1
|
Guo C, Xu C, Feng Q, Xie X, Li Y, Zhao X, Hu J, Fang S, Shang L. A study on loading multiple epitopes with a single peptide. J Med Virol 2024; 96:e70004. [PMID: 39400886 DOI: 10.1002/jmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Epitopes, the basic functional units of antigens, hold great significance in the field of immunology. However, the structure and composition of epitopes and their interactions with antibodies remain unclear, which limits in-depth studies on epitopes and the development of subunit vaccines. In a previous study on the localization of anti-influenza HA monoclonal antibodies (mAbs), three strains with different characteristics reacted with the same peptide. In this study, by conventional immunological assays, computer homology modeling, and molecular docking simulations, we found that (1) the peptide could bind to three strains of mAbs with different reaction characteristics utilizing different combinations of immunodominant groups. (2) By computer molecular docking and simulation methods, the immunodominant groups on the two peptides could be combined into a multi-epitope peptide bound to six strains of mAbs. We established a method for multi-epitope peptide recombination from these immunodominant groups. (3) The immune effect of the recombinant multi-epitope peptide was better than that of a single peptide. Our findings facilitate the understanding of the composition of antigen epitopes and provide a theoretical and experimental basis for developing polyvalent vaccines and understanding immune responses at the molecular level.
Collapse
Affiliation(s)
- Chunyan Guo
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xin Xie
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xiangrong Zhao
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Jun Hu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
| | - Senbiao Fang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
2
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
3
|
Sanchez J, Martinez ES, Loveless B, Sees JP, Zammuto J, Szurmant H, Fuchs S, Crone P, Hostoffer R. Augmentation of immune response to vaccinations through osteopathic manipulative treatment: a study of procedure. J Osteopath Med 2024; 124:163-170. [PMID: 38011280 DOI: 10.1515/jom-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
CONTEXT Anecdotal evidence suggested that osteopathic manipulative treatment (OMT) may have imparted survivability to patients in osteopathic hospitals during the 1918 influenza pandemic. In addition, previous OMT research publications throughout the past century have shown evidence of increased lymphatic movement, resulting in improved immunologic function qualitatively and quantitatively. OBJECTIVES The following is a description of a proposed protocol to evaluate OMT effects on antibody generation in the peripheral circulation in response to a vaccine and its possible use in the augmentation of various vaccines. This protocol will serve as a template for OMT vaccination studies, and by adhering to the gold standard of randomized controlled trials (RCTs), future studies utilizing this outline may contribute to the much-needed advancement of the scientific literature in this field. METHODS This manuscript intends to describe a protocol that will demonstrate increased antibody titers to a vaccine through OMT utilized in previous historical studies. Confirmation data will follow this manuscript validating the protocol. Study participants will be divided into groups with and without OMT with lymphatic pumps. Each group will receive the corresponding vaccine and have antibody titers measured against the specific vaccine pathogen drawn at determined intervals. RESULTS These results will be statistically evaluated. Our demonstration of a rational scientific OMT vaccine antibody augmentation will serve as the standard for such investigation that will be reported in the future. These vaccines could include COVID-19 mRNA, influenza, shingles, rabies, and various others. The antibody response to vaccines is the resulting conclusion of its administration. Osteopathic manipulative medicine (OMM) lymphatic pumps have, in the past through anecdotal reports and smaller pilot studies, shown effectiveness on peripheral immune augmentation to vaccines. CONCLUSIONS This described protocol will be the template for more extensive scientific studies supporting osteopathic medicine's benefit on vaccine response. The initial vaccine studies will include the COVID-19 mRNA, influenza, shingles, and rabies vaccines.
Collapse
Affiliation(s)
- Jesus Sanchez
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Eric S Martinez
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Brian Loveless
- Department of Neuromusculoskeletal Medicine/Osteopathic Manipulative Medicine, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Julieanne P Sees
- Fellow Osteopathic Medicine, National Academy of Medicine, Washington, DC, USA
| | - Joseph Zammuto
- Associate Professor of Family Medicine, Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, USA
| | - Hendrik Szurmant
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Sebastien Fuchs
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific at Western University of Health Sciences, Pomona, CA, USA
| | - Paula Crone
- Western University of Health Sciences, Pomona, CA, USA
| | - Robert Hostoffer
- University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
4
|
Li M, Wang W, Chen J, Zhan Z, Xu M, Liu N, Ren L, You L, Zheng W, Shi H, Zhao Z, Huang C, Chen X, Zheng N, Lu W, Zhou X, Zhou J, Liao Q, Yang J, Jit M, Salje H, Yu H. Transplacental transfer efficiency of maternal antibodies against influenza A(H1N1)pdm09 virus and dynamics of naturally acquired antibodies in Chinese children: a longitudinal, paired mother-neonate cohort study. THE LANCET. MICROBE 2023; 4:e893-e902. [PMID: 37827184 DOI: 10.1016/s2666-5247(23)00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The 2009 pandemic H1N1 influenza A virus (A(H1N1)pdm09 virus) evolves rapidly and has continued to cause severe infections in children since its emergence in 2009. We aimed to characterise the kinetics of maternally and naturally acquired antibodies against historical A(H1N1)pdm09 strains and to assess the extent to which the response to heterologous strains following infection or vaccination affects observed A(H1N1)pdm09 strain-specific antibody titres in a Chinese paediatric population. METHODS In this retrospective study, we used residual serum samples from 528 mother-neonate pairs from a non-interventional, longitudinal cohort study in southern China conducted from Sept 20, 2013, to Aug 24, 2018, from six local hospitals in Anhua County, Hunan Province, China. Mother-neonate pairs were eligible for inclusion if the neonates were born after Sept 20, 2013, and their mothers had resided in the study sites for at least 3 months. We tested samples with a haemagglutination inhibition (HAI) assay to measure antibody levels against three historical A(H1N1)pdm09 strains that were antigenically similar to the strains that circulated during the 2009 pandemic (A/Hunan-Kaifu/SWL4204/2009 [SWL4204/09 strain], A/Hunan-Daxiang/SWL1277/2016 [SWL1277/16 strain], and A/Hunan-Yanfeng/SWL185/2018 [SWL185/18 strain]). We also determined the seroprevalence, geometric mean titres (GMTs), transfer ratio of maternal antibodies, and the dynamics of maternally and naturally acquired antibodies in children, from birth to 3 years of age. FINDINGS 1066 mother-neonate pairs were enrolled in the original cohort between Sept 20, 2013, and Oct 14, 2015. Of these, 528 pairs (523 mothers, 528 neonates) were selected for the present study. The median age of the mothers was 25 years (IQR 23 to 29). 291 (55%) of 528 children were boys and 237 (45%) were girls, and most children (452 [86%]) were breastfed before the age of 6 months. The GMTs and the seroprevalence for the SWL4204/09 strain were higher than those for the SWL1277/16 and SWL185/18 strains among mothers (GMTs: 10·4 [95% CI 9·8 to 11·1] vs 9·3 [8·7 to 9·8] vs 8·0 [7·5 to 8·4], p<0·0001; seroprevalence: 11·1% [95% CI 8·5 to 14·1] vs 6·9% [4·9 to 9·4] vs 4·6% [3·0 to 6·8], p=0·0003) and among neonates (GMTs: 10·7 [10·0 to 11·5] vs 9·4 [8·8 to 10·0] vs 8·1 [7·6 to 8·6], p<0·0001; seroprevalence: 13·4% [10·7 to 16·7] vs 8·7% [6·5 to 11·5] vs 6·1% [4·2 to 8·5], p=0·0002). Regardless of the A(H1N1)pdm09-specific strain, maternal antibodies could be transferred efficiently via the placenta (mean transfer ratios: 1·10 for SWL4204/09 vs 1·09 for SWL1277/16 vs 1·06 for SWL185/18; p=0·93). The A(H1N1)pdm09 strain-specific antibodies waned below the protective threshold of 1:40 within 2 months after birth. After maternal antibody waning, there were periodic increases and decreases in HAI antibody titres against three A(H1N1)pdm09 strains, and such increases were all significantly associated with a higher immune response to heterologous strains. Vaccination against the SWL4204/09 strain was associated with a poor response to the SWL185/18 strain (β-0·20, 95% CI -0·28 to -0·13; p<0·0001). INTERPRETATION Our findings suggest low pre-existing immunity against influenza A(H1N1)pdm09 virus among unvaccinated Chinese adult female and paediatric populations. This evidence, together with the rapid decay of maternal antibodies and the observed cross-reactivity among different A(H1N1)pdm09 strains, highlights the importance of accelerating maternal and paediatric influenza vaccination in China. FUNDING The Key Program of the National Natural Science Foundation of China. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mei Li
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Junbo Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhifei Zhan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Meng Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Nuolan Liu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingshuang Ren
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lei You
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zheng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Huilin Shi
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zeyao Zhao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chaoyang Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Nan Zheng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Wanying Lu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaxin Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qiaohong Liao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Medina-Carrasco D, Pupo D, González-Lodeiro LG, García LE, Martin AM, Huerta V. Activity of domain III-specific antibodies in early convalescence: A case study. Virology 2023; 587:109883. [PMID: 37757730 DOI: 10.1016/j.virol.2023.109883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
The Dengue virus complex (DENV), formed by four serotypes, constitutes the most important arbovirus affecting humans. The structural domain III of their envelope protein (DIII) elicits strongly neutralizing serotype-specific antibodies. Contrasting results have been obtained regarding their role in the serum neutralizing activity of infected patients. We used a DENV immune serum from a secondary infection to examine the impact of characterizing the anti-DIII antibody response after affinity purification with recombinant DIII proteins to eliminate potential interferences from the interactions with human plasma proteins and other anti-DENV antibodies. Total anti-DENV IgG repertoire and anti-DIIIE antibodies were compared in functionality. In early convalescence, reactivity of anti-DIII antibodies is serotype specific and exhibits the strongest reactivity with infecting serotypes. Purification of anti-DIII antibodies emphasizes the reactivity profile as compared to total IgG fraction and serum. Serotype-specificity of the virus neutralization activity correlated with the apparent kD of the binding to recombinant DIIIs.
