1
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
2
|
Drehoff CC, White EB, Frutos AM, Stringer G, Burakoff A, Comstock N, Cronquist A, Alden N, Armistead I, Kohnen A, Ratnabalasuriar R, Travanty EA, Matzinger SR, Rossheim A, Wellbrock A, Pagano HP, Wang D, Singleton J, Sutter RA, Davis CT, Kniss K, Ellington S, Kirby MK, Reed C, Herlihy R. Cluster of Influenza A(H5) Cases Associated with Poultry Exposure at Two Facilities - Colorado, July 2024. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2024; 73:734-739. [PMID: 39207932 PMCID: PMC11361414 DOI: 10.15585/mmwr.mm7334a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Persons who work in close contact with dairy cattle and poultry that are infected with highly pathogenic avian influenza (HPAI) A(H5N1) virus are at increased risk for infection. In July 2024, the Colorado Department of Public Health & Environment responded to two poultry facilities with HPAI A(H5N1) virus detections in poultry. Across the two facilities, 663 workers assisting with poultry depopulation (i.e., euthanasia) received screening for illness; 109 (16.4%) reported symptoms and consented to testing. Among those who received testing, nine (8.3%) received a positive influenza A(H5) virus test result, and 19 (17.4%) received a positive SARS-CoV-2 test result. All nine workers who received positive influenza A(H5) test results had conjunctivitis, experienced mild illness, and received oseltamivir. This poultry exposure-associated cluster of human cases of influenza A(H5) is the first reported in the United States. The identification of these cases highlights the ongoing risk to persons who work in close contact with infected animals. Early response to each facility using multidisciplinary, multilingual teams facilitated case-finding, worker screening, and treatment. As the prevalence of HPAI A(H5N1) virus clade 2.3.4.4b genotype B3.13 increases, U.S. public health agencies should prepare to rapidly investigate and respond to illness in agricultural workers, including workers with limited access to health care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - H5N1 Field Investigation Team
- Colorado Department of Public Health & Environment; Epidemic Intelligence Service, CDC; Influenza Division, National Center for Immunization and Respiratory Diseases, CDC; Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, CDC; Divison of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| |
Collapse
|
3
|
Islam A, Amin E, Munro S, Hossain ME, Islam S, Hassan MM, Al Mamun A, Samad MA, Shirin T, Rahman MZ, Epstein JH. Potential risk zones and climatic factors influencing the occurrence and persistence of avian influenza viruses in the environment of live bird markets in Bangladesh. One Health 2023; 17:100644. [PMID: 38024265 PMCID: PMC10665157 DOI: 10.1016/j.onehlt.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Live bird markets (LBMs) are critical for poultry trade in many developing countries that are regarded as hotspots for the prevalence and contamination of avian influenza viruses (AIV). Therefore, we conducted weekly longitudinal environmental surveillance in LBMs to determine annual cyclic patterns of AIV subtypes, environmental risk zones, and the role of climatic factors on the AIV presence and persistence in the environment of LBM in Bangladesh. From January 2018 to March 2020, we collected weekly fecal and offal swab samples from each LBM and tested using rRT-PCR for the M gene and subtyped for H5, H7, and H9. We used Generalized Estimating Equations (GEE) approaches to account for repeated observations over time to correlate the AIV prevalence and potential risk factors and the negative binomial and Poisson model to investigate the role of climatic factors on environmental contamination of AIV at the LBM. Over the study period, 37.8% of samples tested AIV positive, 18.8% for A/H5, and A/H9 was, for 15.4%. We found the circulation of H5, H9, and co-circulation of H5 and H9 in the environmental surfaces year-round. The Generalized Estimating Equations (GEE) model reveals a distinct seasonal pattern in transmitting AIV and H5. Specifically, certain summer months exhibited a substantial reduction of risk up to 70-90% and 93-94% for AIV and H5 contamination, respectively. The slaughtering zone showed a significantly higher risk of contamination with H5, with a three-fold increase in risk compared to bird-holding zones. From the negative binomial model, we found that climatic factors like temperature and relative humidity were also significantly associated with weekly AIV circulation. An increase in temperature and relative humidity decreases the risk of AIV circulation. Our study underscores the significance of longitudinal environmental surveillance for identifying potential risk zones to detect H5 and H9 virus co-circulation and seasonal transmission, as well as the imperative for immediate interventions to reduce AIV at LBMs in Bangladesh. We recommend adopting a One Health approach to integrated AIV surveillance across animal, human, and environmental interfaces in order to prevent the epidemic and pandemic of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emama Amin
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | | | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, QLD 4343, Australia
| | - Abdullah Al Mamun
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | | |
Collapse
|
4
|
Malireddi RKS, Sharma BR, Bynigeri RR, Wang Y, Lu J, Kanneganti TD. ZBP1 Drives IAV-Induced NLRP3 Inflammasome Activation and Lytic Cell Death, PANoptosis, Independent of the Necroptosis Executioner MLKL. Viruses 2023; 15:2141. [PMID: 38005819 PMCID: PMC10674287 DOI: 10.3390/v15112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza A virus (IAV) continues to pose a significant global health threat, causing severe respiratory infections that result in substantial annual morbidity and mortality. Recent research highlights the pivotal role of innate immunity, cell death, and inflammation in exacerbating the severity of respiratory viral diseases. One key molecule in this process is ZBP1, a well-recognized innate immune sensor for IAV infection. Upon activation, ZBP1 triggers the formation of a PANoptosome complex containing ASC, caspase-8, and RIPK3, among other molecules, leading to inflammatory cell death, PANoptosis, and NLRP3 inflammasome activation for the maturation of IL-1β and IL-18. However, the role for other molecules in this process requires further evaluation. In this study, we investigated the role of MLKL in regulating IAV-induced cell death and NLRP3 inflammasome activation. Our data indicate IAV induced inflammatory cell death through the ZBP1-PANoptosome, where caspases and RIPKs serve as core components. However, IAV-induced lytic cell death was only partially dependent on RIPK3 at later timepoints and was fully independent of MLKL throughout all timepoints tested. Additionally, NLRP3 inflammasome activation was unaffected in MLKL-deficient cells, establishing that MLKL and MLKL-dependent necroptosis do not act upstream of NLRP3 inflammasome activation, IL-1β maturation, and lytic cell death during IAV infection.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Ratnakar R Bynigeri
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Jianlin Lu
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Rehman S, Shehzad A, Andriyani LD, Effendi MH, Abadeen ZU, Ilyas Khan M, Bilal M. A cross-sectional survey of avian influenza knowledge among poultry farmworkers in Indonesia. PeerJ 2023; 11:e14600. [PMID: 36684680 PMCID: PMC9851045 DOI: 10.7717/peerj.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background Avian influenza (AI) poses a serious threat to global public health, especially the highly pathogenic form. Awareness and protective behavior among the public, particularly the high-risk populations, are essential for prevention and control. This study aimed to ascertain the level of AI knowledge among Indonesia's poultry farmworkers. Methods This was a cross-sectional study conducted online. A predesigned standardized questionnaire, containing six demographic questions and 14 questions on AI knowledge, was used. The questionnaire was distributed via WhatsApp and email platforms. Volunteers (respondents) included 119 men and 81 women, aged 18-50 years, who work on poultry farms in Indonesia. Data were analyzed using the chi-squared and Fisher exact tests. Results The study's findings revealed that more than two-thirds (67.0%) of the respondents had heard about AI. Their primary sources of information were health workers (36.0%) and media, especially television (34.0%). The majority of the participants (91.3%) had good knowledge about AI as a contagious infection, transmissible from birds to other birds, animals, or humans. A total of 76.8% of the respondents believed that poultry workers and veterinarians were at high risk of contracting AI infection. Conclusions The study concluded that poultry workers had good knowledge about AI infection, transmission, and risk variables. Health workers and television were the main sources of information on AI. The level of AI knowledge was high among the respondents.
