1
|
Wang D, Zhao J, Zhang J, Lv C, Bao S, Gao P, He M, Li L, Zhao H, Zhang C. Targeting TNF-α: The therapeutic potential of certolizumab pegol in the early period of cerebral ischemia reperfusion injury in mice. Int Immunopharmacol 2024; 137:112498. [PMID: 38908079 DOI: 10.1016/j.intimp.2024.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The neuroinflammatory response triggered by cerebral ischemia-reperfusion injury (CIRI) is characterized by the upsurge of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, which promote leukocyte infiltration and subsequent accumulation in the ischemic zone. This accumulation further intensifies inflammation and aggravates ischemic damage. Certolizumab pegol (CZP), a monoclonal antibody targeting TNF-α, is widely used in treating various inflammatory diseases. This study explored the therapeutic potential of CZP in a mouse model of CIRI, induced by middle cerebral artery occlusion (MCAO), focusing on its influence on the microglial inflammatory response. In vitro analyses revealed that CZP markedly inhibits TNF-α-stimulated inflammation in primary microglia with an EC50 of 1.743 ng/mL. In vivo, MCAO mice treated with CZP (10 μg/mouse, i.p.) for 3 days showed reduced infarct volume, partially improved neurological function, and diminished blood-brain barrierdisruption. Additionally, CZP treatment curtailed microglial activation and the release of pro-inflammatory mediators in the early stages of stroke. It also favorably modulated microglial M1/M2 polarization, rebalanced Th17/Treg cells dynamics, and inhibited Caspase-8-mediated GSDMD cleavage, preventing microglial pyroptosis. Collectively, this study described that the treatment with CZP reversed damaging process caused by CIRI, offering a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jingyu Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Changling Lv
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Lijuan Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; School of Public Health, Dali University, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
2
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
3
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
5
|
Zheng Q, Wang D, Lin R, Chen Y, Xu Z, Xu W. Quercetin is a Potential Therapy for Rheumatoid Arthritis via Targeting Caspase-8 Through Ferroptosis and Pyroptosis. J Inflamm Res 2023; 16:5729-5754. [PMID: 38059150 PMCID: PMC10697095 DOI: 10.2147/jir.s439494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is one of the most common chronic inflammatory autoimmune diseases. However, the underlying molecular mechanisms of its pathogenesis are unknown. This study aimed to identify the common biomarkers of ferroptosis and pyroptosis in RA and screen potential drugs. Methods The RA-related differentially expressed genes (DEGs) in GSE55235 were screened by R software and intersected with ferroptosis and pyroptosis gene libraries to obtain differentially expressed ferroptosis-related genes (DEFRGs) and differentially expressed pyroptosis-related genes (DEPRGs). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), ClueGO, and Protein-Protein Interaction (PPI) analysis for DEFRGs and DEPRGs and validated them by machine learning. The microRNA/transcription factor (TF)-hub genes regulatory network was further constructed. The key gene was validated using the GSE77298 validation set, cellular validation was performed in in vitro experiments, and immune infiltration analysis was performed using CIBERSORT. Network pharmacology was used to find key gene-targeting drugs, followed by molecular docking and molecular dynamics simulations to analyze the binding stability between small-molecule drugs and large-molecule proteins. Results Three hub genes (CASP8, PTGS2, and JUN) were screened via bioinformatics, and the key gene (CASP8) was validated and obtained through the validation set, and the diagnostic efficacy was verified to be excellent through the receiver operating characteristic (ROC) curves. The ferroptosis and pyroptosis phenotypes were constructed by fibroblast-like synoviocytes (FLS), and caspase-8 was detected and validated as a common biomarker for ferroptosis and pyroptosis in RA, and quercetin can reduce caspase-8 levels. Quercetin was found to be a potential target drug for caspase-8 by network pharmacology, and the stability of their binding was further verified using molecular docking and molecular dynamics simulations. Conclusion Caspase-8 is an important biomarker for ferroptosis and pyroptosis in RA, and quercetin is a potential therapy for RA via targeting caspase-8 through ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, People’s Republic of China
| | - Zixing Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weihong Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
6
|
Kumar S, Budhathoki S, Oliveira CB, Kahle AD, Calhan OY, Lukens JR, Deppmann CD. Role of the caspase-8/RIPK3 axis in Alzheimer's disease pathogenesis and Aβ-induced NLRP3 inflammasome activation. JCI Insight 2023; 8:157433. [PMID: 36602874 PMCID: PMC9977425 DOI: 10.1172/jci.insight.157433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The molecular mediators of cell death and inflammation in Alzheimer's disease (AD) have yet to be fully elucidated. Caspase-8 is a critical regulator of several cell death and inflammatory pathways; however, its role in AD pathogenesis has not yet been examined in detail. In the absence of caspase-8, mice are embryonic lethal due to excessive receptor interacting protein kinase 3-dependent (RIPK3-dependent) necroptosis. Compound RIPK3 and caspase-8 mutants rescue embryonic lethality, which we leveraged to examine the roles of these pathways in an amyloid β-mediated (Aβ-mediated) mouse model of AD. We found that combined deletion of caspase-8 and RIPK3, but not RIPK3 alone, led to diminished Aβ deposition and microgliosis in the mouse model of AD carrying human presenilin 1 and amyloid precursor protein with 5 familial AD mutations (5xFAD). Despite its well-known role in cell death, caspase-8 did not appear to affect cell loss in the 5xFAD model. In contrast, we found that caspase-8 was a critical regulator of Aβ-driven inflammasome gene expression and IL-1β release. Interestingly, loss of RIPK3 had only a modest effect on disease progression, suggesting that inhibition of necroptosis or RIPK3-mediated cytokine pathways is not critical during midstages of Aβ amyloidosis. These findings suggest that therapeutics targeting caspase-8 may represent a novel strategy to limit Aβ amyloidosis and neuroinflammation in AD.
Collapse
Affiliation(s)
- Sushanth Kumar
- Department of Biology and,Neuroscience Graduate Program, School of Medicine, and
| | | | | | | | | | - John R. Lukens
- Neuroscience Graduate Program, School of Medicine, and,Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
7
|
Dhage PA, Sharbidre AA, Magdum SM. Interlacing the relevance of caspase activation in the onset and progression of Alzheimer's disease. Brain Res Bull 2023; 192:83-92. [PMID: 36372374 DOI: 10.1016/j.brainresbull.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Caspases, a family of cysteine proteases is a renowned regulator of apoptosis. Members of this family are responsible for the proteolytic dismantling of numerous cellular structures. Apart from apoptosis, caspases remarkably contribute to a diverse range of molecular processes. Being the imperative members of several cellular cascades their abnormal activation/deactivation has severe implications and also leads to various diseased conditions. Similar aberrant activation of caspases is one of the several causes of neuropathologies associated with Alzheimer's disease (AD), a form of dementia severely affecting neuropsychiatric and cognitive functions. Emerging studies are providing deeper insights into the mechanisms of caspase action in the progression of AD. Current article is an attempt to review these studies and present the action mechanisms of different mammalian caspases in the advancement of AD associated neuropathologies.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sujata M Magdum
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India.
| |
Collapse
|
8
|
Myeloid caspase-8 restricts RIPK3-dependent proinflammatory IL-1β production and CD4 T cell activation in autoimmune demyelination. Proc Natl Acad Sci U S A 2022; 119:e2117636119. [PMID: 35671429 PMCID: PMC9214530 DOI: 10.1073/pnas.2117636119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Caspase-8 functions at the crossroad of programmed cell death and inflammation. Here, using genetic approaches and the experimental autoimmune encephalomyelitis model of inflammatory demyelination, we identified a negative regulatory pathway for caspase-8 in infiltrated macrophages whereby it functions to restrain interleukin (IL)-1β-driven autoimmune inflammation. Caspase-8 is partially activated in macrophages/microglia in active lesions of multiple sclerosis. Selective ablation of Casp8 in myeloid cells, but not microglia, exacerbated autoimmune demyelination. Heightened IL-1β production by caspase-8-deficient macrophages underlies exacerbated activation of encephalitogenic T cells and production of GM-CSF and interferon-γ. Mechanistically, IL-1β overproduction by primed caspase-8-deficient macrophages was mediated by RIPK1/RIPK3 through the engagement of NLRP3 inflammasome and was independent of cell death. When instructed by autoreactive CD4 T cells in the presence of antigen, caspase-8-deficient macrophages, but not their wild-type counterparts, released significant amount of IL-1β that in turn acted through IL-1R to amplify T cell activation. Moreover, the worsened experimental autoimmune encephalomyelitis progression in myeloid Casp8 mutant mice was completely reversed when Ripk3 was simultaneously deleted. Together, these data reveal a functional link between T cell-driven autoimmunity and inflammatory IL-1β that is negatively regulated by caspase-8, and suggest that dysregulation of the pathway may contribute to inflammatory autoimmune diseases, such as multiple sclerosis.
