1
|
Astakhova EA, Baranov KO, Shilova NV, Polyakova SM, Zuev EV, Poteryaev DA, Taranin AV, Filatov AV. Antibody Avidity Maturation Following Booster Vaccination with an Intranasal Adenovirus Salnavac Vaccine. Vaccines (Basel) 2024; 12:1362. [PMID: 39772024 PMCID: PMC11680177 DOI: 10.3390/vaccines12121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation. In the context of vaccines against SARS-CoV-2, only a limited number of studies have investigated the avidity of antibodies, often solely focusing on the wild-type virus following vaccination. This study provides new insights into the avidity of serum antibodies following adenovirus-based boosters. We focused on the effects of an intranasal Salnavac booster, which is compared, using a single analytical platform, to an intramuscular Sputnik V. METHODS The avidity of RBD-specific IgGs and IgAs was investigated through ELISA using urea and biolayer interferometry. RESULTS The results demonstrated the similar avidities of serum antibodies, which were induced by both vaccines for six months post-booster. However, an increase in antibody avidity was observed for the wild-type and Delta variants, but not for the BA.4/5 variant. CONCLUSIONS Collectively, our data provide the insights into antibody avidity maturation after the adenovirus-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Street 20, 123592 Moscow, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana M. Polyakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
2
|
Dvorscek AR, McKenzie CI, Stäheli VC, Ding Z, White J, Fabb SA, Lim L, O'Donnell K, Pitt C, Christ D, Hill DL, Pouton CW, Burnett DL, Brink R, Robinson MJ, Tarlinton DM, Quast I. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity. Immunity 2024; 57:2433-2452.e7. [PMID: 39305904 DOI: 10.1016/j.immuni.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Craig I McKenzie
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Vera C Stäheli
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Jacqueline White
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Danika L Hill
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
3
|
Fryer HA, Geers D, Gommers L, Zaeck LM, Tan NH, Jones-Freeman B, Goorhuis A, Postma DF, Visser LG, Hogarth PM, Koopmans MPG, GeurtsvanKessel CH, O'Hehir RE, van der Kuy PHM, de Vries RD, van Zelm MC. Fourth dose bivalent COVID-19 vaccines outperform monovalent boosters in eliciting cross-reactive memory B cells to Omicron subvariants. J Infect 2024; 89:106246. [PMID: 39127451 DOI: 10.1016/j.jinf.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.
Collapse
Affiliation(s)
- Holly A Fryer
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Daryl Geers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lennert Gommers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Luca M Zaeck
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ngoc H Tan
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bernadette Jones-Freeman
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - P Mark Hogarth
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Marion P G Koopmans
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Robyn E O'Hehir
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - P Hugo M van der Kuy
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Rory D de Vries
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia; Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Montiel-Armendariz A, Roe K, Lagos-Orellana J, MartinezCastro LV, Lacy-Hulbert A, Acharya M. B cell αv integrin regulates germinal center derived lung-resident IgA B cell responses following influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587969. [PMID: 39386536 PMCID: PMC11463618 DOI: 10.1101/2024.04.03.587969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Emerging studies have highlighted the importance of tissue-resident B cells in the lungs, for protective immunity against respiratory viruses. However, the mechanisms controlling generation and maintenance of such tissue-resident B cells at respiratory sites remain obscure. We have previously shown that αv integrins limit B cell responses to antigens containing Toll-like receptor ligands, and that deletion of B cell αv integrins, in mice, enhances germinal center (GC)-derived long-lived B cell responses after systemic immunization with viral antigens. Here we investigated whether αv also regulates B cell responses at the respiratory tract during viral infection. Our data show that αv integrin restricts tissue-resident B cell responses in the airway, and that deletion of B cell αv promotes generation of lung-resident IgA B cell responses following influenza A virus (IAV) infection. Investigating the mechanism for this, we found that loss of B cell αv, promotes persistence of GC reactions locally in the lungs, which leads to increases in lung-resident IgA+ memory B cells, cross-reactive to antigenic variants. Thus, these studies reveal how IgA B cells are maintained in the lungs and point to a new strategy to improve the durability of lung-resident IgA B cell responses for IAV vaccine efficacy.
Collapse
Affiliation(s)
| | - Kelsey Roe
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | | | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
5
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Elsner RA, Smita S, Shlomchik MJ. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat Immunol 2024; 25:1283-1295. [PMID: 38862796 DOI: 10.1038/s41590-024-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/26/2024] [Indexed: 06/13/2024]
Abstract
While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Ambegaonkar AA, Holla P, Sohn H, George R, Tran TM, Pierce SK. Isotype switching in human memory B cells sets intrinsic antigen-affinity thresholds that dictate antigen-driven fates. Proc Natl Acad Sci U S A 2024; 121:e2313672121. [PMID: 38502693 PMCID: PMC10990115 DOI: 10.1073/pnas.2313672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.
Collapse
Affiliation(s)
- Abhijit A. Ambegaonkar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
8
|
Thomas TA, Qiu A, Kim CY, Gordy DE, Miller A, Tredicine M, Dzieciatkowska M, Dei Zotti F, Hod EA, D'Alessandro A, Zimring JC, Spitalnik SL, Hudson KE. Reticulocytes in donor blood units enhance red blood cell alloimmunization. Haematologica 2023; 108:2639-2651. [PMID: 37078267 PMCID: PMC10543191 DOI: 10.3324/haematol.2023.282815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.