Collapse
Affiliation(s)
- Danya Medina-Carrasco
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Dianne Pupo
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Luis G González-Lodeiro
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Lisandra E García
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Alejandro M Martin
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Vivian Huerta
- Department of Systems Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
| |
Collapse
|
6
|
Carlock MA, Ross TM. A computationally optimized broadly reactive hemagglutinin vaccine elicits neutralizing antibodies against influenza B viruses from both lineages. Sci Rep 2023; 13:15911. [PMID: 37741893 PMCID: PMC10517972 DOI: 10.1038/s41598-023-43003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza B viruses (IBV) can cause severe disease and death much like influenza A viruses (IAV), with a disproportionate number of infections in children. Despite moving to a quadrivalent vaccine to include strains from both the B/Victoria and B/Yamagata lineages, vaccine effectiveness rates continue to be variable and low in many past seasons. To develop more effective influenza B virus vaccines, three novel IBV hemagglutinin (HA) vaccines were designed using a computationally optimized broadly reactive antigen (COBRA) methodology. These IBV HA proteins were expressed on the surface of a virus-like particle (VLP) and used to vaccinate ferrets that were pre-immune to historical B/Victoria or B/Yamagata lineage viruses. Ferrets vaccinated with B-COBRA HA vaccines had neutralizing antibodies with high titer HAI titer against all influenza B viruses regardless of pre-immunization history. Conversely, VLPs expressing wild-type IBV HA antigens preferentially boosted titers against viruses from the same lineage and there was little-to-no seroprotective antibodies detected in ferrets with mismatched IBV pre-immune infections. Overall, a single IBV HA developed using the COBRA methodology elicited protective broadly-reactive antibodies against current and future drifted IBVs from both lineages.
Collapse
Affiliation(s)
- Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA.
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Global Vaccine Development, Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port Saint Lucie, FL, 34987, USA.
| |
Collapse
|
7
|
Zong H, Zhang S, Shang X, Jiang H, Zhao Z, Chen S, Wang X, Wang Y, Jiang Y, Li X, Tan L, Liu P, Lv Q, Li Y. Development of an AlphaLISA assay for sensitive and accurate detection of influenza B virus. Front Med (Lausanne) 2023; 10:1155551. [PMID: 37215702 PMCID: PMC10196263 DOI: 10.3389/fmed.2023.1155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Objective Influenza B virus (IBV) is highly contagious, spreads rapidly, and causes seasonal epidemic respiratory disease in the human population, especially in immunocompromised people and young children. Clinical manifestations in this high-risk population are often more severe than in immunocompetent hosts and sometimes atypical. Therefore, rapid, and accurate detection of IBV is important. Methods An amplified luminescent proximity homogeneous assay linked immunosorbent assay (AlphaLISA) was developed for detection of IBV by optimizing the ratio of IBV antibody-labeled receptor beads, streptavidin-conjugated donor beads and biotinylated IBV antibody, as well as the optimal temperature and time conditions for incubation. Assay sensitivity, specificity and reproducibility were evaluated. A total of 228 throat swab samples and inactivated influenza B virus were tested by AlphaLISA and lateral flow colloidal gold-based immunoassay (LFIA). Results AlphaLISA produced the best results for detection of inactivated influenza B virus when IBV antibody-labeled acceptor beads were 50 μg/ mL, streptavidin-conjugated donor beads were 40 μg/mL, and biotinylated IBV antibody was 0.5 μg/mL at 37°C for 15-10 min. Under these conditions, AlphaLISA had a limit of detection of 0.24 ng/mL for the detection of influenza B nucleoprotein, did not cross react with other common respiratory viruses, and showed good reproducibility with inter-assay coefficient of variation (CV) and intra-assay CV < 5%. The results of 228 clinical throat swab samples showed good agreement between AlphaLISA and LFIA (Kappa = 0.982), and AlphaLISA showed better sensitivity than LFIA for detecting inactivated influenza B virus. Conclusion AlphaLISA showed higher sensitivity and throughput in the detection of IBV and can be used for IBV diagnosis and epidemic control.
Collapse
Affiliation(s)
- Huijun Zong
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengwei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xueyi Shang
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Lingyun Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yan Li
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Intensive Care Unit, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Martin DE, Cadar AN, Panier H, Torrance BL, Kuchel GA, Bartley JM. The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial. Immun Ageing 2023; 20:18. [PMID: 37131271 PMCID: PMC10152024 DOI: 10.1186/s12979-023-00343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. RESULTS Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. CONCLUSIONS Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults.
Collapse
Affiliation(s)
- Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Hunter Panier
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Medicine, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - George A Kuchel
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
| |
Collapse
|
9
|
Waldock J, Remarque EJ, Zheng L, Ho S, Hoschler K, Neumann B, Sediri-Schön H, Trombetta CM, Montomoli E, Marchi S, Lapini G, Zhou F, Lartey SL, Cox RJ, Facchini M, Castrucci MR, Friel D, Ollinger T, Caillet C, Music N, Palladino G, Engelhardt OG. Haemagglutination inhibition and virus microneutralisation serology assays: use of harmonised protocols and biological standards in seasonal influenza serology testing and their impact on inter-laboratory variation and assay correlation: A FLUCOP collaborative study. Front Immunol 2023; 14:1155552. [PMID: 37143658 PMCID: PMC10151801 DOI: 10.3389/fimmu.2023.1155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The haemagglutination inhibition assay (HAI) and the virus microneutralisation assay (MN) are long-established methods for quantifying antibodies against influenza viruses. Despite their widespread use, both assays require standardisation to improve inter-laboratory agreement in testing. The FLUCOP consortium aims to develop a toolbox of standardised serology assays for seasonal influenza. Building upon previous collaborative studies to harmonise the HAI, in this study the FLUCOP consortium carried out a head-to-head comparison of harmonised HAI and MN protocols to better understand the relationship between HAI and MN titres, and the impact of assay harmonisation and standardisation on inter-laboratory variability and agreement between these methods. Methods In this paper, we present two large international collaborative studies testing harmonised HAI and MN protocols across 10 participating laboratories. In the first, we expanded on previously published work, carrying out HAI testing using egg and cell isolated and propagated wild-type (WT) viruses in addition to high-growth reassortants typically used influenza vaccines strains using HAI. In the second we tested two MN protocols: an overnight ELISA-based format and a 3-5 day format, using reassortant viruses and a WT H3N2 cell isolated virus. As serum panels tested in both studies included many overlapping samples, we were able to look at the correlation of HAI and MN titres across different methods and for different influenza subtypes. Results We showed that the overnight ELISA and 3-5 day MN formats are not comparable, with titre ratios varying across the dynamic range of the assay. However, the ELISA MN and HAI are comparable, and a conversion factor could possibly be calculated. In both studies, the impact of normalising using a study standard was investigated, and we showed that for almost every strain and assay format tested, normalisation significantly reduced inter-laboratory variation, supporting the continued development of antibody standards for seasonal influenza viruses. Normalisation had no impact on the correlation between overnight ELISA and 3-5 day MN formats.
