1
|
Narciso AR, Dookie R, Nannapaneni P, Normark S, Henriques-Normark B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat Rev Microbiol 2024:10.1038/s41579-024-01116-z. [PMID: 39506137 DOI: 10.1038/s41579-024-01116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Infections caused by Streptococcus pneumoniae (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.
Collapse
Affiliation(s)
- Ana Rita Narciso
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Dookie
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Razim A, Zabłocka A, Schmid A, Thaler M, Černý V, Weinmayer T, Whitehead B, Martens A, Skalska M, Morandi M, Schmidt K, Wysmołek ME, Végvári A, Srutkova D, Schwarzer M, Neuninger L, Nejsum P, Hrdý J, Palmfeldt J, Brucale M, Valle F, Górska S, Wisgrill L, Inic‐Kanada A, Wiedermann U, Schabussova I. Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells. J Extracell Vesicles 2024; 13:e70004. [PMID: 39429019 PMCID: PMC11491762 DOI: 10.1002/jev2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Agnieszka Razim
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Agnieszka Zabłocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Michael Thaler
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Viktor Černý
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Tamara Weinmayer
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Bradley Whitehead
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anke Martens
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Magdalena Skalska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of PhysicsAstronomy and Applied Computer Science, Jagiellonian UniversityKrakowPoland
| | - Mattia Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencePragueCzech Republic
| | - Katy Schmidt
- Research Support Facilities, Imaging Unit CIUS, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Magdalena E. Wysmołek
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Akos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Dagmar Srutkova
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Martin Schwarzer
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Lukas Neuninger
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Peter Nejsum
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jiri Hrdý
- Institute of Immunology and Microbiology, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Marco Brucale
- Institute of Nanostructured MaterialsCNR‐ISMNBolognaItaly
| | | | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Lukas Wisgrill
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Aleksandra Inic‐Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| |
Collapse
|
3
|
Wang C, Damiano RJ, Ruebush LE, Engelen MPKJ, Mariani S, Liu L, Silva I, Borhani S, Cote GL, Conroy B, McFarlane D, Deutz NEP. A randomized, triple-blinded, placebo-controlled clinical trial evaluating immune responses of Typhim Vi and PPSV23 vaccines in healthy adults: The PREP study. Vaccine 2024; 42:126292. [PMID: 39245584 DOI: 10.1016/j.vaccine.2024.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Rapid and early identification of emergent infections is essential for delivering prompt clinical care. To advance the development of algorithms for the clinical management of infection identification, we performed a vaccination clinical trial to investigate the potential of using vaccination as a model for studying mild inflammation responses associated with different infections (NCT05346302). We collected data at various time points over 4 weeks from blood samples, wearable devices, and questionnaires. Following a 2-week baseline period, 210 healthy participants, aged 18-40 years, were administered either a Pneumococcal Polysaccharide vaccine (PPSV23), Typhoid Vi Polysaccharide vaccine (Typhim Vi), or placebo. In longitudinal analyses of blood biomarkers, we found that CRP was significantly higher at 2 days post-vaccination, whereas basophils, IL-10, IL-12p40, and MIG were significantly higher at 7 days post-vaccination in the PPSV23 group compared to both other groups (all p < 0.05). MIP-1β was significantly lower in the PPSV23 group than in the placebo group, while monocytes and MPV were significantly lower in the Typhim Vi group than in the placebo group at 7 days post-vaccination (all p < 0.05). The PPSV3 group showed a higher inflammatory profile, suggesting that PPSV23 induces a stronger immune response compared to Typhim Vi. The distinct immune responses induced by the two vaccines indicate the potential for utilizing vaccines as models for studying inflammation responses associated with different infectious pathogens.
Collapse
Affiliation(s)
| | | | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Mariёlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | | | - Luoluo Liu
- Philips North America, Cambridge, MA, USA
| | | | | | - Gerard L Cote
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| | | | | | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Vergadi E, Kolliniati O, Lapi I, Ieronymaki E, Lyroni K, Alexaki VI, Diamantaki E, Vaporidi K, Hatzidaki E, Papadaki HA, Galanakis E, Hajishengallis G, Chavakis T, Tsatsanis C. An IL-10/DEL-1 axis supports granulopoiesis and survival from sepsis in early life. Nat Commun 2024; 15:680. [PMID: 38263289 PMCID: PMC10805706 DOI: 10.1038/s41467-023-44178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/03/2023] [Indexed: 01/25/2024] Open
Abstract
The limited reserves of neutrophils are implicated in the susceptibility to infection in neonates, however the regulation of neutrophil kinetics in infections in early life remains poorly understood. Here we show that the developmental endothelial locus (DEL-1) is elevated in neonates and is critical for survival from neonatal polymicrobial sepsis, by supporting emergency granulopoiesis. Septic DEL-1 deficient neonate mice display low numbers of myeloid-biased multipotent and granulocyte-macrophage progenitors in the bone marrow, resulting in neutropenia, exaggerated bacteremia, and increased mortality; defects that are rescued by DEL-1 administration. A high IL-10/IL-17A ratio, observed in newborn sepsis, sustains tissue DEL-1 expression, as IL-10 upregulates while IL-17 downregulates DEL-1. Consistently, serum DEL-1 and blood neutrophils are elevated in septic adult and neonate patients with high serum IL-10/IL-17A ratio, and mortality is lower in septic patients with high serum DEL-1. Therefore, IL-10/DEL-1 axis supports emergency granulopoiesis, prevents neutropenia and promotes sepsis survival in early life.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece.
| | - Ourania Kolliniati
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Lapi
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Lyroni
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Eleni Diamantaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology/Neonatal Intensive Care Unit, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Galanakis
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christos Tsatsanis
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
5
|
Horn KJ, Fulte S, Yang M, Lorenz BP, Clark SE. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J Leukoc Biol 2024; 115:4-15. [PMID: 37381945 PMCID: PMC10768920 DOI: 10.1093/jleuko/qiad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The early immune response to bacterial pneumonia requires a careful balance between pathogen clearance and tissue damage. The anti-inflammatory cytokine interleukin (IL)-10 is critical for restraining otherwise lethal pulmonary inflammation. However, pathogen-induced IL-10 is associated with bacterial persistence in the lungs. In this study, we used mice with myeloid cell specific deletion of IL-10R to investigate the cellular targets of IL-10 immune suppression during infection with Streptococcus pneumoniae, the most common bacterial cause of pneumonia. Our findings suggest that IL-10 restricts the neutrophil response to S. pneumoniae, as neutrophil recruitment to the lungs was elevated in myeloid IL-10 receptor (IL-10R)-deficient mice and neutrophils in the lungs of these mice were more effective at killing S. pneumoniae. Improved killing of S. pneumoniae was associated with increased production of reactive oxygen species and serine protease activity in IL-10R-deficient neutrophils. Similarly, IL-10 suppressed the ability of human neutrophils to kill S. pneumoniae. Burdens of S. pneumoniae were lower in myeloid IL-10R-deficient mice compared with wild-type mice, and adoptive transfer of IL-10R-deficient neutrophils into wild-type mice significantly improved pathogen clearance. Despite the potential for neutrophils to contribute to tissue damage, lung pathology scores were similar between genotypes. This contrasts with total IL-10 deficiency, which is associated with increased immunopathology during S. pneumoniae infection. Together, these findings identify neutrophils as a critical target of S. pneumoniae-induced immune suppression and highlight myeloid IL-10R abrogation as a mechanism to selectively reduce pathogen burdens without exacerbating pulmonary damage.