Collapse
Affiliation(s)
- Tiffany A Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Annie Qiu
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Christopher Y Kim
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Dominique E Gordy
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Anabel Miller
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Flavia Dei Zotti
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Eldad A Hod
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA
| | - Steven L Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Krystalyn E Hudson
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
9
|
Besavilla DF, Reusch L, Enriquez J, Schön K, Angeletti D. Pre-existing CD4 T cell help boosts antibody responses but has limited impact on germinal center, antigen-specific B cell frequencies after influenza infection. Front Immunol 2023; 14:1243164. [PMID: 37711622 PMCID: PMC10499173 DOI: 10.3389/fimmu.2023.1243164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The influenza virus is a persistent burden on global health, with seasonal vaccines providing incomplete protection. CD4+ T cells help shape B cell and antibody responses; however, the selectivity of help and the effect on various antigen-specific B cell populations have not been fully elucidated. Here, we studied the specificity, selectivity, and influence of nucleoprotein (NP) CD4+ T cells on the magnitude and quality of hemagglutinin (HA) and NP-specific B cells and antibody responses. We identified immunodominant peptides and showed that peptide immunization was sufficient to induce CD4+ cells with Th1 and Tfh phenotypes. Surprisingly, while preexisting CD4+ T cells enhanced the influx of total germinal center (GC) B cells in the mediastinal lymph node after infection, this was not reflected by an increase in the frequency of antigen-specific cells within the GC. Furthermore, we demonstrated that NP-specific help was able to accelerate the kinetics and magnitude of the Ab response for NP but not for HA. Overall, our results showed that pre-existing CD4+ T cells provide strong cognate help during immunization or infection to enhance Ab production but not antigen-specific GC or memory B cells.
Collapse
Affiliation(s)
- Danica F. Besavilla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Josue Enriquez
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Reusch L, Angeletti D. Memory B-cell diversity: From early generation to tissue residency and reactivation. Eur J Immunol 2023; 53:e2250085. [PMID: 36811174 DOI: 10.1002/eji.202250085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.
Collapse
Affiliation(s)
- Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Thomas TA, Qiu A, Kim CY, Gordy DE, Miller A, Tredicine M, Dzieciatkowska M, Zotti FD, Hod EA, Dâ Alessandro A, Zimring JC, Spitalnik SL, Hudson KE. Reticulocytes in donor RBC units enhance RBC alloimmunization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525560. [PMID: 36747702 PMCID: PMC9900826 DOI: 10.1101/2023.01.25.525560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increase RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.
Collapse
|
12
|
Scharf L, Axelsson H, Emmanouilidi A, Mathew NR, Sheward DJ, Leach S, Isakson P, Smirnov IV, Marklund E, Miron N, Andersson LM, Gisslén M, Murrell B, Lundgren A, Bemark M, Angeletti D. Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight 2023; 8:165299. [PMID: 36445762 PMCID: PMC9870078 DOI: 10.1172/jci.insight.165299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor-Seq (BCR-Seq) with oligo-tagged antigen baits. While the proportion of Spike receptor binding domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen-specific cells, and affinity maturation was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to 1 year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen-specific B cell responses in longitudinally sampled patients infected with COVID-19.
Collapse
Affiliation(s)
- Lydia Scharf
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nimitha R. Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susannah Leach
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pharmacology
| | - Pauline Isakson
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Ilya V. Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Marklund
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicolae Miron
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Lunderberg JM, Dutta S, Collier ARY, Lee JS, Hsu YM, Wang Q, Zheng W, Hao S, Zhang H, Feng L, Robson SC, Gao W, Riedel S. Pan-neutralizing, germline-encoded antibodies against SARS-CoV-2: Addressing the long-term problem of escape variants. Front Immunol 2022; 13:1032574. [DOI: 10.3389/fimmu.2022.1032574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the initially reported high efficacy of vaccines directed against ancestral SARS-CoV-2, repeated infections in both unvaccinated and vaccinated populations remain a major global health challenge. Because of mutation-mediated immune escape by variants-of-concern (VOC), approved neutralizing antibodies (neutAbs) effective against the original strains have been rendered non-protective. Identification and characterization of mutation-independent pan-neutralizing antibody responses are therefore essential for controlling the pandemic. Here, we characterize and discuss the origins of SARS-CoV-2 neutAbs, arising from either natural infection or following vaccination. In our study, neutAbs in COVID-19 patients were detected using the combination of two lateral flow immunoassay (LFIA) tests, corroborated by plaque reduction neutralization testing (PRNT). A point-of-care neutAb LFIA, NeutraXpress™, was validated using serum samples from historical pre-COVID-19 negative controls, patients infected with other respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly, potent neutAb activity was mainly noted in patients generating both IgM and IgG against the Spike receptor-binding domain (RBD), in contrast to samples possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity, germline-encoded natural IgM and subsequent generation of class-switched IgG may have an underappreciated role in cross-protection, potentially offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our proposition has potential implications for immunogen design, and provides strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future immunization protocols might further boost long-term cross-protection, even at the mucosal level, against clinical manifestations of COVID-19.
Collapse
|
14
|
Antiviral CD19 +CD27 + Memory B Cells Are Associated with Protection from Recurrent Asymptomatic Ocular Herpesvirus Infection. J Virol 2022; 96:e0205721. [PMID: 34985998 DOI: 10.1128/jvi.02057-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4+ Tfh cells), which help B cells produce antibodies, were compared between HSV-1-infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that (i) the ASYMP individuals had increased frequencies of HSV-specific CD19+CD27+ memory B cells, and (ii) high frequencies of HSV-specific switched IgG+CD19+CD27+ memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0+CXCR5+CD4+ memory Tfh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD+CD138+ B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice, there were increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory Tfh cells. Moreover, following UV-B-induced reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.