Collapse
Affiliation(s)
- Saifur Rehman
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | | | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Zain Ul Abadeen
- Department of Pathology Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Ilyas Khan
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Muhammad Bilal
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
- Current affiliation: Faculty of Veterinary Medical Sciences, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
Alvis-Chirinos K, Angulo-Bazán Y, Escalante-Maldonado O, Fuentes D, Palomino-Rodriguez MG, Gonzales-Achuy E, Mormontoy H, Hinojosa-Mamani P, Huamán-Espino L, Aparco JP. Presence of SARS-CoV-2 on food surfaces and public space surfaces in three districts of Lima, Peru. Braz J Med Biol Res 2022; 55:e12003. [PMID: 35857998 PMCID: PMC9296125 DOI: 10.1590/1414-431x2022e12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the presence of SARS-CoV-2 on food surfaces and surfaces in public spaces in 3 districts of Lima, Peru. A cross-sectional descriptive study was carried out in three districts of the Lima metropolitan area. Surfaces that were most exposed to users were selected. Samples were swabbed for 4 weeks and transported to the laboratory to determine the presence of the virus. One thousand ninety-five inert surface samples and 960 food surface samples were evaluated for the identification of SARS-CoV-2 by the real time-PCR molecular test, whereby only one sample from an automated teller machine was positive. Most of the inert and food surfaces evaluated did not show the presence of SARS-CoV-2 during the time of sample collection. Despite the negative results, the frequency of disinfection and hygiene measures on high-contact surfaces should be maintained and increased to prevent other highly contagious infectious diseases.
Collapse
Affiliation(s)
- K Alvis-Chirinos
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - Y Angulo-Bazán
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - D Fuentes
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - E Gonzales-Achuy
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - H Mormontoy
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - P Hinojosa-Mamani
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - L Huamán-Espino
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - J P Aparco
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú.,Departamento Académico de Nutrición, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
7
|
Hernandez-Davies JE, Dollinger EP, Pone EJ, Felgner J, Liang L, Strohmeier S, Jan S, Albin TJ, Jain A, Nakajima R, Jasinskas A, Krammer F, Esser-Kahn A, Felgner PL, Nie Q, Davies DH. Magnitude and breadth of antibody cross-reactivity induced by recombinant influenza hemagglutinin trimer vaccine is enhanced by combination adjuvants. Sci Rep 2022; 12:9198. [PMID: 35654904 PMCID: PMC9163070 DOI: 10.1038/s41598-022-12727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.
Collapse
Affiliation(s)
- Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Egest J Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Gholami A, Omidifar N, Babapoor A, Vijayakameswara Rao N, Chiang WH. Recent Advances in Plasma-Engineered Polymers for Biomarker-Based Viral Detection and Highly Multiplexed Analysis. BIOSENSORS 2022; 12:286. [PMID: 35624587 PMCID: PMC9138656 DOI: 10.3390/bios12050286] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious diseases remain a pervasive threat to global and public health, especially in many countries and rural urban areas. The main causes of such severe diseases are the lack of appropriate analytical methods and subsequent treatment strategies due to limited access to centralized and equipped medical centers for detection. Rapid and accurate diagnosis in biomedicine and healthcare is essential for the effective treatment of pathogenic viruses as well as early detection. Plasma-engineered polymers are used worldwide for viral infections in conjunction with molecular detection of biomarkers. Plasma-engineered polymers for biomarker-based viral detection are generally inexpensive and offer great potential. For biomarker-based virus detection, plasma-based polymers appear to be potential biological probes and have been used directly with physiological components to perform highly multiplexed analyses simultaneously. The simultaneous measurement of multiple clinical parameters from the same sample volume is possible using highly multiplexed analysis to detect human viral infections, thereby reducing the time and cost required to collect each data point. This article reviews recent studies on the efficacy of plasma-engineered polymers as a detection method against human pandemic viruses. In this review study, we examine polymer biomarkers, plasma-engineered polymers, highly multiplexed analyses for viral infections, and recent applications of polymer-based biomarkers for virus detection. Finally, we provide an outlook on recent advances in the field of plasma-engineered polymers for biomarker-based virus detection and highly multiplexed analysis.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil 56199-11367, Iran;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
9
|
Chen X, Wang W, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infections with highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC Med 2020; 18:377. [PMID: 33261599 PMCID: PMC7709391 DOI: 10.1186/s12916-020-01836-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A(H5N1) virus poses a global public health threat given severe and fatal zoonotic infections since 1997 and ongoing A(H5N1) virus circulation among poultry in several countries. A comprehensive assessment of the seroprevalence of A(H5N1) virus antibodies remains a gap and limits understanding of the true risk of A(H5N1) virus infection. METHODS We conducted a systematic review and meta-analysis of published serosurveys to assess the risk of subclinical and clinically mild A(H5N1) virus infections. We assessed A(H5N1) virus antibody titers and changes in titers among populations with variable exposures to different A(H5N1) viruses. RESULTS Across studies using the World Health Organization-recommended seropositive definition, the point estimates of the seroprevalence of A(H5N1) virus-specific antibodies were higher in poultry-exposed populations (range 0-0.6%) and persons exposed to both human A(H5N1) cases and infected birds (range 0.4-1.8%) than in close contacts of A(H5N1) cases or the general population (none to very low frequencies). Seroprevalence was higher in persons exposed to A(H5N1) clade 0 virus (1.9%, range 0.7-3.2%) than in participants exposed to other clades of A(H5N1) virus (range 0-0.5%) (p < 0.05). Seroprevalence was higher in poultry-exposed populations (range 0-1.9%) if such studies utilized antigenically similar A(H5N1) virus antigens in assays to A(H5N1) viruses circulating among poultry. CONCLUSIONS These low seroprevalences suggest that subclinical and clinically mild human A(H5N1) virus infections are uncommon. Standardized serological survey and laboratory methods are needed to fully understand the extent and risk of human A(H5N1) virus infections.