Collapse
Affiliation(s)
- Joanna Waldock
- Influenza Resource Centre, Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Lingyi Zheng
- Department of Research and Development, Sanofi, Marcy L’Etoile, France
| | - Sammy Ho
- Respiratory Viruses Unit, UK Health Secruity Agency, Colindale, United Kingdom
| | - Katja Hoschler
- Respiratory Viruses Unit, UK Health Secruity Agency, Colindale, United Kingdom
| | - Britta Neumann
- Section for Viral Vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hanna Sediri-Schön
- Section for Viral Vaccines, Virology Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Fan Zhou
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Sarah L. Lartey
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Rebecca J. Cox
- Influenza Centre, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Marzia Facchini
- World Health Organisation (WHO) National Influenza Centre, Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rita Castrucci
- World Health Organisation (WHO) National Influenza Centre, Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Catherine Caillet
- Department of Research and Development, Sanofi, Marcy L’Etoile, France
| | | | | | - Othmar G. Engelhardt
- Influenza Resource Centre, Vaccines, Science Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | | |
Collapse
|
10
|
Hoy G, Kuan G, López R, Sánchez N, López B, Ojeda S, Maier H, Patel M, Wraith S, Meyers A, Campredon L, Balmaseda A, Gordon A. The Spectrum of Influenza in Children. Clin Infect Dis 2023; 76:e1012-e1020. [PMID: 36069178 PMCID: PMC9907523 DOI: 10.1093/cid/ciac734] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Children constitute an important component of the influenza burden and community transmission, but the frequency of asymptomatic infection and post-influenza sequelae at the community level is poorly understood. METHODS Two community-based prospective cohort studies (2011-2020, 2017-2020) and 1 case-ascertained study (2012-2017) were conducted in Managua, Nicaragua. Non-immunocompromised children aged 0-14 years with ≥1 influenza infections, determined by polymerase chain reaction and hemagglutination inhibition assay, were included. RESULTS A total of 1272 influenza infections occurred in the household-based portion of the study. Influenza infection was asymptomatic in 84 (6.6%) infections, and the asymptomatic fraction increased with age (1.7%, 3.5%, and 9.1% for ages 0-1, 2-4, and 5-14, respectively; P < .001). Of asymptomatic children, 43 (51.2%) shed virus, compared to 1099 (92.5%) symptomatic children (P < .001). Also, 2140 cases of influenza occurred in the primary care portion of the study. Sequelae of influenza were rare, with the most common being pneumonia (52, 2.4%) and acute otitis media (71, 3.3%). A/H1N1 had higher age-adjusted odds of acute otitis media (odds ratio [OR] 1.99, 95% confidence interval [CI]: 1.14-3.48; P = .015) and hospitalization (OR 3.73, 95% CI: 1.68-8.67; P = .002) than A/H3N2. B/Victoria had higher age-adjusted odds of pneumonia (OR 10.99, 95% CI: 1.34-90.28; P = .026) than B/Yamagata. CONCLUSIONS Asymptomatic influenza infection is much less common in children than adults, although viral shedding still occurs in asymptomatic children. Post-influenza sequelae are rare in children in the community setting, and virus strain may be important in understanding the risk of sequelae.
Collapse
Affiliation(s)
- Gregory Hoy
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Roger López
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Nery Sánchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Brenda López
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Hannah Maier
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Mayuri Patel
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Steph Wraith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa Meyers
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lora Campredon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
King SM, Bryan SP, Hilchey SP, Wang J, Zand MS. First Impressions Matter: Immune Imprinting and Antibody Cross-Reactivity in Influenza and SARS-CoV-2. Pathogens 2023; 12:169. [PMID: 36839441 PMCID: PMC9967769 DOI: 10.3390/pathogens12020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Many rigorous studies have shown that early childhood infections leave a lasting imprint on the immune system. The understanding of this phenomenon has expanded significantly since 1960, when Dr. Thomas Francis Jr first coined the term "original antigenic sin", to account for all previous pathogen exposures, rather than only the first. Now more commonly referred to as "immune imprinting", this effect most often focuses on how memory B-cell responses are shaped by prior antigen exposure, and the resultant antibodies produced after subsequent exposure to antigenically similar pathogens. Although imprinting was originally observed within the context of influenza viral infection, it has since been applied to the pandemic coronavirus SARS-CoV-2. To fully comprehend how imprinting affects the evolution of antibody responses, it is necessary to compare responses elicited by pathogenic strains that are both antigenically similar and dissimilar to strains encountered previously. To accomplish this, we must be able to measure the antigenic distance between strains, which can be easily accomplished using data from multidimensional immunological assays. The knowledge of imprinting, combined with antigenic distance measures, may allow for improvements in vaccine design and development for both influenza and SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Samantha M. King
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shane P. Bryan
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14618, USA
| |
Collapse
|
12
|
Rumfelt KE, Fitzsimmons WJ, Truscon R, Monto AS, Martin ET, Lauring AS. A rapid and flexible microneutralization assay for serological assessment of influenza viruses. Influenza Other Respir Viruses 2023; 17:e13141. [PMID: 37127782 PMCID: PMC10174083 DOI: 10.1111/irv.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Serological responses from influenza vaccination or infection are typically measured by hemagglutinin inhibition (HAI) or microneutralization (MN). Both methods are limited in feasibility, standardization, and generalizability to recent strains. We developed a luciferase MN (LMN) assay that combines the advantages of the conventional MN assay with the ease of the HAI assay. METHODS Sera were obtained from the HIVE study, a Michigan household cohort. Reverse genetics was used to generate recombinant influenza viruses expressing the hemagglutinin and neuraminidase of test strains, all other viral proteins from an A/WSN/1933 backbone, and a NanoLuc reporter. Serum neutralization of luciferase-expressing targets was quantified as a reduction in light emission from infected cells. Neutralization titers were measured for cell- and egg-adapted versions of A/Hong Kong/4801/2014 and A/Singapore/INFIMH-16-0019/2016 and compared to HAI titers against egg-grown antigens. RESULTS Three hundred thirty-three sera were collected from 259 participants between May 2016 and July 2018. Sampled participants were 7-68 years of age, and >80% were vaccinated against influenza. HAI and LMN titers were correlated for A/Hong Kong/4801/2014 (ρ = 0.52, p ≤ 0.01) and A/Singapore/INFIMH-16-0019/2016 (ρ = 0.79, p ≤ 0.01). LMN titers were lower for cell strains compared to egg strains (A/Hong Kong/4801/2014 mean log2 fold change = -2.66, p ≤ 0.01 and A/Singapore/INFIMH-16-0019/2016 mean log2 fold change = -3.15, p ≤ 0.01). CONCLUSIONS The LMN assay was feasible using limited sample volumes and able to differentiate small antigenic differences between egg-adapted and cell-derived strains. The correspondence of these results with the commonly used HAI confirms the utility of this assay for high-throughput studies of correlates of protection and vaccine response.
Collapse
Affiliation(s)
- Kalee E. Rumfelt
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - William J. Fitzsimmons
- Division of Infectious Diseases, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Rachel Truscon
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Arnold S. Monto
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Emily T. Martin
- Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Vanni T, Thomé BC, Sparrow E, Friede M, Fox CB, Beckmann AM, Huynh C, Mondini G, Silveira DH, Viscondi JYK, Braga PE, da Silva A, Salomão MDG, Piorelli RO, Santos JP, Gattás VL, Lucchesi MBB, de Oliveira MMM, Koike ME, Kallas EG, Campos LMA, Coelho EB, Siqueira MAM, Garcia CC, Miranda MD, Paiva TM, Timenetsky MDCST, Adami EA, Akamatsu MA, Ho PL, Precioso AR. Dose-sparing effect of two adjuvant formulations with a pandemic influenza A/H7N9 vaccine: A randomized, double-blind, placebo-controlled, phase 1 clinical trial. PLoS One 2022; 17:e0274943. [PMID: 36256646 PMCID: PMC9578608 DOI: 10.1371/journal.pone.0274943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15μg H7N9, 1B) IB160 + 7.5μg H7N9, 1C) IB160 + 3.75μg H7N9, 2A) SE + 15μg H7N9, 2B) SE + 7.5μg H7N9, 2C) SE + 3.75μg H7N9, 3) unadjuvanted vaccine 15μg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.