Collapse
|
15
|
Kozlovski S, Regev O, Sapoznikov A, Kizner M, Achdout H, Petrovich-Kopitman E, Elkahal J, Addadi Y, Silva Castanheira FVE, Feigelson SW, Kubes P, Erez N, Garbi N, Alon R. ICAMs are dispensable for influenza clearance and anti-viral humoral and cellular immunity. Front Immunol 2022; 13:1041552. [PMID: 36895258 PMCID: PMC9988921 DOI: 10.3389/fimmu.2022.1041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
αLβ2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Marina Kizner
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Achdout
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sara W Feigelson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Noam Erez
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Natalio Garbi
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Long-term efficacy of nasal vaccination against enteric red mouth (ERM) disease and infectious hematopoietic necrosis (IHN) in juvenile rainbow trout (Oncorhynchus mykiss). Vaccine 2021; 40:229-238. [PMID: 34893343 DOI: 10.1016/j.vaccine.2021.11.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023]
Abstract
Previous research demonstrated that bacterial and viral vaccines delivered via the nasal route in rainbow trout (Oncorhynchus mykiss) at 7 and 28 days post-vaccination are highly protective (>95% protection). Long-term protection following nasal vaccination in teleosts has not been evaluated. The goal of this study was to assess efficacy and immune responses at 6 months (mo) post-vaccination (mpv), and long-lasting immune responses at 12 mpv of two different vaccines: an inactivated enteric red mouth disease (ERM) Yersinia ruckeri bacterin and a live attenuated infectious hematopoietic necrosis virus (IHNV) vaccine. Juvenile rainbow trout were vaccinated for Y. ruckeri via intraperitoneal (I.P.) and intranasal (I.N.) routes, and for IHNV by intramuscular (I.M.) and I.N. routes, then challenged at 6 mpv. Immune responses were determined at 6 and 12 mpv. ERM vaccine I.P. delivery elicited significantly higher serum IgM-specific titers that remained elevated compared to mock-vaccinated fish at 6 mpv. By 12 mpv, antibody titers to Y. ruckeri were not significantly different across all treatments. Following Y. ruckeri challenge at 6 mpv, a significant difference in cumulative percent mortality (CPM) was found for I.P.-vaccinated fish but not I.N.-vaccinated fish. I.M. and I.N. vaccination with live attenuated IHNV did not result in significant specific serum IgM titers at 6 or 12 mpv. Yet, I.N.-vaccinated fish showed the lowest CPM 6 mpv indicating long-term protection that does not correlate with systemic IgM responses. Repertoire analyses confirmed unique expansions of VH-JH rearrangements in the spleen of rainbow trout 12 mpv that varied with the type of vaccine and route of vaccination. Combined, these data demonstrate that I.N. vaccination with a live attenuated viral vaccine confers long lasting protection, but I.N. ERM vaccination does not and booster before 6 mpv is recommended.
Collapse
|
17
|
Kim G, Kim DH, Oh H, Bae S, Kwon J, Kim MJ, Lee E, Hwang EH, Jung H, Koo BS, Baek SH, Kang P, Jung An Y, Park JH, Park JH, Lyoo KS, Ryu CM, Kim SH, Hong JJ. Germinal center-induced immunity is correlated with protection against SARS-CoV-2 reinfection but not lung damage. J Infect Dis 2021; 224:1861-1872. [PMID: 34718664 PMCID: PMC8643412 DOI: 10.1093/infdis/jiab535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2–induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.
Collapse
Affiliation(s)
- Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Hanseul Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisoo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Infectious diseases, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Hoyin Jung
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Philyong Kang
- Futuristic Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Jeolla 61186, Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54531, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.,KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| |
Collapse
|
18
|
Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021; 81:101000. [PMID: 34294412 PMCID: PMC8287505 DOI: 10.1016/j.mam.2021.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
19
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
20
|
Free Immunoglobulin Light Chains in Patients with Tick-Borne Encephalitis: Before and after Treatment. J Clin Med 2021; 10:jcm10132922. [PMID: 34209994 PMCID: PMC8269011 DOI: 10.3390/jcm10132922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Tick-borne encephalitis (TBE) is inflammation of the central nervous system (CNS) caused by a viral infection which may be associated with increased synthesis of immunoglobulins. It can lead to inter alia, breakdown of the blood-brain barrier (BBB), or even death and, unfortunately, treatment is only symptomatic. Therefore, the aim of the present study was assessment of the concentrations of free light chains (FLC) kappa (κ) and lambda (λ in the cerebrospinal fluid (CSF) and serum of patients with TBE. Methods: A total of 58 cerebrospinal fluid and serum sample pairs were analyzed. Samples were collected from patients with TBE before and after treatment. FLC were measured using the turbidimetric method. The values of κIgG-index, λIgG-index, κFLC-index and λFLC-index were calculated using relevant formulas. Results: Pre-treatment serum λFLC concentrations were higher in comparison to post-treatment levels. Moreover, it was observed that CSF λFLC, TBEV IgM, TBEV IgG, and serum TBEV IgG, as well as the values of λFLC-index, κFLC-index, and λIgG-index were elevated after treatment. In the total study group, the concentrations of CSF κFLC and λFLC, and values of four indexes: κFLC-index, λFLC-index, κIgG-index, and λIgG-index correlated with each other and with CSF TBEV IgM and IgG antibodies. The CSF level of TBEV IgG was also associated with serum IgG TBEV and CSF IgM TBEV antibodies. Additionally, serum κFLC correlated with serum and CSF λFLC. Conclusion: This is the first study that demonstrates statistically significant differences in serum and CSF λFLC, as well as in the calculated values of three algorithms: λIgG-index, κFLC-index, and λIgG-index prior to and following treatment of TBE. Our findings may indicate that these differences reflect the intrathecal synthesis of immunoglobulins and increased permeability of BBB in patients with TBE. Moreover, it could provide the basis for developing new therapeutic strategies.