Collapse
Affiliation(s)
- Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
10
|
Cross-Protection by Inactivated H5 Prepandemic Vaccine Seed Strains against Diverse Goose/Guangdong Lineage H5N1 Highly Pathogenic Avian Influenza Viruses. J Virol 2020; 94:JVI.00720-20. [PMID: 32999029 DOI: 10.1128/jvi.00720-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
The highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 lineage (Gs/GD) is endemic in poultry across several countries in the world and has caused sporadic lethal infections in humans. Vaccines are important in HPAIV control both for poultry and in prepandemic preparedness for humans. This study assessed inactivated prepandemic vaccine strains in a One Health framework across human and agricultural and wildlife animal health, focusing on the genetic and antigenic diversity of field H5N1 Gs/GD viruses from the agricultural sector and assessing cross-protection in a chicken challenge model. Nearly half (47.92%) of the 48 combinations of vaccine and challenge viruses examined had bird protection of 80% or above. Most vaccinated groups had prolonged mean death times (MDT), and the virus-shedding titers were significantly lower than those of the sham-vaccinated group (P ≤ 0.05). The antibody titers in the prechallenge sera were not predictive of protection. Although vaccinated birds had higher titers of hemagglutination-inhibiting (HI) antibodies against the homologous vaccine antigen, most of them also had lower or no antibody titer against the challenge antigen. The comparison of all parameters and homologous or closely related vaccine and challenge viruses gave the best prediction of protection. Through additional analysis, we identified a pattern of epitope substitutions in the hemagglutinin (HA) of each challenge virus that impacted protection, regardless of the vaccine used. These changes were situated in the antigenic sites and/or reported epitopes associated with virus escape from antibody neutralization. As a result, this study highlights virus diversity, immune response complexity, and the importance of strain selection for vaccine development to control H5N1 HPAIV in the agricultural sector and for human prepandemic preparedness. We suggest that the engineering of specific antigenic sites can improve the immunogenicity of H5 vaccines.IMPORTANCE The sustained circulation of highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 (Gs/GD) lineage in the agricultural sector and some wild birds has led to the evolution and selection of distinct viral lineages involved in escape from vaccine protection. Our results using inactivated vaccine candidates from the human pandemic preparedness program in a chicken challenge model identified critical antigenic conformational epitopes on H5 hemagglutinin (HA) from different clades that were associated with antibody recognition and escape. Even though other investigators have reported epitope mapping in the H5 HA, much of this information pertains to epitopes reactive to mouse antibodies. Our findings validate changes in antigenic epitopes of HA associated with virus escape from antibody neutralization in chickens, which has direct relevance to field protection and virus evolution. Therefore, knowledge of these immunodominant regions is essential to proactively develop diagnostic tests, improve surveillance platforms to monitor AIV outbreaks, and design more efficient and broad-spectrum agricultural and human prepandemic vaccines.
Collapse
|
11
|
Chaudhry M, Webby R, Swayne D, Rashid HB, DeBeauchamp J, Killmaster L, Criado MF, Lee DH, Webb A, Yousaf S, Asif M, Ain QU, Khan M, Ilyas Khan M, Hasan S, Yousaf A, Mushtaque A, Bokhari SF, Hasni MS. Avian influenza at animal-human interface: One-health challenge in live poultry retail stalls of Chakwal, Pakistan. Influenza Other Respir Viruses 2020; 14:257-265. [PMID: 32032469 PMCID: PMC7182597 DOI: 10.1111/irv.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Live poultry retail stalls (LPRSs) are believed to be the source of human infection with avian influenza viruses (AIVs); however, little is known about epidemiology of these viruses in LPRSs of Pakistan. Objectives The current study was conducted to estimate the virological and serological prevalence of AIVs in humans and poultry and associated risk factors among seropositive butchers. Methods A field survey of LPRSs of Chakwal District was conducted between December 2015 and March 2016. In total, 322 samples (sera = 161 and throat swab = 161) from butchers and 130 pooled oropharyngeal swabs and 100 sera from birds were collected. Baseline sera (n = 100) from general population were also tested. Data were collected by structured questionnaires. Sera were tested by hemagglutination inhibition (HI) test further confirmed by micro‐neutralization test (MN). Swabs were processed by real‐time RT‐PCR. Logistic regression analyses were conducted to identify risk factors. Results In butchers, 15.5% sera were positive for antibodies against H9 virus using a cutoff of ≥40 in HI titer; 6% sera from general population were positive for H9. Seroprevalence in poultry was 89%, and only 2.30% swabs were positive for H9. Presence of another LPRS nearby and the number of cages in the stall were risk factors (OR > 1) for H9 seroprevalence in butchers. Conclusions This study provides evidence of co‐circulation of H9 virus in poultry and exposure of butchers in the LPRSs, which poses a continued threat to public health. We suggest regular surveillance of AIVs in occupationally exposed butchers and birds in LPRSs.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Richard Webby
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Hamad Bin Rashid
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Ashley Webb
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shumaila Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asif
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qurat Ul Ain
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mirwaise Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ilyas Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima Hasan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arfat Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abida Mushtaque
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syeda Fakhra Bokhari
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sajid Hasni
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
12
|
Furuyama W, Reynolds P, Haddock E, Meade-White K, Quynh Le M, Kawaoka Y, Feldmann H, Marzi A. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines 2020; 5:4. [PMID: 31934358 PMCID: PMC6954110 DOI: 10.1038/s41541-019-0155-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The avian influenza virus outbreak in 1997 highlighted the potential of the highly pathogenic H5N1 virus to cause severe disease in humans. Therefore, effective vaccines against H5N1 viruses are needed to counter the potential threat of a global pandemic. We have previously developed a fast-acting and efficacious vaccine against Ebola virus (EBOV) using the vesicular stomatitis virus (VSV) platform. In this study, we generated recombinant VSV-based H5N1 influenza virus vectors to demonstrate the feasibility of this platform for a fast-acting pan-H5 influenza virus vaccine. We chose multiple approaches regarding antigen design and genome location to define a more optimized vaccine approach. After the VSV-based H5N1 influenza virus constructs were recovered and characterized in vitro, mice were vaccinated by a single dose or prime/boost regimen followed by challenge with a lethal dose of the homologous H5 clade 1 virus. We found that a single dose of VSV vectors expressing full-length hemagglutinin (HAfl) were sufficient to provide 100% protection. The vaccine vectors were fast-acting as demonstrated by uniform protection when administered 3 days prior to lethal challenge. Moreover, single vaccination induced cross-protective H5-specific antibodies and protected mice against lethal challenge with various H5 clade 2 viruses, highlighting the potential of the VSV-based HAfl as a pan-H5 influenza virus emergency vaccine.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Pierce Reynolds