Collapse
Affiliation(s)
| | | | | | | | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Anna Marie Beckmann
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Chuong Huynh
- Biomedical Advanced Research and Development Authority, Washington, DC, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | - Esper G. Kallas
- Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
| | - Lucia M. A. Campos
- Child Institute of the Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
| | - Eduardo B. Coelho
- Clinics Hospital of the Medical School of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | - Alexander R. Precioso
- Instituto Butantan, São Paulo, Brazil
- Child Institute of the Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Hallam J, Jones T, Alley J, Kohut ML. Exercise after influenza or COVID-19 vaccination increases serum antibody without an increase in side effects. Brain Behav Immun 2022; 102:1-10. [PMID: 35131444 PMCID: PMC8816799 DOI: 10.1016/j.bbi.2022.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
Vaccination is an effective public health measure, yet vaccine efficacy varies across different populations. Adjuvants improve vaccine efficacy but often increase reactogenicity. An unconventional behavioral "adjuvant" is physical exercise at the time of vaccination. Here, in separate experiments, we examined the effect of 90-minute light- to moderate-intensity cycle ergometer or outdoor walk/jog aerobic exercise performed once after immunization on serum antibody response to three different vaccines (2009 pandemic influenza H1N1, seasonal influenza, and COVID-19). Exercise took place after influenza vaccination or after the first dose of Pfizer-BioNTech COVID-19 vaccine. A mouse model of influenza A immunization was used to examine the effect of exercise on antibody response and the role of IFNα as a potential mechanism by treating mice with anti-IFNα antibody. The results show that 90 min of exercise consistently increased serum antibody to each vaccine four weeks post-immunization, and IFNα may partially contribute to the exercise-related benefit. Exercise did not increase side effects after the COVID-19 vaccination. These findings suggest that adults who exercise regularly may increase antibody response to influenza or COVID-19 vaccine by performing a single session of light- to moderate-intensity exercise post-immunization.
Collapse
Affiliation(s)
- Justus Hallam
- Department of Kinesiology, Iowa State University, Ames, IA, USA; Program of Immunobiology, Iowa State University, Ames, IA, USA
| | - Tyanez Jones
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jessica Alley
- Department of Kinesiology, Iowa State University, Ames, IA, USA; Program of Immunobiology, Iowa State University, Ames, IA, USA
| | - Marian L Kohut
- Department of Kinesiology, Iowa State University, Ames, IA, USA; Program of Immunobiology, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
16
|
Mittal N, Sengupta N, Malladi SK, Reddy P, Bhat M, Rajmani RS, Sedeyn K, Saelens X, Dutta S, Varadarajan R. Protective Efficacy of Recombinant Influenza Hemagglutinin Ectodomain Fusions. Viruses 2021; 13:v13091710. [PMID: 34578291 PMCID: PMC8473191 DOI: 10.3390/v13091710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza vaccines would likely enhance vaccine efficacy. However, this would come with increased manufacturing complexity and cost. To address this issue, as a proof of principle, we have designed genetic fusions of hemagglutinin ectodomains from H3 and H1 influenza A subtypes. These recombinant H1-H3 hemagglutinin ectodomain fusions could be transiently expressed at high yield in mammalian cell culture using Expi293F suspension cells. Fusions were trimeric, and as stable in solution as their individual trimeric counterparts. Furthermore, the H1-H3 fusion constructs were antigenically intact based on their reactivity with a set of conformation-specific monoclonal antibodies. H1-H3 hemagglutinin ectodomain fusion immunogens, when formulated with the MF59 equivalent adjuvant squalene-in-water emulsion (SWE), induced H1 and H3-specific humoral immune responses equivalent to those induced with an equimolar mixture of individually expressed H1 and H3 ectodomains. Mice immunized with these ectodomain fusions were protected against challenge with heterologous H1N1 (Bel/09) and H3N2 (X-31) mouse-adapted viruses with higher neutralizing antibody titers against the H1N1 virus. Use of such ectodomain-fused immunogens would reduce the number of components in a vaccine formulation and allow for the inclusion of other protective antigens to increase influenza vaccine efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cross Protection/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccine Efficacy
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nidhi Mittal
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Sameer Kumar Malladi
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India; (P.R.); (M.B.)
| | - Madhuraj Bhat
- Mynvax Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India; (P.R.); (M.B.)
| | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (K.S.); (X.S.)
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (K.S.); (X.S.)
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
- Correspondence: ; Tel.: +91-80-22932612; Fax: +91-80-23600535
| |
Collapse
|
17
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
18
|
Yan L, Sun L, Guo C, Li L, Sun J, Huang X, Zhao P, Xie X, Hu J. Neutralizing antibody PR8-23 targets the footprint of the sialoglycan receptor binding site of H1N1 hemagglutinin. J Med Virol 2021; 93:3508-3515. [PMID: 33410516 DOI: 10.1002/jmv.26779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022]
Abstract
Influenza virus cause seasonal influenza epidemic and seriously sporadic influenza pandemic outbreaks. Hemagglutinin (HA) is an important target in the therapeutic treatment and diagnostic detection of the influenza virus. Variation in the sialic acid receptor binding site leads to strain-specific binding and results in different binding modes to the host receptors. Here, we evaluated the neutralizing activity and hemagglutination inhibition activity of a prepared murine anti-H1N1 monoclonal antibody PR8-23. Then we identified the epitope peptide of antibody PR8-23 by phage display technique from phage display peptide libraries. The identified epitope, 63-IAPLQLGKCNIA-74, containing two α-helix and two β-fold located at the footprint of the sialoglycan receptor on the RBS in the globular head domain of HA. It broads the growing arsenal of motifs for the amino acids on the globular head domain of HA in sialic acid receptor binding site and neutralizing antibody production.
Collapse
Affiliation(s)
- Liting Yan
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Lijun Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Chunyan Guo
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Lanlan Li
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jingying Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Xiaoyan Huang
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Penghua Zhao
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Xin Xie
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| | - Jun Hu
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| |
Collapse
|
19
|
Evaluation of a Pseudovirus Neutralization Assay for SARS-CoV-2 and Correlation with Live Virus-Based Micro Neutralization Assay. Diagnostics (Basel) 2021; 11:diagnostics11060994. [PMID: 34070824 PMCID: PMC8226551 DOI: 10.3390/diagnostics11060994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The unusual cases of pneumonia outbreak were reported from Wuhan city in late December 2019. Serological testing provides a powerful tool for the identification of prior infection and for epidemiological studies. Pseudotype virus neutralization assays are widely used for many viruses and applications in the fields of serology. The accuracy of pseudotype neutralizing assay allows for its use in low biosafety lab and provides a safe and effective alternative to the use of wild-type viruses. In this study, we evaluated the performance of this assay compared to the standard microneutralization assay as a reference. The lentiviral pseudotype particles were generated harboring the Spike gene of SARS-CoV-2. The generated pseudotype particles assay was used to evaluate the activity of neutralizing antibodies in 300 human serum samples from a COVID-19 sero-epidemiological study. Testing of these samples resulted in 55 positive samples and 245 negative samples by pseudotype viral particles assay while microneutralization assay resulted in 64 positive and 236 negative by MN assay. Compared to the MN, the pseudotyped viral particles assay showed a sensitivity of 85.94% and a specificity of 100%. Based on the data generated from this study, the pseudotype-based neutralization assay showed a reliable performance for the detection of neutralizing antibodies against SARS-CoV-2 and can be used safely and efficiently as a diagnostic tool in a biosafety level 2 laboratory.
Collapse
|
20
|
Ferrara F, Del Rosario JMM, da Costa KAS, Kinsley R, Scott S, Fereidouni S, Thompson C, Kellam P, Gilbert S, Carnell G, Temperton N. Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Front Immunol 2021; 12:661379. [PMID: 34108964 PMCID: PMC8182064 DOI: 10.3389/fimmu.2021.661379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Physical Sciences & Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Rebecca Kinsley
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, Veterinary Medicine University, Vienna, Austria
| | - Craig Thompson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paul Kellam
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
21
|
Effect of Repeated Freeze-Thaw Cycles on Influenza Virus Antibodies. Vaccines (Basel) 2021; 9:vaccines9030267. [PMID: 33802846 PMCID: PMC8002830 DOI: 10.3390/vaccines9030267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Vaccine effectiveness relies on various serological tests, whose aim is the measurement of antibody titer in serum samples collected during clinical trials before and after vaccination. Among the serological assays required by the regulatory authorities to grant influenza vaccine release there are: Hemagglutination inhibition (HAI), microneutralization (MN), and Single Radial Hemolysis (SRH). Although antibodies are regarded to be relatively stable, limited evidences on the effect of multiple freeze–thaw cycles on the stability of antibodies in frozen serum samples are available so far. In view of this, the present paper aimed to evaluate the impact of multiple freeze–thaw cycles on influenza antibody stability, performing HAI, MN and SRH assays. Methods: Ten serum samples were divided into 14 aliquots each, stored at −20 °C and taken through a total of 14 freeze–thaw cycles to assess influenza antibody stability. Each assay measurement was carried out following internal procedures based on World Health Organization (WHO) guidelines. Results: No statistically significant effect of 14 freeze–thaw cycles on antibody stability, measured through three different assays, was observed. Conclusions: Collectively, these data demonstrated that specific influenza antibody present in serum samples are stable up to 14 freeze–thaw cycles.
