1
|
Gomes Torres ACM, Leite N, de Souza RLR, Pizzi J, Milano-Gai GE, Lazarotto L, Tureck LV, Furtado-Alle L. Variants in inflammation-related genes influence the outcomes of physical exercise programs: A longitudinal study in Brazilian adolescents with overweight and obesity. Genet Mol Biol 2024; 47:e20230211. [PMID: 39630946 PMCID: PMC11616735 DOI: 10.1590/1678-4685-gmb-2023-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
The expansion of adipose tissue, characteristic of obesity, releases inflammatory cytokines, leading to metabolic disorders. Physical activity, on the other hand, promotes fat loss and changes inflammatory profile. This study aimed to investigate the associations of 20 gene variants (TLR2, TLR4, IL1B, IL6, NFKB1, TNF, NFKBIA, NLRC4, CARD8 and NEK7) with anthropometric and biochemical changes induced by physical exercise programs. Thus, 58 children and adolescents participated of the 12-week exercise programs. Parameters were collected before and after programs: body mass index, body fat percentage, LDL-C, HDL-C, triglycerides, total cholesterol, insulin, glucose, HOMA-IR and QUICKI. Changes in these parameters were calculated (final - initial measurements) for subsequent analyses. Linear regression analyses were performed to investigate associations between genotypes and changes in the analyzed parameters. We found associations between 14 variants in nine genes with anthropometrical and biochemical outcomes. Observing the distribution of the sample, the groups of individuals who responded less in relation to body fat and TG levels concentrated the highest scores of polygenic indexes as a result of a greater number of risk variants. In conclusion, some genotypes related to the inflammatory profile provided less favorable anthropometrical and biochemical outcomes in response to physical exercise programs.
Collapse
Affiliation(s)
- Ana Cláudia M.B. Gomes Torres
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Neiva Leite
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | | | - Juliana Pizzi
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | | | - Leilane Lazarotto
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | - Luciane Viater Tureck
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Tani-Ichi S, Obwegs D, Yoshikawa A, Watanabe H, Kitano S, Ejima A, Hatano S, Miyachi H, Cui G, Shimba A, Abe S, Hori S, Kondoh G, Sagar, Yoshikai Y, Ikuta K. A RORE-dependent Intronic Enhancer in the IL-7 Receptor-α Locus Controls Glucose Metabolism via Vγ4+ γδT17 Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:283-295. [PMID: 39140825 DOI: 10.4049/jimmunol.2300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/22/2024] [Indexed: 08/15/2024]
Abstract
The IL-7R regulates the homeostasis, activation, and distribution of T cells in peripheral tissues. Although several transcriptional enhancers that regulate IL-7Rα expression in αβ T cells have been identified, enhancers active in γδ T cells remain unknown. In this article, we discovered an evolutionarily conserved noncoding sequence (CNS) in intron 2 of the IL-7Rα-chain (IL-7Rα) locus and named this region CNS9. CNS9 contained a conserved retinoic acid receptor-related orphan receptor (ROR)-responsive element (RORE) and exerted RORγt-dependent enhancer activity in vitro. Mice harboring point mutations in the RORE in CNS9 (CNS9-RORmut) showed reduced IL-7Rα expression in IL-17-producing Vγ4+ γδ T cells. In addition, the cell number and IL-17A production of Vγ4+ γδ T cells were reduced in the adipose tissue of CNS9-RORmut mice. Consistent with the reduction in IL-17A, CNS9-RORmut mice exhibited decreased IL-33 expression in the adipose tissue, resulting in fewer regulatory T cells and glucose intolerance. The CNS9-ROR motif was partially responsible for IL-7Rα expression in RORγt+ regulatory T cells, whereas IL-7Rα expression was unaffected in RORγt-expressing Vγ2+ γδ T cells, Th17 cells, type 3 innate lymphoid cells, and invariant NKT cells. Our results indicate that CNS9 is a RORΕ-dependent, Vγ4+ γδ T cell-specific IL-7Rα enhancer that plays a critical role in adipose tissue homeostasis via regulatory T cells, suggesting that the evolutionarily conserved RORΕ in IL-7Rα intron 2 may influence the incidence of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Mice
- Introns/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Enhancer Elements, Genetic/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Glucose/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Mice, Inbred C57BL
- Th17 Cells/immunology
- Interleukin-17/metabolism
- Interleukin-17/genetics
- Humans
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Obwegs
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Alice Yoshikawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Meza-Perez S, Liu M, Silva-Sanchez A, Morrow CD, Eipers PG, Lefkowitz EJ, Ptacek T, Scharer CD, Rosenberg AF, Hill DD, Arend RC, Gray MJ, Randall TD. Proteobacteria impair anti-tumor immunity in the omentum by consuming arginine. Cell Host Microbe 2024; 32:1177-1191.e7. [PMID: 38942027 PMCID: PMC11245731 DOI: 10.1016/j.chom.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter G Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander F Rosenberg
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dave D Hill
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Elkins C, Li C. Deciphering visceral adipose tissue regulatory T cells: Key contributors to metabolic health. Immunol Rev 2024; 324:52-67. [PMID: 38666618 PMCID: PMC11262988 DOI: 10.1111/imr.13336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Xie W, Hong Z, Li B, Huang B, Dong S, Cai Y, Ruan L, Xu Q, Mou L, Zhang Y. Influence of glucagon-like peptide-1 receptor agonists on fat accumulation in patients with diabetes mellitus and non-alcoholic fatty liver disease or obesity: A systematic review and meta-analysis of randomized control trials. J Diabetes Complications 2024; 38:108743. [PMID: 38688179 DOI: 10.1016/j.jdiacomp.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
AIM This systematic review and meta-analysis aimed to comprehensively evaluate the impact of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in individuals with diabetes mellitus and non-alcoholic fatty liver disease (NAFLD) or obesity. METHODS A search of PubMed, Embase, and Web of Science until October 2023 identified 13 Randomized Controlled Trials (RCTs) meeting the inclusion criteria. Bias risk was assessed using the Cochrane risk-of-bias instrument. Statistical analysis utilized standard mean differences (SMD) in Review Manager 5.4. Heterogeneity and publication bias were assessed. This study used the protocol registered with the Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY2023110020). RESULTS GLP-1RA treatment significantly reduced VAT (SMD -0.55, 95 % CI [-0.90, -0.19]), SAT (SMD -0.59, 95 % CI [-0.99, -0.19]), body weight (SMD -1.07, 95 % CI [-1.67, -0.47]), and body mass index (BMI) (SMD -1.10, 95 % CI [-1.74, -0.47]) compared to controls. Heterogeneity was observed for VAT (I2 = 79 %, P < 0.01), SAT (I2 = 73 %, P < 0.01), body weight (I2 = 82 %, P < 0.01), and BMI (I2 = 82 %, P < 0.01). No publication bias was detected for VAT (P = 0.57) and SAT (P = 0.18). GLP-1RA treatment improved fasting blood glucose (FBG), postprandial glucose (PPG), hemoglobin A1c (HbA1c), Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), and fibrosis-4 (FIB-4). CONCLUSIONS This meta-analysis highlights GLP-1RAs' potential to reduce fat accumulation, body weight, and BMI and improve glycemic control in individuals with diabetes mellitus and NAFLD or obesity. These findings supported using GLP-1RAs as promising therapeutic agents to address abnormal adipose tissue distribution and metabolic dysfunction.