Collapse
Affiliation(s)
- Kadi J Horn
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, 12631 East 17th Avenue, Aurora, CO80045, United States
| | - Brian P Lorenz
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
6
|
Coleman M, Orvis A, Brokaw A, Furuta A, Sharma K, Quach P, Bhullar A, Sanghavi R, Nguyen S, Sweeney E, Seepersaud R, Armistead B, Adams Waldorf KM, Rajagopal L. GBS hyaluronidase mediates immune suppression in a TLR2/4- and IL-10-dependent manner during pregnancy-associated infection. mBio 2023; 14:e0204923. [PMID: 37747229 PMCID: PMC10653848 DOI: 10.1128/mbio.02049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Bacteria such as GBS can cause infections during pregnancy leading to preterm births, stillbirths, and neonatal infections. The interaction between host and bacterial factors during infections in the placenta is not fully understood. GBS secretes a hyaluronidase enzyme that is thought to digest host hyaluronan into immunosuppressive disaccharides that dampen TLR2/4 signaling, leading to increased bacterial dissemination and adverse outcomes. In this study, we show that GBS HylB mediates immune suppression and promotes bacterial infection during pregnancy that requires TLR2, TLR4, and IL-10. Understanding the interaction between host and bacterial factors can inform future therapeutic strategies to mitigate GBS infections.
Collapse
Affiliation(s)
- Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Kavita Sharma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Avneet Bhullar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rhea Sanghavi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Erin Sweeney
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Blair Armistead
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kristina M. Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Liu J, Li T, Zhang S, Lu E, Qiao W, Chen H, Liu P, Tang X, Cheng T, Chen H. Proteomic and single-cell analysis shed new light on the anti-inflammatory role of interferonβ in chronic periodontitis. Front Pharmacol 2023; 14:1232539. [PMID: 37876725 PMCID: PMC10590904 DOI: 10.3389/fphar.2023.1232539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Periodontitis, a condition that results in periodontal attachment loss and alveolar bone resorption, contributes to the global burden of oral disease. The underlying mechanism of periodontitis involves the dysbiosis and dyshomeostasis between host and oral microbes, among which the macrophage is one of the major innate immune cell players, producing interferon β (IFNβ) in response to bacterial infection. The objective of this research was to examine the interaction of macrophages with periodontitis and the role and mechanism of IFNβ on macrophages. IFNβ has been shown to have the potential to induce the differentiation of M1 to M2 macrophages, which are stimulated by low levels of lipopolysaccharide (LPS). Additionally, IFNβ has been demonstrated to promote the production of ISG15 by macrophages, which leads to the inhibition of the innate immune response. Moreover, our investigation revealed that IFNβ has the potential to augment the secretion of ISG15 and its downstream cytokine, IL10, in LPS-stimulated macrophages. Single-cell analysis was conducted on the gingival tissues of patients with periodontitis, which revealed a higher proportion of macrophages in the periodontitis-diseased tissue and increased expression of IFNβ, ISG15, and IL10. Gene Set Enrichment Analysis indicated that bacterial infection was associated with upregulation of IFNβ, ISG15, and IL10. Notably, only IL10 has been linked to immunosuppression, indicating that the IFNβ-ISG15-IL10 axis might promote an anti-inflammatory response in periodontitis through IL10 expression. It is also found that macrophage phenotype transitions in periodontitis involve the release of higher levels of IFNβ, ISG15, and IL10 by the anti-inflammatory M2 macrophage phenotype compared to the pro-inflammatory M1 phenotype and myeloid-derived suppressor cells (MDSCs). This implies that the IFNβ-induced production of IL10 might be linked to the M2 macrophage phenotype. Furthermore, cell communication analysis demonstrated that IL10 can promote fibroblast proliferation in periodontal tissues via STAT3 signaling.
Collapse
Affiliation(s)
- Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianle Li
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Pokfulam, China
| | - Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Qiao
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Pokfulam, China
| | - Huimin Chen
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Pokfulam, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianfan Cheng
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Pokfulam, China
| | - Hui Chen
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Pokfulam, China
| |
Collapse
|
8
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Li K, Li J, Wei X, Wang J, Geng M, Ai K, Liang W, Zhang J, Li K, Gao H, Yang J. IL-10 Negatively Controls the Primary T Cell Response of Tilapia by Triggering the JAK1/STAT3/SOCS3 Axis That Suppresses NF-κB and MAPK/ERK Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:229-244. [PMID: 36548476 DOI: 10.4049/jimmunol.2200335] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
11
|
Sallam MF, Ahmed HMS, Diab KA, El-Nekeety AA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J Trace Elem Med Biol 2022; 73:127024. [PMID: 35753172 DOI: 10.1016/j.jtemb.2022.127024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2-NPs) are widely utilized in medicine and industry; however, their safety in biological organisms is still unclear. In this study, we determined the bioactive constitutes of thyme essential oil (TEO) and utilized the nanoemulsion technique to improve its protective efficiency against oxidative stress, genotoxicity, and DNA damage of biosynthesized titanium dioxide nanoparticles (TiO2-NPs). METHODS TEO nanoemulsion (TEON) was prepared using whey protein isolate (WPI). Sixty male Sprague-Dawley rats were divided into six groups and treated orally for 21 days including the control group, TEO, or TEON- treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w) and the groups received TiO2-NPs plus TEO or TEON. Blood and tissues samples were collected for different assays. RESULTS The GC-MS analysis identified 17 bioactive compounds in TEO and thymol and carvacrol were the major compounds. TEON was irregular with average particles size of 230 ± 3.7 nm and ζ-potential of -24.17 mV. However, TiO2-NPs showed a polygonal shape with an average size of 50 ± 2.4 nm and ζ-potential of -30.44 mV. Animals that received TiO2-NPs showed severe disturbances in liver and kidney indices, lipid profile, oxidant/antioxidant indices, inflammatory cytokines, gene expressions, increased DNA damage, and pathological changes in hepatic tissue. Both TEO and TEON showed potential protection against these hazards and TEON was more effective than TEO. CONCLUSION The nanoemulsion of TEO enhances the oil bioactivity, improves its antioxidant characteristics, and protects against oxidative damage and genotoxicity of TiO2-NPs.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Kawther A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
12
|
Cerón-Pisa N, Shafiek H, Martín-Medina A, Verdú J, Jordana-Lluch E, Escobar-Salom M, Barceló IM, López-Causapé C, Oliver A, Juan C, Iglesias A, Cosío BG. Effects of Inhaled Corticosteroids on the Innate Immunological Response to Pseudomonas aeruginosa Infection in Patients with COPD. Int J Mol Sci 2022; 23:ijms23158127. [PMID: 35897707 PMCID: PMC9332726 DOI: 10.3390/ijms23158127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inhaled corticosteroids (ICS) use is associated with an increased risk of Pseudomonas aeruginosa (PA) infection in patients with COPD. We aimed to evaluate the effects of ICS on alveolar macrophages in response to PA in COPD patients with and without baseline ICS treatment (COPD and COPD + ICS, respectively) as well as smoker and nonsmoker controls. To do so, cells were infected with PA and cotreated with budesonide (BUD) or fluticasone propionate (FLU). The analysis of NF-κB and c-jun activity revealed a significant increase in both factors in response to PA cotreated with BUD/FLU in smokers but not in COPD or COPD + ICS patients when compared with PA infection alone. The expression of Toll-like receptor 2 (TLR2) and the transcription factor c-jun were induced upon PA infection in nonsmokers only. Moreover, in the smoker and COPD groups, there was a significant increase in TLR2 and a decrease in c-jun expression when treated with BUD/FLU after PA infection, which were not observed in COPD + ICS patients. Therefore, the chronic use of ICS seemingly makes the macrophages tolerant to BUD/FLU stimulation compared with those from patients not treated with ICS, promoting an impaired recognition of PA and activity of alveolar macrophages in terms of altered expression of TLR2 and cytokine production, which could explain the increased risk of PA infection in COPD patients under ICS treatment.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Javier Verdú
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Elena Jordana-Lluch
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Maria Escobar-Salom
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Isabel M. Barceló
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carla López-Causapé
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Antonio Oliver
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carlos Juan
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| | - Borja G. Cosío
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| |
Collapse
|
13
|
Horn KJ, Schopper MA, Drigot ZG, Clark SE. Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung. Nat Commun 2022; 13:3321. [PMID: 35680890 PMCID: PMC9184549 DOI: 10.1038/s41467-022-31074-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigates how specific members of the lung microbiome influence the early immune response to infection. Prevotella species are a major component of the endogenous airway microbiota. Increased abundance of Prevotella melaninogenica correlates with reduced infection with the bacterial pathogen Streptococcus pneumoniae, indicating a potentially beneficial role. Here, we show that P. melaninogenica enhances protection against S. pneumoniae, resulting in rapid pathogen clearance from the lung and improved survival in a mouse lung co-infection model. This response requires recognition of P. melaninogenica lipoproteins by toll-like receptor (TLR)2, the induction of TNFα, and neutrophils, as the loss of any of these factors abrogates Prevotella-induced protection. Improved clearance of S. pneumoniae is associated with increased serine protease-mediated killing by lung neutrophils and restraint of P. melaninogenica-induced inflammation by IL-10 in co-infected mice. Together, these findings highlight innate immune priming by airway Prevotella as an important protective feature in the respiratory tract. How the airway microbiome protects against bacterial pneumonia remains unclear. Here, the authors identify airway bacterial species that activate the immune system to facilitate rapid clearance of the pathogen Streptococcus pneumoniae from the lung.