Collapse
|
9
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Rong W, Liu C, Li X, Wan N, Wei L, Zhu W, Bai P, Li M, Ou Y, Li F, Wang L, Wu X, Liu J, Xing M, Zhao X, Liu H, Zhang H, Lyu A. Caspase-8 Promotes Pulmonary Hypertension by Activating Macrophage-Associated Inflammation and IL-1β (Interleukin 1β) Production. Arterioscler Thromb Vasc Biol 2022; 42:613-631. [PMID: 35387479 DOI: 10.1161/atvbaha.121.317168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Macrophages are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Caspase-8, an apical component of cell death pathways, is significantly upregulated in macrophages of PAH animal models. However, its role in PAH remains unclear. Caspase-8 plays a critical role in regulating inflammatory responses via inflammasome activation, cell death, and cytokine induction. This study investigated the mechanism of regulation of IL-1β (interleukin 1β) activation in macrophages by caspase-8. METHODS A hypoxia + SU5416-induced PAH mouse model and monocrotaline-induced rat model of PAH were constructed and the role of caspase-8 was analyzed. RESULTS Caspase-8 and cleaved-caspase-8 were significantly upregulated in the lung tissues of SU5416 and hypoxia-treated PAH mice and monocrotaline-treated rats. Pharmacological inhibition of caspase-8 alleviated PAH compared with wild-type mice, observed as a significant reduction in right ventricular systolic pressure, ratio of right ventricular wall to left ventricular wall plus ventricular septum, pulmonary vascular media thickness, and pulmonary vascular muscularization; caspase-8 ablated mice also showed significant remission. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cellss is closely associated with activation of the NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome and the IL-1β signaling pathway. Although caspase-8 did not affect extracellular matrix synthesis, it promoted inflammatory cell infiltration and pulmonary arterial smooth muscle cell proliferation via NLRP3/IL-1β activation during the development stage of PAH. CONCLUSIONS Taken together, our study suggests that macrophage-derived IL-1β via caspase-8-dependent canonical inflammasome is required for macrophages to play a pathogenic role in pulmonary perivascular inflammation.
Collapse
Affiliation(s)
- Wuwei Rong
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| | - Chenchen Liu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| | - Lijiang Wei
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| | - Wentong Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B.)
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Fang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (X.L., M.L., Y.O., F.L., L.W., X.W., J.L., M.X., X.Z., H.L., H.Z.)
| | - Ankang Lyu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (W.R., C.L., N.W., L.W., W.Z., A.L.)
| |
Collapse
|
11
|
Liso M, Verna G, Cavalcanti E, De Santis S, Armentano R, Tafaro A, Lippolis A, Campiglia P, Gasbarrini A, Mastronardi M, Pizarro TT, Cominelli F, Lopetuso LR, Chieppa M. Interleukin 1β Blockade Reduces Intestinal Inflammation in a Murine Model of Tumor Necrosis Factor-Independent Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2022; 14:151-171. [PMID: 35314399 PMCID: PMC9120241 DOI: 10.1016/j.jcmgh.2022.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases are multifactorial diseases commonly treated with either immunomodulatory drugs or anti-tumor necrosis factor (TNF). Currently, failure to respond to anti-TNF therapy (assessed no earlier than 8-12 weeks after starting treatment) occurs in 20%-40% of patients enrolled in clinical trials and in 10%-20% in clinical practice. Murine models of inflammatory bowel disease provide important tools to better understand disease mechanism(s). In this context and among the numerous models available, Winnie-TNF-knockout (KO) mice recently were reported to show characteristics of ulcerative colitis (UC) that are independent of TNF, and with increased interleukin (IL)1β production. METHODS Herein, the efficacy of recombinant IL1-receptor antagonist (anakinra) administration was evaluated in Winnie-TNF-KO mice, used as a UC model of primary anti-TNF nonresponders. RESULTS We analyzed gut mucosal biopsy specimens and circulating cytokine profiles of a cohort of 30 UC patients; approximately 75% of primary nonresponders were characterized by abundant IL1β in both the serum and local intestinal tissues. In Winnie-TNF-KO mice, administration of anakinra efficiently reduced the histologic score of the distal colon, which represents the most common site of inflammation in Winnie mice. Furthermore, among lamina propria and mesenteric lymph node-derived T cells, interferon γ-expressing CD8+ T cells were reduced significantly after anakinra administration. CONCLUSIONS Our study provides new insight and alternative approaches to treat UC patients, and points to anti-IL1 strategies (ie, anakinra) that may be a more effective therapeutic option for primary nonresponders to anti-TNF therapy.
Collapse
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elisabetta Cavalcanti
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Angela Tafaro
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Antonio Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Antonio Gasbarrini
- Digestive Disease Center–Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Theresa Torres Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Loris Riccardo Lopetuso
- Digestive Disease Center–Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy,Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy,Center for Advanced Studies and Technology, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy,Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, Lecce, Italy,Correspondence Address correspondence to: Marcello Chieppa, PhD, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
12
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
13
|
Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia. Cell Death Differ 2022; 29:1500-1512. [PMID: 35064213 PMCID: PMC9345959 DOI: 10.1038/s41418-022-00938-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Caspase-8 is an initiator of death receptor-induced apoptosis and an inhibitor of RIPK3-MLKL-dependent necroptosis. In addition, caspase-8 has been implicated in diseases such as lymphoproliferation, immunodeficiency, and autoimmunity in humans. Although auto-cleavage is indispensable for caspase-8 activation, its physiological functions remain poorly understood. Here, we generated a caspase-8 mutant lacking E385 in auto-cleavage site knock-in mouse (Casp8ΔE385/ΔE385). Casp8ΔE385/ΔE385 cells were expectedly resistant to Fas-induced apoptosis, however, Casp8ΔE385/ΔE385 cells could switch TNF-α-induced apoptosis to necroptosis by attenuating RIPK1 cleavage. More importantly, CASP8(ΔE385) sensitized cells to RIPK3-MLKL-dependent necroptosis through promoting complex II formation and RIPK1-RIPK3 activation. Notably, Casp8ΔE385/ΔE385Ripk3-/- mice partially rescued the perinatal death of Ripk1-/- mice by blocking apoptosis and necroptosis. In contrast to the Casp8-/-Ripk3-/- and Casp8-/-Mlkl-/- mice appearing autoimmune lymphoproliferative syndrome (ALPS), both Casp8ΔE385/ΔE385Ripk3-/- and Casp8ΔE385/ΔE385Mlkl-/- mice developed transplantable lymphopenia that could be significantly reversed by RIPK1 heterozygosity, but not by RIPK1 kinase dead mutation. Collectively, these results demonstrate previously unappreciated roles for caspase-8 auto-cleavage in regulating necroptosis and maintaining lymphocytes homeostasis.
Collapse
|
14
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|
15
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
16
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
17
|
Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis 2021; 150:105258. [PMID: 33434617 DOI: 10.1016/j.nbd.2021.105258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) expanding from the retina to the brain are primary victims of neurodegeneration in glaucoma, a leading cause of blindness; however, the neighboring astroglia survive the glaucoma-related stress and promote neuroinflammation. In light of diverse functions of caspase-8 in apoptosis, cell survival, and inflammation, this study investigated the importance of caspase-8 in different fates of glaucomatous RGCs and astroglia using two experimental approaches in parallel. In the first approach, cell type-specific responses of RGCs and astroglia to a caspase-8 cleavage-inhibiting pharmacological treatment were studied in rat eyes with or without experimentally induced glaucoma. The second approach utilized an experimental model of glaucoma in mice in which astroglial caspase-8 was conditionally deleted by cre/lox. Findings of these experiments revealed cell type-specific distinct processes that regulate caspase-8 functions in experimental glaucoma, which are involved in inducing the apoptosis of RGCs and promoting the survival and inflammatory responses of astroglia. Deletion of caspase-8 in astroglia protected RGCs against glia-driven inflammatory injury, while the inhibition of caspase-8 cleavage inhibited apoptosis in RGCs themselves. Various caspase-8 functions impacting both RGC apoptosis and astroglia-driven neuroinflammation may suggest the multi-target potential of caspase-8 regulation to provide neuroprotection and immunomodulation in glaucoma.