Collapse
Affiliation(s)
- Wanrun Xie
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Zhenzhen Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Bo Li
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Baoliang Huang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Shaobin Dong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yuqi Cai
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Lingyan Ruan
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Qianhui Xu
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Lunpan Mou
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yi Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
6
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Maes B, Fayazpour F, Catrysse L, Lornet G, Van De Velde E, De Wolf C, De Prijck S, Van Moorleghem J, Vanheerswynghels M, Deswarte K, Descamps B, Vanhove C, Van der Schueren B, Vangoitsenhoven R, Hammad H, Janssens S, Lambrecht BN. STE20 kinase TAOK3 regulates type 2 immunity and metabolism in obesity. J Exp Med 2023; 220:e20210788. [PMID: 37347461 PMCID: PMC10287548 DOI: 10.1084/jem.20210788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Leen Catrysse
- Cellular and Molecular (Patho)Physiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guillaume Lornet
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Evelien Van De Velde
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam Netherlands
| |
Collapse
|
8
|
Sun R, Zhao H, Gao DS, Ni A, Li H, Chen L, Lu X, Chen K, Lu B. Amphiregulin couples IL1RL1 + regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity. SCIENCE ADVANCES 2023; 9:eadd7399. [PMID: 37611111 PMCID: PMC10446484 DOI: 10.1126/sciadv.add7399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023]
Abstract
Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)-epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongyu Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - David Shihong Gao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Ni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haochen Li
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lujia Chen
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinghua Lu
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| |
Collapse
|
9
|
Wang HW, Tang J, Sun L, Li Z, Deng M, Dai Z. Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World J Diabetes 2023; 14:494-511. [PMID: 37273249 PMCID: PMC10236992 DOI: 10.4239/wjd.v14.i5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity and overweight are widespread issues in adults, children, and adolescents globally, and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM. This proinflammatory activation occurs in multiple organs and tissues. Immune cell-mediated systemic attack is considered to contribute strongly to impaired insulin secretion, insulin resistance, and other metabolic disorders. This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut, islet, and insulin-targeting organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
10
|
Aragón-Herrera A, Moraña-Fernández S, Otero-Santiago M, Anido-Varela L, Campos-Toimil M, García-Seara J, Román A, Seijas J, García-Caballero L, Rodríguez J, Tarazón E, Roselló-Lletí E, Portolés M, Lage R, Gualillo O, González-Juanatey JR, Feijóo-Bandín S, Lago F. The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats. Biomed Pharmacother 2023; 161:114535. [PMID: 36931025 DOI: 10.1016/j.biopha.2023.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The pharmacological inhibition of sodium-glucose cotransporter 2 (SGLT2) has emerged as a treatment for patients with type 2 diabetes mellitus (T2DM), cardiovascular disease and/or other metabolic disturbances, although some of the mechanisms implicated in their beneficial effects are unknown. The SGLT2 inhibitor (SGLT2i) empagliflozin has been suggested as a regulator of adiposity, energy metabolism, and systemic inflammation in adipose tissue. The aim of our study was to evaluate the impact of a 6-week-empagliflozin treatment on the lipidome of visceral (VAT) and subcutaneous adipose tissue (SAT) from diabetic obese Zucker Diabetic Fatty (ZDF) rats using an untargeted metabolomics approach. We found that empagliflozin increases the content of diglycerides and oxidized fatty acids (FA) in VAT, while in SAT, it decreases the levels of several lysophospholipids and increases 2 phosphatidylcholines. Empagliflozin also reduces the expression of the cytokines interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNFα), monocyte-chemotactic protein-1 (MCP-1) and IL-10, and of Cd86 and Cd163 M1 and M2 macrophage markers in VAT, with no changes in SAT, except for a decrease in IL-1β. Empagliflozin treatment also shows an effect on lipolysis increasing the expression of hormone-sensitive lipase (HSL) in SAT and VAT and of adipose triglyceride lipase (ATGL) in VAT, together with a decrease in the adipose content of the FA transporter cluster of differentiation 36 (CD36). In conclusion, our data highlighted differences in the VAT and SAT lipidomes, inflammatory profiles and lipolytic function, which suggest a distinct metabolism of these two white adipose tissue depots after the empagliflozin treatment.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS). Av. Barcelona, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Arrhytmia Unit, Clinical University Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Ana Román
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Cardiology Department, Clinical University Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - José Seijas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Cardiology Department, Clinical University Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Lucía García-Caballero
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Rodríguez
- Clinical Biochemistry Laboratory, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Ricardo Lage
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS). Av. Barcelona, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Cardiology Department, Clinical University Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Fernandes S, Srivastava N, Pedicone C, Sudan R, Luke EA, Dungan OM, Pacherille A, Meyer ST, Dormann S, Schurmans S, Chambers BJ, Chisholm JD, Kerr WG. Obesity control by SHIP inhibition requires pan-paralog inhibition and an intact eosinophil compartment. iScience 2023; 26:106071. [PMID: 36818285 PMCID: PMC9929608 DOI: 10.1016/j.isci.2023.106071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/18/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Here we extend the understanding of how chemical inhibition of SHIP paralogs controls obesity. We compare different classes of SHIP inhibitors and find that selective inhibitors of SHIP1 or SHIP2 are unable to prevent weight gain and body fat accumulation during increased caloric intake. Surprisingly, only pan-SHIP1/2 inhibitors (pan-SHIPi) prevent diet-induced obesity. We confirm that pan-SHIPi is essential by showing that dual treatment with SHIP1 and SHIP2 selective inhibitors reduced adiposity during excess caloric intake. Consistent with this, genetic inactivation of both SHIP paralogs in eosinophils or myeloid cells also reduces obesity and adiposity. In fact, pan-SHIPi requires an eosinophil compartment to prevent diet-induced adiposity, demonstrating that pan-SHIPi acts via an immune mechanism. We also find that pan-SHIPi increases ILC2 cell function in aged, obese mice to reduce their obesity. Finally, we show that pan-SHIPi also reduces hyperglycemia, but not via eosinophils, indicating a separate mechanism for glucose control.
Collapse
Affiliation(s)
- Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Neetu Srivastava
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chiara Pedicone
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Raki Sudan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elizabeth A. Luke
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Otto M. Dungan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | | | - Shea T. Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Shawn Dormann
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | | | - Benedict J. Chambers
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - William G. Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
12
|
Abstract
When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.