Collapse
|
22
|
Xie XT, Yitbarek A, Astill J, Singh S, Khan SU, Sharif S, Poljak Z, Greer AL. Within-host model of respiratory virus shedding and antibody response to H9N2 avian influenza virus vaccination and infection in chickens. Infect Dis Model 2021; 6:490-502. [PMID: 33778216 PMCID: PMC7966989 DOI: 10.1016/j.idm.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Avian influenza virus (AIV) H9N2 subtype is an infectious pathogen that can affect both the respiratory and gastrointestinal systems in chickens and continues to have an important economic impact on the poultry industry. While the host innate immune response provides control of virus replication in early infection, the adaptive immune response aids to clear infections and prevent future invasion. Modelling virus-innate immune response pathways can improve our understanding of early infection dynamics and help to guide our understanding of virus shedding dynamics that could lead to reduced transmission between hosts. While some countries use vaccines for the prevention of H9N2 AIV in poultry, the virus continues to be endemic in regions of Eurasia and Africa, indicating a need for improved vaccine efficacy or vaccination strategies. Here we explored how three type-I interferon (IFN) pathways affect respiratory virus shedding patterns in infected chickens using a within-host model. Additionally, prime and boost vaccination strategies for a candidate H9N2 AIV vaccine are assessed for the ability to elicit seroprotective antibody titres. The model demonstrates that inclusion of virus sensitivity to intracellular type-I IFN pathways results in a shedding pattern most consistent with virus titres observed in infected chickens, and the inclusion of a cellular latent period does not improve model fit. Furthermore, early administration of a booster dose two weeks after the initial vaccine is administered results in seroprotective titres for the greatest length of time for both broilers and layers. These results demonstrate that type-I IFN intracellular mechanisms are required in a model of respiratory virus shedding in H9N2 AIV infected chickens, and also highlights the need for improved vaccination strategies for laying hens.
Collapse
Affiliation(s)
- Xiao-Ting Xie
- Department of Population Medicine, University of Guelph, ON, Canada
| | | | - Jake Astill
- Department of Pathobiology, University of Guelph, ON, Canada
| | - Shirene Singh
- School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Salah Uddin Khan
- Department of Population Medicine, University of Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, ON, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, ON, Canada
| | - Amy L Greer
- Department of Population Medicine, University of Guelph, ON, Canada
| |
Collapse
|
23
|
Menéndez-Rey A, González-Martos R, Ye P, Quiroz-Troncoso J, Alegría-Aravena N, Sánchez-Díez M, Maestu-Unturbe C, Bensadon-Naeder L, Ramírez-Castillejo C. Quantification of lectins in Synsepalum dulcificum and comparison with reference foods. Food Chem 2021; 352:129341. [PMID: 33657483 DOI: 10.1016/j.foodchem.2021.129341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
A healthy life means a balance between physical activity and a diet rich in fruits and vegetables, however, some plant-based foods can have certain adverse effects due to the presence of anti-nutritional factors, such as lectins, capable of binding molecules and preventing their normal assimilation. The level of lectins in Synsepalum dulcificum fruit was determined by hemagglutination assays in human blood, and its comparison with foods characterized as having high and low lectin content. The relative hemagglutinating activity of berries from Synsepalum dulcificum compared to our positive high lectin content food reference (Pinto bean) corresponds to 3.13-6.25%, representing safe levels for nutritional food.
Collapse
Affiliation(s)
- Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain.
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Peng Ye
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ceferino Maestu-Unturbe
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | | | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|
24
|
Carnell GW, Trombetta CM, Ferrara F, Montomoli E, Temperton NJ. Correlation of Influenza B Haemagglutination Inhibiton, Single-Radial Haemolysis and Pseudotype-Based Microneutralisation Assays for Immunogenicity Testing of Seasonal Vaccines. Vaccines (Basel) 2021; 9:100. [PMID: 33525543 PMCID: PMC7911544 DOI: 10.3390/vaccines9020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza B is responsible for a significant proportion of the global morbidity, mortality and economic loss caused by influenza-related disease. Two antigenically distinct lineages co-circulate worldwide, often resulting in mismatches in vaccine coverage when vaccine predictions fail. There are currently operational issues with gold standard serological assays for influenza B, such as lack of sensitivity and requirement for specific antigen treatment. This study encompasses the gold standard assays with the more recent Pseudotype-based Microneutralisation assay in order to study comparative serological outcomes. Haemagglutination Inhibition, Single Radial Haemolysis and Pseudotype-based Microneutralisation correlated strongly for strains in the Yamagata lineage; however, it correlated with neither gold standard assays for the Victoria lineage.
Collapse
Affiliation(s)
- George W. Carnell
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); or (E.M.)
| | - Francesca Ferrara
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); or (E.M.)
- VisMederi srl, 53100 Siena, Italy
| | - Nigel J. Temperton
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| |
Collapse
|
25
|
A Replication-Defective Influenza Virus Harboring H5 and H7 Hemagglutinins Provides Protection against H5N1 and H7N9 Infection in Mice. J Virol 2021; 95:JVI.02154-20. [PMID: 33177192 DOI: 10.1128/jvi.02154-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The recent highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses have caused hundreds of human infections with high mortality rates. Although H5N1 and H7N9 viruses have been limited mainly to avian species, there is high potential for these viruses to acquire human-to-human transmission and initiate a pandemic. A highly safe and effective vaccine is needed to protect against a potential H5N1 or H7N9 influenza pandemic. Here, we report the generation and evaluation of two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA These viruses contain six internal segments from A/Puerto Rico/8/1934 (PR8), the HA segment from either A/Alberta/01/2014 (H5N1) [AB14 (H5N1)] or A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], and a chimeric NA segment with either the BC15 (H7N9) HA gene or the AB14 (H5N1) HA gene flanked by the NA packaging signals of PR8. These viruses expressed both H5 and H7 HAs in infected cells, replicated to high titers when exogenous NA was added to the culture medium in vitro, and were replication defective and nonvirulent when administered intranasally in mice. Moreover, intranasal vaccination with PR8-H5-H7NA elicited robust immune responses to both H5 and H7 viruses, conferring complete protection against both AB14 (H5N1) and BC15 (H7N9) challenges in mice. Conversely, vaccination with PR8-H7-H5NA only elicited robust immune responses toward the H7 virus, which conferred complete protection against BC15 (H7N9) but not against AB14 (H5N1) in mice. Therefore, PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.IMPORTANCE Avian influenza H5N1 and H7N9 viruses infected humans with high mortality rates. A highly safe and effective vaccine is needed to protect against a potential pandemic. We generated and evaluated two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA, as vaccine candidates. Each virus contains one type of HA in segment 4 and the other subtype of HA in segment 6, thereby expressing both H5 and H7 subtypes of the HA molecule. The replication of viruses is dependent on the addition of exogenous NA in cell culture and is replication defective in vivo Vaccination of PR8-H5-H7NA virus confers protection to both H5N1 and H7N9 virus challenge; conversely, vaccination of PR8-H7-H5NA provides protection only to H7N9 virus challenge. Our data revealed that when engineering such a virus, the H5 or H7 HA in segment 6 affects the immunogenicity. PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.
Collapse
|
26
|
Lau YC, Perera RAPM, Fang VJ, Luk LH, Chu DKW, Wu P, Barr IG, Peiris JSM, Cowling BJ. Variation by lineage in serum antibody responses to influenza B virus infections. PLoS One 2020; 15:e0241693. [PMID: 33166348 PMCID: PMC7652285 DOI: 10.1371/journal.pone.0241693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Two lineages of influenza B virus currently co-circulate and have distinct antigenicity, termed Victoria and Yamagata after the B/Victoria/2/87 and B/Yamagata/16/88 strains, respectively. We analyzed antibody titer dynamics following PCR-confirmed influenza B virus infection in a longitudinal community-based cohort study conducted in Hong Kong from 2009–2014 to assess patterns in changes in antibody titers to B/Victoria and B/Yamagata viruses following infections with each lineage. Among 62 PCR-confirmed cases, almost half had undetectable hemagglutination inhibition (HAI) antibody titers to the lineage of infection both pre-infection and post-infection. Among those infected with influenza B/Victoria who showed an HAI titer response after infection, we found strong rises to the lineage of infection, positive but smaller cross-lineage HAI titer boosts, a small dependence of HAI titer boosts on pre-infection titers, and a shorter half-life of HAI titers in adults. Our study is limited by the low HAI sensitivity for non-ether-treated IBV antigen and the incapacity of performing other assays with higher sensitivity, as well as the mismatch between the B/Yamagata lineage circulating strain and the assay strain in one of the study seasons.