Collapse
|
21
|
Mathew NR, Jayanthan JK, Smirnov IV, Robinson JL, Axelsson H, Nakka SS, Emmanouilidi A, Czarnewski P, Yewdell WT, Schön K, Lebrero-Fernández C, Bernasconi V, Rodin W, Harandi AM, Lycke N, Borcherding N, Yewdell JW, Greiff V, Bemark M, Angeletti D. Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Rep 2021; 35:109286. [PMID: 34161770 PMCID: PMC7612943 DOI: 10.1016/j.celrep.2021.109286] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
B cell responses are critical for antiviral immunity. However, a comprehensive picture of antigen-specific B cell differentiation, clonal proliferation, and dynamics in different organs after infection is lacking. Here, by combining single-cell RNA and B cell receptor (BCR) sequencing of antigen-specific cells in lymph nodes, spleen, and lungs after influenza infection in mice, we identify several germinal center (GC) B cell subpopulations and organ-specific differences that persist over the course of the response. We discover transcriptional differences between memory cells in lungs and lymphoid organs and organ-restricted clonal expansion. Remarkably, we find significant clonal overlap between GC-derived memory and plasma cells. By combining BCR-mutational analyses with monoclonal antibody (mAb) expression and affinity measurements, we find that memory B cells are highly diverse and can be selected from both low- and high-affinity precursors. By linking antigen recognition with transcriptional programming, clonal proliferation, and differentiation, these finding provide important advances in our understanding of antiviral immunity.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jayalal K Jayanthan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ilya V Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sravya S Nakka
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - William Rodin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
23
|
Abstract
Pre-existing humoral immunity can impact immune responses to heterologous infections. In this issue of Immunity, Wong et al. reveal that memory B cells, while failing to re-enter the germinal center, create an affinity-restricted, diversified B cell repertoire for rapid plasma blast responses. Their findings have important implications to vaccine design.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology & Infectious Diseases, Department of Pathology, Microbiology, and Immunology, University of California, Davis, County Rd. 98 & Hutchison Dr., Davis, CA 95616, USA.
| |
Collapse
|
24
|
Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, Gouma S, Hicks P, Meng W, Rosenfeld AM, Dysinger S, Lundgreen KA, Kuri-Cervantes L, Adamski S, Hicks A, Korte S, Oldridge DA, Baxter AE, Giles JR, Weirick ME, McAllister CM, Dougherty J, Long S, D'Andrea K, Hamilton JT, Betts MR, Luning Prak ET, Bates P, Hensley SE, Greenplate AR, Wherry EJ. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci Immunol 2021; 6:eabi6950. [PMID: 33858945 PMCID: PMC8158969 DOI: 10.1126/sciimmunol.abi6950] [Citation(s) in RCA: 474] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.
Collapse
Affiliation(s)
- Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T Hamilton
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
25
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Pérez-Galarza J, Prócel C, Cañadas C, Aguirre D, Pibaque R, Bedón R, Sempértegui F, Drexhage H, Baldeón L. Immune Response to SARS-CoV-2 Infection in Obesity and T2D: Literature Review. Vaccines (Basel) 2021; 9:102. [PMID: 33572702 PMCID: PMC7911386 DOI: 10.3390/vaccines9020102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a novel coronavirus known as SARS-CoV-2 was first detected in Wuhan, China, causing outbreaks of the coronavirus disease COVID-19 that has now spread globally. For this reason, The World Health Organization (WHO) declared COVID-19 a public health emergency in March 2020. People living with pre-existing conditions such as obesity, cardiovascular diseases, type 2 diabetes (T2D), and chronic kidney and lung diseases, are prone to develop severe forms of disease with fatal outcomes. Metabolic diseases such as obesity and T2D alter the balance of innate and adaptive responses. Both diseases share common features characterized by augmented adiposity associated with a chronic systemic low-grade inflammation, senescence, immunoglobulin glycation, and abnormalities in the number and function of adaptive immune cells. In obese and T2D patients infected by SARS-CoV-2, where immune cells are already hampered, this response appears to be stronger. In this review, we describe the abnormalities of the immune system, and summarize clinical findings of COVID-19 patients with pre-existing conditions such as obesity and T2D as this group is at greater risk of suffering severe and fatal clinical outcomes.
Collapse
Affiliation(s)
- Jorge Pérez-Galarza
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | | | - Cristina Cañadas
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Diana Aguirre
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ronny Pibaque
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ricardo Bedón
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
- Hospital General Docente de Calderón, Quito 170201, Ecuador
| | - Fernando Sempértegui
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | - Hemmo Drexhage
- Immunology Department, Erasmus Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lucy Baldeón
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| |
Collapse
|
27
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
28
|
Lutckii A, Strunz B, Zhirkov A, Filipovich O, Rukoiatkina E, Gusev D, Lobzin Y, Fischler B, Aleman S, Sällberg M, Björkström NK. Evidence for B cell maturation but not trained immunity in uninfected infants exposed to hepatitis C virus. Gut 2020; 69:2203-2213. [PMID: 32341018 DOI: 10.1136/gutjnl-2019-320269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Vertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates. DESIGN To address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age. RESULTS As expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines. CONCLUSION Our data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.