Collapse
|
13
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
14
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
15
|
Gu S, Gong Z, Liu S, Lu G, Ling Y, Wei Y, Li T, Gu R, Rong Y, Li J, Li H. Global Single-Cell Sequencing Landscape of Adipose Tissue of Different Anatomical Site Origin in Humans. Stem Cells Int 2023; 2023:8282961. [PMID: 37197688 PMCID: PMC10185425 DOI: 10.1155/2023/8282961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Chronic refractory wounds (CRW) are one of the most serious clinical challenges for surgeons to address. Stromal vascular fraction gels (SVFG), including human adipose stem cells (hASCs), have excellent vascular regenerative and tissue repair properties. Here, we combined single-cell RNA sequencing (scRNA-seq) of leg subcutaneous adipose tissue samples with scRNA-seq data from abdominal subcutaneous adipose tissue, leg subcutaneous adipose tissue, and visceral adipose tissue samples from public databases. The results showed specific differences in cellular levels in adipose tissue from different anatomical site sources. We identified cells including CD4+ T cells, hASCs, adipocyte (APC), epithelial (Ep) cells, and preadipocyte. In particular, the dynamics between groups of hASCs, epithelial cells, APCs, and precursor cells in adipose tissue of different anatomical site origins were more significant. Furthermore, our analysis reveals alterations at the cellular level and molecular level, as well as the biological signaling pathways involved in these subpopulations of cells with specific alterations. In particular, certain subpopulations of hASCs have higher cell stemness, which may be related to lipogenic differentiation capacity and may be beneficial in promoting CRW treatment and healing. In general, our study captures a human single-cell transcriptome profile across adipose depots, the cell type identification and analysis of which may help dissect the function and role of cells with specific alterations present in adipose tissue and may provide new ideas and approaches for the treatment of CRW in the clinical setting.
Collapse
Affiliation(s)
- Shixing Gu
- Department of Plastic and Aesthetic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533022 Guangxi, China
| | - Zhenyu Gong
- Department of Burn, Plastic and Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi, China
| | - Shuncai Liu
- Department of Burn, Plastic and Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi, China
| | - Guohao Lu
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 53002, China
| | - Yu Ling
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 53002, China
| | - Yanlin Wei
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 53002, China
| | - Ting Li
- Department of Basic Science, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
| | - Ronghe Gu
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, 53002 Guangxi, China
| | - Yongxian Rong
- Department of Burn, Plastic and Aesthetic Surgery, The Guiping People's Hospital, Guigping, 537200, China
| | - Junjun Li
- Department of Pediatrics, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Hospital Management and Medical Prevention Collaborative Innovation, Guangxi Academy of Medical Sciences, Nanning, 530021 Guangxi, China
| | - Hongmian Li
- Department of Plastic and Reconstructive Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, 530021 Guangxi, China
| |
Collapse
|
16
|
Nesic J, Ljujic B, Rosic V, Djukic A, Rosic M, Petrovic I, Zornic N, Jovanovic IP, Petrovic S, Djukic S. Adiponectin and Interleukin-33: Possible Early Markers of Metabolic Syndrome. J Clin Med 2022; 12:132. [PMID: 36614933 PMCID: PMC9821697 DOI: 10.3390/jcm12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is one of the most important molecules in the body's compensatory response to the development of insulin resistance. By trying to maintain insulin sensitivity, increase insulin secretion and prevent inflammation, adiponectin tries to maintain glucose homeostasis. Interleukin-33, which belongs to the group of alarmins, also promotes insulin secretion. Interleukin-33 might be either pro-inflammatory or anti-inflammatory depending on the disease and the model. However, interleukin-33 has shown various protective effects in CVD, obesity and diabetes. The aim of our study was to investigate the association between adiponectin and interleukin-33 in patients with metabolic syndrome. As expected, all patients with metabolic syndrome had worse parameters that represent the hallmark of metabolic syndrome compared to the control group. In the subgroup of patients with low adiponectin, we observed less pronounced characteristics of metabolic syndrome simultaneously with significantly higher values of interleukin-33 compared to the subgroup of patients with high adiponectin. Our findings suggested that adiponectin might be an early marker of metabolic syndrome that emerges before anthropomorphic, biochemical and clinical parameters. We also suggest that both interleukin-33 and adiponectin may be used to predict the inflammatory status in the early stage of metabolic syndrome.
Collapse
Affiliation(s)
- Jelena Nesic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Human Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milenko Rosic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Cardiovascular Diseases Vojvodina, Clinic of Cardiovascular Surgery, 21208 Sremska Kamenica, Serbia
| | - Ivica Petrovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Zornic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sara Petrovic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Svetlana Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
17
|
Yu Y, Bai H, Wu F, Chen J, Li B, Li Y. Tissue adaptation of regulatory T cells in adipose tissue. Eur J Immunol 2022; 52:1898-1908. [PMID: 36369886 DOI: 10.1002/eji.202149527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Foxp3+ regulatory T (Treg) cells critically suppress over-activated immune responses and therefore maintain immune homeostasis. Adipose tissue-resident Treg (AT Treg) cells are known for modulating immunity and metabolism in adipose tissue microenvironment through various physiological signals, as well as their heterogeneous subsets, which potentially play disparate roles in aging and obesity. Recent single-cell studies of Treg cells have revealed specialized trajectories of their tissue adaptation and development in lymphoid tissues and at barrier sites. Here, we reviewed a T Cell Receptor (TCR)-primed environmental cue-boosted model of adipose Treg cells' tissue adaptation, especially in response to IL-33, IFN-α, insulin, and androgen signals, which trigger sophisticated transcriptional cascades and ultimately establish unique transcriptional modules in adipose Treg cell subsets. In addition, we further discuss potential therapeutic strategies against aging and obesity by blocking detrimental environmental cues, strengthening the functions of specific AT Treg subsets and modifying the communications between AT Treg subsets and adipocytes.
Collapse
Affiliation(s)
- Yimeng Yu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Bai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenglin Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Li
- Unit of Immune and Metabolic Regulation, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Chen Z, Lan H, Liao Z, Huang J, Jian X, Hu J, Liao H. Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration. Cell Biosci 2022; 12:112. [PMID: 35869487 PMCID: PMC9308315 DOI: 10.1186/s13578-022-00847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
As the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle. In this review, the characteristics, origins, and cellular kinetics of these Treg cells are firstly described; Then, the relationship between Treg cells and muscle satellite cells (MuSCs), conventional T cells (Tconv) is discussed (the former is involved in the entire repair and regeneration process, while the latter matters considerably in causing most skeletal muscle autoimmune diseases); Next, focus is placed on the control of Treg cells on the phenotypic switch of macrophages, which is the key to the switch of inflammation; Finally, factors regulating the functional process of Treg cells are analyzed, and a regulatory network centered on Treg cells is summarized. The present study summarizes the cell-mediated interactions in skeletal muscle repair over the past decade, and elucidates the central role of regulatory T cells in this process, so that other researchers can more quickly and comprehensively understand the development and direction of this very field. It is believed that the hereby proposed viewpoints and problems can provide fresh visions for the latecomers.