Collapse
Affiliation(s)
- Kadi J Horn
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA
| | - Melissa A Schopper
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA
| | - Zoe G Drigot
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA.,University of Colorado Boulder, College of Arts and Sciences, Boulder, CO, 80309, USA
| | - Sarah E Clark
- University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Lajqi T, Frommhold D, Gille C, Hudalla H. Induction of memory-like adaptive responses in murine neutrophils in vitro. Cell Immunol 2022; 376:104535. [DOI: 10.1016/j.cellimm.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/02/2023]
|
15
|
Kennedy II DE, Mody P, Gout JF, Tan W, Seo KS, Olivier AK, Rosch JW, Thornton JA. Contribution of Puma to Inflammatory Resolution During Early Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:886901. [PMID: 35694536 PMCID: PMC9177954 DOI: 10.3389/fcimb.2022.886901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-β and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Daniel E. Kennedy II
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Perceus Mody
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alicia K. Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- *Correspondence: Justin A. Thornton,
| |
Collapse
|
16
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
17
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Giustina AD, Rodrigues JF, Bagio E, Bonfante S, Joaquim L, Zarbato G, Stork S, Machado RS, de Souza Goldim MP, Danielski LG, Mathias K, Dacoregio C, Cardoso T, Predroso GS, Venturini LM, Zaccaron RP, Silveira PCL, Pinho RA, Petronilho F. Lung-Brain Crosstalk in Sepsis: Protective Effect of Prophylactic Physical Exercise Against Inflammation and Oxidative Stress in Rats. Mol Neurobiol 2022; 59:3860-3872. [DOI: 10.1007/s12035-022-02823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
|
19
|
Absence of Streptococcus pneumoniae Capsule Increases Bacterial Binding, Persistence, and Inflammation in Corneal Infection. Microorganisms 2022; 10:microorganisms10040710. [PMID: 35456761 PMCID: PMC9025271 DOI: 10.3390/microorganisms10040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
The role of the pneumococcal polysaccharide capsule is largely unclear for Streptococcus pneumoniae keratitis, an ocular inflammatory disease that develops as a result of bacterial infection of the cornea. In this study, capsule-deficient strains were compared to isogenic parent strains in their ability to adhere to human corneal epithelial cells. One isogenic pair was further used in topical ocular infection of mice to assess the contribution of the capsule to keratitis. The results showed that non-encapsulated pneumococci were significantly more adherent to cells, persisted in significantly higher numbers on mouse corneas in vivo, and caused significant increases in murine ocular IL9, IL10, IL12-p70, MIG, and MIP-1-gamma compared to encapsulated S. pneumoniae. These findings indicate that the bacterial capsule impedes virulence and the absence of capsule impacts inflammation following corneal infection.
Collapse
|
20
|
Papanicolaou A, Wang H, McQualter J, Aloe C, Selemidis S, Satzke C, Vlahos R, Bozinovski S. House Dust Mite Aeroallergen Suppresses Leukocyte Phagocytosis and Netosis Initiated by Pneumococcal Lung Infection. Front Pharmacol 2022; 13:835848. [PMID: 35273509 PMCID: PMC8902390 DOI: 10.3389/fphar.2022.835848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.
Collapse
Affiliation(s)
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 2022; 15:896-907. [PMID: 35856089 PMCID: PMC9385480 DOI: 10.1038/s41385-022-00528-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
Collapse
|
22
|
Herta T, Bhattacharyya A, Rosolowski M, Conrad C, Gurtner C, Gruber AD, Ahnert P, Gutbier B, Frey D, Suttorp N, Hippenstiel S, Zahlten J. Krueppel-Like Factor 4 Expression in Phagocytes Regulates Early Inflammatory Response and Disease Severity in Pneumococcal Pneumonia. Front Immunol 2021; 12:726135. [PMID: 34589087 PMCID: PMC8473698 DOI: 10.3389/fimmu.2021.726135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor Krueppel-like factor (KLF) 4 fosters the pro-inflammatory immune response in macrophages and polymorphonuclear neutrophils (PMNs) when stimulated with Streptococcus pneumoniae, the main causative pathogen of community-acquired pneumonia (CAP). Here, we investigated the impact of KLF4 expression in myeloid cells such as macrophages and PMNs on inflammatory response and disease severity in a pneumococcal pneumonia mouse model and in patients admitted to hospital with CAP. We found that mice with a myeloid-specific knockout of KLF4 mount an insufficient early immune response with reduced levels of pro-inflammatory cytokines and increased levels of the anti-inflammatory cytokine interleukin (IL) 10 in bronchoalveolar lavage fluid and plasma and an impaired bacterial clearance from the lungs 24 hours after infection with S. pneumoniae. This results in higher rates of bacteremia, increased lung tissue damage, more severe symptoms of infection and reduced survival. Higher KLF4 gene expression levels in the peripheral blood of patients with CAP at hospital admission correlate with a favourable clinical presentation (lower sequential organ failure assessment (SOFA) score), lower serum levels of IL-10 at admission, shorter hospital stay and lower mortality or requirement of intensive care unit treatment within 28 days after admission. Thus, KLF4 in myeloid cells such as macrophages and PMNs is an important regulator of the early pro-inflammatory immune response and, therefore, a potentially interesting target for therapeutic interventions in pneumococcal pneumonia.