Collapse
Affiliation(s)
- Anton Lutckii
- Department of Laboratory Medicine, Karolinska institutet, Stockholm, Sweden.,Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anton Zhirkov
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Olga Filipovich
- North-Western State Medical University named after I.I.Mechnikov, Saint Petersburg, Russian Federation
| | - Elena Rukoiatkina
- Maternity Hospital No 16, Saint Petersburg, Russian Federation.,Department of Pediatrics, Gynecology and Female Reproductology, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russian Federation
| | - Denis Gusev
- Center for Prevention and Control of AIDS and Infectious Diseases, Saint Petersburg, Russian Federation
| | - Yuriy Lobzin
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Björn Fischler
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Khanam A, Kottilil S, Wilson E. Reconstitution of T follicular helper-humoral immune axis with elimination of hepatitis C virus. Sci Rep 2020; 10:19924. [PMID: 33199783 PMCID: PMC7669852 DOI: 10.1038/s41598-020-77020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Exhaustion of Hepatitis C Virus (HCV)-specific T cells and abnormal B cell function is a hallmark of chronic HCV infection. Direct-acting antiviral (DAA) therapies are effective in achieving sustained virologic response (SVR), however, whether successful DAA treatment reconstitute T follicular helper (TFH)-B cell axis in HCV patients is unclear. Here, we aimed to evaluate the immunological changes in global and HCV-specific CD4 + CXCR5 + TFH, CD4 + CXCR5-T and B cells in 20 HCV patients who achieved SVR with Sofosbuvir and Ledipasvir for 12 weeks and compared with 15 healthy controls (HC). Global and HCV-specific CD4 + CXCR5 + TFH, CD4 + CXCR5-T and CD19 + B cells had significant phenotypic and functional reconstitution post DAA therapy. Reconstitution of effector, central and terminally differentiated memory cell population and increased ICOS and BCL6 expression was seen in HCV patients at SVR12. HCV-specific cytokines were also improved post DAA. Exhausted and regulatory B cells were declined whereas memory B cells were expanded post DAA therapy. Importantly, frequencies of TFH cells were significantly associated with HCV RNA reduction, expansion of memory B and plasmablasts, while negatively associated with exhausted/regulatory B cells. Our results demonstrate that SVR with DAA therapy is effective in the reconstitution of phenotypic and functional abnormalities of TFH-B cell axis.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, School of Medicine, 725 West Lombard Street, S218, Baltimore, MD, 21201, USA
| | - Shyamasundaran Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, School of Medicine, 725 West Lombard Street, S218, Baltimore, MD, 21201, USA
| | - Eleanor Wilson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, School of Medicine, 725 West Lombard Street, S218, Baltimore, MD, 21201, USA.
| |
Collapse
|
30
|
Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D, Zhao H, Errico JM, D'Souza L, Ripperger TJ, Nikolich-Zugich J, Shlomchik MJ, Satpathy AT, Fremont DH, Diamond MS, Bhattacharya D. Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 2020; 53:1078-1094.e7. [PMID: 33010224 DOI: 10.1016/j.immuni.2020.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Dakota Reinartz
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
31
|
Sun B, Ramberger M, O'Connor KC, Bashford-Rogers RJM, Irani SR. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol 2020; 16:481-492. [PMID: 32724223 PMCID: PMC9364389 DOI: 10.1038/s41582-020-0381-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
A rapidly expanding and clinically distinct group of CNS diseases are caused by pathogenic autoantibodies that target neuroglial surface proteins. Despite immunotherapy, patients with these neuroglial surface autoantibody (NSAb)-mediated diseases often experience clinical relapse, high rates of long-term morbidity and adverse effects from the available medications. Fundamentally, the autoantigen-specific B cell lineage leads to production of the pathogenic autoantibodies. These autoantigen-specific B cells have been consistently identified in the circulation of patients with NSAb-mediated diseases, accompanied by high serum levels of autoantigen-specific antibodies. Early evidence suggests that these cells evade well-characterized B cell tolerance checkpoints. Nearer to the site of pathology, cerebrospinal fluid from patients with NSAb-mediated diseases contains high levels of autoantigen-specific B cells that are likely to account for the intrathecal synthesis of these autoantibodies. The characteristics of their immunoglobulin genes offer insights into the underlying immunobiology. In this Review, we summarize the emerging knowledge of B cells across the NSAb-mediated diseases. We review the evidence for the relative contributions of germinal centres and long-lived plasma cells as sources of autoantibodies, discuss data that indicate migration of B cells into the CNS and summarize insights into the underlying B cell pathogenesis that are provided by therapeutic effects.
Collapse
Affiliation(s)
- Bo Sun
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Melanie Ramberger
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, USA
| | | | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Dhochak N, Singhal T, Kabra SK, Lodha R. Pathophysiology of COVID-19: Why Children Fare Better than Adults? Indian J Pediatr 2020; 87:537-546. [PMID: 32410003 PMCID: PMC7221011 DOI: 10.1007/s12098-020-03322-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
The world is facing Coronavirus Disease-2019 (COVID-19) pandemic, which is causing a large number of deaths and burden on intensive care facilities. It is caused by Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) originating in Wuhan, China. It has been seen that fewer children contract COVID-19 and among infected, children have less severe disease. Insights in pathophysiological mechanisms of less severity in children could be important for devising therapeutics for high-risk adults and elderly. Early closing of schools and day-care centers led to less frequent exposure and hence, lower infection rate in children. The expression of primary target receptor for SARS-CoV-2, i.e. angiotensin converting enzyme-2 (ACE-2), decreases with age. ACE-2 has lung protective effects by limiting angiotensin-2 mediated pulmonary capillary leak and inflammation. Severe COVID-19 disease is associated with high and persistent viral loads in adults. Children have strong innate immune response due to trained immunity (secondary to live-vaccines and frequent viral infections), leading to probably early control of infection at the site of entry. Adult patients show suppressed adaptive immunity and dysfunctional over-active innate immune response in severe infections, which is not seen in children. These could be related to immune-senescence in elderly. Excellent regeneration capacity of pediatric alveolar epithelium may be contributing to early recovery from COVID-19. Children, less frequently, have risk factors such as co-morbidities, smoking, and obesity. But young infants and children with pre-existing illnesses could be high risk groups and need careful monitoring. Studies describing immune-pathogenesis in COVID-19 are lacking in children and need urgent attention.