Collapse
|
19
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
20
|
Bantulà M, Tubita V, Roca-Ferrer J, Mullol J, Valero A, Bobolea I, Pascal M, de Hollanda A, Vidal J, Picado C, Arismendi E. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. J Clin Med 2022; 11:jcm11133782. [PMID: 35807067 PMCID: PMC9267201 DOI: 10.3390/jcm11133782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma are associated with systemic inflammation maintained by mediators released by adipose tissue and lung. This study investigated the inflammatory serum mediator profile in obese subjects (O) (n = 35), non-obese asthma (NOA) patients (n = 14), obese asthmatics (OA) (n = 21) and healthy controls (HC) (n = 33). The effect of weight loss after bariatric surgery (BS) was examined in 10 OA and 31 O subjects. We analyzed serum markers including leptin, adiponectin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, ST2, IL-5, IL-9, and IL-18. Compared with HC subjects, the O group showed increased levels of leptin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, and ST2; the OA group presented increased levels of MCP-1, ezrin, YKL-40, and IL-18, and the NOA group had increased levels of ezrin, YKL-40, IL-5, and IL-18. The higher adiponectin/leptin ratio in NOA with respect to OA subjects was the only significant difference between the two groups. IL-9 was the only cytokine with significantly higher levels in OA with respect to O subjects. TNFR2, ezrin, MCP-1, and IL-18 concentrations significantly decreased in O subjects after BS. O, OA, and NOA showed distinct patterns of systemic inflammation. Leptin and adiponectin are regulated in asthma by obesity-dependent and -independent mechanisms. Combination of asthma and obesity does not result in significant additive effects on circulating cytokine levels.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Correspondence: ; Tel.: +34-932275400
| | - Valeria Tubita
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
| | - Jordi Roca-Ferrer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Valero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Irina Bobolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain;
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Josep Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red en Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - César Picado
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
21
|
Beier UH, Baker DJ, Baur JA. Thermogenic T cells: a cell therapy for obesity? Am J Physiol Cell Physiol 2022; 322:C1085-C1094. [PMID: 35476503 PMCID: PMC9169824 DOI: 10.1152/ajpcell.00034.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Obesity is a widespread public health problem with profound medical consequences and its burden is increasing worldwide. Obesity causes significant morbidity and mortality and is associated with conditions including cardiovascular disease and diabetes mellitus. Conventional treatment options are insufficient, or in the case of bariatric surgery, quite invasive. The etiology of obesity is complex, but at its core is often a caloric imbalance with an inability to burn off enough calories to exceed caloric intake, resulting in storage. Interventions such as dieting often lead to decreased resting energy expenditure (REE), with a rebound in weight ("yo-yo effect" or weight cycling). Strategies that increase REE are attractive treatment options. Brown fat tissue engages in nonshivering thermogenesis whereby mitochondrial respiration is uncoupled from ATP production, increasing REE. Medications that replicate brown fat metabolism by mitochondrial uncoupling (e.g., 2,4-dinitrophenol) effectively promote weight loss but are limited by toxicity to a narrow therapeutic range. This review explores the possibility of a new therapeutic approach to engineer autologous T cells into acquiring a thermogenic phenotype like brown fat. Engineered autologous T cells have been used successfully for years in the treatment of cancers (chimeric antigen receptor T cells), and the principle of engineering T cells ex vivo and transferring them back to the patient is established. Engineering T cells to acquire a brown fat-like metabolism could increase REE without the risks of pharmacological mitochondrial uncoupling. These thermogenic T cells may increase basal metabolic rate and are therefore a potentially novel therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Ulf H Beier
- Janssen Research and Development, Spring House, Pennsylvania
| | - Daniel J Baker
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Cai Q, Song Y, Wang S, Wang W, Sun X, Yu J, Wei Y. Functional yogurt fermented by two-probiotics regulates blood lipid and weight in a high-fat diet mouse model. J Food Biochem 2022; 46:e14248. [PMID: 35638246 DOI: 10.1111/jfbc.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
We investigated the blood lipid regulation effects and mechanism of a functional Natto yogurt in a high-fat diet-induced hyperlipidemia mouse model. Natto yogurt was characteristically fermented by Bacillus natto and Lactobacillus plantarum with milk-soy dual protein as substrates. After 5 weeks of Natto yogurt consumption, the body weight, fat, and liver weight of mice were significantly improved, while serum levels of TG, TC, LDL, ALT, TBIL, and TBA were reduced. Natto yogurt significantly decreased the area of liver fat infiltration and the number of lipid droplets. In mechanism, we found that Natto yogurt can inhibit fatty acid synthesis and enhance fatty acid catabolism by regulating the expression of PPARα, PPARγ, CD36 and FAS in the liver. Moreover, Natto yogurt increased the ratio of Bacteroidetes to Firmicutes in the intestine. These results provide a possibility for Natto yogurt as a dual protein functional food to prevent and treat hyperlipidemia and obesity. PRACTICAL APPLICATIONS: Traditional-fermented yogurt promotes nutritional absorption and reduces blood pressure and fat, while Bacillus natto and its fermented food have been proved to play a significant role in improving cardiovascular and cerebrovascular diseases and obesity. Therefore, we developed a new dual protein functional yogurt (Natto yogurt) fermented by B. natto and Lactobacillus plantarum with milk and soy as substrates. We found that Natto yogurt could notably regulate blood lipid by inhibiting the synthesis of fatty acids, accelerating the catabolism of fatty acids, reducing liver damage, and increasing the abundance of beneficial intestinal microorganisms. This study suggested that Natto yogurt could improve hyperlipidemia and obesity as a safe, effective, and healthy functional food.
Collapse
Affiliation(s)
- Qinling Cai
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yahui Song
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shanglong Wang
- Chenland Nutritionals, Incorporated, Invine, California, USA
| | - Weihong Wang
- Haisenbao (Yantai) Biotechnology Development Co., Ltd, Yantai, China