Collapse
|
18
|
SHIRAI M, NIINO N, MORI K, KAI K. Microarray-based gene expression analysis combined with laser capture microdissection is beneficial in investigating the modes of action of ocular toxicity. J Toxicol Pathol 2021; 35:171-182. [PMID: 35516843 PMCID: PMC9018402 DOI: 10.1293/tox.2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
The retina consists of several layers, and drugs can affect the retina and choroid
separately. Therefore, investigating the target layers of toxicity can provide useful
information pertaining to its modes of action. Herein, we compared gene expression
profiles obtained via microarray analyses using samples of target layers collected via
laser capture microdissection and samples of the whole globe of the eye of rats treated
with N-methyl-N-nitrosourea. Pathway analyses suggested
changes in the different pathways between the laser capture microdissection samples and
the whole globe samples. Consistent with the histological distribution of glial cells,
upregulation of several inflammation-related pathways was noted only in the whole globe
samples. Individual gene expression analyses revealed several gene expression changes in
the laser capture microdissection samples, such as caspase- and glycolysis-related gene
expression changes, which is similar to previous reports regarding
N-methyl-N-nitrosourea-treated animals; however,
caspase- and glycolysis-related gene expressions did not change or changed unexpectedly in
the whole globe samples. Analyses of the laser capture microdissection samples revealed
new potential candidate genes involved in the modes of action of
N-methyl-N-nitrosourea-induced retinal toxicity.
Collectively, our results suggest that specific retinal layers, which may be targeted by
specific toxins, are beneficial in identifying genes responsible for drug-induced ocular
toxicity.
Collapse
Affiliation(s)
- Makoto SHIRAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Noriyo NIINO
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Kazuhiko MORI
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kiyonori KAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| |
Collapse
|
19
|
Kontou G, Josephine Ng SF, Cardarelli RA, Howden JH, Choi C, Ren Q, Rodriguez Santos MA, Bope CE, Dengler JS, Kelley MR, Davies PA, Kittler JT, Brandon NJ, Moss SJ, Smalley JL. KCC2 is required for the survival of mature neurons but not for their development. J Biol Chem 2021; 296:100364. [PMID: 33539918 PMCID: PMC7949141 DOI: 10.1016/j.jbc.2021.100364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The K+/Cl- cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.
Collapse
Affiliation(s)
- Georgina Kontou
- AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shu Fun Josephine Ng
- AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ross A Cardarelli
- AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jack H Howden
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Christopher E Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jake S Dengler
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA; Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Pereira LMN, Assis PA, de Araújo NM, Durso DF, Junqueira C, Ataíde MA, Pereira DB, Lien E, Fitzgerald KA, Zamboni DS, Golenbock DT, Gazzinelli RT. Caspase-8 mediates inflammation and disease in rodent malaria. Nat Commun 2020; 11:4596. [PMID: 32929083 PMCID: PMC7490701 DOI: 10.1038/s41467-020-18295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Earlier studies indicate that either the canonical or non-canonical pathways of inflammasome activation have a limited role on malaria pathogenesis. Here, we report that caspase-8 is a central mediator of systemic inflammation, septic shock in the Plasmodium chabaudi-infected mice and the P. berghei-induced experimental cerebral malaria (ECM). Importantly, our results indicate that the combined deficiencies of caspases-8/1/11 or caspase-8/gasdermin-D (GSDM-D) renders mice impaired to produce both TNFα and IL-1β and highly resistant to lethality in these models, disclosing a complementary, but independent role of caspase-8 and caspases-1/11/GSDM-D in the pathogenesis of malaria. Further, we find that monocytes from malaria patients express active caspases-1, -4 and -8 suggesting that these inflammatory caspases may also play a role in the pathogenesis of human disease. Inflammasome activation plays a role in malaria pathogenesis, but details aren’t well understood. Here, the authors show that caspase-8 is a central mediator of systemic inflammation in rodent malaria and that monocytes from malaria patients express active caspases-1, -4 and -8.
Collapse
Affiliation(s)
- Larissa M N Pereira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Patrícia A Assis
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Natalia M de Araújo
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle F Durso
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Caroline Junqueira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil
| | - Marco Antônio Ataíde
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisas em Medicina Tropical, FIOCRUZ-RO, Porto Velho, RO, 76812-329, Brazil
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dario S Zamboni
- Departamento de Biologia Celular Molecular e Bioagentes Patogenicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Douglas T Golenbock
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ricardo T Gazzinelli
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil. .,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
21
|
Belhan S, Yıldırım S, Karasu A, Kömüroğlu AU, Özdek U. Investigation of the protective role of chrysin within the framework of oxidative and inflammatory markers in experimental testicular ischaemia/reperfusion injury in rats. Andrologia 2020; 52:e13714. [PMID: 32573003 DOI: 10.1111/and.13714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022] Open
Abstract
This study was performed to evaluate the effect of chrysin on testicular torsion and detorsion damage in rats in terms of biochemistry, histopathology and immunohistochemistry. The study was performed on Wistar albino rats between 250 g and 300 g. A total of 40 rats were used. Five groups were created with eight rats in each group. Group 1 was the control group, and no torsion procedure was performed. In Group 2, 2 hr of torsion and 2 hr of detorsion were applied. In Group 3, 2 hr of torsion and 24 hr of detorsion were applied. In Group 4, 2 hr of torsion, 2 hr of detorsion and 50 mg/kg intraperitoneal chrysin were applied. In Group 5, 2 hr of torsion, 24 hr of detorsion and 50 mg/kg of chrysin were applied. In the torsion/detorsion groups, the study determined decreases in glutathione and testosterone levels, increases in tumour necrosis factor-α, interleukin-4, interleukin-6 and interleukin-10 levels, and increases in expression levels of caspase-3 and caspase-8. Chrysin application reduced malondialdehyde, tumour necrosis factor-α, caspase-3 and caspase-8 expression levels. We can say that chrysin can be used to reduce damage in cases of testicular ischaemia/reperfusion. For more reliable results, further clinical trials are recommended.
Collapse
Affiliation(s)
- Saadet Belhan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Abdullah Karasu
- Department of Surgery, Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | | | - Uğur Özdek
- Vocational School of Health Services, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
22
|
Sadh S, Hajjar S, Ariana A, Phuong MS, Cai D, Thakker P, Sad S. Coating M-CSF on plastic surface results in the generation of increased numbers of macrophages in vitro. J Immunol Methods 2020; 481-482:112788. [PMID: 32304707 DOI: 10.1016/j.jim.2020.112788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 11/15/2022]
Abstract
Macrophages are one of the important cell types in the innate immune system that are present in various anatomical regions of the body and promote early control of pathogens. The relative proportion of macrophages in various lymphoid and non-lymphoid regions is small, and as such it is tedious to purify these cells to homogeneity. Culture of bone marrow precursors with macrophage colony-stimulating factor (M-CSF) results in their differentiation to macrophages, however this procedure results in low numbers of differentiated macrophages. Herein we reveal a new approach of generating increased numbers of differentiated macrophages from bone marrow precursors. We show that M-CSF delivered in a plate-bound form results in the differentiation of significantly more macrophages in comparison to soluble M-CSF. Furthermore, the macrophages differentiated with plate-bound M-CSF display increased metabolic activity and cell death following infection with pathogens.