Collapse
Affiliation(s)
- Nitin Dhochak
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Singhal
- Department of Pediatrics, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
33
|
Carinci F, Moreo G, Limongelli L, Testori T, Lauritano D. Diagnostic Performance of Serological Assays in the Detection of SARS-CoV-2: A Review. APPLIED SCIENCES 2020; 10:4506. [DOI: 10.3390/app10134506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Introduction: The gold-standard method for diagnosis of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) foresees the examination of respiratory tract swabs by real-time reverse-transcription polymerase chain reaction (rRT-PCR). Another group of diagnostic tests, developed to overcome the limitations of RT-PCR, includes the serological assays, which have the purpose of detecting the antibody response to SARS-CoV-2 infection (IgM and IgG titers). The aim of this review was to establish the diagnostic capability of the existing serological tests in the detection of SARS-CoV-2 infection. Materials and Methods: Electronic research was conducted in PubMed, Scopus, Science Direct and Cochrane Library, and only 10 articles, testing 10 different types of serological assays, met the inclusion criteria and were consequently submitted to quality assessment and data extraction. Quantitative data about the sensitivity, specificity, positive/negative predictive value and IgM/IgG titer provided by each antibody test were reported in our review. Results: Almost all the serological tests used in the included items were recorded to ensure high sensitivity and specificity, identifying the presence of IgM and IgG antibodies against SARS-CoV-2 in patients with certain COVID-19 diagnosis (confirmed by RT-PCR) and in participants with suspected infection (SARS-CoV-2 clinical diagnosis and/or RT-PCR negative subjects). Conclusions: Serological tests may represent reliable diagnostic tools in the detection of SARS-CoV-2 infection, and they could be implemented complementary to real-time RT-PCR.
Collapse
|
34
|
Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin Microbiol Rev 2020; 33:e00035-19. [PMID: 32522746 PMCID: PMC7289788 DOI: 10.1128/cmr.00035-19] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 2 decades have seen a revolution in our approach to therapeutic immunosuppression. We have moved from relying on broadly active traditional medications, such as prednisolone or methotrexate, toward more specific agents that often target a single receptor, cytokine, or cell type, using monoclonal antibodies, fusion proteins, or targeted small molecules. This change has transformed the treatment of many conditions, including rheumatoid arthritis, cancers, asthma, and inflammatory bowel disease, but along with the benefits have come risks. Contrary to the hope that these more specific agents would have minimal and predictable infectious sequelae, infectious complications have emerged as a major stumbling block for many of these agents. Furthermore, the growing number and complexity of available biologic agents makes it difficult for clinicians to maintain current knowledge, and most review articles focus on a particular target disease or class of agent. In this article, we review the current state of knowledge about infectious complications of biologic and small molecule immunomodulatory agents, aiming to create a single resource relevant to a broad range of clinicians and researchers. For each of 19 classes of agent, we discuss the mechanism of action, the risk and types of infectious complications, and recommendations for prevention of infection.
Collapse
Affiliation(s)
- Joshua S Davis
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Ferreira
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Emma Paige
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig Gedye
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Michael Boyle
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
35
|
Yongchen Z, Shen H, Wang X, Shi X, Li Y, Yan J, Chen Y, Gu B. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect 2020; 9:833-836. [PMID: 32306864 PMCID: PMC7241531 DOI: 10.1080/22221751.2020.1756699] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective strategy to mitigate the ongoing pandemic of 2019 novel coronavirus (COVID-19) require a comprehensive understanding of humoral responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the emerging virus causing COVID-19. The dynamic profile of viral replication and shedding along with viral antigen specific antibody responses among COVID-19 patients started to be reported but there is no consensus on their patterns. Here, we conducted a serial investigation on 21 individuals infected with SARS-CoV-2 in two medical centres from Jiangsu Province, including 11 non-severe COVID-19 patients, and 5 severe COVID-19 patients and 5 asymptomatic carriers based on nucleic acid test and clinical symptoms. The longitudinal swab samples and sera were collected from these people for viral RNA testing and antibody responses, respectively. Our data revealed different pattern of seroconversion among these groups. All 11 non-severe COVID-19 patients and 5 severe COVID-19 patients were seroconverted during hospitalization or follow-up period, suggesting that serological testing is a complementary assay to nucleic acid test for those symptomatic COVID-19 patients. Of note, immediate antibody responses were identified among severe cases, compared to non-severe cases. On the other hand, only one were seroconverted for asymptomatic carriers. The SARS-CoV-2 specific antibody responses were well-maintained during the observation period. Such information is of immediate relevance and would assist COVID-19 clinical diagnosis, prognosis and vaccine design.
Collapse
Affiliation(s)
- Zhang Yongchen
- Department of Laboratory Medicine, The Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xinning Wang
- Department of Laboratory Medicine, The Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xudong Shi
- Department of Laboratory Medicine, The Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jiawei Yan
- Department of Laboratory Medicine, Xuzhou Infectious Disease Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, People's Republic of China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
36
|
Kubo M, Miyauchi K. Breadth of Antibody Responses during Influenza Virus Infection and Vaccination. Trends Immunol 2020; 41:394-405. [PMID: 32265127 DOI: 10.1016/j.it.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Influenza viruses are a major public health problem, causing severe respiratory diseases. Vaccines offer the effective protective strategy against influenza virus infection. However, the systemic and adaptive immune responses to infection and vaccination are quite different. Inactivated vaccines are the best available countermeasure to induce effective antibodies against the emerged virus, but the response is narrow compared with potential breadth of virus infection. There is solid evidence to indicate that antibody responses to natural infection are relatively broad and exhibit quite different immunodominance patterns. Furthermore, T follicular helper cells (TFH) and germinal center (GC) responses play a central role in generating broad protective antibodies. In this review, we discuss recent advances on the contribution of TFH and GC responses to the breadth of antibody responses.