| | - Xiaopeng Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Gao R, Shi GP, Wang J. Functional Diversities of Regulatory T Cells in the Context of Cancer Immunotherapy. Front Immunol 2022; 13:833667. [PMID: 35371055 PMCID: PMC8969660 DOI: 10.3389/fimmu.2022.833667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T cells with their immunosuppressive activities to block abnormal or excessive immune responses to self and non-autoantigens. Tregs express the transcription factor Foxp3, maintain the immune homeostasis, and prevent the initiation of anti-tumor immune effects in various ways as their mechanisms to modulate tumor development. Recognition of different phenotypes and functions of intratumoral Tregs has offered the possibilities to develop therapeutic strategies by selectively targeting Tregs in cancers with the aim of alleviating their immunosuppressive activities from anti-tumor immune responses. Several Treg-based immunotherapeutic approaches have emerged to target cytotoxic T lymphocyte antigen-4, glucocorticoid-induced tumor necrosis factor receptor, CD25, indoleamine-2, 3-dioxygenase-1, and cytokines. These immunotherapies have yielded encouraging outcomes from preclinical studies and early-phase clinical trials. Further, dual therapy or combined therapy has been approved to be better choices than single immunotherapy, radiotherapy, or chemotherapy. In this short review article, we discuss our current understanding of the immunologic characteristics of Tregs, including Treg differentiation, development, therapeutic efficacy, and future potential of Treg-related therapies among the general cancer therapy.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Insight Into Regulatory T Cells in Sepsis-Associated Encephalopathy. Front Neurol 2022; 13:830784. [PMID: 35370925 PMCID: PMC8965708 DOI: 10.3389/fneur.2022.830784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse central nervous system (CNS) dysfunction during sepsis, and is associated with increased mortality and poor outcomes in septic patients. Despite the high incidence and clinical relevance, the exact mechanisms driving SAE pathogenesis are not yet fully understood, and no specific therapeutic strategies are available. Regulatory T cells (Tregs) have a role in SAE pathogenesis, thought to be related with alleviation of sepsis-induced hyper-inflammation and immune responses, promotion of T helper (Th) 2 cells functional shift, neuroinflammation resolution, improvement of the blood-brain barrier (BBB) function, among others. Moreover, in a clinical point of view, these cells have the potential value of improving neurological and psychiatric/mental symptoms in SAE patients. This review aims to provide a general overview of SAE from its initial clinical presentation to long-term cognitive impairment and summarizes the main features of its pathogenesis. Additionally, a detailed overview on the main mechanisms by which Tregs may impact SAE pathogenesis is given. Finally, and considering that Tregs may be a novel target for immunomodulatory intervention in SAE, different therapeutic options, aiming to boost peripheral and brain infiltration of Tregs, are discussed.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Yu-lei Gao
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai
| |
Collapse
|
25
|
Wang W, Gao Y, Cui J. High Visceral Fat in Female Breast Cancer Patients Correlates with the Risk of Progression after Adjuvant Chemotherapy. Nutr Cancer 2022; 74:2038-2048. [PMID: 35068282 DOI: 10.1080/01635581.2021.1988993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
RATIONALE Clinical and epidemiological evidence indicate that obesity is associated with the risk and progression of breast cancer. Body mass index (BMI) as a measure of adiposity does not precisely describe individual body composition and adipose tissue distribution. We aimed to investigate the association between body composition and the efficiency of adjuvant chemotherapy as well as post-treatment progress among female breast cancer patients. METHODS Participants included 199 females with stage I-III breast cancer. Body composition, including body fat mass, visceral fat level, and skeletal muscle mass, was assessed based on the bioelectrical impedance analysis (BIA). The Kaplan-Meier survival curves, log-rank test, and Cox proportional-hazards model were used to estimate the effects of body composition as prognostic factors on survival. RESULTS Postmenopausal women had a higher proportion of visceral fat compared to premenopausal women (64% vs. 33.87%, P < 0.001). Compared with those with normal visceral fat level, patients with high visceral fat level were older (P < 0.001), had higher body fat mass (p < 0.001), skeletal muscle mass (P = 0.013), minerals (P = 0.011), protein (P = 0.036), triglycerides (P = 0.038), cholesterol (P = 0.022), and low-density lipoprotein cholesterol (LDL-C) (P = 0.015). A more prolonged disease-free survival (DFS) was noted in patients with a normal visceral fat level as compared to patients with a high visceral fat level (hazard ratio [HR] 1.9, 95% CI 1-3.5; adjusted HR 1.77, 95% CI 0.932-3.36). CONCLUSIONS A high visceral fat level in female patients with breast cancer is associated with a shorter DFS after adjuvant chemotherapy. Body composition alongside BIA provides a quick and noninvasive approach to identify breast cancer patients with a higher risk of cancer progression.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yangyang Gao
- Cancer Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 681] [Impact Index Per Article: 227.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
27
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
28
|
Später T, Marschall JE, Brücker LK, Nickels RM, Metzger W, Mai AS, Menger MD, Laschke MW. Adipose Tissue-Derived Microvascular Fragments From Male and Female Fat Donors Exhibit a Comparable Vascularization Capacity. Front Bioeng Biotechnol 2021; 9:777687. [PMID: 34778238 PMCID: PMC8578922 DOI: 10.3389/fbioe.2021.777687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies exclusively use epididymal fat tissue of male donor mice as a source for MVF isolation. However, in future clinical practice, MVF-based approaches may be applied in both male and female patients. Therefore, we herein compared the vascularization capacity of MVF isolated from the epididymal and peri-ovarian fat tissue of male and female donor mice. Freshly isolated MVF from male and female donors did not differ in their number, length distribution, viability and cellular composition. After their assembly into spheroids, they also exhibited a comparable in vitro sprouting activity. Moreover, they could be seeded onto collagen-glycosaminoglycan matrices, which were implanted into full-thickness skin defects within mouse dorsal skinfold chambers. Repetitive intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a comparable vascularization and incorporation of implants seeded with MVF of male and female origin. Taken together, these findings demonstrate that the vascularization capacity of MVF is not gender-specific.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lea K Brücker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Ann-Sophie Mai
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Spiljar M, Steinbach K, Rigo D, Suárez-Zamorano N, Wagner I, Hadadi N, Vincenti I, Page N, Klimek B, Rochat MA, Kreutzfeldt M, Chevalier C, Stojanović O, Bejuy O, Colin D, Mack M, Cansever D, Greter M, Merkler D, Trajkovski M. Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab 2021; 33:2231-2246.e8. [PMID: 34687652 PMCID: PMC8570411 DOI: 10.1016/j.cmet.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6Chi monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE). Cold exposure decreases MHCII on monocytes at steady state and in various inflammatory mouse models and suppresses T cell priming and pathogenicity through the modulation of monocytes. Genetic or antibody-mediated monocyte depletion or adoptive transfer of Th1- or Th17-polarized cells for EAE abolishes the cold-induced effects on T cells or EAE, respectively. These findings provide a mechanistic link between environmental temperature and neuroinflammation and suggest competition between cold-induced metabolic adaptations and autoimmunity as energetic trade-off beneficial for the immune-mediated diseases.