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
- Present Address: Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, Univeristy of Tokyo, Tokyo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| |
Collapse
|
13
|
Cui B, Wang F, Wang LDL, Pan C, Ke J, Tian Y. A Comparative Analysis of Risk Perception and Coping Behaviors among Chinese Poultry Farmers Regarding Human and Poultry Infection with Avian Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203832. [PMID: 31614454 PMCID: PMC6843141 DOI: 10.3390/ijerph16203832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Poultry farmers face a dual risk when mutant avian influenza (AI) virus exhibits zoonotic characteristics. A/H5N1 and A/H7N9 are two principal strains of the AI virus that have captured public attention in recent years, as they have both been reported and can infect poultry and humans, respectively. Previous studies have focused either on poultry farmers’ risk perception and biosecurity preventive behaviors (BPBs) against A/H5N1 infection with poultry, or on their risk perception and personal protective behaviors (PPBs) against human infection with A/H7N9, even though these two strains often appear simultaneously. To bridge this research gap, a survey (N = 426) was conducted in the Chinese provinces of Jiangsu and Anhui to assess risk perception and coping behaviors adopted by poultry farmers facing the dual risk of these two viral strains. Paired sample t-tests revealed that farmers’ perceived risk of poultry infection with A/H5N1 was significantly higher than their perceived risk of human infection with A/H7N9, and that their reported frequency of BPBs against A/H5N1 was significantly higher than the frequency of PPBs against A/H7N9. Moreover, farmers were less familiar with AI infection in human beings compared to that in poultry, but they felt a higher sense of control regarding human AI infection. Multivariate regression analyses showed that farm size and perceived risks of both human and poultry infection with AI were positively associated with BPBs and PPBs. The findings of this research suggest that a campaign to spread knowledge about human AI infection among poultry farmers is needed, and that a policy incentive to encourage large-scale poultry farming could be effective in improving implementation of BPBs and PPBs.
Collapse
Affiliation(s)
- Bin Cui
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Feifei Wang
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Linda Dong-Ling Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, Jiangsu Province, China.
| | - Chengyun Pan
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Jun Ke
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Yi Tian
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| |
Collapse
|
14
|
Xiao Q, Bi Z, Yao L, Lei J, Yan Y, Zhou J, Yan L. Novel protein microarray for the detection of avian influenza virus antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. Avian Pathol 2019; 48:528-536. [PMID: 31232095 DOI: 10.1080/03079457.2019.1634791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Avian influenza virus (AIV) can cause serious zoonotic disease, thereby threatening the poultry industry and human health. An efficient and rapid detection approach is crucial to prevent and control the spread of avian influenza. In this study, a novel protein microarray was developed. Haemagglutinin proteins of H5 and H7 subtypes and nucleoprotein (NP) were purified and spotted onto the initiator-integrated poly-(dimethylsiloxane) as antigens. Monoclonal antibodies with inhibition effect were screened and utilized for the synchronous detection of three avian influenza antibodies in different species. In the protein microarray, the cut-off values were 40%, 50% and 30% inhibition for H5 antibody detection; 50%, 50% and 20% for NP antibody detection; 40%, 50% and 40% for H7 antibody detection in chicken, peacock and duck sera, respectively. The 95 serum samples were detected by microarray, and results were compared with the findings of AIV antibody test enzyme-linked immunosorbent assay (ELISA) or haemagglutination inhibition (HI) test. NP antibody detection in the microarray showed 100% (55/55) agreement ratio in chicken using ELISA. Compared with HI, H5 antibody detection in the microarray showed 100% (95/95) agreement ratio in chicken, peacock and duck, whilst those of H7 displayed 98.18% (54/55) agreement in chicken, 100% (20/20) in peacock and 90% (18/20) in duck. In conclusion, this novel protein microarray is a high-throughput and specific method for the detection of AIV antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. It can be applied to the serological diagnosis and epidemiological investigation of AIV. RESEARCH HIGHLIGHTS A novel protein microarray method has been developed. The microarray can detect AIV antibodies and distinguish between H5 and H7 subtypes. The study lays the foundation for simultaneous identification of multiple pathogens.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|
15
|
Zhang Y, Dong J, Bo H, Dong L, Zou S, Li X, Shu Y, Wang D. Genetic and biological characteristics of avian influenza virus subtype H1N8 in environments related to live poultry markets in China. BMC Infect Dis 2019; 19:458. [PMID: 31117981 PMCID: PMC6532177 DOI: 10.1186/s12879-019-4079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background Since 2008, avian influenza surveillance in poultry-related environments has been conducted annually in China. Samples have been collected from environments including live poultry markets, wild bird habitats, slaughterhouses, and poultry farms. Multiple subtypes of avian influenza virus have been identified based on environmental surveillance, and an H1N8 virus was isolated from the drinking water of a live poultry market. Methods Virus isolation was performed by inoculating influenza A-positive specimens into embryonated chicken eggs. Next-generation sequencing was used for whole-genome sequencing. A solid-phase binding assay was performed to test the virus receptor binding specificity. Trypsin dependence plaque formation assays and intravenous pathogenicity index tests were used to evaluate virus pathogenicity in vitro and in vivo, respectively. Different cell lines were chosen for comparison of virus replication capacity. Results According to the phylogenetic trees, the whole gene segments of the virus named A/Environment/Fujian/85144/2014(H1N8) were of Eurasian lineage. The HA, NA, PB1, and M genes showed the highest homology with those of H1N8 or H1N2 subtype viruses isolated from local domestic ducks, while the PB2, PA, NP and NS genes showed high similarity with the genes of H7N9 viruses detected in 2017 and 2018 in the same province. This virus presented an avian receptor binding preference. The plaque formation assay showed that it was a trypsin-dependent virus. The intravenous pathogenicity index (IVPI) in chickens was 0.02. The growth kinetics of the A/Environment/Fujian/85144/2014(H1N8) virus in different cell lines were similar to those of a human-origin virus, A/Brisbane/59/2007(H1N1), but lower than those of the control avian-origin and swine-origin viruses. Conclusions The H1N8 virus was identified in avian influenza-related environments in China for the first time and may have served as a gene carrier involved in the evolution of the H7N9 virus in poultry. This work further emphasizes the importance of avian influenza virus surveillance, especially in live poultry markets (LPMs). Active surveillance of avian influenza in LPMs is a major pillar supporting avian influenza control and response. Electronic supplementary material The online version of this article (10.1186/s12879-019-4079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Zhang