Collapse
Affiliation(s)
- Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
37
|
Wu Y, Chen M, Chen Y. Potential Zika Vaccine: Encapsulated Nanocomplex Promotes Both T
H
1/T
H
2 Responses in Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yan‐Wei Wu
- Department of Medicine, College of MedicineNational Cheng Kung University No.1, University Road Tainan 701 Taiwan
| | - Mei‐Chin Chen
- Department of Chemical EngineeringNational Cheng Kung University No.1, University Road Tainan 701 Taiwan
| | - Yu‐Hung Chen
- Department of Medicine, College of MedicineNational Cheng Kung University No.1, University Road Tainan 701 Taiwan
| |
Collapse
|
38
|
Trueeb BS, Braun RO, Auray G, Kuhnert P, Summerfield A. Differential innate immune responses induced by Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in various types of antigen presenting cells. Vet Microbiol 2019; 240:108541. [PMID: 31902489 DOI: 10.1016/j.vetmic.2019.108541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023]
Abstract
Mycoplasma (M.) hyopneumoniae is the etiological agent of enzootic pneumonia in pigs and is closely related to M. hyorhinis, which can be isolated from the healthy mucosal surfaces of the upper respiratory tract. In rare cases it can also cause arthritis and polyserositis. Since the innate immune system is an important first line of defense and promotes adaptive immune responses, we characterized the innate immune response of various antigen presenting cells (APCs) to M. hyopneumoniae and M. hyorhinis, which differ in their pathogenicity in vivo. Porcine peripheral blood mononuclear cells were infected with different multiplicities of infection (MOI) of live and inactivated porcine mycoplasmas. Both Mycoplasma species induced strong tumour necrosis factor (TNF) responses in monocytes, with a stronger activation by M. hyorhinis. This higher stimulatory activity was also confirmed for CD40 upregulation. Conventional and plasmacytoid dendritic cells (cDC and pDC, respectively) did not or poorly respond to mycoplasmas in terms of TNF expression but more efficiently in terms of CD40 upregulation. Again, these responses were generally stronger with M. hyorhinis than with M. hyopneumoniae. Both Mycoplasma species also activated B cells in terms of CD25 upregulation, proliferation, and IgM secretion. Interestingly, while the induction of CD25 and in particular proliferation was higher with M. hyorhinis, the IgM secretion did not differ between the two species with the exception of the highest dose of M. hyopneumoniae,which appeared to suppress IgM responses. Taken together, our results provide a comparative analysis of innate immune response with different porcine APCs and demonstrate Mycoplasma species-dependent differences, which could relate to their different pathogenicity in vivo.
Collapse
Affiliation(s)
- Bettina S Trueeb
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Roman Othmar Braun
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Gaël Auray
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland.
| |
Collapse
|
39
|
Law ECY, Leung DTM, Tam FCH, Cheung KKT, Cheng NHY, Lim PL. IgM Antibodies Can Access Cryptic Antigens Denied to IgG: Hypothesis on Novel Binding Mechanism. Front Immunol 2019; 10:1820. [PMID: 31428101 PMCID: PMC6688401 DOI: 10.3389/fimmu.2019.01820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Antibodies are well-known protein mediators of immunity. IgM is the primordial member and the neglected sibling of the later-evolved and more proficient IgG in regard to their therapeutic and diagnostic use. Serendipitously, however, we found a paradox: While murine IgM antibodies specific for guanosine triphosphate (GTP) were able to recognize native guanylyl antigens found in primate or rat muscle tissues by immunofluorescence assays (which mimicked the auto-antibodies from autoimmune patients to skeletal or smooth muscle), the murine and human IgG counterparts failed. The results were replicated in cell-free direct binding assays using small latex microspheres decorated densely with GTP. The IgG antibodies could bind, however, if GTP was presented more spaciously on larger particles or as a univalent hapten. Accordingly, oligomerization of GTP (30-mer) destroyed the binding of the IgG antibodies but enhanced that of the IgMs in inhibition ELISA. We reason that, contrary to current belief, IgM does not bind in a lock-and-key manner like IgG. We hypothesize that whereas the intact and rigid antigen-binding site of IgG hinders the antibody from docking with antigens that are obstructed, in IgM, the two component polypeptides of the antigen-binding site can dissociate from each other and navigate individually through obstacles like the ancestral single-polypeptide antibodies found in sharks and camelids, both components eventually re-grouping around the antigen. We further speculate that polyreactive IgMs, which enigmatically bind to more than one type of antigen, use the same modus operandi. These findings call for a re-look at the clinical potential of IgM antibodies particularly in specific areas of cancer therapy, tissue pathology and vaccine design, where IgG antibodies have failed due to target inaccessibility.
Collapse
Affiliation(s)
- Eric Chun Yiu Law
- Clinical Immunology Unit, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Frankie Chi Hang Tam
- Clinical Immunology Unit, The Chinese University of Hong Kong, Hong Kong, China.,IgGENE, FoTan, Hong Kong, China
| | | | - Naomi Hua Yin Cheng
- Clinical Immunology Unit, The Chinese University of Hong Kong, Hong Kong, China
| | - Pak Leong Lim
- Clinical Immunology Unit, The Chinese University of Hong Kong, Hong Kong, China.,IgGENE, FoTan, Hong Kong, China
| |
Collapse
|
40
|
Padilla-Quirarte HO, Lopez-Guerrero DV, Gutierrez-Xicotencatl L, Esquivel-Guadarrama F. Protective Antibodies Against Influenza Proteins. Front Immunol 2019; 10:1677. [PMID: 31379866 PMCID: PMC6657620 DOI: 10.3389/fimmu.2019.01677] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
The influenza A virus infection continues to be a threat to the human population. The seasonal variation of the virus and the likelihood of periodical pandemics caused by completely new virus strains make it difficult to produce vaccines that efficiently protect against this infection. Antibodies (Abs) are very important in preventing the infection and in blocking virus propagation once the infection has taken place. However, the precise protection mechanism provided by these Abs still needs to be established. Furthermore, most research has focused on Abs directed to the globular head domain of hemagglutinin (HA). However, other domains of HA (like the stem) and other proteins are also able to elicit protective Ab responses. In this article, we review the current knowledge about the role of both neutralizing and non-neutralizing anti-influenza proteins Abs that play a protective role during infection or vaccination.