Collapse
Affiliation(s)
- Martina Spiljar
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Mary-Aude Rochat
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ozren Stojanović
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- CIBM Centre for BioMedical Imaging, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier Colin
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Li Q, Zhang L, Hou ZH, Zhao DX, Li JB, Zhang S, Yin Y, Ni CF, Chen T. High Visceral Adipose Tissue Density Correlates With Unfavorable Outcomes in Patients With Intermediate-Stage Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Front Cell Dev Biol 2021; 9:710104. [PMID: 34568324 PMCID: PMC8455878 DOI: 10.3389/fcell.2021.710104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: This study aimed to evaluate the association between different body composition features with prognostic outcomes of intermediate stage hepatocellular carcinoma (HCC) patients treated with transarterial chemoembolization (TACE). Methods: The areas and density of skeletal muscle area (SM) and adipose tissue [subcutaneous (SAT); visceral (VAT)] were calculated on the pre-TACE CT scans. Overall survival (OS) and progression-free survival (PFS) curves were calculated using the Kaplan-Meier method and compared with log-rank test. The discrimination and performance of body composition features were measured by area under time-dependent receiver operating characteristic (ROC) curve. Univariate and multivariate Cox proportional hazard analyses were applied to identify the association between body composition parameters and outcomes. Results: A significant prolonged OS and PFS was displayed by Kaplan-Meier curve analysis for HCC patients with VAT HU below -89.1 (25.1 months, 95% CI: 18.1-32.1 vs. 17.6 months, 95% CI: 16.3-18.8, p < 0.0001, 15.4 months, 95% CI: 10.6-20.2 vs. 6.6 months, 95% CI: 4.9-8.3, p < 0.0001, respectively). The 1-, 2-, 3-, and 5-year OS area under the curve (AUC) values of the VAT HU were higher than the other body composition parameters. Meanwhile, it is also found that 3-, 6-, 9-, and 12-month PFS AUC values of VAT HU were the highest among all the parameters. Univariate and multivariate Cox-regression analysis suggested a significant association between VAT density and outcomes (OS, HR: 1.015, 95% CI: 1.004-1.025, p = 0.005, PFS, HR: 1.026, 95% CI: 1.016-1.036, p < 0.0001, respectively). Conclusion: The VAT density could provide prognostic prediction value and may be helpful to stratify the intermediate stage HCC patients.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong-Heng Hou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong-Xu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Bin Li
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shuai Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yin
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cai-Fang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Chen
- Department of General Surgery, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Abstract
In this review, Lee and Olefsky discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| | - Jerrold Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
32
|
Wei YX, Zheng KY, Wang YG. Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity. World J Gastroenterol 2021; 27:5555-5565. [PMID: 34588751 PMCID: PMC8433617 DOI: 10.3748/wjg.v27.i33.5555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
A significant breakthrough in the field of obesity research was the demonstration that an obese phenotype could be manipulated by modulating the gut microbiota. An important next step is to elucidate a human-relevant “map’’ of microbiota-host interactions that regulate the metabolic health of the host. An improved understanding of this crosstalk is a prerequisite for optimizing therapeutic strategies to combat obesity. Intestinal mucosal barrier dysfunction is an important contributor to metabolic diseases and has also been found to be involved in a variety of other chronic inflammatory conditions, including cancer, neurodegeneration, and aging. The mechanistic basis for intestinal barrier dysfunction accompanying metabolic disorders remains poorly understood. Understanding the molecular and cellular modulators of intestinal barrier function will help devise improved strategies to counteract the detrimental systemic consequences of gut barrier breakage. Changes in the composition and function of the gut microbiota, i.e., dysbiosis, are thought to drive obesity-related pathogenesis and may be one of the most important drivers of mucosal barrier dysfunction. Many effects of the microbiota on the host are mediated by microbiota-derived metabolites. In this review, we focus on several relatively well-studied microbial metabolites that can influence intestinal mucosal homeostasis and discuss how they might affect metabolic diseases. The design and use of microbes and their metabolites that are locally active in the gut without systemic side effects are promising novel and safe therapeutic modalities for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Xia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Kui-Yang Zheng
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yu-Gang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
33
|
Li C, Wang G, Sivasami P, Ramirez RN, Zhang Y, Benoist C, Mathis D. Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab 2021; 33:1610-1623.e5. [PMID: 34256015 PMCID: PMC8350961 DOI: 10.1016/j.cmet.2021.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The visceral adipose tissue (VAT) of lean mice hosts a unique population of regulatory T cells (Tregs) that have a distinct transcriptome and T cell receptor (TCR) repertoire and regulate local and systemic inflammation and metabolism. Perplexingly, this population disappears in obese mice, limiting the promise of Treg-based therapies for metabolic disorders. We exploited the power of a VAT-Treg TCR-transgenic mouse model to follow the dynamics of, and phenotypic changes in, the VAT-Treg population throughout the development of diet-induced obesity. Our results show that VAT-Tregs are lost under obesogenic conditions due to downregulation of their defining transcription factor, PPARγ, coupled with their strikingly enhanced responses to pro-inflammatory cytokines. In particular, the VAT from obese mice (and reportedly humans) was strongly enriched in plasmacytoid dendritic cells that actively express interferon-alpha. These cells were directly toxic to PPARγ+ VAT-Tregs. Blocking this pathway in obese mice by multiple approaches substantially restored the VAT-Treg population and enhanced insulin sensitivity.
Collapse
Affiliation(s)
- Chaoran Li
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yanbo Zhang
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab 2021; 50:101143. [PMID: 33346069 PMCID: PMC8324696 DOI: 10.1016/j.molmet.2020.101143] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The incidence of non-alcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide parallel to the global obesity epidemic. NAFLD encompasses a range of liver pathologies and most often originates from metabolically driven accumulation of fat in the liver, or non-alcoholic fatty liver (NAFL). In a subset of NAFL patients, the disease can progress to non-alcoholic steatohepatitis (NASH), which is a more severe form of liver disease characterized by hepatocyte injury, inflammation, and fibrosis. Significant progress has been made over the past decade in our understanding of NASH pathogenesis, but gaps remain in our mechanistic knowledge of the precise metabolic triggers for disease worsening. SCOPE OF REVIEW The transition from NAFL to NASH likely involves a complex constellation of multiple factors intrinsic and extrinsic to the liver. This review focuses on early metabolic events in the establishment of NAFL and initial stages of NASH. We discuss the association of NAFL with obesity as well as the role of adipose tissue in disease progression and highlight early metabolic drivers implicated in the pathological transition from hepatic fat accumulation to steatohepatitis. MAJOR CONCLUSIONS The close association of NAFL with features of metabolic syndrome highlight plausible mechanistic roles for adipose tissue health and the release of lipotoxic lipids, hepatic de novo lipogenesis (DNL), and disruption of the intestinal barrier in not only the initial establishment of hepatic steatosis, but also in mediating disease progression. Human genetic variants linked to NASH risk to date are heavily biased toward genes involved in the regulation of lipid metabolism, providing compelling support for the hypothesis that NASH is fundamentally a metabolic disease.
Collapse
Affiliation(s)
- Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA, USA.
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA, USA
| |
Collapse
|
35
|
Ni D, Tang T, Lu Y, Xu K, Shao Y, Saaoud F, Saredy J, Liu L, Drummer C, Sun Y, Hu W, Lopez-Pastrana J, Luo JJ, Jiang X, Choi ET, Wang H, Yang X. Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Front Immunol 2021; 12:678201. [PMID: 34084175 PMCID: PMC8168470 DOI: 10.3389/fimmu.2021.678201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
We performed a transcriptomic analyses using the strategies we pioneered and made the following findings: 1) Normal lymphoid Tregs, diseased kidney Tregs, splenic Tregs from mice with injured muscle have 3, 17 and 3 specific (S-) pathways, respectively; 2) Tumor splenic Tregs share 12 pathways with tumor Tregs; tumor splenic Tregs and tumor Tregs have 11 and 8 S-pathways, respectively; 3) Normal and non-tumor disease Tregs upregulate some of novel 2641 canonical secretomic genes (SGs) with 24 pathways, and tumor Tregs upregulate canonical secretomes with 17 pathways; 4) Normal and non-tumor disease tissue Tregs upregulate some of novel 6560 exosome SGs with 56 exosome SG pathways (ESP), tumor Treg ESP are more focused than other Tregs; 5) Normal, non-tumor diseased Treg and tumor Tregs upregulate some of novel 961 innate immune caspase-1 SGs and 1223 innate immune caspase-4 SGs to fulfill their tissue/SG-specific and shared functions; 6) Most tissue Treg transcriptomes are controlled by Foxp3; and Tumor Tregs had increased Foxp3 non-collaboration genes with ROS and 17 other pathways; 7) Immune checkpoint receptor PD-1 does, but CTLA-4 does not, play significant roles in promoting Treg upregulated genes in normal and non-tumor disease tissue Tregs; and tumor splenic and tumor Tregs have certain CTLA-4-, and PD-1-, non-collaboration transcriptomic changes with innate immune dominant pathways; 8) Tumor Tregs downregulate more immunometabolic and innate immune memory (trained immunity) genes than Tregs from other groups; and 11) ROS significantly regulate Treg transcriptomes; and ROS-suppressed genes are downregulated more in tumor Tregs than Tregs from other groups. Our results have provided novel insights on the roles of Tregs in normal, injuries, regeneration, tumor conditions and some of canonical and innate immune non-canonical secretomes via ROS-regulatory mechanisms and new therapeutic targets for immunosuppression, tissue repair, cardiovascular diseases, chronic kidney disease, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Dong Ni
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - TingTing Tang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin J Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Karthik Vasan
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
37
|
Abstract
On this 100th anniversary of the discovery of insulin, we recognize the critical role that adipocytes, which are exquisitely responsive to insulin, have played in determining the mechanisms for insulin action at the cellular level. Our understanding of adipose tissue biology has evolved greatly, and it is now clear that adipocytes are far more complicated than simple storage depots for fat. A growing body of evidence documents how adipocytes, in response to insulin, contribute to the control of whole-body nutrient homeostasis. These advances highlight adipocyte plasticity, heterogeneity, and endocrine function, unique features that connect adipocyte metabolism to the regulation of other tissues important for metabolic homeostasis (e.g., liver, muscle, pancreas).
