528280 DOI: 10.1371/journal.pone.0246222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2021] [Indexed: 01/13/2023] Open
Abstract
Fish ecosystems perform ecological functions that are critically important for the sustainability of marine ecosystems, such as global food security and carbon stock. During the 21st century, significant global warming caused by climate change has created pressing challenges for fish ecosystems that threaten species existence and global ecosystem health. Here, we study a coastal fish community in Maizuru Bay, Japan, and investigate the relationships between fluctuations of ST, abundance-based species interactions and salient fish biodiversity. Observations show that a local 20% increase in temperature from 2002 to 2014 underpins a long-term reduction in fish diversity (∼25%) played out by some native and invasive species (e.g. Chinese wrasse) becoming exceedingly abundant; this causes a large decay in commercially valuable species (e.g. Japanese anchovy) coupled to an increase in ecological productivity. The fish community is analyzed considering five temperature ranges to understand its atemporal seasonal sensitivity to ST changes, and long-term trends. An optimal information flow model is used to reconstruct species interaction networks that emerge as topologically different for distinct temperature ranges and species dynamics. Networks for low temperatures are more scale-free compared to ones for intermediate (15-20°C) temperatures in which the fish ecosystem experiences a first-order phase transition in interactions from locally stable to metastable and globally unstable for high temperatures states as suggested by abundance-spectrum transitions. The dynamic dominant eigenvalue of species interactions shows increasing instability for competitive species (spiking in summer due to intermediate-season critical transitions) leading to enhanced community variability and critical slowing down despite higher time-point resilience. Native competitive species whose abundance is distributed more exponentially have the highest total directed interactions and are keystone species (e.g. Wrasse and Horse mackerel) for the most salient links with cooperative decaying species. Competitive species, with higher eco-climatic memory and synchronization, are the most affected by temperature and play an important role in maintaining fish ecosystem stability via multitrophic cascades (via cooperative-competitive species imbalance), and as bioindicators of change. More climate-fitted species follow temperature increase causing larger divergence divergence between competitive and cooperative species. Decreasing dominant eigenvalues and lower relative network optimality for warmer oceans indicate fishery more attracted toward persistent oscillatory states, yet unpredictable, with lower cooperation, diversity and fish stock despite the increase in community abundance due to non-commercial and venomous species. We emphasize how changes in species interaction organization, primarily affected by temperature fluctuations, are the backbone of biodiversity dynamics and yet for functional diversity in contrast to taxonomic richness. Abundance and richness manifest gradual shifts while interactions show sudden shift. The work provides data-driven tools for analyzing and monitoring fish ecosystems under the pressure of global warming or other stressors. Abundance and interaction patterns derived by network-based analyses proved useful to assess ecosystem susceptibility and effective change, and formulate predictive dynamic information for science-based fishery policy aimed to maintain marine ecosystems stable and sustainable.
Collapse
Affiliation(s)
- Jie Li
- Nexus Group, Laboratory of Information Communication Networks, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Matteo Convertino
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
25
|
Capitani L, de Araujo JN, Vieira EA, Angelini R, Longo GO. Ocean Warming Will Reduce Standing Biomass in a Tropical Western Atlantic Reef Ecosystem. Ecosystems 2021. [DOI: 10.1007/s10021-021-00691-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Laffoley D, Baxter J, Amon D, Claudet J, Hall‐Spencer J, Grorud‐Colvert K, Levin L, Reid P, Rogers A, Taylor M, Woodall L, Andersen N. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2021; 31:1512-1534. [PMID: 33362396 PMCID: PMC7753556 DOI: 10.1002/aqc.3512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The ocean is the linchpin supporting life on Earth, but it is in declining health due to an increasing footprint of human use and climate change. Despite notable successes in helping to protect the ocean, the scale of actions is simply not now meeting the overriding scale and nature of the ocean's problems that confront us.Moving into a post-COVID-19 world, new policy decisions will need to be made. Some, especially those developed prior to the pandemic, will require changes to their trajectories; others will emerge as a response to this global event. Reconnecting with nature, and specifically with the ocean, will take more than good intent and wishful thinking. Words, and how we express our connection to the ocean, clearly matter now more than ever before.The evolution of the ocean narrative, aimed at preserving and expanding options and opportunities for future generations and a healthier planet, is articulated around six themes: (1) all life is dependent on the ocean; (2) by harming the ocean, we harm ourselves; (3) by protecting the ocean, we protect ourselves; (4) humans, the ocean, biodiversity, and climate are inextricably linked; (5) ocean and climate action must be undertaken together; and (6) reversing ocean change needs action now.This narrative adopts a 'One Health' approach to protecting the ocean, addressing the whole Earth ocean system for better and more equitable social, cultural, economic, and environmental outcomes at its core. Speaking with one voice through a narrative that captures the latest science, concerns, and linkages to humanity is a precondition to action, by elevating humankind's understanding of our relationship with 'planet Ocean' and why it needs to become a central theme to everyone's lives. We have only one ocean, we must protect it, now. There is no 'Ocean B'.