Collapse
Affiliation(s)
- Yiu Chung Lau
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A. P. M. Perera
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Vicky J. Fang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Long Hei Luk
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel K. W. Chu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Peng Wu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ian G. Barr
- World Health Organization Collaborating Centre for Reference and Research, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - J. S. Malik Peiris
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
27
|
Manenti A, Maggetti M, Casa E, Martinuzzi D, Torelli A, Trombetta CM, Marchi S, Montomoli E. Evaluation of SARS-CoV-2 neutralizing antibodies using a CPE-based colorimetric live virus micro-neutralization assay in human serum samples. J Med Virol 2020; 92:2096-2104. [PMID: 32383254 PMCID: PMC7267461 DOI: 10.1002/jmv.25986] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The micro-neutralization assay is a fundamental test in virology, immunology, vaccine assessment, and epidemiology studies. Since the SARS-CoV-2 outbreak at the end of December 2019 in China, it has become extremely important to have well-established and validated diagnostic and serological assays for this new emerging virus. Here, we present a micro-neutralization assay with the use of SARS-CoV-2 wild type virus with two different methods of read-out. We evaluated the performance of this assay using human serum samples taken from an Italian seroepidemiological study being performed at the University of Siena, along with the human monoclonal antibody CR3022 and some iper-immune animal serum samples against Influenza and Adenovirus strains. The same panel of human samples have been previously tested in enzyme-linked immunosorbent assay (ELISA) as a pre-screening. Positive, borderline, and negative ELISA samples were evaluated in neutralization assay using two different methods of read-out: subjective (by means of an inverted optical microscope) and objective (by means of a spectrophotometer). Our findings suggest that at least 50% of positive ELISA samples are positive in neutralization as well, and that method is able to quantify different antibody concentrations in a specific manner. Taken together, our results confirm that the colorimetric cytopathic effect-based microneutralization assay could be used as a valid clinical test method for epidemiological and vaccine studies.
Collapse
Affiliation(s)
| | | | - Elisa Casa
- VisMederi Research s.r.l.SienaItaly
- VisMederi s.r.l.SienaItaly
| | | | | | | | - Serena Marchi
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Emanuele Montomoli
- VisMederi Research s.r.l.SienaItaly
- VisMederi s.r.l.SienaItaly
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| |
Collapse
|
28
|
Hyseni I, Molesti E, Benincasa L, Piu P, Casa E, Temperton NJ, Manenti A, Montomoli E. Characterisation of SARS-CoV-2 Lentiviral Pseudotypes and Correlation between Pseudotype-Based Neutralisation Assays and Live Virus-Based Micro Neutralisation Assays. Viruses 2020; 12:E1011. [PMID: 32927639 PMCID: PMC7551040 DOI: 10.3390/v12091011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/06/2023] Open
Abstract
The recent outbreak of a novel Coronavirus (SARS-CoV-2) and its rapid spread across the continents has generated an urgent need for assays to detect the neutralising activity of human sera or human monoclonal antibodies against SARS-CoV-2 spike protein and to evaluate the serological immunity in humans. Since the accessibility of live virus microneutralisation (MN) assays with SARS-CoV-2 is limited and requires enhanced bio-containment, the approach based on "pseudotyping" can be considered a useful complement to other serological assays. After fully characterising lentiviral pseudotypes bearing the SARS-CoV-2 spike protein, we employed them in pseudotype-based neutralisation assays in order to profile the neutralising activity of human serum samples from an Italian sero-epidemiological study. The results obtained with pseudotype-based neutralisation assays mirrored those obtained when the same panel of sera was tested against the wild type virus, showing an evident convergence of the pseudotype-based neutralisation and MN results. The overall results lead to the conclusion that the pseudotype-based neutralisation assay is a valid alternative to using the wild-type strain, and although this system needs to be optimised and standardised, it can not only complement the classical serological methods, but also allows serological assessments to be made when other methods cannot be employed, especially in a human pandemic context.
Collapse
Affiliation(s)
- Inesa Hyseni
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | - Eleonora Molesti
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | - Linda Benincasa
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | | | - Elisa Casa
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME7 4TB, UK;
| | - Alessandro Manenti
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | - Emanuele Montomoli
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
29
|
Comparability of Titers of Antibodies against Seasonal Influenza Virus Strains as Determined by Hemagglutination Inhibition and Microneutralization Assays. J Clin Microbiol 2020; 58:JCM.00750-20. [PMID: 32493784 PMCID: PMC7448638 DOI: 10.1128/jcm.00750-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
We compared titers of antibodies against A/H1N1, A/H3N2, and B influenza virus strains collected pre- and postvaccination using hemagglutination inhibition (HI) and microneutralization (MN) assays and data from two vaccine trials: study 1, performed with a cell-grown trivalent influenza vaccine (TIVc) using cell-grown target virus in both assays, and study 2, performed with an egg-grown adjuvanted quadrivalent influenza vaccine (aQIVe) using egg-grown target virus. The relationships between HI- and MN-derived log-transformed titers were examined using different statistical techniques. We compared titers of antibodies against A/H1N1, A/H3N2, and B influenza virus strains collected pre- and postvaccination using hemagglutination inhibition (HI) and microneutralization (MN) assays and data from two vaccine trials: study 1, performed with a cell-grown trivalent influenza vaccine (TIVc) using cell-grown target virus in both assays, and study 2, performed with an egg-grown adjuvanted quadrivalent influenza vaccine (aQIVe) using egg-grown target virus. The relationships between HI- and MN-derived log-transformed titers were examined using different statistical techniques. Deming regression analyses showed point estimates for slopes generally close to 1 across studies and strains. The slope of regression was closest to 1 for A/H3N2 strain when either cell- or egg-grown viral target virus was used. Bland-Altman plots indicated a very small percentage of results outside 2 and 3 standard deviations. The magnitudes and directions of differences between titers in the two assays varied by study and strain. Mean differences favored the MN assay for A/H1N1 and B strains in study 1, whereas the titers determined by HI were higher than those determined by MN against the A/H3N2 strain. In study 2, mean differences favored the MN assay for A/H3N2 and B strains. Overall, the directions and magnitudes of the mean differences were similar between the two vaccines. The concordance correlation coefficient values ranged from 0.74 (A/H1N1 strain, study 1) to 0.97 (A/H3N2 strain, study 1). The comparative analysis demonstrates an overall strong positive correlation between the HI and MN assays. These data support the use of the MN assay to quantify the immune response of influenza vaccines in clinical studies, particularly for the A/H3N2 strain.
Collapse
|
30
|
Kinsley R, Pronost S, De Bock M, Temperton N, Daly JM, Paillot R, Scott S. Evaluation of a Pseudotyped Virus Neutralisation Test for the Measurement of Equine Influenza Virus-Neutralising Antibody Responses Induced by Vaccination and Infection. Vaccines (Basel) 2020; 8:vaccines8030466. [PMID: 32825702 PMCID: PMC7565038 DOI: 10.3390/vaccines8030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023] Open
Abstract
Equine influenza is a major respiratory disease of horses that is largely controlled by vaccination in some equine populations. Virus-neutralising antibodies, the mainstay of the protective immune response, are problematic in assaying for equine influenza virus, as most strains do not replicate efficiently in cell culture. Surrogate measures of protective antibody responses include the haemagglutination inhibition (HI) test and single radial haemolysis (SRH) assay. For this study, a pseudotyped virus, bearing an envelope containing the haemagglutinin (HA) from the Florida clade 2 equine influenza virus strain A/equine/Richmond/1/07 (H3N8), was generated to measure HA-specific neutralising antibodies in serum samples (n = 134) from vaccinated or experimentally-infected ponies using a pseudotyped virus neutralization test (PVNT). Overall, the results of PVNT were in good agreement with results from the SRH assay (100% sensitivity, 68.53% specificity) and HI test (99.2% sensitivity, 49.03% specificity). The PVNT was apparently more sensitive than either the SRH assay or the HI test, which could be advantageous for studying the antibody kinetics, particularly when antibody levels are low. Nevertheless, further studies are required to determine whether a protective antibody level can be defined for the SRH assay and to ascertain the inter-laboratory reproducibility. In conclusion, the PVNT efficiently measures neutralising antibodies after immunization and/or experimental infection in the natural host, and may complement existing antibody assays.