Collapse
Affiliation(s)
- Anna Santoro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Zhang Y, Cao H, Chen J, Li Y, Xu A, Wang Y. Adiponectin-expressing Treg facilitate T lymphocyte development in thymic nurse cell complexes. Commun Biol 2021; 4:344. [PMID: 33727658 PMCID: PMC7966800 DOI: 10.1038/s42003-021-01877-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is a well-known insulin sensitizer and anti-inflammatory molecule, possessing therapeutic potentials in cardiovascular, metabolic and cancer diseases. Results of the present study demonstrate that adiponectin is expressed in a population of regulatory T-cells (Treg) resided within the thymic nurse cell (TNC) complexes. Adoptive transfer of adiponectin-expressing Treg precursors effectively attenuated obesity, improved glucose and insulin tolerance, prevented fatty liver injuries in wild-type mice fed a high-fat diet, and significantly inhibited breast cancer development in MMTV-PyVT transgenic mice. Within the TNC complexes, locally produced adiponectin bound to and regulated the expression as well as the distribution of CD100, a transmembrane lymphocyte semaphorin, in turn modulating the lymphoepithelial interactions to facilitate T-cell development and maturation. In summary, adiponectin plays an important role in the selection and development of T lymphocytes within the TNC complexes. Adiponectin-expressing Treg represent a promising candidate for adoptive cell immunotherapy against obesity-related metabolic and cancer diseases.
Collapse
MESH Headings
- Adiponectin/genetics
- Adiponectin/metabolism
- Adoptive Transfer
- Animals
- Antigens, CD/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/prevention & control
- Cell Differentiation
- Cell Line, Tumor
- Disease Models, Animal
- Female
- Glucose Intolerance/immunology
- Glucose Intolerance/metabolism
- Glucose Intolerance/prevention & control
- Humans
- Insulin Resistance
- Mammary Tumor Virus, Mouse/genetics
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Non-alcoholic Fatty Liver Disease/immunology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/immunology
- Obesity/metabolism
- Obesity/prevention & control
- Phenotype
- Semaphorins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymocytes/transplantation
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Mice
Collapse
Affiliation(s)
- Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Yuanxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
39
|
Cai Y, Leng S, Ma Y, Xu T, Chang D, Ju S. Dynamic change of MMP-9 in diabetic stroke visualized by optical imaging and treated with CD28 superagonist. Biomater Sci 2021; 9:2562-2570. [DOI: 10.1039/d0bm02014a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By utilizing NIRF imaging, diabetic stroke mice were visualized with a trend of higher levels of MMP-9 than wild-type mice. CD28 SA down-regulated the expression of MMP-9 and represents a potential treatment to diabetic stroke.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| | - Shou Leng
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| | - Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| | - Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School of Southeast University
- Nanjing 210009
| |
Collapse
|
40
|
Defective immunosuppressive function of Treg cells in visceral adipose tissue in MIF deficient mice. Cytokine 2020; 138:155372. [PMID: 33246771 DOI: 10.1016/j.cyto.2020.155372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Obesity, a global health problem nowadays, is a state of low-grade chronic inflammation of adipose tissue (AT) associated with increased adipocyte growth and proliferation and immune cell polarization towards an inflammatory phenotype within the stromal vascular fraction (SVF). Pro-inflammatory cells in the AT produce mediators of inflammation (IL-1β, TNF, macrophage migration inhibitory factor - MIF), thereby surpassing the anti-inflammatory response mediated by IL-10 and TGF-β, cytokines produced by regulatory T (Treg) cells. In this study we demonstrate that the absence of the pro-inflammatory cytokine MIF led to obesity and inflammation in the visceral AT (VAT) in 6 months old MIF-/- mice. Besides the increment of pro-inflammatory AT macrophages and the enhanced production of TNF and IL-1β, VAT of MIF-/- mice contained increased numbers of Treg cells. In situ proliferation of Treg cells did not differ between MIF-/- and wild type mice, but Treg cells isolated from the VAT of MIF-deficient mice, and not from the cervical lymph nodes, exhibited lower expression and production of IL-10 and TGF-β. Additionally, SVF cells had significantly lower levels of STAT3 and IL-33, altogether indicating that VAT Treg cells in MIF-/- mice, albeit abundantly present, are not fully functional. These results indicate that MIF is a new regulator of VAT Treg cell function, necessary for their immunosuppressive activities.