Collapse
Affiliation(s)
- Toni Herta
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Aritra Bhattacharyya
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Corinne Gurtner
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Frey
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Lajqi T, Braun M, Kranig SA, Frommhold D, Pöschl J, Hudalla H. LPS Induces Opposing Memory-like Inflammatory Responses in Mouse Bone Marrow Neutrophils. Int J Mol Sci 2021; 22:ijms22189803. [PMID: 34575963 PMCID: PMC8469609 DOI: 10.3390/ijms22189803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
A growing body of evidence suggests that innate immune cells can respond in a memory-like (adaptive) fashion, which is referred to as trained immunity. Only few in vivo studies have shown training effects in neutrophils; however, no in vitro setup has been established to study the induction of trained immunity or tolerance in neutrophils by microbial agents. In light of their short lifespan (up to 48 h), we suggest to use the term trained sensitivity for neutrophils in an in vitro setting. Here, we firstly describe a feasible two-hit model, using different doses of lipopolysaccharide (LPS) in bone marrow neutrophils. We found that low doses (10 pg/mL) induce pro-inflammatory activation (trained sensitivity), whereas priming with high doses (100 ng/mL) leads to suppression of pro-inflammatory mediators such as TNF-α or IL-6 (tolerance) (p < 0.05). On a functional level, trained neutrophils displayed increased phagocytic activity and LFA-1 expression as well as migrational capacity and CD11a expression, whereas tolerant neutrophils show contrasting effects in vitro. Mechanistically, TLR4/MyD88/PI3Ks regulate the activation of p65, which controls memory-like responses in mouse bone marrow neutrophils (p < 0.05). Our results open a new window for further in vitro studies on memory-like inflammatory responses of short-lived innate immune cells such as neutrophils.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Simon Alexander Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - David Frommhold
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Correspondence: ; Tel.: +49-6221-56-1983; Fax: +49-6221-56-5626
| |
Collapse
|
24
|
Salva S, Kolling Y, Ivir M, Gutiérrez F, Alvarez S. The Role of Immunobiotics and Postbiotics in the Recovery of Immune Cell Populations From Respiratory Mucosa of Malnourished Hosts: Effect on the Resistance Against Respiratory Infections. Front Nutr 2021; 8:704868. [PMID: 34458307 PMCID: PMC8387655 DOI: 10.3389/fnut.2021.704868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is associated with a state of secondary immunodeficiency, which is characterized by a worsening of the immune response against infectious agents. Despite important advances in vaccines and antibiotic therapies, the respiratory infections are among the leading causes of increased morbidity and mortality, especially in immunosuppressed hosts. In this review, we examine the interactions between immunobiotics-postbiotics and the immune cell populations of the respiratory mucosa. In addition, we discuss how this cross talk affects the maintenance of a normal generation of immune cells, that is crucial for the establishment of protective innate and adaptive immune responses. Particular attention will be given to the alterations in the development of phagocytic cells, T and B lymphocytes in bone marrow, spleen and thymus in immunosuppression state by protein deprivation. Furthermore, we describe our research that demonstrated that the effectiveness of immunobiotics nasal administration in accelerating the recovery of the respiratory immune response in malnourished hosts. Finally, we propose the peptidoglycan from the immunobiotic Lactobacillus rhamnosus CRL1505 as the key cellular component for the effects on mucosal immunity, which are unique and cannot be extrapolated to other L. rhamnosus or probiotic strains. In this way, we provide the scientific bases for its application as a mucosal adjuvant in health plans, mainly aimed to improve the immune response of immunocompromised hosts. The search for safe vaccine adjuvants that increase their effectiveness at the mucosal level is a problem of great scientific relevance today.
Collapse
Affiliation(s)
- Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Yanina Kolling
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Maximiliano Ivir
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina.,Clinical Biochemistry I, Institute of Applied Biochemistry, National University of Tucuman, San Miguel de Tucuman, Argentina
| |
Collapse
|
25
|
Abstract
Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in pneumococcal infections. However, the effect of EVs on the host immune system remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by macrophages, T cells, and epithelial cells. In vitro, pEVs induce NF-κB activation in a dosage-dependent manner and polarize human macrophages to an alternative (M2) phenotype. In addition, pEV pretreatment conditions macrophages to increase bacteria uptake and such macrophages may act as a reservoir for pneumococcal cells by increasing survival of the phagocytosed bacteria. When administered systemically in mice, pEVs induce cytokine release; when immobilized locally, they recruit lymphocytes and macrophages. Taken together, pEVs emerge as critical contributors to inflammatory responses and tissue damage in mammalian hosts.
Collapse
|
26
|
Wang Y, Hosomi K, Shimoyama A, Yoshii K, Nagatake T, Fujimoto Y, Kiyono H, Fukase K, Kunisawa J. Lipopolysaccharide Derived From the Lymphoid-Resident Commensal Bacteria Alcaligenes faecalis Functions as an Effective Nasal Adjuvant to Augment IgA Antibody and Th17 Cell Responses. Front Immunol 2021; 12:699349. [PMID: 34276692 PMCID: PMC8281128 DOI: 10.3389/fimmu.2021.699349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Alcaligenes spp., including A. faecalis, is a gram-negative facultative bacterium uniquely residing inside the Peyer's patches. We previously showed that A. faecalis-derived lipopolysaccharides (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 to activate dendritic cells and shows adjuvant activity by enhancing IgG and Th17 responses to systemic vaccination. Here, we examined the efficacy of Alcaligenes LPS as a nasal vaccine adjuvant. Nasal immunization with ovalbumin (OVA) plus Alcaligenes LPS induced follicular T helper cells and germinal center formation in the nasopharynx-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs), and consequently enhanced OVA-specific IgA and IgG responses in the respiratory tract and serum. In addition, nasal immunization with OVA plus Alcaligenes LPS induced OVA-specific T cells producing IL-17 and/or IL-10, whereas nasal immunization with OVA plus cholera toxin (CT) induced OVA-specific T cells producing IFN-γ and IL-17, which are recognized as pathogenic type of Th17 cells. In addition, CT, but not Alcaligenes LPS, promoted the production of TNF-α and IL-5 by T cells. Nasal immunization with OVA plus CT, but not Alcaligenes LPS, led to increased numbers of neutrophils and eosinophils in the nasal cavity. Together, these findings indicate that the benign nature of Alcaligenes LPS is an effective nasal vaccine adjuvant that induces antigen-specific mucosal and systemic immune responses without activation of inflammatory cascade after nasal administration.
Collapse
Affiliation(s)
- Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California San Diego, La Jolla, CA, United States
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Dentistry, Osaka University, Suita, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
27
|
Raya Tonetti F, Tomokiyo M, Ortiz Moyano R, Quilodrán-Vega S, Yamamuro H, Kanmani P, Melnikov V, Kurata S, Kitazawa H, Villena J. The Respiratory Commensal Bacterium Dolosigranulum pigrum 040417 Improves the Innate Immune Response to Streptococcus pneumoniae. Microorganisms 2021; 9:microorganisms9061324. [PMID: 34207076 PMCID: PMC8234606 DOI: 10.3390/microorganisms9061324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Previously, we demonstrated that the nasal administration of Dolosigranulum pigrum 040417 differentially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 2 in infant mice. In this work, we aimed to evaluate the beneficial effects of D. pigrum 040417 in the context of Streptococcus pneumoniae infection and characterize the role of alveolar macrophages (AMs) in the immunomodulatory properties of this respiratory commensal bacterium. The nasal administration of D. pigrum 040417 to infant mice significantly increased their resistance to pneumococcal infection, differentially modulated respiratory cytokines production, and reduced lung injuries. These effects were associated to the ability of the 040417 strain to modulate AMs function. Depletion of AMs significantly reduced the capacity of the 040417 strain to improve both the reduction of pathogen loads and the protection against lung tissue damage. We also demonstrated that the immunomodulatory properties of D. pigrum are strain-specific, as D. pigrum 030918 was not able to modulate respiratory immunity or to increase the resistance of mice to an S. pneumoniae infection. These findings enhanced our knowledge regarding the immunological mechanisms involved in modulation of respiratory immunity induced by beneficial respiratory commensal bacteria and suggested that particular strains could be used as next-generation probiotics.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán 3780000, Chile;
| | - Hikari Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Paulraj Kanmani
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|
28
|
Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2966-2979. [PMID: 34039638 DOI: 10.4049/jimmunol.2001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-β mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-β induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a beneficial role in E. coli-induced sepsis.