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jie Dong
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hong Bo
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Libo Dong
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shumei Zou
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiyan Li
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Yuelong Shu
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,Present Address: Public Health School (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dayan Wang
- Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.
| |
Collapse
|
16
|
Cui B, Liu ZP, Ke J, Tian Y. Determinants of highly pathogenic avian influenza outbreak information sources, risk perception and adoption of biosecurity behaviors among poultry farmers in China. Prev Vet Med 2019; 167:25-31. [PMID: 31027717 DOI: 10.1016/j.prevetmed.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Abstract
The implementation of biosecurity measures among farmers is the first line of defense against highly pathogenic avian influenza (HPAI) on poultry farms. Yet much less is known about the association between HPAI outbreak information sources, farmers' risk perception and their adoption of biosecurity behaviors (BBs). To bridge this gap, a survey (n = 426) was conducted to measure the relationship between these factors among poultry farmers in the Chinese provinces of Jiangsu and Anhui. The data reveal that farmers use multiple information sources to obtain information about HPAI outbreaks. Multivariate regression shows that HPAI outbreak information disseminated through business networks is associated with reported adoption of BBs, while farm size and ease of access to a veterinary clinic are associated with both higher risk perception and increased BBs. Moreover, increased BBs are associated with farmers who maintain stable production and sales contractual relationships with poultry product processing and marketing enterprises. The findings of this research will allow authorities to more effectively disseminate HPAI information to poultry farmers through business networks.
Collapse
Affiliation(s)
- Bin Cui
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University Yangzhou, Jiangsu Province, PR China.
| | - Zong Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jun Ke
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yi Tian
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China
| |
Collapse
|
17
|
Yamamoto Y, Nakamura K, Mase M. Survival of Highly Pathogenic Avian Influenza H5N1 Virus in Tissues Derived from Experimentally Infected Chickens. Appl Environ Microbiol 2017; 83:e00604-17. [PMID: 28625993 PMCID: PMC5541213 DOI: 10.1128/aem.00604-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
Eurasian lineage highly pathogenic avian influenza (HPAI) H5N1 virus has been a severe threat to the poultry industry since its emergence in 1996. The carcass or tissues derived from infected birds may present the risk of the virus spreading to humans, animals, and the surrounding environment. In this study, we investigated the survival of the virus in feather, muscle, and liver tissues collected from six chickens (Gallus gallus) experimentally infected with HPAI H5N1 virus. The tissues were stored at +4°C or +20°C, and viral isolation was performed at different times for 360 days. The maximum periods for viral survival were observed in samples stored at +4°C in all tissue types and were 240 days in feather tissues, 160 days in muscle, and 20 days in liver. The viral infectivity at +20°C was maintained for a maximum of 30 days in the feather tissues, 20 days in muscle, and 3 days in liver. The viral inactivation rates partly overlapped in the feather and muscle tissues at the two temperatures. The virus was inactivated rapidly in the liver. Our experimental results indicate that the tissue type and temperature can greatly influence the survival of HPAI H5N1 virus in the tissues of infected chickens.IMPORTANCE Highly pathogenic avian influenza virus of the H5N1 subtype can cause massive losses of poultry, and people need to handle a large number of chicken carcasses contaminated with the virus at outbreak sites. This study evaluated how long the virus can keep its infectivity in the three types of tissues derived from chickens infected with the virus. Our experimental results indicate that the virus can survive in tissues for a specific period of time depending on the tissue type and temperature. Our results are valuable for better understanding of viral ecology in the environment and for reducing the risk of the virus spreading via bird tissues contaminated with the virus.
Collapse
Affiliation(s)
- Yu Yamamoto
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Masaji Mase
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Dumard CH, Barroso SPC, Santos ACV, Alves NS, Couceiro JNSS, Gomes AMO, Santos PS, Silva JL, Oliveira AC. Stability of different influenza subtypes: How can high hydrostatic pressure be a useful tool for vaccine development? Biophys Chem 2017; 231:116-124. [PMID: 28410940 DOI: 10.1016/j.bpc.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. METHODS Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. RESULTS HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. CONCLUSIONS HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity.
Collapse
Affiliation(s)
- Carlos Henrique Dumard
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana P C Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Ana Clara V Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Nathalia S Alves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - José Nelson S S Couceiro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patricia S Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| | - Andréa C Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
19
|
Harfoot R, Webby RJ. H5 influenza, a global update. J Microbiol 2017; 55:196-203. [PMID: 28243942 DOI: 10.1007/s12275-017-7062-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/27/2022]
Abstract
H5 influenza viruses have caused much alarm globally due to their high pathogenic potential. As yet we have not seen sustained spread of the virus amongst humans despite a high prevalence of the virus in avian populations. Nevertheless, isolated human cases of infection have demonstrated high mortality and there are substantial efforts being taken to monitor the evolution of the virus and to undertake preparedness activities. Here we review and discuss the evolution of the A/goose/Guangdong/1/96 (H5N1) virus with emphasis on recent events.