Collapse
Affiliation(s)
- Sanathan Sadh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Melissa Sen Phuong
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - David Cai
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Parva Thakker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada; University of Ottawa Centre for Infection, Immunity and Inflammation, Ottawa, K1H 8M5 Ontario, Canada.
| |
Collapse
|
23
|
Yue Y, Liu L, Liu P, Li Y, Lu H, Li Y, Zhang G, Duan X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol Lett 2019; 19:1393-1399. [PMID: 32002030 PMCID: PMC6960385 DOI: 10.3892/ol.2019.11242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
2′,4′-dihydroxy-6′-methoxychalcone (cardamonin) is a natural compound with anti-proliferative effects on several cancer types including nasopharyngeal carcinoma. The effects of cardamonin on melanoma cells are unknown. The present study investigated the anti-proliferative effect of cardamonin on human melanoma cell lines (M14 and A375), and the underlying apoptosis inducing mechanisms. MTS assay showed that cardamonin inhibited M14 cells viability, and a reduction of the M14 cell density was also observed. Flow cytometry showed that cardamonin induced M14 cells apoptosis in a dose-dependent manner. Western blot analysis showed protein expression in M14 and A375; the pro-apoptotic protein BAX was upregulated, while the anti-apoptotic protein B-cell lymphoma-2 was downregulated. The protein expression of cleaved caspase-8, −9 and cleaved poly (ADP-ribose) polymerase was increased, whereas P65 was decreased. Furthermore, cardamonin inhibited M14 cell migration. These findings suggest that cardamonin may be a novel anticancer treatment for human melanoma.
Collapse
Affiliation(s)
- Yuyang Yue
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lijuan Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peipei Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuting Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Haitao Lu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanjia Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Guoqiang Zhang
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinsuo Duan
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
24
|
Bai G, Matsuba T, Kikuchi H, Chagan-Yasutan H, Motoda H, Ozuru R, Yamada O, Oshima Y, Hattori T. Inhibition of inflammatory-molecule synthesis in THP-1 cells stimulated with phorbol 12-myristate 13-acetate by brefelamide derivatives. Int Immunopharmacol 2019; 75:105831. [PMID: 31437790 DOI: 10.1016/j.intimp.2019.105831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Plasma osteopontin (OPN) levels are elevated in tuberculosis patients and may involve granuloma formation. New inhibitors using brefelamide, an aromatic amide isolated from Dictyostelium cellular slime molds that may inhibit OPN transcription in A549 cells at 1 μM concentration, were synthesized as compounds C, D, and E. Their inhibitory activity against OPN synthesis in phorbol 12-myristate 13-acetate (PMA)-stimulated THP-1 cells was confirmed using enzyme-linked immunosorbent assay (ELISA), a multicolor immune-fluorescent microscope, and western blot. In the ELISA performed using full-length OPN, each compound showed significant inhibition in culture supernatants with half maximal inhibitory concentration (IC50) values of 1.6, 1.8, and 2.2 μM for C, D, and E, respectively. In another ELISA to detect the immune-related form of OPN, IC50 values were 0.6, 1.2, and 2.5 μM for compounds C, D, and E, respectively. The decreases in OPN expression and synthesis were confirmed using immunofluorescence and western blot studies using compound-treated cells or cell lysates. Luminex assay of the supernatants of PMA-treated THP-1 cells showed significant reduction in the synthesis of interleukin (IL)-1β, galectin-9, and tumor necrosis factor (TNF)-α. Elucidation of the detailed mechanisms of the biological activities of these compounds would be necessary; however, they may be used in clinical trials for infectious diseases, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Gaowa Bai
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan
| | - Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan; Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot, China
| | - Hirotoshi Motoda
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan
| | - Ryo Ozuru
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Osamu Yamada
- Research and Development Center, FUSO Pharmaceutical Institute, Ltd, Osaka 536-8523, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Head Office for Open Innovation Strategy, Tohoku University, Sendai 980-8575, Japan
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, 8 Igamachi, Takahashi 716-8508, Japan.
| |
Collapse
|
25
|
Abstract
The inflammasome is a multi-molecular platform crucial to the induction of an inflammatory response to cellular danger. Recognition in the cytoplasm of endogenously and exogenously derived ligands initiates conformational change in sensor proteins, such as NLRP3, that permits the subsequent rapid recruitment of adaptor proteins, like ASC, and the resulting assembly of a large-scale inflammatory signalling platform. The assembly process is driven by sensor-sensor interactions as well as sensor-adaptor and adaptor-adaptor interactions. The resulting complex, which can reach diameters of around 1 micron, has a variable composition and stoichiometry. The inflammasome complex functions as a platform for the proximity induced activation of effector caspases, such as caspase-1 and caspase-8. This ultimately leads to the processing of the inflammatory cytokines pro-IL1β and pro-IL18 into their active forms, along with the cleavage of Gasdermin D, a key activator of cell death via pyroptosis.
Collapse
|
26
|
Torshin IY, Gromova OA, Stakhovskaya LV, Semenov VA, Gromov AN. Differential chemoreactome analysis of synergistic combinations of tolperisone and nonsteroidal anti-inflammatory drugs. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/2074-2711-2019-2-78-85] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The concurrent use of muscle relaxants and nonsteroidal anti-inflammatory drugs (NSAIDs) is a promising treatment for painful muscle hypertonia and convulsive states.Objective: to identify the most effective and safe synergist combinations of tolperisone and NSAIDs.Material and methods. A differential chemoreactome analysis was employed to evaluate the effects of the muscle relaxant tolperisone and five NSAIDs (dexketoprofen, etoricoxib, meloxicam, naproxen, and diclofenac). The biological activities of the molecules under study were assessed in five sections: 1) inhibition of the proteins of prostaglandin and leukotriene metabolism; 2) inhibition of the effects of the transcription factor nuclear factor kappa, tumor necrosis factor-, and other anti-inflammatory mechanisms; 3) inhibition of excessive blood coagulation and platelet aggregation; 4) vasodynamic effects; 5) antitumor properties on cell lines in culture.Results and discussion. Based on the differences in the pharmacological activity profiles of tolperisone and NSAIDs under study, the investigators identified the most promising synergistic combinations, in which both active ingredients complemented each other as effectively and safely as possible. The obtained estimates of the degree of synergism of various combinations of tolperisone and NSAIDs hold that the most promising antithrombotic, and antitumor effects.Conclusion. The results of this study will help adequately choose combinations of muscle relaxants and NSAIDs in patients with muscle hypertonia, which will be able to improve the efficiency and safety of treatment.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Federal Research Center «Informatics and Management», Russian Academy of Sciences;
Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University
| | - O. A. Gromova
- Federal Research Center «Informatics and Management», Russian Academy of Sciences;
Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University
| | - L. V. Stakhovskaya
- Research Institute of Cerebrovascular Pathology and Stroke, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - V. A. Semenov
- Federal Research Center «Informatics and Management», Russian Academy of Sciences;
Kemerovo State Medical University, Ministry of Health of Russia
| | - A. N. Gromov
- Federal Research Center «Informatics and Management», Russian Academy of Sciences;
Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University
| |
Collapse
|
27
|
Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis. Cell Mol Gastroenterol Hepatol 2019; 7:709-728. [PMID: 30716420 PMCID: PMC6462823 DOI: 10.1016/j.jcmgh.2019.01.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Serotonin (5-hydroxytryptamine [5-HT]) is synthesized mainly within enterochromaffin (EC) cells in the gut, and tryptophan hydroxylase 1 (Tph1) is the rate-limiting enzyme for 5-HT synthesis in EC cells. Accumulating evidence suggests the importance of gut microbiota in intestinal inflammation. Considering the close proximity of EC cells and the microbes, we investigated the influence of gut-derived 5-HT on the microbiota and the susceptibility to colitis. METHODS Gut microbiota of Tph1-/- and Tph1+/- mice were investigated by deep sequencing. Direct influence of 5-HT on bacteria was assessed by using in vitro system of isolated commensals. The indirect influence of 5-HT on microbiota was assessed by measuring antimicrobial peptides, specifically β-defensins, in the colon of mice and HT-29 colonic epithelial cells. The impact of gut microbiota on the development of dextran sulfate sodium-induced colitis was assessed by transferring gut microbiota from Tph1-/- mice to Tph1+/- littermates and vice versa, as well as in germ-free mice. RESULTS A significant difference in microbial composition between Tph1-/- and Tph1+/- littermates was observed. 5-HT directly stimulated and inhibited the growth of commensal bacteria in vitro, exhibiting a concentration-dependent and species-specific effect. 5-HT also inhibited β-defensin production by HT-29 cells. Microbial transfer from Tph1-/- to Tph1+/- littermates and vice versa altered colitis severity, with microbiota from Tph1-/- mice mediating the protective effects. Furthermore, germ-free mice colonized with microbiota from Tph1-/- mice exhibited less severe dextran sulfate sodium-induced colitis. CONCLUSIONS These findings demonstrate a novel role of gut-derived 5-HT in shaping gut microbiota composition in relation to susceptibility to colitis, identifying 5-HT-microbiota axis as a potential new therapeutic target in intestinal inflammatory disorders.