Collapse
Affiliation(s)
- Sean G Kirk
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Parker R Murphy
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Charles J Cash
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Timothy J Barley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bridget A Bowman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Abel J Batty
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
29
|
González LA, Melo-González F, Sebastián VP, Vallejos OP, Noguera LP, Suazo ID, Schultz BM, Manosalva AH, Peñaloza HF, Soto JA, Parker D, Riedel CA, González PA, Kalergis AM, Bueno SM. Characterization of the Anti-Inflammatory Capacity of IL-10-Producing Neutrophils in Response to Streptococcus pneumoniae Infection. Front Immunol 2021; 12:638917. [PMID: 33995357 PMCID: PMC8113954 DOI: 10.3389/fimmu.2021.638917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are immune cells classically defined as pro-inflammatory effector cells. However, current accumulated evidence indicates that neutrophils have more versatile immune-modulating properties. During acute lung infection with Streptococcus pneumoniae in mice, interleukin-10 (IL-10) production is required to temper an excessive lung injury and to improve survival, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during S. pneumoniae infection remain unknown. Here we show that neutrophils are the main myeloid cells that produce IL-10 in the lungs during the first 48 h of infection. Importantly, in vitro assays with bone-marrow derived neutrophils confirmed that IL-10 can be induced by these cells by the direct recognition of pneumococcal antigens. In vivo, we identified the recruitment of two neutrophil subpopulations in the lungs following infection, which exhibited clear morphological differences and a distinctive profile of IL-10 production at 48 h post-infection. Furthermore, adoptive transfer of neutrophils from WT mice into IL-10 knockout mice (Il10-/-) fully restored IL-10 production in the lungs and reduced lung histopathology. These results suggest that IL-10 production by neutrophils induced by S. pneumoniae limits lung injury and is important to mediate an effective immune response required for host survival.
Collapse
Affiliation(s)
- Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés H Manosalva
- Servicio de Anatomía Patológica, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Skeletal muscle fibers play a functional role in host defense during sepsis in mice. Sci Rep 2021; 11:7316. [PMID: 33795743 PMCID: PMC8016959 DOI: 10.1038/s41598-021-86585-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscles secrete a wide variety of immunologically active cytokines, but the functional significance of this response to in vivo innate immunity is not understood. We addressed this by knocking out the toll receptor adapter protein, Myd88, only in skeletal muscle fibers (skmMyd88KO), and followed male and female mice at 6 and 12 h after peritoneal injection of cecal slurry (CS), a model of polymicrobial sepsis. Because of a previously identified increase in mortality to CS injection, males received ~ 30% lower dose. At 12 h, skmMyd88KO caused significant reductions in a wide variety of pro- and anti-inflammatory plasma cytokines, e.g. TNFα, IL-1β and IL-10, compared to strain-matched controls in both males and females. Similar reductions were observed at 6 h in females. SkmMyd88KO led to ~ 40–50% elevations in peritoneal neutrophils at 6 and 12 h post CS in females. At 12 h post CS, skmMyd88KO increased peritoneal monocytes/macrophages and decreased %eosinophils and %basophils in females. SkmMyd88KO also led to significantly higher rates of mortality in female mice but not in males. In conclusion, the results suggest that skeletal muscle Myd88-dependent signal transduction can play functionally important role in normal whole body, innate immune inflammatory responses to peritoneal sepsis.
Collapse
|
31
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
32
|
Rey-Jurado E, Bohmwald K, Gálvez NMS, Becerra D, Porcelli SA, Carreño LJ, Kalergis AM. Contribution of NKT cells to the immune response and pathogenesis triggered by respiratory viruses. Virulence 2021; 11:580-593. [PMID: 32463330 PMCID: PMC7549913 DOI: 10.1080/21505594.2020.1770492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) cause acute respiratory tract infections in children worldwide. Natural killer T (NKT) cells are unconventional T lymphocytes, and their TCRs recognize glycolipids bound to the MHC-I-like molecule, CD1d. These cells modulate the inflammatory response in viral infections. Here, we evaluated the contribution of NKT cells in both hRSV and hMPV infections. A significant decrease in the number of neutrophils, eosinophils, and CD103+DCs infiltrating to the lungs, as well as an increased production of IFN-γ, were observed upon hRSV-infection in CD1d-deficient BALB/c mice, as compared to wild-type control mice. However, this effect was not observed in the CD1d-deficient BALB/c group, upon infection with hMPV. Importantly, reduced expression of CD1d in CD11b+ DCs and epithelial cells was found in hRSV -but not hMPV-infected mice. Besides, a reduction in the expression of CD1d in alveolar macrophages of lungs from hRSV- and hMPV-infected mice was found. Such reduction of CD1d expression interfered with NKT cells activation, and consequently IL-2 secretion, as characterized by in vitro experiments for both hRSV and hMPV infections. Furthermore, increased numbers of NKT cells recruited to the lungs in response to hRSV- but not hMPV-infection was detected, resulting in a reduction in the expression of IFN-γ and IL-2 by these cells. In conclusion, both hRSV and hMPV might be differently impairing NKT cells function and contributing to the immune response triggered by these viruses.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Daniela Becerra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Steven A Porcelli
- Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| |
Collapse
|
33
|
Serum cytokine profile of pediatric patients with laboratory confirmed pneumococcal meningitis. J Infect Public Health 2021; 14:514-520. [PMID: 33743374 DOI: 10.1016/j.jiph.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infection is a leading cause of bacterial meningitis in children with severe sequelae. Cytokines are important molecules in regulating of host inflammatory and anti-inflammatory responses. So far, the cytokine profile of bacterial meningitis caused by single pathogen has been rarely reported. The aim of this study was to explore serum cytokine profile in pediatric patients with pneumococcal meningitis (PM) and its clinical relevance which could be considered as a valuable tool for differential diagnosis of PM. METHODS During 2015-2018, 95 children with laboratory-confirmed PM were included. Of them, 63 had serum samples at admission. Ten cytokines including TNF-α, IL-12p40, IL-17A, IL-1β, IFN-γ, GM-CSF, IL-10, CXCL-1, IL-8 and IL-13 were measured by multiplex immunoassay in sera of 63 PM patients and 55 age-matched healthy controls (HCs). Level of serum cytokines was compared with different clinical features of patients. RESULTS Significantly higher level of IL-10 was observed in patients than HCs (median, 2.19 vs. 1.92 pg/mL, p = 0.017). Significantly lower levels of serum IL-12p40, IL-17A and IL-1β were observed in patients than HCs (median, 0.68 vs. 10.12 pg/mL, p < 0.0001; 1.14 vs. 1.14 pg/mL, p = 0.004; 1.00 vs. 5.09 pg/mL, p < 0.0001, respectively). No difference was found in levels of other cytokines between patients and controls. A negative correlation was noticed between percentages of blood neutrophils and concentrations of IL-10 (p = 0.048, r = -0.25). Significantly lower levels of IL-12p40 and CXCL-1 were observed in PM patients with sepsis than those without (median 0.68 vs. 1.64 pg/mL, p = 0.026; 7.25 vs. 12.84 pg/mL, p = 0.043, respectively). CONCLUSIONS Our results suggested that there might be significant changes in serum pro-inflammatory and anti-inflammatory cytokines in PM children and that the determination of these cytokines may have limited value for evaluation of clinical outcome of pediatric PM.