Collapse
Affiliation(s)
- Rhodri Harfoot
- St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, USA
| | - Richard J Webby
- St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, USA.
| |
Collapse
|
20
|
Avian influenza virus directly infects human natural killer cells and inhibits cell activity. Virol Sin 2017; 32:122-129. [PMID: 28255852 DOI: 10.1007/s12250-016-3918-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cell is a key component of innate immunity and plays an important role in host defense against virus infection by directly destroying infected cells. Influenza is a respiratory disease transmitted in the early phase of virus infection. Evasion of host innate immunity including NK cells is critical for the virus to expand and establish a successful acute infection. Previously, we showed that human influenza H1N1 virus infects NK cells and induces cell apoptosis, as well as inhibits NK cell activity. In this study, we further demonstrated that avian influenza virus also directly targeted NK cells as an immunoevasion strategy. The avian virus infected human NK cells and induced cell apoptosis. In addition, avian influenza virion and HA protein inhibited NK cell cytotoxicity. This novel strategy has obvious advantages for avian influenza virus, allowing the virus sufficient time to expand and subsequent spread before the onset of the specific immune response. Our findings provide an important clue for the immunopathogenesis of avian influenza, and also suggest that direct targeting NK cells may be a common strategy used by both human and avian influenza viruses to evade NK cell immunity.
Collapse
|
21
|
Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin. mBio 2017; 8:mBio.02298-16. [PMID: 28196963 PMCID: PMC5312086 DOI: 10.1128/mbio.02298-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes. Influenza A viruses are divided into subtypes based on the antigenicity of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase. Of the 16 HA subtypes (H1 to -16) maintained in waterfowl reservoirs of influenza A viruses, H5 and H7 viruses often become highly pathogenic through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been known since the 1980s, the genetic basis for nucleotide insertions has remained unclear. This study shows the potential role of the viral RNA secondary structure for nucleotide insertions and demonstrates a key mechanism explaining why the acquisition of the polybasic HA cleavage site is restricted to particular HA subtypes in nature. Our findings will contribute to better understanding of the ecology of influenza A viruses and will also be useful for the development of genetically modified vaccines against H5 and H7 influenza A viruses with increased stability.
Collapse
|
22
|
Sikkema RS, Freidl GS, de Bruin E, Koopmans M. Weighing serological evidence of human exposure to animal influenza viruses - a literature review. ACTA ACUST UNITED AC 2016; 21:30388. [PMID: 27874827 PMCID: PMC5114483 DOI: 10.2807/1560-7917.es.2016.21.44.30388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 02/02/2023]
Abstract
Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America.
Collapse
Affiliation(s)
- Reina Saapke Sikkema
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Gudrun Stephanie Freidl
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marion Koopmans
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Jones JC, Marathe BM, Lerner C, Kreis L, Gasser R, Pascua PNQ, Najera I, Govorkova EA. A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity In Vitro. Antimicrob Agents Chemother 2016; 60:5504-14. [PMID: 27381402 PMCID: PMC4997863 DOI: 10.1128/aac.00888-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | - Philippe Noriel Q Pascua
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
24
|
Villanueva-Cabezas JP, Campbell PT, McCaw JM, Durr PA, McVernon J. Turnover of Village Chickens Undermines Vaccine Coverage to Control HPAI H5N1. Zoonoses Public Health 2016; 64:53-62. [DOI: 10.1111/zph.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/27/2022]
Affiliation(s)
- J. P. Villanueva-Cabezas
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Vic. Australia
- Australian Animal Health Laboratory; CSIRO; Geelong Vic. Australia
| | - P. T. Campbell
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Vic. Australia
- Modelling and Simulation Research Group; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Vic. Australia
| | - J. M. McCaw
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Vic. Australia
- Modelling and Simulation Research Group; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Vic. Australia
- School of Mathematics and Statistics; The University of Melbourne; Melbourne Vic. Australia
| | - P. A. Durr
- Australian Animal Health Laboratory; CSIRO; Geelong Vic. Australia
| | - J. McVernon
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Vic. Australia
- Modelling and Simulation Research Group; Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Vic. Australia
| |
Collapse
|
25
|
Liu F, Sun X, Fairman J, Lewis DB, Katz JM, Levine M, Tumpey TM, Lu X. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology 2016; 492:197-203. [PMID: 26967975 PMCID: PMC5796654 DOI: 10.1016/j.virol.2016.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - David B Lewis
- Department of Pediatrics, Interdepartmental Program in Immunology, and Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiuhua Lu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
26
|
Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proc Natl Acad Sci U S A 2016; 113:3669-74. [PMID: 26976575 DOI: 10.1073/pnas.1519772113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.
Collapse
|
27
|
A Single Amino Acid in the M1 Protein Responsible for the Different Pathogenic Potentials of H5N1 Highly Pathogenic Avian Influenza Virus Strains. PLoS One 2015; 10:e0137989. [PMID: 26368015 PMCID: PMC4569272 DOI: 10.1371/journal.pone.0137989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
Two highly pathogenic avian influenza virus strains, A/duck/Hokkaido/WZ83/2010 (H5N1) (WZ83) and A/duck/Hokkaido/WZ101/2010 (H5N1) (WZ101), which were isolated from wild ducks in Japan, were found to be genetically similar, with only two amino acid differences in their M1 and PB1 proteins at positions 43 and 317, respectively. We found that both WZ83 and WZ101 caused lethal infection in chickens but WZ101 killed them more rapidly than WZ83. Interestingly, ducks experimentally infected with WZ83 showed no or only mild clinical symptoms, whereas WZ101 was highly lethal. We then generated reassortants between these viruses and found that exchange of the M gene segment completely switched the pathogenic phenotype in both chickens and ducks, indicating that the difference in the pathogenicity for these avian species between WZ83 and WZ101 was determined by only a single amino acid in the M1 protein. It was also found that WZ101 showed higher pathogenicity than WZ83 in mice and that WZ83, whose M gene was replaced with that of WZ101, showed higher pathogenicity than wild-type WZ83, although this reassortant virus was not fully pathogenic compared to wild-type WZ101. These results suggest that the amino acid at position 43 of the M1 protein is one of the factors contributing to the pathogenicity of H5N1 highly pathogenic avian influenza viruses in both avian and mammalian hosts.