Collapse
Affiliation(s)
- Rebecca Kinsley
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
| | - Manuelle De Bock
- Elanco Animal Health, Plantin en Moretuslei, B-2018 Antwerpen, Belgium;
| | - Nigel Temperton
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Romain Paillot
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Kentford Newmarket CB8 7UU, UK
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| | - Simon Scott
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| |
Collapse
|
31
|
Development of ssDNA Aptamers for Diagnosis and Inhibition of the Highly Pathogenic Avian Influenza Virus Subtype H5N1. Biomolecules 2020; 10:biom10081116. [PMID: 32731467 PMCID: PMC7465229 DOI: 10.3390/biom10081116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Avian influenza (AI) has severely affected the poultry industry worldwide and has caused the deaths of millions of birds. Highly pathogenic avian influenza virus is characterized by high mortality and the ability to transmit from birds to humans. Early diagnosis is difficult because of the variation in pathogenicity and the genetic diversity between virus subtypes. Therefore, development of a sensitive and accurate diagnostic system is an urgent priority. We developed ssDNA aptamer probes to detect AI viruses. Through seven rounds of SELEX to search for a probe specific to the highly pathogenic AI virus subtype H5N1, we identified 16 binding aptamers and selected two with the highest binding frequency. These two aptamers had strong binding affinities and low detection limits. We found that they could bind more specifically to H5N1, as compared to other subtypes. Furthermore, these aptamers inhibited hemagglutination, which is caused by the virus surface protein hemagglutinin. Our results indicate that our screened aptamers are effective molecular probes for diagnosing H5N1 and can be used as therapeutic agents to inhibit viral surface proteins. Sensitive diagnosis and suppression of avian influenza will help maintain a stable and healthy livestock industry, as well as protect human health.
Collapse
|
32
|
Immunogenicity Measures of Influenza Vaccines: A Study of 1164 Registered Clinical Trials. Vaccines (Basel) 2020; 8:vaccines8020325. [PMID: 32575440 PMCID: PMC7350243 DOI: 10.3390/vaccines8020325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza carries an enormous burden each year. Annual influenza vaccination is the best means of reducing this burden. To be clinically effective, influenza vaccines must be immunogenic, and several immunological assays to test their immunogenicity have been developed. This study aimed to describe the patterns of use of the various immunological assays available to measure the influenza vaccine-induced adaptive immune response and to determine its correlates of protection. A total of 76.5% of the studies included in our analysis measured only the humoral immune response. Among these, the hemagglutination-inhibition assay was by far the most widely used. Other, less common, humoral immune response assays were: virus neutralization (21.7%), enzyme-linked immunosorbent (10.1%), single radial hemolysis (4.6%), and assays able to quantify anti-neuraminidase antibodies (1.7%). By contrast, cell-mediated immunity was quantified in only 23.5% of studies. Several variables were significantly associated with the use of single assays. Specifically, some influenza vaccine types (e.g., adjuvanted, live attenuated and cell culture-derived or recombinant), study phase and study sponsorship pattern were usually found to be statistically significant predictors. We discuss the principal findings and make some suggestions from the point of view of the various stakeholders.
Collapse
|
33
|
Landreth S, Lu Y, Pandey K, Zhou Y. A Replication-Defective Influenza Virus Vaccine Confers Complete Protection against H7N9 Viral Infection in Mice. Vaccines (Basel) 2020; 8:E207. [PMID: 32370136 PMCID: PMC7349114 DOI: 10.3390/vaccines8020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Avian influenza H7N9 viruses continue to pose a great threat to public health, which is evident by their high case-fatality rates. Although H7N9 was first isolated in humans in China in 2013, to date, there is no commercial vaccine available against this particular strain. Our previous studies developed a replication-defective influenza virus through mutation of the hemagglutinin (HA) cleavage site from a trypsin-sensitive to an elastase-sensitive motif. In this study, we report the development of a reassortant mutant influenza virus derived from the human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], which is the QVT virus. The HA gene of this virus possesses three mutations at the cleavage site, Lys-Gly-Arg were mutated to Gln-Thr-Val at amino acid (aa) positions 337, 338, and 339, respectively. We report this virus to rely on elastase in vitro, possess unaltered replication abilities when elastase was provided compared to the wild type virus in vitro, and to be non-virulent and replication-defective in mice. In addition, we report this virus to induce significant levels of antibodies and IFN-γ and IL-5 secreting cells, and to protect mice against a lethal challenge of the BC15 (H7N9) virus. This protection is demonstrated through the lack of body weight loss, 100% survival rate, and the prevention of BC15 (H7N9) viral replication as well as the reduction of proinflammatory cytokines induced in the mouse lung associated with the influenza disease. Therefore, these results provide strong evidence for the use of this reassortant mutant H7N9 virus as a replication-defective virus vaccine candidate against H7N9 viruses.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yao Lu
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
| | - Kannupriya Pandey
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yan Zhou
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
34
|
Hoschler K, Maharjan S, Whitaker H, Southern J, Okai B, Baldevarona J, Turner PJ, Andrews NJ, Miller E, Zambon M. Use of traditional serological methods and oral fluids to assess immunogenicity in children aged 2-16 years after successive annual vaccinations with LAIV. Vaccine 2020; 38:2660-2670. [PMID: 32070679 PMCID: PMC7054836 DOI: 10.1016/j.vaccine.2020.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The UK introduced quadrivalent live attenuated influenza vaccine (qLAIV) for children in 2013/2014. The impact of annual vaccination on effectiveness and immunogenicity is being assessed. METHOD A phase III/IV open-label study of the immunogenicity of annual vaccination with qLAIV (Fluenz™) was conducted over three consecutive years (2014/15-2016/17) in 254, 249 and 162 children respectively. Serum responses to vaccine components were measured by Haemagglutination Inhibition (HAI) and anti-A(H1N1)pdm09 Neuraminidase (NAI) assays, stratified according to previous receipt of AS03B-adjuvanted A(H1N1)pdm09 pandemic vaccine in 2009/10. Antibody levels to the A(H1N1)pdm09 and H3N2 vaccine components in oral fluids (OF) were explored using an ELISA. FINDINGS More paired pre- and post-vaccination oral fluids (96%) than paired sera (87%) were obtained. Geometric mean titre rises using HAI assays were limited, with maximum rises seen in year one for both influenza B strains when 39% and 43% of subjects seroconverted (95% confidence interval 33-46% and 36-50%, respectively) and year two for influenza H3N2, when 40% (33-46%) individuals seroconverted. Prior pandemic vaccine receipt resulted in higher pre- and post-vaccination A(H1N1)pdm09 HAI titres and lower pre-and post-vaccination NAI (N1 neuraminidase) titres in all three years. OF results were congruent with HAI results; assay specificity compared to HAI was 88.1 and 71.6 percent, and sensitivity was 86.4 and 74.8 percent respectively for A(H1N1)pdm09 and H3N2. CONCLUSION In all three study years, vaccination with qLAIV resulted in poor antibody responses. However, OFs are an alternative specimen type that allows self sampling, can easily be obtained from children, and their analysis leads to similar conclusions as classic serology by HAI. Their suitability for seroprevalence studies should be investigated. We demonstrated a sustained effect from prior receipt of the AS03B-adjuvanted A(H1N1)pdm09 vaccine, even after repeat vaccination with qLAIV indicating that early exposure to influenza antigens has a significant long lasting effect.