Collapse
|
34
|
Clark SE, Schmidt RL, Aguilera ER, Lenz LL. IL-10-producing NK cells exacerbate sublethal Streptococcus pneumoniae infection in the lung. Transl Res 2020; 226:70-82. [PMID: 32634590 PMCID: PMC7572800 DOI: 10.1016/j.trsl.2020.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Lung inflammation is tightly controlled to balance microbial clearance with the tissue damage that accompanies this response. Bacterial pathogens including Streptococcus pneumoniae (S. pneumoniae) modulate immune regulation by promoting secretion of the anti-inflammatory cytokine IL-10. The important cellular sources of IL-10 that impact protection against different bacterial infections are not well characterized. We find that S. pneumoniaeactivates IL-10 secretion from natural killer (NK) cells in the lung, which restrict host protection in a mouse model of sublethal infection. Direct transfer of wild-type NK cells into the lungs of IL-10-deficient mice drives bacterial expansion, identifying NK cells as a critical source of IL-10 promoting S. pneumoniae infection. The S. pneumoniae virulence protein Spr1875 was found to elicit NK cell IL-10 production in purified cells and in the lungs of live animals. These findings reveal therapeutic targets to combat bacterial-driven immune regulation in the lung.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rebecca L Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa
| | - Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurel L Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
35
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
36
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|
37
|
Panda BSK, Mohapatra SK, Verma AK, Kamboj A, Alhussien MN, Dang AK. A comparative study on various immunological parameters influencing embryo survivability in crossbred dairy cows. Theriogenology 2020; 157:140-148. [PMID: 32810791 DOI: 10.1016/j.theriogenology.2020.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022]
Abstract
Since long embryonic mortality has remained an area of concern affecting the reproduction, production, and profitability of dairy cows. We investigated the possible interaction between interleukins, hormones, and neutrophil associated CD markers during the implantation window in Karan Fries (KF) cows naturally coming to heat. Blood collection was done on days 0 i.e. day of Artificial Insemination (AI), 10, 18, 21, 30 and on day 40 post-AI. Total leucocyte count (TLC) and neutrophil to lymphocyte (N:L) ratio were recorded. Blood neutrophils were isolated and their number, phagocytic activity (PA), myeloperoxidase (MPO) concentration and relative mRNA expression of cell adhesion molecules (CD-11b, CD-31, CD-44, CD-62L) as well as progesterone-inducing-blocking-factor (PIBF) and glucocorticoid receptor alpha (GRα) were examined. Plasma progesterone, cortisol, IL-2, IL-8, IL-6, and IL-10 were also measured. Pregnancy was confirmed by non-return to heat, ultrasonography and per rectal examination along with progesterone assay. Cows were further divided into pregnant (P), early embryonic mortality (EEM) and late embryonic mortality (LEM) groups. Embryonic losses cows showed lower plasma concentration of IL-10 (<100 pg/ml) and a higher concentration of IL-2 (>500 pg/ml). Also, a 4 fold increase in the relative mRNA expression of CD-11b and 2.5 fold changes in CD-44 expression were observed in embryonic mortality. We observed a 1.5 fold increase in the relative mRNA expression of PIBF and a 0.5 fold increase in GRα expression in pregnant cows compared to EEM (on day 21) and LEM (on days 30 and 40) cows. Our results depicted that the hyperimmune status of the dam which could be due to multifactorial events that led to the pregnancy failure. The above basic values may be used for checking the immune status and thus timely management strategies can be taken to prevent embryonic losses.
Collapse
Affiliation(s)
- Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sunil Kumar Mohapatra
- Department of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Arvind Kumar Verma
- Department of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
38
|
Minhas V, Aprianto R, McAllister LJ, Wang H, David SC, McLean KT, Comerford I, McColl SR, Paton JC, Veening JW, Trappetti C. In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae. Commun Biol 2020; 3:293. [PMID: 32504007 PMCID: PMC7275033 DOI: 10.1038/s42003-020-1018-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes. Minhas, Aprianto et al. apply dual RNA seq to a set of related Streptococcus pneumoniae strains to find that differential neutrophil recruitment explains different tissue tropism of these strains. This study highlights the power of dual RNA-seq in investigating how a single bacterial SNP determines the host’s disease outcomes.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Rieza Aprianto
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lauren J McAllister
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Hui Wang
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Kimberley T McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Iain Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shaun R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
39
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
40
|
Feng J, Dai W, Zhang C, Chen H, Chen Z, Chen Y, Pan Q, Zhou Y. Shen-ling-bai-zhu-san ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of Streptococcus pneumonia-induced pneumonia. BMC Complement Med Ther 2020; 20:159. [PMID: 32460745 PMCID: PMC7254717 DOI: 10.1186/s12906-020-02958-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Background Shen-ling-bai-zhu-san (SLBZS) regulates inflammation and gut microbiota which are associated with Streptococcus pneumoniae (Spn)-induced pneumonia. So, we studied the therapeutic effect of SLBZS and evaluated whether gut microbiota is associated with the effects of SLBZS in improving Spn-induced pneumonia. Methods Spn-induced pneumonia NIH mice were treated by SLBZS and cefixime. A CT scan was performed and Myeloperoxidase (MPO) activity in lung homogenates was determined using the MPO Colorimetric Assay Kit. Inflammation levels in lung homogenates were measured using ELISA. Bacterial load was coated on a TSAII sheep blood agar. Intestinal gut microbiota information was analyzed according to sequencing libraries. Results SLBZS decreased bacterial load, reduced wet/dry weight ratio, inhibited myeloperoxidase activity, reduced the neutrophils count, and ameliorated lung injury. Furthermore, SLBZS inhibited interleukin (IL)-1β, IL-6, tumor necrosis factor-α, IL-2, IL-8, IL-12, and interferon-γ secretion and enhanced IL-10 secretion. These results suggest that SLBZS ameliorates lung injury in mice with Spn-induced pneumonia. Moreover, SLBZS reduced inflammatory cytokine levels in a concentration-dependent manner and increased gut microbiota abundance and diversity. After SLBZS treatment, bacteria such as Epsilonbacteraeota, Bacteroidetes, Actinobacteria, Proteobacteria, and Patescibacteria were significantly reduced, while Tenericutes and Firmicutes were significantly increased. Conclusion SLBZS ameliorates inflammation, lung injury, and gut microbiota in mice with S. pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Jinli Feng
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China.
| | - Weibo Dai
- Pharmacology laboratory, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Cheng Zhang
- Clinical laboratory, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Houjun Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Ziliang Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Yongfeng Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Qianyi Pan
- Prevention and health section, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Yongmao Zhou
- Pediatrics, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| |
Collapse
|
41
|
The Ability of Respiratory Commensal Bacteria to Beneficially Modulate the Lung Innate Immune Response Is a Strain Dependent Characteristic. Microorganisms 2020; 8:microorganisms8050727. [PMID: 32414154 PMCID: PMC7285514 DOI: 10.3390/microorganisms8050727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated whether the ability of commensal respiratory bacteria to modulate the innate immune response against bacterial and viral pathogens was a shared or strain-specific characteristic. Bacterial strains belonging to the Corynebacterium pseudodiphtheriticum and Dolosigranulum pigrum species were compared by studying their influence in the Toll-like receptor (TLR)-2- and TLR3-triggered immune responses in the respiratory tract, as well as in the resistance to Respiratory Syncytial Virus (RSV) and Streptococcus pneumoniae infections. We demonstrated that nasally administered C. pseudodiphteriticum 090104 or D. pigrum 040417 were able to modulate respiratory immunity and increase the resistance against pathogens, while other strains of the same species did not influence the respiratory immune responses, demonstrating a clear strain-dependent immunomodulatory effect of respiratory commensal bacteria. We also reported here that bacterium-like particles (BLP) and cell walls derived from immunomodulatory respiratory commensal bacteria are an interesting alternative for the modulation of the respiratory immune system. Our study is a step forward in the positioning of certain strains of respiratory commensal bacteria as next-generation probiotics for the respiratory tract.
Collapse
|
42
|
Kang MJ, Jang AR, Park JY, Ahn JH, Lee TS, Kim DY, Lee MS, Hwang S, Jeong YJ, Park JH. IL-10 Protects Mice From the Lung Infection of Acinetobacter baumannii and Contributes to Bacterial Clearance by Regulating STAT3-Mediated MARCO Expression in Macrophages. Front Immunol 2020; 11:270. [PMID: 32153580 PMCID: PMC7047127 DOI: 10.3389/fimmu.2020.00270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
Interleukin-10 plays important, yet contrasting, roles in host protection against bacterial infections and in the septic response. To determine the role of IL-10 in the host defense against Acinetobacter baumannii infection, wild-type (WT) and IL-10-deficient mice were infected intranasally with the bacteria. IL-10-deficient mice exhibited increased mortality, severe pathology, and excess production of proinflammatory cytokines and chemokines in the lungs, and increased bacterial burdens in bronchoalveolar lavage (BAL) fluids and lung homogenates after A. baumannii infection, compared to WT mice. Intranasal administration of recombinant IL-10 rescued mice from the lethality of the bacterial infection by promoting bacterial clearance and reducing production of cytokines and chemokines in the lungs. In vitro experiments revealed that IL-10 enhanced phagocytosis and bacterial killing by macrophages by upregulating the macrophage receptor with collagenous structure (MARCO). In addition, A. baumannii-induced activation of STAT3 was impaired in IL-10-deficient macrophages, which was essential for expression of MARCO. Intranasal adoptive transfer of WT macrophages resulted in significant increases in mice survival and bacterial clearance in IL-10-deficient mice infected with A. baumannii. Our results show that IL-10 played an important role in the host defense against pulmonary infection of A. baumannii by promoting the antibacterial function of macrophages by regulating MARCO expression through the STAT3-mediated pathway.