Collapse
Affiliation(s)
- D. Laffoley
- IUCN World Commission on Protected AreasIUCN (International Union for Conservation of Nature)GlandSwitzerland
| | - J.M. Baxter
- Marine Alliance for Science and Technology for Scotland, School of Biology, East SandsUniversity of St AndrewsSt AndrewsUK
| | - D.J. Amon
- Department of Life SciencesNatural History MuseumLondonUK
| | - J. Claudet
- National Centre for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDParisFrance
| | - J.M. Hall‐Spencer
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - K. Grorud‐Colvert
- Department of Integrative BiologyOregon State UniversityCorvallisUSA
| | - L.A. Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
| | - P.C. Reid
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- The LaboratoryThe Continuous Plankton Recorder Survey, Marine Biological AssociationCitadel HillPlymouthUK
| | - A.D. Rogers
- Somerville CollegeUniversity of OxfordOxfordUK
- REV OceanLysakerNorway
| | | | - L.C. Woodall
- Department of ZoologyUniversity of OxfordOxfordUK
| | - N.F. Andersen
- Department of Environment and GeographyUniversity of YorkYorkUK
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
27
|
du Pontavice H, Gascuel D, Reygondeau G, Stock C, Cheung WWL. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. GLOBAL CHANGE BIOLOGY 2021; 27:2608-2622. [PMID: 33660891 DOI: 10.1111/gcb.15576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/28/2023]
Abstract
Climate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi-physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate-related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090-2099 relative to 1986-2005 under the "no mitigation policy" scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.
Collapse
Affiliation(s)
- Hubert du Pontavice
- ESE, Ecology and Ecosystem Health, Institut Agro, Inrae, Rennes, France
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA
| | - Didier Gascuel
- ESE, Ecology and Ecosystem Health, Institut Agro, Inrae, Rennes, France
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Charles Stock
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - William W L Cheung
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Eddy TD, Bernhardt JR, Blanchard JL, Cheung WW, Colléter M, du Pontavice H, Fulton EA, Gascuel D, Kearney KA, Petrik CM, Roy T, Rykaczewski RR, Selden R, Stock CA, Wabnitz CC, Watson RA. Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Trends Ecol Evol 2021; 36:76-86. [DOI: 10.1016/j.tree.2020.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
|
29
|
Tagliabue A, Barrier N, Du Pontavice H, Kwiatkowski L, Aumont O, Bopp L, Cheung WWL, Gascuel D, Maury O. An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6168-6179. [PMID: 32970390 DOI: 10.1111/gcb.15316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/24/2023]
Abstract
Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from -12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter-annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%-80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.
Collapse
Affiliation(s)
| | - Nicolas Barrier
- MARBEC (IRD, Univ. Montpellier, CNRS, Ifremer), Sète, France
| | - Hubert Du Pontavice
- ESE, Ecology and Ecosystem Health, Institut Agro, Rennes, France
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | | | - Olivier Aumont
- LOCEAN, Sorbonne Université-CNRS-IRD-MNHN, Paris, France
| | | | - William W L Cheung
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Didier Gascuel
- ESE, Ecology and Ecosystem Health, Institut Agro, Rennes, France
| | - Olivier Maury
- MARBEC (IRD, Univ. Montpellier, CNRS, Ifremer), Sète, France
| |
Collapse
|