Collapse
Affiliation(s)
- Herbey O Padilla-Quirarte
- LIV, Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | | | | | | |
Collapse
|
41
|
Levels MJ, Fehres CM, van Baarsen LG, van Uden NO, Germar K, O'Toole TG, Blijdorp IC, Semmelink JF, Doorenspleet ME, Bakker AQ, Krasavin M, Tomilin A, Brouard S, Spits H, Baeten DL, Yeremenko NG. BOB.1 controls memory B-cell fate in the germinal center reaction. J Autoimmun 2019; 101:131-144. [DOI: 10.1016/j.jaut.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
|
42
|
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 2019; 177:524-540. [PMID: 31002794 PMCID: PMC6538279 DOI: 10.1016/j.cell.2019.03.016] [Citation(s) in RCA: 579] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Christopher D C Allen
- Cardiovascular Research Institute, Department of Anatomy, and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Sarkar S, Piepenbrink MS, Basu M, Thakar J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine 2019; 37:2322-2330. [PMID: 30926296 PMCID: PMC6506229 DOI: 10.1016/j.vaccine.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
44
|
Knox JJ, Myles A, Cancro MP. T-bet + memory B cells: Generation, function, and fate. Immunol Rev 2019; 288:149-160. [PMID: 30874358 PMCID: PMC6626622 DOI: 10.1111/imr.12736] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
B cells expressing the transcription factor T-bet have emerged as participants in a number of protective and pathogenic immune responses. T-bet+ B cells characteristically differentiate in response to combined Toll-like receptor and cytokine signaling, contribute to protective immunity against intracellular pathogens via IgG2a/c production and antibody-independent mechanisms, and are prone to produce autoantibodies. Despite recent advances, a number of questions remain regarding the basic biology of T-bet+ B cells and their functional niche within the immune system. Herein, we review the discovery and defining characteristics of the T-bet+ B cell subset in both mice and humans. We further discuss their origins, the basis for their persistence, and their potential fate in vivo. Evidence indicates that T-bet+ B cells represent a distinct, germinal center-derived memory population that may serve as an important therapeutic target for the improvement of humoral immunity and prevention of autoimmunity.
Collapse
Affiliation(s)
- James J. Knox
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Andrade P, Gimblet-Ochieng C, Modirian F, Collins M, Cárdenas M, Katzelnick LC, Montoya M, Michlmayr D, Kuan G, Balmaseda A, Coloma J, de Silva AM, Harris E. Impact of pre-existing dengue immunity on human antibody and memory B cell responses to Zika. Nat Commun 2019; 10:938. [PMID: 30808875 PMCID: PMC6391383 DOI: 10.1038/s41467-019-08845-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Little is known about enduring memory B cell (MBC) responses to Zika virus (ZIKV) and their relationship with circulating antibodies. Here we comprehensively assess MBC frequency and specificity alongside serum binding and neutralizing antibody responses to ZIKV ~2 weeks and ~8 months postinfection in 31 pediatric subjects with 0, 1 or >1 prior infections with the related dengue virus (DENV). ZIKV infection elicits a robust type-specific MBC response, and the majority of late convalescent anti-ZIKV serum neutralizing activity is attributable to ZIKV-specific antibodies. The number of prior DENV infections does not influence type-specific or cross-reactive MBC responses, although ZIKV has the highest cross-reactivity with DENV3. DENV cross-reactive MBCs expanded by ZIKV infection decline in number and proportion by late convalescence. Finally, ZIKV induces greater cross-reactivity in the MBC pool than in serum antibodies. Our data suggest immunity to DENV only modestly shapes breadth and magnitude of enduring ZIKV antibody responses.
Collapse
Affiliation(s)
- Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, EC170157, Ecuador
| | - Ciara Gimblet-Ochieng
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Faraz Modirian
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Matthew Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, 30030, USA
| | - Maritza Cárdenas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA.
| |
Collapse
|
46
|
Lund H, Bakke AF, Sommerset I, Afanasyev S, Schriwer G, Thorisdottir A, Boysen P, Krasnov A. A time-course study of gene expression and antibody repertoire at early time post vaccination of Atlantic salmon. Mol Immunol 2019; 106:99-107. [DOI: 10.1016/j.molimm.2018.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
|
47
|
Biological sex affects vaccine efficacy and protection against influenza in mice. Proc Natl Acad Sci U S A 2018; 115:12477-12482. [PMID: 30455317 DOI: 10.1073/pnas.1805268115] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biological sex affects adaptive immune responses, which could impact influenza infection and vaccine efficacy. Infection of mice with 2009 H1N1 induced antibody responses, CD4+ T cell and CD8+ T cell memory responses that were greater in females than males; both sexes, however, were equally protected against secondary challenge with an H1N1 drift variant virus. To test whether greater antibody in females is sufficient for protection against influenza, males and females were immunized with an inactivated H1N1 vaccine that induced predominantly antibody-mediated immunity. Following vaccination, females had greater antibody responses and protection against challenge with an H1N1 drift variant virus than males. Antibody derived from vaccinated females was better at protecting both naïve males and females than antibody from males, and this protection was associated with increased antibody specificity and avidity to the H1N1 virus. The expression of Tlr7 was greater in B cells from vaccinated females than males and was associated with reduced DNA methylation in the Tlr7 promoter region, higher neutralizing antibody, class switch recombination, and antibody avidity in females. Deletion of Tlr7 reduced sex differences in vaccine-induced antibody responses and protection following challenge and had a greater impact on responses in females than males. Taken together, these data illustrate that greater TLR7 activation and antibody production in females improves the efficacy of vaccination against influenza.
Collapse
|
48
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
49
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
50
|
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 2018; 28:43-52. [PMID: 29172107 PMCID: PMC5835172 DOI: 10.1016/j.coviro.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|