Collapse
Affiliation(s)
- Min-Jung Kang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seungwoo Hwang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yu-Jin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
43
|
Celliers A, Rautenbach Y, Hooijberg E, Christopher M, Goddard A. Neutrophil Myeloperoxidase Index in Dogs With Babesiosis Caused by Babesia rossi. Front Vet Sci 2020; 7:72. [PMID: 32133380 PMCID: PMC7040022 DOI: 10.3389/fvets.2020.00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/28/2020] [Indexed: 11/13/2022] Open
Abstract
Babesiosis caused by the virulent tick-borne hemoprotozoan, Babesia rossi, results in a marked systemic inflammatory host response in dogs. Neutrophils form part of the innate immune response and contains myeloperoxidase (MPO) as the predominant component of the neutrophil lysosomal protein in azurophilic granules. The neutrophil myeloperoxidase index (MPXI), determined on the ADVIA hematology analyzer, is a quantitative estimate of intracellular MPO content. Objectives of this study were to: (a) compare MPXI in dogs with babesiosis with healthy control dogs; (b) compare MPXI in dogs that died from babesiosis with dogs that survived and controls; and (c) correlate the MPXI with the previously determined segmented and band neutrophil count and cytokine concentrations in dogs with babesiosis. Data for 140 dogs naturally infected with B. rossi and 20 healthy control dogs were retrospectively evaluated. Neutrophil counts and MPXI were determined on an ADVIA 2120 analyzer. Cytokine concentrations [interleukin (IL)-2, IL-6, IL-8, IL-10, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF), and monocyte chemo-attractant protein-1 (MCP-1)] were determined using a canine-specific multiplex immunoassay. The mortality rate of the Babesia-infected dogs was 11% (15/140). MPXI was significantly higher in Babesia-infected dogs (P = 0.033), and in Babesia-infected non-survivors (P = 0.011), compared with healthy control dogs. In Babesia-infected dogs a significant positive correlation was found between MPXI and IL-10 (r = 0.211, P = 0.039) and a significant negative correlation was found between MPXI and IL-8 (r = -0.350, P < 0.001). In Babesia-infected non-survivors, significant positive correlations were found between MPXI and IL-2 (r = 0.616, P = 0.033), IL-6 (r = 0.615, P = 0.033), IL-18 (r = 0.613, P = 0.034), GM-CSF (r = 0.630, P = 0.028), and MCP-1 (r = 0.713, P = 0.009). In Babesia-infected survivors, a significant negative correlation was found between MPXI and IL-8 (r = -0.363, P = 0.001). MPXI was correlated with pro-inflammatory cytokines in Babesia-infected dogs that died. The potential of MPXI as a novel marker of inflammation and prognosis in dogs infected with B. rossi, thus warrants further investigation.
Collapse
Affiliation(s)
- Anri Celliers
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Yolandi Rautenbach
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Emma Hooijberg
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mary Christopher
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
Aguilera ER, Lenz LL. Inflammation as a Modulator of Host Susceptibility to Pulmonary Influenza, Pneumococcal, and Co-Infections. Front Immunol 2020; 11:105. [PMID: 32117259 PMCID: PMC7026256 DOI: 10.3389/fimmu.2020.00105] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial and viral pathogens are predominant causes of pulmonary infections and complications. Morbidity and mortality from these infections is increased in populations that include the elderly, infants, and individuals with genetic disorders such as Down syndrome. Immune senescence, concurrent infections, and other immune alterations occur in these susceptible populations, but the underlying mechanisms that dictate increased susceptibility to lung infections are not fully defined. Here, we review unique features of the lung as a mucosal epithelial tissue and aspects of inflammatory and immune responses in model pulmonary infections and co-infections by influenza virus and Streptococcus pneumoniae. In these models, lung inflammatory responses are a double-edged sword: recruitment of immune effectors is essential to eliminate bacteria and virus-infected cells, but inflammatory cytokines drive changes in the lung conducive to increased pathogen replication. Excessive accumulation of inflammatory cells also hinders lung function, possibly causing death of the host. Some animal studies have found that targeting host modulators of lung inflammatory responses has therapeutic or prophylactic effects in these infection and co-infection models. However, conflicting results from other studies suggest microbiota, sequence of colonization, or other unappreciated aspects of lung biology also play important roles in the outcome of infections. Regardless, a predisposition to excessive or aberrant inflammatory responses occurs in susceptible human populations. Hence, in appropriate contexts, modulation of inflammatory responses may prove effective for reducing the frequency or severity of pulmonary infections. However, there remain limitations in our understanding of how this might best be achieved—particularly in diverse human populations.
Collapse
Affiliation(s)
- Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
45
|
Siwapornchai N, Lee JN, Tchalla EYI, Bhalla M, Yeoh JH, Roggensack SE, Leong JM, Bou Ghanem EN. Extracellular adenosine enhances the ability of PMNs to kill Streptococcus pneumoniae by inhibiting IL-10 production. J Leukoc Biol 2020; 108:867-882. [PMID: 32017200 DOI: 10.1002/jlb.4ma0120-115rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the antimicrobial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its antimicrobial activity by inhibiting IL-10 production. PMNs from wild-type mice did not increase IL-10 production in response to S. pneumoniae; however, CD73-/- PMNs up-regulated IL-10 production upon pneumococcal infection in vitro and during lung challenge. IL-10 inhibited the ability of WT PMNs to kill pneumococci. Conversely, blocking IL-10 boosted the bactericidal activity of CD73-/- PMNs as well as host resistance of CD73-/- mice to pneumococcal pneumonia. CD73/IL-10 did not affect apoptosis, bacterial uptake, and intracellular killing or production of antimicrobial neutrophil elastase and myeloperoxidase. Rather, inhibition of IL-10 production by CD73 was important for optimal reactive oxygen species (ROS) production by PMNs. ROS contributed to PMN antimicrobial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN antimicrobial phenotype during S. pneumoniae infection.
Collapse
Affiliation(s)
- Nalat Siwapornchai
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James N Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Jun Hui Yeoh
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Sara E Roggensack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
46
|
[Association of interleukin-10 gene polymorphism with enterovirus 71 infection in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31416504 PMCID: PMC7389907 DOI: 10.7499/j.issn.1008-8830.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the association of interleukin-10 (IL-10) -1082A/G, -819C/T, and -592C/A polymorphisms with IL-10 level and the severity of enterovirus 71 (EV71) infection in children. METHODS A total of 137 children with hand-foot-mouth disease due to EV71 infection were enrolled as EV71 infection group, which was further divided into mild group with 91 children and severe group with 46 children, and 122 healthy children who underwent physical examination were enrolled as healthy control group. Related clinical data were collected. ELISA was used to measure the serum level of IL-10, and polymerase chain reaction-restriction fragment length polymorphism was used to analyze IL-10 -1082A/G, -819C/T and -592C/A polymorphisms. RESULTS Compared with the healthy control group, the children with EV71 infection had significantly higher frequency of -1082 AA genotype and A allele (P<0.05). Among the children with EV71 infection, the severe group had significantly higher frequency of -1082 AA genotype and A allele than the mild group (P<0.05), while there was no significant difference in the distribution of IL-10 -819C/T and IL-10 -592C/A polymorphisms between the two groups (P>0.05). The severe group had a significantly higher serum level of IL-10 than the mild group and the healthy control group. IL-10 -1082 AA genotype, -819 TT genotype, and -592 AA genotype were associated with the low expression of IL-10 (P<0.05). As for haplotype, the EV71 infection group had a significantly lower frequency of GCC haplotype than the healthy control group (P<0.05). In the severe group, the children with ATA haplotype had a significantly lower IL-10 level than those with other haplotypes, and the children with GCC haplotype had a significantly higher IL-10 level than those with other haplotypes (P<0.05). There was no significant difference in IL-10 level between children with different haplotypes in the mild group and the healthy control group (P>0.05). CONCLUSIONS IL-10 gene polymorphisms are associated with IL-10 expression and the severity of EV71 infection in children.