Collapse
|
28
|
MacIntyre CR. Biopreparedness in the Age of Genetically Engineered Pathogens and Open Access Science: An Urgent Need for a Paradigm Shift. Mil Med 2015; 180:943-9. [PMID: 26327545 PMCID: PMC7107569 DOI: 10.7205/milmed-d-14-00482] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our systems, thinking, training, legislation, and policies are lagging far behind momentous changes in science, and leaving us vulnerable in biosecurity. Synthetic viruses and genetic engineering of pathogens are a reality, with a rapid acceleration of dual-use science. The public availability of methods for dual-use genetic engineering, coupled with the insider threat, poses an unprecedented risk for biosecurity. Case studies including the 1984 Rajneesh salmonella bioterrorism attack and the controversy over engineered transmissible H5N1 influenza are analyzed. Simple probability analysis shows that the risks of dual-use research are likely to outweigh potential benefits, yet this type of analysis has not been done to date. Many bioterrorism agents may also occur naturally. Distinguishing natural from unnatural epidemics is far more difficult than other types of terrorism. Public health systems do not have mechanisms for routinely considering bioterrorism, and an organizational culture that is reluctant to consider it. A collaborative model for flagging aberrant outbreak patterns and referral from the health to security sectors is proposed. Vulnerabilities in current approaches to biosecurity need to be reviewed and strengthened collaboratively by all stakeholders. New systems, legislation, collaborative operational models, and ways of thinking are required to effectively address the threat to global biosecurity.
Collapse
Affiliation(s)
- C Raina MacIntyre
- School of Public Health and Community Medicine, Samuels Building, 325, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Ramos I, Fernandez-Sesma A. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs. Front Immunol 2015; 6:361. [PMID: 26257731 PMCID: PMC4507467 DOI: 10.3389/fimmu.2015.00361] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/04/2015] [Indexed: 12/27/2022] Open
Abstract
Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
30
|
Cox RJ, Major D, Pedersen G, Pathirana RD, Hoschler K, Guilfoyle K, Roseby S, Bredholt G, Assmus J, Breakwell L, Campitelli L, Sjursen H. Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets. PLoS One 2015; 10:e0131652. [PMID: 26147369 PMCID: PMC4493055 DOI: 10.1371/journal.pone.0131652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND METHODS Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M. The kinetics and longevity of the serological responses against NIBRG-14 were determined by haemagglutination inhibition (HI), single radial haemolysis (SRH), microneutralization (MN) and ELISA assays. The cross-H5 clade responses in sera were determined by HI and the antibody-secreting (ASC) cell ELISPOT assays. The protective efficacy of the vaccine against homologous HPAI challenge was evaluated in ferrets. RESULTS The serological responses against the homologous and cross-reactive strains generally peaked one week after the second dose, and formulation with Matrix M augmented the responses. The NIBRG-14-specific seroprotection rates fell significantly by six months and were low against cross-reactive strains although the adjuvant appeared to prolong the longevity of the protective responses in some subjects. By 12 months post-vaccination, nearly all vaccinees had NIBRG-14-specific antibody titres below the protective thresholds. The Matrix M adjuvant was shown to greatly improve ASC and serum IgG responses following vaccination. In a HPAI ferret challenge model, the vaccine protected the animals from febrile responses, severe weight loss and local and systemic spread of the virus. CONCLUSION Our findings show that the Matrix M-adjuvanted virosomal H5N1 vaccine is a promising pre-pandemic vaccine candidate. TRIAL REGISTRATION ClinicalTrials.gov NCT00868218.
Collapse
Affiliation(s)
- Rebecca J. Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
- * E-mail:
| | - Diane Major
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Gabriel Pedersen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rishi D. Pathirana
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Katja Hoschler
- Respiratory Unit, Public Health England (PHE) Colindale, London, United Kingdom
| | - Kate Guilfoyle
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Sarah Roseby
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Jörg Assmus
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Lucy Breakwell
- Respiratory Unit, Public Health England (PHE) Colindale, London, United Kingdom
| | | | - Haakon Sjursen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Infectious Diseases, Medical Department, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
31
|
Roess AA, Winch PJ, Akhter A, Afroz D, Ali NA, Shah R, Begum N, Seraji HR, El Arifeen S, Darmstadt GL, Baqui AH. Household Animal and Human Medicine Use and Animal Husbandry Practices in Rural Bangladesh: Risk Factors for Emerging Zoonotic Disease and Antibiotic Resistance. Zoonoses Public Health 2015; 62:569-78. [PMID: 25787116 PMCID: PMC4575599 DOI: 10.1111/zph.12186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/27/2022]
Abstract
Animal antimicrobial use and husbandry practices increase risk of emerging zoonotic disease and antibiotic resistance. We surveyed 700 households to elicit information on human and animal medicine use and husbandry practices. Households that owned livestock (n = 265/459, 57.7%) reported using animal treatments 630 times during the previous 6 months; 57.6% obtained medicines, including antibiotics, from drug sellers. Government animal healthcare providers were rarely visited (9.7%), and respondents more often sought animal health care from pharmacies and village doctors (70.6% and 11.9%, respectively), citing the latter two as less costly and more successful based on past performance. Animal husbandry practices that could promote the transmission of microbes from animals to humans included the following: the proximity of chickens to humans (50.1% of households reported that the chickens slept in the bedroom); the shared use of natural bodies of water for human and animal bathing (78.3%); the use of livestock waste as fertilizer (60.9%); and gender roles that dictate that females are the primary caretakers of poultry and children (62.8%). In the absence of an effective animal healthcare system, villagers must depend on informal healthcare providers for treatment of their animals. Suboptimal use of antimicrobials coupled with unhygienic animal husbandry practices is an important risk factor for emerging zoonotic disease and resistant pathogens.