Collapse
|
28
|
Formulated Chinese Medicine Shaoyao Gancao Tang Reduces Tau Aggregation and Exerts Neuroprotection through Anti-Oxidation and Anti-Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9595741. [PMID: 30510632 PMCID: PMC6230396 DOI: 10.1155/2018/9595741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
Misfolded tau proteins induce accumulation of free radicals and promote neuroinflammation by activating microglia-releasing proinflammatory cytokines, leading to neuronal cell death. Traditional Chinese herbal medicines (CHMs) have been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of formulated CHMs Bai-Shao (made of Paeonia lactiflora), Gan-Cao (made of Glycyrrhiza uralensis), and Shaoyao Gancao Tang (SG-Tang, made of P. lactiflora and G. uralensis at 1 : 1 ratio) in cell model of tauopathy. Our results showed that SG-Tang displayed a greater antioxidative and antiaggregation effect than Bai-Shao and Gan-Cao and a stronger anti-inflammatory activity than Bai-Shao but similar to Gan-Cao. In inducible 293/SH-SY5Y cells expressing proaggregant human tau repeat domain (ΔK280 tauRD), SG-Tang reduced tau misfolding and reactive oxygen species (ROS) level in ΔK280 tauRD 293 cells and promoted neurite outgrowth in ΔK280 tauRD SH-SY5Y cells. Furthermore, SG-Tang displayed anti-inflammatory effects by reducing nitric oxide (NO) production in mouse BV-2 microglia and increased cell viability of ΔK280 tauRD-expressing SH-SY5Y cells inflamed by BV-2 conditioned medium. To uncover the neuroprotective mechanisms of SG-Tang, apoptosis protein array analysis of inflamed tau expressing SH-SY5Y cells was conducted and the suppression of proapoptotic proteins was confirmed. In conclusion, SG-Tang displays neuroprotection by exerting antioxidative and anti-inflammatory activities to suppress neuronal apoptosis in human tau cell models. The study results lay the base for future applications of SG-Tang on tau animal models to validate its effect of reducing tau misfolding and potential disease modification.
Collapse
|
29
|
Mi C, Wang Z, Li MY, Zhang ZH, Ma J, Jin X. Zinc finger protein 91 positively regulates the production of IL-1β in macrophages by activation of MAPKs and non-canonical caspase-8 inflammasome. Br J Pharmacol 2018; 175:4338-4352. [PMID: 30182366 DOI: 10.1111/bph.14493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-1β is a cytokine of critical importance in inflammatory, infectious and autoimmune diseases. Zinc finger protein 91 (ZFP91) has been reported to be involved in multiple biological processes. Here, we identified a previously unknown role for ZFP91 in the production of biologically active IL-1β and investigated the underlying mechanisms of its effects. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms of ZFP91 at inhibiting the expression of IL-1β were investigated by ELISA, RT-PCR, Western blotting, immunoprecipitation and immunofluorescence assays. In vivo, colitis was induced by giving 4% dextran sulfate sodium (DSS) p.o. in drinking water for 5 days. Peritonitis was induced by injecting 700 μg alum i.p. for 12 h. KEY RESULTS ZFP91 activated the non-canonical caspase-8 inflammasome, which resulted in robust IL-1β secretion. Using an immunoprecipitation assay and immunofluorescence assay, we found that ZFP91 promoted the assembly of the non-canonical caspase-8 inflammasome complex. Moreover, ZFP91 enhanced the activation of ERK, p38 MAPK and JNK in macrophages. In addition, our data demonstrate that the synthesis of pro-IL-1β is dependent on activation of these MAPK signalling pathways. In vivo experiments, the symptoms and colonic inflammation associated with DSS-induced colitis were ameliorated in mice deficient in ZFP91. Furthermore, the inflammation in alum-induced peritonitis was also attenuated in mice deficient in ZFP91. CONCLUSIONS AND IMPLICATIONS Our research describes a mechanism by which ZFP91 promotes production of IL-1β under physiological conditions and suggests that ZFP91 may be a promising therapeutic target for intervention in inflammatory, infectious and autoimmune-related diseases.
Collapse
Affiliation(s)
- Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
30
|
Wu X, Guo Y, Min X, Pei L, Chen X. Neferine, a Bisbenzylisoquinoline Alkaloid, Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1263-1279. [PMID: 30149754 DOI: 10.1142/s0192415x18500660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both the incidence and prevalence of ulcerative colitis (UC) are increasing throughout the world. Neferine, a natural alkaloid, demonstrated a variety of biological activities. In this study, the anti-inflammatory effect of neferine was investigated. Raw264.7 cells were stimulated with lipopolysaccharide (LPS) or LPS plus Z-VAD-fmk (Z-VAD). The inhibitory effect of neferine on secretion of nitrite, cytokines tumor necrosis factor alpha (TNF-[Formula: see text]) and interleukin 6 (IL-6), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined. The protective effect of neferine was investigated in dextran sulfate sodium (DSS)-induced UC mouse model. Neferine significantly inhibited LPS and LPS plus Z-VAD induced secretion of nitrite, cytokines, and expression of iNOS and COX-2. Oral administration of neferine (10[Formula: see text]mg/kg and 25[Formula: see text]mg/kg) significantly reduced DSS-induced mouse weight loss, decreased disease activity index (DAI) scores, improved colon pathological changes, and decreased plasma cytokines. In addition, neferine significantly inhibited the protein expression of iNOS, COX-2, receptor-interacting protein 1 (RIP1), RIP3, mixed lineage kinase domain-like protein (MLKL), and increased the protein expression of caspase-8 in colon tissues. These data suggest that neferine was a potent anti-inflammatory agent against LPS and DSS induced inflammation both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaxia Wu
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Yanling Guo
- † Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| | - Xiangjing Min
- † Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| | - Lixia Pei
- ‡ Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiuping Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China.,† Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| |
Collapse
|
31
|
Hefele M, Stolzer I, Ruder B, He GW, Mahapatro M, Wirtz S, Neurath MF, Günther C. Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during Salmonella Typhimurium induced enteritis. Mucosal Immunol 2018; 11:1191-1202. [PMID: 29520026 DOI: 10.1038/s41385-018-0011-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 02/04/2023]
Abstract
Although induction of host cell death is a pivotal step during bacteria-induced gastroenteritis, the molecular regulation remains to be fully characterized. To expand our knowledge, we investigated the role of the central cell death regulator Caspase-8 in response to Salmonella Typhimurium. Here, we uncovered that intestinal salmonellosis was associated with strong upregulation of members of the host cell death machinery in intestinal epithelial cells (IECs) as an early event, suggesting that elimination of infected IECs represents a host defense strategy. Indeed, Casp8∆IEC mice displayed severe tissue damage and high lethality after infection. Additional deletion of Ripk3 or Mlkl rescued epithelial cell death and lethality of Casp8∆IEC mice, demonstrating the crucial role of Caspase-8 as a negative regulator of necroptosis. While Casp8∆IECTnfr1-/- mice showed improved survival after infection, tissue destruction was similar to Casp8∆IEC mice, indicating that necroptosis partially depends on TNF-α signaling. Although there was no impairment in antimicrobial peptide secretion during the early phase of infection, functional Caspase-8 seems to be required to control pathogen colonization. Collectively, these results demonstrate that Caspase-8 is essential to prevent Salmonella Typhimurium induced enteritis and to ensure host survival by two different mechanisms: maintenance of intestinal barrier function and restriction of pathogen colonization.