Collapse
|
47
|
Ren P, Zhang J, Yu L, Qu Y, Jiang X, Zhou Y, Hu D, Gao C. Impact of different Streptococcus pneumoniae on the secretion of interleukin and adhesin from THP-1 monocytes. J Clin Lab Anal 2019; 33:e22927. [PMID: 31231868 PMCID: PMC6757131 DOI: 10.1002/jcla.22927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/20/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the secretion of interleukin‐1β (IL‐1β), IL‐6, IL‐10, IL‐8, and soluble intercellular adhesin molecule 1 (sICAM‐1) from THP‐1 monocytes stimulated by different Streptococcus pneumoniae (S pneumoniae) strains. Methods Fifty‐eight strains of S pneumoniae were collected: ATCC49619, 23 from sputum (sd‐SP), 23 from blood (bd‐SP), and 11 from cerebrospinal fluid (CSF; cd‐SP). Such strains were cultured and suspended at 0.5 McFarland. THP‐1 monocytes were cultured and resuspended at 5.0 × 108/L, which were stimulated by S pneumoniae for 4, 8, and 12 hours, respectively. The suspensions were analyzed for IL‐1β, IL‐6, IL‐10, IL‐8, and sICAM‐1 using an ELISA method. The data were assayed with SPSS 19.0. Results Contrary to IL‐10, the concentrations of IL‐1β, IL‐6, IL‐8, and sICAM‐1 all increased first and then decreased. IL‐1β and sICAM‐1 levels in the ATCC49619 group were both higher than all the clinical S pneumoniae groups (sd‐SP, bd‐SP, and cd‐SP), IL‐6 and IL‐8 versa, and IL‐10 equal. The difference among clinical S pneumoniae groups lay only in sICAM‐1. cd‐SP group showed lower sICAM‐1 concentrations than sd‐SP and bd‐SP groups at both 4 and 8 hours. However, they became equal at 12 hours. Conclusions The secretion summit is 8 hours for IL‐1β, IL‐6, IL‐8, and sICAM‐1, bottom for IL‐10. Different clinical S pneumoniae strains show similar ability to induce THP‐1 cells secreting interleukins. However, cd‐SP induces THP‐1 cells secreting lower sICAM‐1 than sd‐SP and bd‐SP, which may in turn facilitate its invasion into CSF.
Collapse
Affiliation(s)
- Ping Ren
- Zhejiang Provincial Demonstration Center of Laboratory Medicine Experimental Teaching, Wenzhou Medical University, Wenzhou, China
| | - Jin Zhang
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Ying Qu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Xinyu Jiang
- Huazhong University of Science and Technology, Wuhan, China
| | - Yixia Zhou
- The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Dakang Hu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China.,Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunyan Gao
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| |
Collapse
|
48
|
Association between Early Acute Respiratory Distress Syndrome after Living-Donor Liver Transplantation and Perioperative Serum Biomarkers: The Role of Club Cell Protein 16. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8958069. [PMID: 31111072 PMCID: PMC6487165 DOI: 10.1155/2019/8958069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) after living-donor liver transplantation (LDLT) is not uncommon, but it lacks the biomarkers for early detection. Club cell protein 16 (CC16), high-motility group box 1 protein (HMGB1), interleukin-1β (IL-1β), and IL-10 have been reported as relevant to the development of ARDS. However, they have not been investigated during LDLT. Methods Seventy-three consecutive recipients undergoing LDLT were enrolled and received the same perioperative care plan. Perioperative serum CC16, HMGB1, IL-1β, and IL-10 levels were measured at the pretransplant state, 30 minutes after reperfusion, postoperative day 1 (POD1), and POD3. ARDS was diagnosed according to the 2012 Berlin definition. Results Of the 73 recipients, 13 developed ARDS with significantly longer durations of mechanical ventilation and intensive care unit stay. Serum CC16 levels on POD1 increased significantly from the pretransplant state in the ARDS group but not in the non-ARDS group. Pretransplant serum CC16 levels were also higher in the ARDS group. The area under the receiver operating characteristic curves for POD1 serum CC16 levels used to discriminate ARDS was 0.803 (95% confidence interval: 0.679 to 0.895; p < 0.001). By comparison, HMGB1, IL-1β, and IL-10 were not associated with ARDS after LDLT. Conclusion The higher pretransplant serum CC16 level and its increased level on POD1 were associated with the development of early ARDS after LDLT. This trial is registered with NCT01936545, 27 August 2013.
Collapse
|
49
|
Interleukin-10 Produced by Myeloid-Derived Suppressor Cells Provides Protection to Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 258 by Enhancing Its Clearance in the Airways. Infect Immun 2019; 87:IAI.00665-18. [PMID: 30804104 DOI: 10.1128/iai.00665-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/17/2019] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae sequence type 258 (CRKP-ST258) can cause chronic infections in lungs and airways, with repeated episodes of bacteremia. In this report we addressed whether the recruitment of myeloid cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) modulates the clearance of CKRP-ST258 in the lungs and establishes bacterial persistence. Our data demonstrate that during pneumonia caused by a clinical isolate of CRKP-ST258 (KP35) there is an early recruitment of monocyte-myeloid-derived suppressor cells (M-MDSCs) and neutrophils that actively produce IL-10. However, M-MDSCs were the cells that sustained the production of IL-10 over the time of infection evaluated. Using mice unable to produce IL-10 (IL-10-/-), we observed that the production of this cytokine during the infection caused by KP35 is important to control bacterial burden, to prevent lung damage, to modulate cytokine production, and to improve host survival. Importantly, intranasal transfer of bone marrow-derived M-MDSCs from mice able to produce IL-10 at 1 day prior to infection improved the ability of IL-10-/- mice to clear KP35 in the lungs, decreasing their mortality. Altogether, our data demonstrate that IL-10 produced by M-MDSCs is required for bacterial clearance, reduction of lung tissue damage, and host survival during KP35 pneumonia.
Collapse
|
50
|
Administration of granulocyte-colony stimulating factor (G-CSF) to pigs results in a longer mean survival time after exposure to Streptococcus suis. Vet Microbiol 2019; 231:116-119. [PMID: 30955798 DOI: 10.1016/j.vetmic.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/21/2022]
Abstract
The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Previously we demonstrated a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) elicited a sustained neutrophilia, lasting nearly 3 weeks, which may be beneficial to prevent bacterial diseases during times of peak incidence. In a pilot study using the vectored G-CSF with a Caesarian-derived, colostrum-deprived (CDCD) pig model of Streptococcus suis disease, only 1 of 4 pigs given G-CSF developed disease, while 3 of 4 non-treated pigs developed Streptococcal disease. In a subsequent study using a larger number of pigs, although there was no difference in overall survival, there was a longer mean survival time in G-CSF treated pigs. S. suis infection is more severe in CDCD pigs than conventionally raised pigs, consequently results in the field may be superior to the ones reported in this study. Although there were positive effects from the use of G-CSF in this study, further research is needed to determine if improved clinical outcomes could be achieved under field conditions and whether the use of G-CSF in pigs to induce a sustained increase in circulating neutrophil numbers may be useful as an adjunct to antibiotics to diminish the severity of Streptococcal disease, especially during times of stress and pathogen exposure such as post-weaning.
Collapse
|