Collapse
Affiliation(s)
- A A Roess
- Department of International Health, International Center for Maternal and Newborn Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - P J Winch
- Department of International Health, International Center for Maternal and Newborn Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Akhter
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - D Afroz
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - N A Ali
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - R Shah
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - N Begum
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - H R Seraji
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - S El Arifeen
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - G L Darmstadt
- Department of International Health, International Center for Maternal and Newborn Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A H Baqui
- Department of International Health, International Center for Maternal and Newborn Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | | |
Collapse
|
32
|
Okamoto M, Miyazawa T, Morikawa S, Ono F, Nakamura S, Sato E, Yoshida T, Yoshikawa R, Sakai K, Mizutani T, Nagata N, Takano JI, Okabayashi S, Hamano M, Fujimoto K, Nakaya T, Iida T, Horii T, Miyabe-Nishiwaki T, Watanabe A, Kaneko A, Saito A, Matsui A, Hayakawa T, Suzuki J, Akari H, Matsuzawa T, Hirai H. Emergence of infectious malignant thrombocytopenia in Japanese macaques (Macaca fuscata) by SRV-4 after transmission to a novel host. Sci Rep 2015; 5:8850. [PMID: 25743183 PMCID: PMC4351523 DOI: 10.1038/srep08850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/28/2015] [Indexed: 11/14/2022] Open
Abstract
We discovered a lethal hemorrhagic syndrome arising from severe thrombocytopenia in Japanese macaques kept at the Primate Research Institute, Kyoto University. Extensive investigation identified that simian retrovirus type 4 (SRV-4) was the causative agent of the disease. SRV-4 had previously been isolated only from cynomolgus macaques in which it is usually asymptomatic. We consider that the SRV-4 crossed the so-called species barrier between cynomolgus and Japanese macaques, leading to extremely severe acute symptoms in the latter. Infectious agents that cross the species barrier occasionally amplify in virulence, which is not observed in the original hosts. In such cases, the new hosts are usually distantly related to the original hosts. However, Japanese macaques are closely related to cynomolgus macaques, and can even hybridize when given the opportunity. This lethal outbreak of a novel pathogen in Japanese macaques highlights the need to modify our expectations about virulence with regards crossing species barriers.
Collapse
Affiliation(s)
- Munehiro Okamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shigeru Morikawa
- National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Fumiko Ono
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiji Sato
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tomoyuki Yoshida
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Rokusuke Yoshikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kouji Sakai
- National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Jun-ichiro Takano
- 1] The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0003, Japan [2] Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Sachi Okabayashi
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Masataka Hamano
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Koji Fujimoto
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Takaaki Nakaya
- 1] Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Horii
- 1] Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takako Miyabe-Nishiwaki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akino Watanabe
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akihisa Kaneko
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Atsushi Matsui
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Toshiyuki Hayakawa
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuro Matsuzawa
- Department of Brain and Behavioral Sciences, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hirohisa Hirai
- Department of Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| |
Collapse
|
33
|
Gomaa MR, Kayed AS, Elabd MA, Zeid DA, Zaki SA, El Rifay AS, Sherif LS, McKenzie PP, Webster RG, Webby RJ, Ali MA, Kayali G. Avian influenza A(H5N1) and A(H9N2) seroprevalence and risk factors for infection among Egyptians: a prospective, controlled seroepidemiological study. J Infect Dis 2014; 211:1399-407. [PMID: 25355942 DOI: 10.1093/infdis/jiu529] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A(H5N1) and A(H9N2) avian influenza viruses are enzootic in Egyptian poultry, and most A(H5N1) human cases since 2009 have occurred in Egypt. Our understanding of the epidemiology of avian viruses in humans remains limited. Questions about the frequency of infection, the proportion of infections that are mild or subclinical, and the case-fatality rate remain largely unanswered. METHODS We conducted a 3-year, prospective, controlled, seroepidemiological study that enrolled 750 poultry-exposed and 250 unexposed individuals in Egypt. RESULTS At baseline, the seroprevalence of anti-A(H5N1) antibodies (titer, ≥80) among exposed individuals was 2% significantly higher than that among the controls (0%). Having chronic lung disease was a significant risk factor for infection. Antibodies against A(H9N2) were not detected at baseline when A(H9N2) was not circulating in poultry. At follow-up, A(H9N2) was detected in poultry, and consequently, the seroprevalence among exposed humans was between 5.6% and 7.5%. Vaccination of poultry, older age, and exposure to ducks were risk factors for A(H9N2) infection. CONCLUSIONS Results of this study indicate that the number of humans infected with avian influenza viruses is much larger than the number of reported confirmed cases. In an area where these viruses are enzootic in the poultry, human exposure to and infection with avian influenza becomes more common.
Collapse
Affiliation(s)
| | | | - Mona A Elabd
- Medical Research Division, National Research Center, Giza, Egypt
| | - Dina Abu Zeid
- Medical Research Division, National Research Center, Giza, Egypt
| | - Shaimaa A Zaki
- Medical Research Division, National Research Center, Giza, Egypt
| | - Amira S El Rifay
- Medical Research Division, National Research Center, Giza, Egypt
| | - Lobna S Sherif
- Medical Research Division, National Research Center, Giza, Egypt
| | - Pamela P McKenzie
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Ghazi Kayali
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
34
|
Setiawaty V, Dharmayanti NLPI, Misriyah, Pawestri HA, Azhar M, Tallis G, Schoonman L, Samaan G. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia. Zoonoses Public Health 2014; 62:381-7. [PMID: 25244310 DOI: 10.1111/zph.12158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/30/2022]
Abstract
WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was cooperation to achieve risk assessment objectives.
Collapse
Affiliation(s)
- V Setiawaty
- Center for Biomedical and Basic Technology of Health, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - N L P I Dharmayanti
- Indonesian Research Center for Veterinary Science, Ministry of Agriculture, Bogor, Indonesia
| | - Misriyah
- Directorate of Vectorborne Disease Control, Directorate-General for Disease Control and Environmental Health, Ministry of Health, Jakarta, Indonesia
| | - H A Pawestri
- Center for Biomedical and Basic Technology of Health, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - M Azhar
- Directorate of Animal Health, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Jakarta, Indonesia
| | - G Tallis
- Disease Surveillance and Emergencies, World Health Organization, Jakarta, Indonesia
| | - L Schoonman
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Jakarta, Indonesia
| | - G Samaan
- United States Centers for Disease Control and Prevention, Jakarta, Indonesia
| |
Collapse
|