Collapse
Affiliation(s)
- Manuela Hefele
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gui-Wei He
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
32
|
Liang YS, Qi WT, Guo W, Wang CL, Hu ZB, Li AK. Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr Res 2018; 62:1384. [PMID: 29849534 PMCID: PMC5965345 DOI: 10.29219/fnr.v62.1384] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023] Open
Abstract
Aim The purpose of this study was to investigate the possible mechanisms of genistein (GEN) and daidzein (DAI) in inducing apoptosis of colon cancer cells by inhibition of lipid droplets (LDs) accumulation. Methods HT-29 cells were used and treated by GEN or DAI in this paper. LDs accumulation was induced and inhibited by oleic acid (OA) and C75, respectively. The expression changes of LDs-related markers were confirmed by semiquantitative real time-PCR (RT–PCR), Western blotting, and immunofluorescence staining. Results GEN and DAI effectively reduced the LDs accumulation and downregulated the expression of Perilipin-1, ADRP and Tip-47 family proteins and vimentin levels. GEN and DAI significantly induced the mRNA expression of PPAR-γ, Fas, FABP, glycerol-3-phosphate acyltransferase (GPAT3), and microsomal TG transfer protein (MTTP), and reduced the mRNA expression of UCP2. Furthermore, the results showed a decrease of PI3K expression by GEN and DAI when compared with OA treatment, and both GEN and DAI can increase the expression of FOXO3a and caspase-8 significantly when these proteins were decreased by OA treatment. GEN is more effective than DAI in inducing cell apoptosis. Conclusion Our results demonstrated that GEN and DAI inhibit the accumulation of LDs by regulating LDs-related factors and lead to a final apoptosis of colon cancer cells. These results may provide important new insights into the possible molecular mechanisms of isoflavones in anti-obesity and anti-tumor functions.
Collapse
Affiliation(s)
- Yu-Si Liang
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China.,2Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, The People's Republic of China
| | - Wen-Tao Qi
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| | - Weiqun Guo
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| | - Chun-Ling Wang
- 2Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, The People's Republic of China
| | - Ze-Bin Hu
- 3Institute for In Vitro Diagnostic Reagents Control, The National Institutes for Food and Drug Control (NIFDC), Beijing, The People's Republic of China
| | - Ai-Ke Li
- 1Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), Beijing, The People's Republic of China
| |
Collapse
|
33
|
Guo Y, Wu X, Wu Q, Lu Y, Shi J, Chen X. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice. Toxicol Appl Pharmacol 2018; 344:35-45. [DOI: 10.1016/j.taap.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/14/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
|
34
|
Kulkarni V, Bodas D, Paknikar K. Assessment of an Integrative Anticancer Treatment Using an in Vitro Perfusion-Enabled 3D Breast Tumor Model. ACS Biomater Sci Eng 2018; 4:1407-1417. [PMID: 33418670 DOI: 10.1021/acsbiomaterials.8b00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study presents observations on anticancer therapeutic efficacy of magnetic fluid hyperthermia and a combination of hyperthermia and chemotherapy (i.e., integrative treatment) using an in vitro perfused and non-perfused 3D breast tumor model. The 3D in vitro breast tumor models were simulated using Comsol multiphysics, fabricated using specially designed chips, and treated with doxorubicin-loaded chitosan-coated La0.7Sr0.3MnO3 (DC-LSMO) nanoparticles for hyperthermia and combination therapy in both perfused and non-perfused conditions. Computation confirmed uniform heat distribution throughout the scaffold for both the models. The findings indicate that both hyperthermia and combination treatment could trigger apoptotic cell death in the perfused and non-perfused models in varying degrees. Specifically, the perfused tumors were more resistant to therapy than the non-perfused ones. The efficacy of anticancer treatment decreased with increasing physiological complexity of the tumor model. The combination (hyperthermia and chemotherapy) treatment showed enhanced efficacy over hyperthermia alone. This is a pilot study to investigate the effects of magnetic fluid hyperthermia-chemotherapy treatment using perfused and non-perfused 3D in vitro models of tumor. The feasibility of using 3D cell culture models for contributing to our understanding of cancer and its treatment was also determined as a part of this work.
Collapse
Affiliation(s)
- Vaishnavi Kulkarni
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| | - Kishore Paknikar
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| |
Collapse
|
35
|
Abstract
Roles for cell death in development, homeostasis, and the control of infections and cancer have long been recognized. Although excessive cell damage results in passive necrosis, cells can be triggered to engage molecular programs that result in cell death. Such triggers include cellular stress, oncogenic signals that engage tumor suppressor mechanisms, pathogen insults, and immune mechanisms. The best-known forms of programmed cell death are apoptosis and a recently recognized regulated necrosis termed necroptosis. Of the two best understood pathways of apoptosis, the extrinsic and intrinsic (mitochondrial) pathways, the former is induced by the ligation of death receptors, a subset of the TNF receptor (TNFR) superfamily. Ligation of these death receptors can also induce necroptosis. The extrinsic apoptosis and necroptosis pathways regulate each other and their balance determines whether cells live. Integral in the regulation and initiation of death receptor-mediated activation of programmed cell death is the aspartate-specific cysteine protease (caspase)-8. This review describes the role of caspase-8 in the initiation of extrinsic apoptosis execution and the mechanism by which caspase-8 inhibits necroptosis. The importance of caspase-8 in the development and homeostasis and the way that dysfunctional caspase-8 may contribute to the development of malignancies in mice and humans are also explored.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
36
|
Thomas AJ, Pulsipher A, Davis BM, Alt JA. LL-37 causes cell death of human nasal epithelial cells, which is inhibited with a synthetic glycosaminoglycan. PLoS One 2017; 12:e0183542. [PMID: 28837619 PMCID: PMC5570287 DOI: 10.1371/journal.pone.0183542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
LL-37 is an immune peptide that regulates innate and adaptive immune responses in the upper airways. Elevated levels of LL-37 have been linked to cell death and inflammatory diseases, such as chronic rhinosinusitis (CRS). Glycosaminoglycans (GAGs) are polysaccharides that are found on respiratory epithelial cells and serve important roles in mucosal surface repair. Recent findings suggest that a synthetic glycosaminoglycan (GM-0111) can protect against LL-37-induced sinonasal mucosal inflammation and cell death in a murine model of acute RS. Herein, we elucidated the mechanisms by which LL-37 causes sinonasal inflammation and how GM-0111 can prevent these mechanisms. When challenged with LL-37, human nasal epithelial cells (HNEpCs) and mouse macrophages (J774.2) demonstrated increased release of adenosine triphosphate (ATP) and interleukin (IL)-6 and -8, as well as cell death and lysis. These cellular responses were all blocked dose-dependently by pre-treatment with GM-0111. We identified that LL-37-induced cell death is associated with caspase-1 and -8 activation, but not activation of caspase-3/7. These responses were again blocked by GM-0111. Our data suggest that LL-37 causes cellular death of HNEpCs and macrophages through the pro-inflammatory necrotic and/or pyroptotic pathways rather than apoptosis, and that a GM-0111 is capable of inhibiting these pro-inflammatory cellular events.
Collapse
Affiliation(s)
- Andrew J. Thomas
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Abigail Pulsipher
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- GlycoMira Therapeutics, Salt Lake City, Utah, United States of America
| | - Brock M. Davis
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jeremiah A. Alt
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- GlycoMira Therapeutics, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
37
|
Isaza-Guzmán DM, Medina-Piedrahíta VM, Gutiérrez-Henao C, Tobón-Arroyave SI. Salivary Levels of NLRP3 Inflammasome-Related Proteins as Potential Biomarkers of Periodontal Clinical Status. J Periodontol 2017; 88:1329-1338. [PMID: 28691886 DOI: 10.1902/jop.2017.170244] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Emerging evidence suggests that activation of inflammasomes plays a central mechanism in pathogenesis of periodontitis. This study aims to compare salivary levels of nod-like receptor family pyrin domain containing protein (NLRP) 3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cysteine aspartase (caspase)-1, and interleukin (IL)-1β from individuals with aggressive (AgP) or chronic periodontitis (CP) and healthy controls (HC), as well as elucidate its association with periodontal clinical status. METHODS Saliva samples from individuals with CP (n = 75), AgP (n = 20), and HC (n = 69) were collected. Periodontal status was assessed by measurement of probing depth, clinical attachment level, and extent and severity of disease. Salivary levels of analytes were analyzed by enzyme-linked immunosorbent assay. Association between biomarkers with CP or AgP was analyzed using multivariate binary logistic regression models. RESULTS Significantly higher levels of NLRP3, ASC, and IL-1β were detected in periodontitis groups in comparison to the periodontally HC group. However, no significant differences were observed for caspase-1 levels between clinical groups, and only NLRP3 salivary concentration was significantly higher in AgP compared with CP patients. Also, positive significant correlations among NLRP3, ASC, and IL-1β salivary concentrations and clinical parameters were observed. Logistic regression analyses revealed a strong/independent association of NLRP3, ASC, and IL-1β salivary levels with CP and AgP. CONCLUSION Although the concentration of caspase-1 in saliva samples makes its determination useless for detection of periodontal disease and/or its severity, salivary levels of NLRP3, ASC, and IL-1β may act as strong/independent indicators of amount and extent of periodontal breakdown in both CP and AgP and could potentially be used for prevention and therapy of this group of diseases.