Collapse
MESH Headings
- Adolescent
- Antibodies, Viral/blood
- Child
- Child, Preschool
- Female
- Humans
- Immunization Schedule
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Male
- Saliva/immunology
- United Kingdom/epidemiology
- Vaccination/methods
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Katja Hoschler
- Virus Reference Department, Public Health England (Colindale), London, UK.
| | - Sunil Maharjan
- Virus Reference Department, Public Health England (Colindale), London, UK
| | - Heather Whitaker
- Statistics, Modelling and Economics Department, Public Health England (Colindale), London, UK
| | - Jo Southern
- Immunisation and Countermeasures, Public Health England (Colindale), London, UK
| | - Blessing Okai
- Virus Reference Department, Public Health England (Colindale), London, UK
| | - Janice Baldevarona
- Virus Reference Department, Public Health England (Colindale), London, UK
| | - Paul J Turner
- Immunisation and Countermeasures, Public Health England (Colindale), London, UK; National Heart and Lung Institute, Imperial College London, UK
| | - Nick J Andrews
- Statistics, Modelling and Economics Department, Public Health England (Colindale), London, UK
| | - Elizabeth Miller
- Immunisation and Countermeasures, Public Health England (Colindale), London, UK
| | - Maria Zambon
- Virus Reference Department, Public Health England (Colindale), London, UK
| |
Collapse
|
35
|
Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: good correlation but poor agreement. Vaccine 2020; 38:2527-2541. [PMID: 32044163 DOI: 10.1016/j.vaccine.2020.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Determination of influenza-specific antibody titers is commonly done using the hemagglutination inhibition assay (HAI) and the viral microneutralization assay (MN). Both assays are characterized by high intra- and inter-laboratory variability. The HAI assay offers little opportunity for standardization. For the MN assay, variability might be due to the use of different assay protocols employing different readouts. We therefore aimed at investigating which of the MN assay readout methods currently in use would be the most suitable choice for a standardized MN assay that could serve as a substitute for the HAI assay. For this purpose, human serum samples were tested for the presence of influenza specific neutralizing antibodies against A/California/7/09 H1N1 (49 sera) or A/Hong Kong/4801/2014 (50 sera) using four different infection readout methods for the MN assay (cytopathic effect, hemagglutination, ELISA, RT qPCR) and using the HAI assay. The results were compared by correlation analysis and by determining the level of agreement before and after normalization to a standard serum. Titers as measured by the 4 MN assay readouts showed good correlation, with high Person's r for most comparisons. However, agreement between nominal titers varied with readouts compared and virus strain used. In addition, Pearson's correlation of MN titers with HAI titers was high but agreement of nominal titers was moderate and the average difference between the readings of two assays (bias) was virus strain-dependent. Normalization to a standard serum did not result in better agreement of assay results. Our study demonstrates that different MN readouts result in nominally different antibody titers. Accordingly, the use of a common and standardized MN assay protocol will be crucial to minimize inter-laboratory variability. Based on reproducibility, cost effectiveness and unbiased assessment of results we elected the MN assay with ELISA readout as most suitable for a possible replacement of the HAI assay.
Collapse
|
36
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
37
|
Manenti A, Maciola AK, Trombetta CM, Kistner O, Casa E, Hyseni I, Razzano I, Torelli A, Montomoli E. Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine. Vaccines (Basel) 2020; 8:vaccines8010043. [PMID: 31991681 PMCID: PMC7158664 DOI: 10.3390/vaccines8010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Growing interest in universal influenza vaccines and novel administration routes has led to the development of alternative serological assays that are able to detect antibodies against conserved epitopes. We present a competitive ELISA method that is able to accurately determine the ratio of serum immunoglobulin G directed against the different domains of the hemagglutinin, the head and the stalk. Human serum samples were treated with two variants of the hemagglutinin protein from the A/California/7/2009 influenza virus. The signals detected were assigned to different groups of antibodies and presented as a ratio between head and stalk domains. A subset of selected sera was also tested by hemagglutination inhibition, single radial hemolysis, microneutralization, and enzyme-linked lectin assays. Pre-vaccination samples from adults showed a quite high presence of anti-stalk antibodies, and the results were substantially in line with those of the classical serological assays. By contrast, pre-vaccination samples from children did not present anti-stalk antibodies, and the majority of the anti-hemagglutinin antibodies that were detected after vaccination were directed against the head domain. The presented approach, when supported by further assays, can be used to assess the presence of specific anti-stalk antibodies and the potential boost of broadly protective antibodies, especially in the case of novel universal influenza vaccine approaches.
Collapse
Affiliation(s)
- Alessandro Manenti
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | | | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577232100
| | | | - Elisa Casa
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Inesa Hyseni
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
| | - Ilaria Razzano
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alessandro Torelli
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | - Emanuele Montomoli
- VisMederi Research s.r.l., 53100 Siena, Italy; (A.M.); (A.K.M.); (E.C.); (I.H.); (I.R.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
38
|
Abstract
Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| |
Collapse
|
39
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
40
|
Pan Q, Wu W, Liao S, Wang S, Zhao C, Li C, Wu P. Comparison of the detection performance of two different one-step-combined test strips with fluorescent microspheres or colored microspheres as tracers for influenza A and B viruses. Virol J 2019; 16:91. [PMID: 31324259 PMCID: PMC6642511 DOI: 10.1186/s12985-019-1190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Influenza A and B viruses mainly cause respiratory infectious disease. Till now, few tests are able to simultaneously detect both, especially in primary medical establishments. Methods This study was designed to compare the performance of two different one-step-combined test strips for the detection of influenza A and B: one strip with fluorescent microspheres for tracers (FMT); and the other strip with colored microspheres for tracers (CMT). To test the strips, cultures of influenza A, B, and other pathogenic viruses were used, in addition to 1085 clinical specimens from symptomatic patients with respiratory infections. Real-time RT-PCR was also considered as a reference method used to detect the different results of FMT and CTM. Results Detection thresholds for influenza A and B cultures using serial dilutions revealed that the sensitivity of FMT was higher than that of CMT (both P < 0.05). With the culture mixtures of Coxsackie virus (A16), enteric cytopathic human orphan virus (ECHO type30), enterovirus (EV71), rotavirus (LLR strain), and enteric adenovirus (AdV 41), specificity assessment demonstrated that there was no cross reaction during the usage of the two test strips as shown by the results which were negative. In the detection of influenza A in 1085 clinical specimens, the total coincidence rate was 96.7%, the positive coincidence rate was 97.1%, and the negative coincidence rate was 96.7%. In the case of influenza B detection, the total coincidence rate was 99.1%, the positive coincidence rate was 92.6%, and the negative coincidence rate was 98.5%. In addition, with influenza A or B real-time RT-PCR detection method, the results showed that, for influenza A, 26 of the 33 specimens that negative with CMT but positive with FMT, showed positive results, and none of the 3 specimens that positive with CMT but negative with FMT showed a positive result; For influenza B, 12 of the 15 specimens that negative with CMT but positive with FMT, showed positive results, and none of the 5 specimens that positive with CMT but negative with FMT showed a positive result. Conclusions FMT performed better than CMT in the combined detection of influenza A and B viruses.
Collapse
Affiliation(s)
- Qingjun Pan
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Weiquan Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shuzhen Liao
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sijie Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chunfei Zhao
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chen Li
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Ping Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
41
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
42
|
Gianchecchi E, Torelli A, Montomoli E. The use of cell-mediated immunity for the evaluation of influenza vaccines: an upcoming necessity. Hum Vaccin Immunother 2019; 15:1021-1030. [PMID: 30614754 PMCID: PMC6605831 DOI: 10.1080/21645515.2019.1565269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences, particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict criteria established by European Medicines Agency. Although the licensure of influenza vaccines started 65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays that can ascertain correlates of protection. However, they present evident limitations. The present review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in the host immune response in protecting against virus-related illness and in the establishment of long-term immunological memory. Although correlates of protection are not currently available for CMI, it would be advisable to investigate this kind of immunological response for the evaluation of next-generation vaccines.
Collapse
Affiliation(s)
| | - A Torelli
- a VisMederi srl , Siena , Italy.,b Department of Life Sciences , University of Siena , Siena , Italy
| | - E Montomoli
- a VisMederi srl , Siena , Italy.,c Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| |
Collapse
|
43
|
Trombetta CM, Remarque EJ, Mortier D, Montomoli E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influenza Other Respir Viruses 2018; 12:675-686. [PMID: 30019448 PMCID: PMC6185893 DOI: 10.1111/irv.12591] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Background The immunological response to influenza vaccine and/or natural infection is evaluated by serological techniques, the most common being hemagglutination inhibition (HI), single radial hemolysis (SRH), and virus neutralization assays, which is commonly used in a micro‐neutralization (MN) format. ELISA is not officially required; however, this assay is able to measure different class‐specific antibodies. The four assays identify different sets or subsets of antibodies. Objectives The aim of this study was to establish the correlation among four serological assays using four seasonal influenza strains. Methods The HI, SRH, MN assays, and ELISA were performed on four seasonal influenza strains. Results A strong positive correlation was found between HI and MN and between SRH and MN assays for influenza A strains. The B strains also showed good correlations among the three assays. A positive correlation was also found between ELISA and the “classical” assays for all strains. Concerning the correlates of protection, as defined by HI ≥ 40 and SRH ≥ 25 mm2, good agreement was observed for the influenza A strains. By contrast, the agreement for the B strains was very low. Conclusions There is a positive strong correlation among the four serological assays for both A and B strains, especially for the HI and MN assays. There is good agreement on correlates of protection between HI and SRH assays for the A strains, but very low agreement for the B strains, suggesting higher sensitivity of SRH than HI assay in detecting antibodies against the influenza B viruses.
Collapse
Affiliation(s)
| | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi srl, Siena, Italy
| |
Collapse
|