Collapse
|
41
|
Sivasami P, Li C. Derivation and Differentiation of Adipose-Tissue Regulatory T Cells: A Stepwise, Multi-Site Process. Front Immunol 2020; 11:599277. [PMID: 33193452 PMCID: PMC7658365 DOI: 10.3389/fimmu.2020.599277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) not only enforce peripheral tolerance and restrain self-reactive immune responses, but also maintain organismal homeostasis and safeguard the function of parenchymal tissues. A paradigmatic tissue–Treg population resides in the visceral adipose tissue (VAT) and regulates organismal metabolism by interacting with adipocytes and local immunocytes. Compared with their lymphoid-tissue counterparts, VAT–Tregs have a distinct T cell receptor (TCR) repertoire and transcriptional profile, allowing them to maintain and function in the unique tissue microenvironment. However, when, where, and how VAT–Tregs acquire their distinct features and what signals drive their phenotypic diversification have just started to be unraveled. Here we summarize the recent advances in our understanding on the mechanisms of VAT–Treg derivation and differentiation. We discuss the origin and life history of VAT–Tregs, review the identification and characterization of a VAT–Treg precursor population in the secondary lymphoid organs, and highlight a stepwise reprogramming model of VAT–Treg differentiation that involves multiple stages at distinct locations. Lastly, we discuss whether a similar process may also be involved in the differentiation of Tregs from other non-lymphoid tissues and the imperative questions that remain to be addressed.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
42
|
Forrester JV, Kuffova L, Delibegovic M. The Role of Inflammation in Diabetic Retinopathy. Front Immunol 2020; 11:583687. [PMID: 33240272 PMCID: PMC7677305 DOI: 10.3389/fimmu.2020.583687] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is central to pathogenic processes in diabetes mellitus and the metabolic syndrome and particularly implicates innate immunity in the development of complications. Inflammation is a primary event in Type 1 diabetes where infectious (viral) and/or autoimmune processes initiate disease; in contrast, chronic inflammation is typical in Type 2 diabetes and is considered a sequel to increasing insulin resistance and disturbed glucose metabolism. Diabetic retinopathy (DR) is perceived as a vascular and neurodegenerative disease which occurs after some years of poorly controlled diabetes. However, many of the clinical features of DR are late events and reflect the nature of the retinal architecture and its cellular composition. Retinal microvascular disease is, in fact, an early event pathogenetically, induced by low grade, persistent leukocyte activation which causes repeated episodes of capillary occlusion and, progressive, attritional retinal ischemia. The later, overt clinical signs of DR are a consequence of the retinal ischemia. Metabolic dysregulation involving both lipid and glucose metabolism may lead to leukocyte activation. On a molecular level, we have shown that macrophage-restricted protein tyrosine phosphatase 1B (PTP1B) is a key regulator of inflammation in the metabolic syndrome involving insulin resistance and it is possible that PTP1B dysregulation may underlie retinal microvascular disease. We have also shown that adherent CCR5+CD11b+ monocyte macrophages appear to be selectively involved in retinal microvascular occlusion. In this review, we discuss the relationship between early leukocyte activation and the later features of DR, common pathogenetic processes between diabetic microvascular disease and other vascular retinopathies, the mechanisms whereby leukocyte activation is induced in hyperglycemia and dyslipidemia, the signaling mechanisms involved in diabetic microvascular disease, and possible interventions which may prevent these retinopathies. We also address a possible role for adaptive immunity in DR. Although significant improvements in treatment of DR have been made with intravitreal anti-VEGF therapy, a sizeable proportion of patients, particularly with sight-threatening macular edema, fail to respond. Alternative therapies targeting inflammatory processes may offer an advantage.
Collapse
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
43
|
Role of adiposopathy and physical activity in cardio-metabolic disorder diseases. Clin Chim Acta 2020; 511:243-247. [PMID: 33148528 DOI: 10.1016/j.cca.2020.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023]
Abstract
Positive calorie balance disrupts the function of visceral adipose tissue, including the cardiac adipose tissue and the perivascular adipose tissue. The inflammatory and hormonal factors, which are released from adipose tissue, play a central role in inter-organ cross talk, affecting the development of obesity. Excess fat in visceral adipocytes impairs endocrine as well as immune response, leading to multiple aberrant status and posing serious risks to the future health of humans. As confirmed in previous studies, up-regulated pro-inflammatory and down-regulated anti-inflammatory cytokines disturb the communication among muscle, liver, and vasculature. In other words, adiposopathy promote cardio-metabolic risk factors, such as atherosclerosis, hypertension, insulin resistance, dyslipidemia, and pro-thrombotic state, which in turn directly and indirectly promote cardio-metabolic disorder diseases. Increasing evidence from human and animal studies has shown that physical activity restores the size of adipocytes and helps in re-browning of white adipose tissue (WAT). This review summarizes the current evidence on the roles of adiposopathy on cardio-metabolic disorder diseases and the importance of physical activity in restoring the function of adipocytes.
Collapse
|
44
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
45
|
Copsel SN, Malek TR, Levy RB. Medical Treatment Can Unintentionally Alter the Regulatory T-Cell Compartment in Patients with Widespread Pathophysiologic Conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2000-2012. [PMID: 32745461 DOI: 10.1016/j.ajpath.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are non-redundant mediators of immune tolerance that are critical to prevent autoimmune disease and promote an anti-inflammatory tissue environment. Many individuals experience chronic diseases and physiologic changes associated with aging requiring long-term medication. Unfortunately, adverse effects accompany every pharmacologic intervention and may affect overall outcomes. We focus on medications typically prescribed during the treatment of prevalent chronic diseases and disorders, including cardiovascular disease, autoimmune disease, and menopausal symptoms, that affect >200 million individuals in the United States. Increasing studies continue to report that treatment of patients with estrogen, metformin, statins, vitamin D, and tumor necrosis factor blockers are unintentionally modulating the Treg compartment. Effects of these medications likely comprise direct and/or indirect interaction with Tregs via other immune and parenchymal populations. Differing and sometimes opposing effects on the Treg compartment have been observed using the same medication. The length of treatment, dosing regimen and stage of disease, patient age, ethnicity, and sex may account for such findings and determine the specific signaling pathways affected by the medication. Enhancing the Treg compartment can skew the patient's immune system toward an anti-inflammatory phenotype and therefore could provide unanticipated benefit. Currently, multiple medicines prescribed to large numbers of patients influence the Treg compartment; however, how such effects affect their disease outcome and long-term health remains unclear.
Collapse
Affiliation(s)
- Sabrina N Copsel
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
46
|
Zeggini E, Baumann M, Götz M, Herzig S, Hrabe de Angelis M, Tschöp MH. Biomedical Research Goes Viral: Dangers and Opportunities. Cell 2020; 181:1189-1193. [PMID: 32442404 PMCID: PMC7211590 DOI: 10.1016/j.cell.2020.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Researchers around the globe have been mounting, accelerating, and redeploying efforts across disciplines and organizations to tackle the SARS-CoV-2 outbreak. However, humankind continues to be afflicted by numerous other devastating diseases in increasing numbers. Here, we outline considerations and opportunities toward striking a good balance between maintaining and redefining research priorities.
Collapse
Affiliation(s)
- Eleftheria Zeggini
- Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany.
| | - Michael Baumann
- Deutsches Krebsforschungszentrum, German Cancer Research Center (DKFZ), Heidelberg, Germany; Technische Universität Dresden, Dresden, Germany; Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Magdalena Götz
- Helmholtz Zentrum München, Neuherberg, Germany; Ludwig Maximilians Universitaet München, München, Germany; Excellence Cluster SYNERGY, München, Germany
| | - Stephan Herzig
- Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
47
|
Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. Immunol Rev 2020; 295:5-14. [PMID: 32320073 PMCID: PMC8056251 DOI: 10.1111/imr.12858] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Immunometabolism has emerged as a major mechanism central to adaptive and innate immune regulation. From early observations that inflammatory cytokines were induced in obese adipose tissue and that these cytokines contributed to metabolic disease, it was clear that metabolism and the immunological state are inextricably linked. With a second research wave arising from studies in cancer metabolism to also study the intrinsic metabolic pathways of immune cells themselves and how those pathways influence cell fate and function, immunometabolism is a rapidly maturing area of research. Several key themes and goals drive the field. There is abundant evidence that metabolic pathways are closely tied to cell signaling and differentiation which leads different subsets of immune cells to adopt unique metabolic programs specific to their state and environment. In this way, metabolic signaling drives cell fate. It is also apparent that microenvironment greatly influences cell metabolism. Immune cells adopt programs specific for the tissues where they infiltrate and reside. Ultimately, a central goal of the field is to apply immunometabolism findings to the discovery of novel therapeutic strategies in a wide range of diseases, including cancer, autoimmunity, and metabolic syndrome. This review summarizes these facets of immunometabolism and highlights opportunities for clinical translation.
Collapse
Affiliation(s)
- Liza Makowski
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|