Collapse
Affiliation(s)
- Diana M Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Verónica M Medina-Piedrahíta
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Carolina Gutiérrez-Henao
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Sergio I Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
38
|
Abstract
Urinary tract infections (UTIs) cause a huge burden of morbidity worldwide with recurrent UTIs becoming increasingly frequent owing to the emergence of antibiotic-resistant bacterial strains. Interactions between the innate and adaptive immune responses to pathogens colonizing the urinary tract have been the focus of much research. Inflammasomes are part of the innate immune defence and can respond rapidly to infectious insult. Assembly of the multiprotein inflammasome complex activates caspase-1, processes proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. These effector pathways, in turn, act at different levels to either prevent or resolve infection, or eliminate the infectious agent itself. In certain instances, inflammasome activation promotes tissue pathology; however, the precise functions of inflammasomes in UTIs remain unexplored. An improved understanding of inflammasomes could provide novel approaches for the design of diagnostics and therapeutics for complicated UTIs, enabling us to overcome the challenge of drug resistance.
Collapse
|
39
|
Aglietti RA, Dueber EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions. Trends Immunol 2017; 38:261-271. [PMID: 28196749 DOI: 10.1016/j.it.2017.01.003] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of cell death that not only protects multicellular organisms from invading pathogenic bacteria and microbial infections, but can also lead to sepsis and lethal septic shock if overactivated. Here, we present an overview of recent developments within the pyroptosis field, beginning with the discovery of Gasdermin D (GSDMD) as a substrate of caspase-1 and caspase-11 upon detection of cytosolic lipopolysaccharide (LPS). Cleavage releases the N-terminal domain of GSDMD, causing it to form cytotoxic pores in the plasma membrane of cells. We further discuss the implications for the rest of the gasdermin (GSDM) family, which are emerging as mediators of programmed cell death in a variety of processes that regulate cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Robin A Aglietti
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Erin C Dueber
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
40
|
Ahn D, Prince A. Participation of Necroptosis in the Host Response to Acute Bacterial Pneumonia. J Innate Immun 2017; 9:262-270. [PMID: 28125817 PMCID: PMC5413418 DOI: 10.1159/000455100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus, as well as the host-adapted pathogens responsible for health care-associated pneumonias, such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcecsens, are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages, and, in so doing, contribute to host pathology through the loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and the eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore-forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are coregulated in the response to specific pulmonary pathogens remains a topic of active investigation, and it may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Thompson JK, MacPherson MB, Beuschel SL, Shukla A. Asbestos-Induced Mesothelial to Fibroblastic Transition Is Modulated by the Inflammasome. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:665-678. [PMID: 28056339 DOI: 10.1016/j.ajpath.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
Despite the causal relationship established between malignant mesothelioma (MM) and asbestos exposure, the exact mechanism by which asbestos induces this neoplasm and other asbestos-related diseases is still not well understood. MM is characterized by chronic inflammation, which is believed to play an intrinsic role in the origin of this disease. We recently found that asbestos activates the nod-like receptor family member containing a pyrin domain 3 (NLRP3) inflammasome in a protracted manner, leading to an up-regulation of IL-1β and IL-18 production in human mesothelial cells. Combined with biopersistence of asbestos fibers, we hypothesize that this creates an environment of chronic IL-1β signaling in human mesothelial cells, which may promote mesothelial to fibroblastic transition (MFT) in an NLRP3-dependent manner. Using a series of experiments, we found that asbestos induces a fibroblastic transition of mesothelial cells with a gain of mesenchymal markers (vimentin and N-cadherin), whereas epithelial markers, such as E-cadherin, are down-regulated. Use of siRNA against NLRP3, recombinant IL-1β, and IL-1 receptor antagonist confirmed the role of NLRP3 inflammasome-dependent IL-1β in the process. In vivo studies using wild-type and various inflammasome component knockout mice also revealed the process of asbestos-induced mesothelial to fibroblastic transition and its amelioration in caspase-1 knockout mice. Taken together, our data are the first to suggest that asbestos induces mesothelial to fibroblastic transition in an inflammasome-dependent manner.
Collapse
Affiliation(s)
- Joyce K Thompson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Maximilian B MacPherson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Stacie L Beuschel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
42
|
Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol 2017; 10:128-138. [PMID: 27007676 PMCID: PMC5035164 DOI: 10.1038/mi.2016.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disorder of the airways that affects >300 million people worldwide. The pro-inflammatory cytokines interleukin (IL)-1α and IL-1β have essential roles in the pathogenesis of asthma. However, the mechanisms underlying the production of IL-1 cytokines in allergic asthma remain unclear. In this study, we used a mouse model of ovalbumin-induced asthma to identify a crucial role for caspase-8 in the development of allergic airway inflammation. We further demonstrated that hematopoietic cells have dominant roles in caspase-8-mediated allergic airway inflammation. Caspase-8 was required for the production of IL-1 cytokines to promote Th2 immune response, which promotes the development of pulmonary eosinophilia and inflammation. Thus, our study identifies caspase-8 as a master regulator of IL-1 cytokines that contribute to the pathogenesis of asthma and implicates caspase-8 inhibition as a potential therapeutic strategy for asthmatic patients.
Collapse
|
43
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Wu X, Cakmak S, Wortmann M, Hakimi M, Zhang J, Böckler D, Dihlmann S. Sex- and disease-specific inflammasome signatures in circulating blood leukocytes of patients with abdominal aortic aneurysm. Mol Med 2016; 22:505-518. [PMID: 27474483 DOI: 10.2119/molmed.2016.00035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023] Open
Abstract
Male sex is a risk factor for abdominal aortic aneurysm (AAA). Within the AAA adventitia, infiltrating leukocytes express high levels of inflammasome components. To further elucidate the role of inflammatory cells in the pathogenesis of AAA, we here addressed expression and functionality of inflammasome components in peripheral blood mononuclear cells (PBMC) of AAA patients in association with sex. PBMC and plasma were isolated from 100 vascular patients, including 34 pairs of AAA patients and age/sex-matched non-AAA patients. Male PBMC were found to express significantly higher mRNA levels of AIM2, NLRP3, ASC (PYCARD), CASP1, CASP5, and IL1B (all P < 0.0001) than female PBMC. Within the male patients, PBMC of AAA patients displayed increased mRNA levels of NLRP3 (P = 0.044), CASP1 (P = 0.032) and IL1B (P = 0.0004) compared to matched non-AAA PBMC, whereas there was no difference between female AAA and non-AAA patients. The relative protein level of NLRP3 was significantly lower in PBMC lysates from all AAA patients than in matched controls (P = 0.038), whereas AIM2 and active Caspase-1 (p10) protein levels were significantly increased (P = 0.014 and P = 0.049). ELISA revealed significantly increased IL-1α (mean = 6.34 vs 0.01 pg/ml) and IL-1β plasma levels (mean = 12.07 vs. 0.04 pg/ml) in AAA patients. The data indicate that male PBMC display a systemic proinflammatory state with primed inflammasomes that may contribute to AAA-pathogenesis. The AAA-specific inflammasome activation pattern suggests differential regulation of the sensors AIM2 and NLRP3 in inflammatory cells of AAA patients.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Nanjing North Street 155, 110001 Shenyang, China.,University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Sinan Cakmak
- University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Markus Wortmann
- University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Maani Hakimi
- University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.,Vaskuläre Biomaterialbank Heidelberg (VBBH), Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Nanjing North Street 155, 110001 Shenyang, China
| | - Dittmar Böckler
- University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Susanne Dihlmann
- University Hospital Heidelberg, Department of vascular and endovascular surgery, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach. Mol Immunol 2016; 75:188-99. [PMID: 27318565 DOI: 10.1016/j.molimm.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination.
Collapse
|
46
|
Al-Maghrebi M, Renno WM. The tACE/Angiotensin (1-7)/Mas Axis Protects Against Testicular Ischemia Reperfusion Injury. Urology 2016; 94:312.e1-8. [PMID: 27125877 DOI: 10.1016/j.urology.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether exogenous angiotensin (Ang)-(1-7) administration can protect against the damaging consequences of testicular ischemia reperfusion (tIR) injury. MATERIALS AND METHODS Eighteen male Sprague-Dawley rats were divided equally among the following 3 groups: sham, unilateral tIR injury (1 hour of ischemic treatment and 4 hours of reperfusion), and tIR + Ang-(1-7) (0.3 mg/kg). Testicular tissues obtained from the rats were evaluated for the expression of testicular angiotensin-converting enzyme (tACE), Ang-(1-7), and the Ang-(1-7)-specific receptor Mas by immunohistochemistry and enzyme-linked immunosorbent assay. Reduced spermatogenesis, induction of the caspase-8 pathway, and nitric oxide (NO) generation were assessed. The effects of tIR and Ang-(1-7) treatment on the PI3K/Akt antiapoptosis pathway were also investigated. RESULTS Testicular morphological changes and reduced spermatogenesis associated with decreased expression of the tACE/Ang-(1-7)/Mas axis were observed during tIR. These effects were also accompanied by increased activity of caspase-3 and -8, downregulation of the survivin and BAD transcripts, and decreased NO formation. During tIR, PTEN expression was increased, leading to inactivation of the PI3K/Akt pathway. Acute treatment with Ang-(1-7) prior to reperfusion attenuated the tIR-induced damage described above. CONCLUSION Expression of the tACE/Ang-(1-7)/Mas axis was downregulated during tIR. Administration of exogenous Ang-(1-7) prior to reperfusion rescued tACE and Mas expression and protected against germ cell apoptosis and oxidative stress. Increased NO generation and activation of the PI3K/Akt signaling pathway may have partially contributed to these effects. The tACE/Ang-(1-7)/Mas axis likely plays a role in the maintenance of normal testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait.
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
47
|
Li J, Hong Z, Liu H, Zhou J, Cui L, Yuan S, Chu X, Yu P. Hydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-apoptosis and Anti-inflammation. Front Pharmacol 2016; 7:106. [PMID: 27148060 PMCID: PMC4840252 DOI: 10.3389/fphar.2016.00106] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose: Hydrogen is a proven novel antioxidant that selectively reduces hydroxyl radicals. In this study, we investigated the effects of hydrogen-rich saline solution on the prevention of renal injury induced by ischemia/reperfusion (I/R) and on renal function recovery. Methods: A rat model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle, followed by 108 h reperfusion. The right kidney was surgically removed. Then, 0.9% NaCl solution (1 ml/kg) or hydrogen-rich saline solution (HRSS; 1 ml/kg) was injected into the abdominal cavity at 4 h intervals. We assessed the influence of HRSS or control saline solution on the recovery of renal function after I/R injury. Kidney tissues were taken at different time points (24, 36, 48, 72, and 108 h after reperfusion) and frozen (-80°C). Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive staining. Additionally, the apoptotic factors (Bcl-2, Bax, caspase-3, caspase-9, and caspase-8) and the pro-inflammatory cytokines (IL-6 and TNF-α) were measured in the kidney tissues. Finally, serum blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. Results: Histological analyses revealed a marked reduction of interstitial congestion, edema and hemorrhage in renal tissue after HRSS treatment compared to saline treatment. After I/R injury, BUN, Cr, Bcl-2, caspase-3, caspase-9, caspase-8, IL-6, and TNF-α were all significantly increased, while Bax expression was decreased. HRSS remarkably reversed these changes. Moreover, BUN and Cr decreased more rapidly in the rats treated with HRSS compared to the rats treated with control saline solution. Conclusions: HRSS showed a protective effect in the prevention of renal injury and could promote renal function recovery after I/R injury in rats. HRSS might partially exert its role through an anti-apoptotic and anti-inflammatory action in kidney cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Burn and Plastic Surgery, Jinling HospitalNanjing, China; Department of Nephrology, Yongchuan Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhijian Hong
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Hong Liu
- Department of Nephrology, Hospital of Traditional Chinese Medicine Chongqing, China
| | - Jihong Zhou
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Lei Cui
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Siming Yuan
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Xianghua Chu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University Qingdao, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| |
Collapse
|
48
|
Kim MS, Lee JA, Kim KH. Effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on viral hemorrhagic septicemia virus (VHSV) infection-mediated apoptosis and viral replication. FISH & SHELLFISH IMMUNOLOGY 2016; 51:41-45. [PMID: 26899629 DOI: 10.1016/j.fsi.2016.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In the development of inactivated or attenuated viral vaccines for cultured fish, viral titers harvested from the cultured cells would be the most important factor for the determination of vaccine's cost effectiveness. In this study, we hypothesized that the lengthening of cell survival time by the inhibition of apoptosis can lead to an increase of the final titer of viral hemorrhagic septicemia virus (VHSV). To test the hypothesis, we investigated the effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on VHSV infection-mediated apoptosis in Epithelioma papulosum cyprini (EPC) cells and on the VHSV titers. VHSV infection induced the DNA laddering in EPC cells, and the progression of DNA fragmentation was in proportion to the CPE extension. The progression of DNA fragmentation in EPC cells infected with VHSV was clearly inhibited by exposure to Z-VAD(OMe)-FMK, and the inhibition was intensified according to the increase of the inhibitor concentration. These results confirmed the previous reports that the death of host cells by VHSV infection is through apoptosis. Cells infected with a recombinant VHSV, rVHSV-ΔNV-eGFP, that was generated from our previous study by replacement of the NV gene ORF with the enhanced green fluorescent protein (eGFP) gene ORF, showed earlier and more distinct DNA fragmentations compared to the cells infected with wild-type VHSV, suggesting the inhibitory role of the NV protein in VHSV-mediated apoptosis that was previously reported. The final viral titers in the supernatant isolated from Z-VAD(OMe)-FMK treated cells after showing an extensive CPE were significantly higher than the viral titers from cells infected with virus alone, indicating that the delay of apoptosis by Z-VAD(OMe)-FMK extended the survival time of EPC cells, which lengthen the time for VHSV replication in the cells. In conclusion, Z-VAD(OMe)-FMK-mediated inhibition of apoptosis significantly increased the final titers of both wild-type VHSV and rVHSV-ΔNV-eGFP, indicating that apoptosis inhibition can be a way to get higher titers of VHSV.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ji Ae Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
49
|
Huus KE, Joseph J, Zhang L, Wong A, Aaron SD, Mah TF, Sad S. Clinical Isolates of Pseudomonas aeruginosa from Chronically Infected Cystic Fibrosis Patients Fail To Activate the Inflammasome during Both Stable Infection and Pulmonary Exacerbation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3097-108. [PMID: 26895832 DOI: 10.4049/jimmunol.1501642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
Immune recognition of pathogen-associated ligands leads to assembly and activation of inflammasomes, resulting in the secretion of inflammatory cytokines IL-1β and IL-18 and an inflammatory cell death called pyroptosis. Inflammasomes are important for protection against many pathogens, but their role during chronic infectious disease is poorly understood. Pseudomonas aeruginosa is an opportunistic pathogen that persists in the lungs of cystic fibrosis (CF) patients and may be responsible for the repeated episodes of pulmonary exacerbation characteristic of CF. P. aeruginosa is capable of inducing potent inflammasome activation during acute infection. We hypothesized that to persist within the host during chronic infection, P. aeruginosa must evade inflammasome activation, and pulmonary exacerbations may be the result of restoration of inflammasome activation. We therefore isolated P. aeruginosa from chronically infected CF patients during stable infection and exacerbation and evaluated the impact of these isolates on inflammasome activation in macrophages and neutrophils. P. aeruginosa isolates from CF patients failed to induce inflammasome activation, as measured by the secretion of IL-1β and IL-18 and by pyroptotic cell death, during both stable infection and exacerbation. Inflammasome evasion likely was due to reduced expression of inflammasome ligands and reduced motility and was not observed in environmental isolates or isolates from acute, non-CF infection. These results reveal a novel mechanism of pathogen adaptation by P. aeruginosa to avoid detection by inflammasomes in CF patients and indicate that P. aeruginosa-activated inflammasomes are not involved in CF pulmonary exacerbations.
Collapse
Affiliation(s)
- Kelsey E Huus
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Julie Joseph
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Li Zhang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alex Wong
- Department of Biology, Faculty of Science, Carleton University, Ottawa, Ontario K1N 6N5, Canada; and
| | - Shawn D Aaron
- Ottawa Hospital Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
50
|
|