1
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Petrovsky N. Clinical development of SpikoGen®, an Advax-CpG55.2 adjuvanted recombinant spike protein vaccine. Hum Vaccin Immunother 2024; 20:2363016. [PMID: 38839044 PMCID: PMC11155708 DOI: 10.1080/21645515.2024.2363016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Research Department, Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia
- Research Department, Vaxine Pty Ltd, Warradale, Australia
| |
Collapse
|
3
|
Zhang H, Liu Z, Li Y, Tao Z, Shen L, Shang Y, Huang X, Liu Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024; 15:2425773. [PMID: 39501551 PMCID: PMC11583678 DOI: 10.1080/21505594.2024.2425773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has been reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminum and propolis), have been tested for vaccine development, no clinically favorable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.
Collapse
Affiliation(s)
- Hanchi Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Ge L, Guo H, Zhou W, Shi W, Yue J, Wu Y. Manganese-mediated potentiation of antitumor immune responses by enhancing KLRG1 + Macrophage function. Int Immunopharmacol 2024; 141:112951. [PMID: 39153309 DOI: 10.1016/j.intimp.2024.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Manganese (Mn) play a crucial role in various biological processes in the body. Studies have primarily focused on their ability to enhance immune cell function and activation against tumors, particularly in dendritic cells (DCs), macrophages, and T cells. Tumor-associated macrophages (TAMs) are often the most abundant immune cell population present in the tumor microenvironment (TME). Thus, it would be valuable to investigate the mechanism by which Mn2+ regulates TAMs' involvement in anti-tumor immunity, as it be crucial for advancing our understanding of cancer biology and developing new treatments for cancer. Here, in the present study we discovered that Mn2+ treatment led to a significant increase in KLRG1+ macrophages (KLRG1+ Mφ) in tumor tissues, and most of these cells exhibited an M1 phenotype. Knocking down KLRG1 in macrophages not only impaired their ability to induce downstream anti-tumor immunity of adaptive immune cells, but also impaired their direct cytotoxicity against tumor cells. Moreover, the changes in the polarization phenotype of KLRG1+ macrophages further lead to T cell proliferation and the polarization of CD4+ T cells towards a Th1 phenotype, thereby establishing a foundation for the antitumor immune response. Our study expands the understanding of the anti-tumor mechanism of Mn2+ and demonstrates, for the first time, that Mn2+ can regulate the function of KLRG1+ Mφ to participate in anti-tumor activities. These findings suggest that KLRG1 may represent a promising target for developing new tumor therapy.
Collapse
Affiliation(s)
- Liyan Ge
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou 215123, China
| | - Hui Guo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Wei Zhou
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jiawei Yue
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yumin Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Nano and Soft Materials (FUNSOM) College of Nano Science &Technology (CNST) Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Dehghan M, Askari H, Tohidfar M, Siadat S, Fatemi F. Improvement of RBD-FC Immunogenicity by Using Alum-Sodium Alginate Adjuvant Against SARS-COV-2. Influenza Other Respir Viruses 2024; 18:e70018. [PMID: 39478310 PMCID: PMC11525037 DOI: 10.1111/irv.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Adjuvants use several mechanisms to boost immunogenicity and to modulate immune response. The strength of adsorption of antigen by adjuvants can be a determinant factor for significant improvement of immunopotentiation. METHODS We expressed recombinant RBD-FC in PichiaPink Strain 4 and examined the vaccination of mice by vaccine formulation with different adjuvants (sodium alginate and aluminum hydroxide, alone and together). RESULTS Sodium alginate significantly increased the immunogenicity and stability of RBD-FC antigen, so RBD-FC formulated with combined alginate and alum (AlSa) and sodium alginate alone showed higher antibody titer and stability. Immunogenicity of RBD-FC:AlSa was determined by serological assays including direct enzyme-linked immunosorbent assay (ELISA) and surrogate virus neutralization test (sVNT). High levels of IgGs and neutralizing antibodies were measured in serum of mice immunized with the RBD-FC:AlSa formulation. On the other hand, cytokines IL-10 and INF-γ were severely accumulated in response to RBD-FC:AlSa, and after 10 days, their accumulation was significantly declined, whereas IL-4 showed the highest and the lowest accumulation in response to alum and alginate, respectively. CONCLUSIONS Our data may suggest that combination of alum and sodium alginate has a better compatibility with RBD-FC in vaccine formulation.
Collapse
MESH Headings
- Alginates/chemistry
- Animals
- Mice
- Alum Compounds/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Female
- Adjuvants, Vaccine
- COVID-19/prevention & control
- COVID-19/immunology
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Aluminum Hydroxide/chemistry
- Humans
- Immunoglobulin G/blood
- Cytokines
- Immunoglobulin Fc Fragments/immunology
Collapse
Affiliation(s)
- Mahboobeh Dehghan
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Hossein Askari
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Masoud Tohidfar
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Fataneh Fatemi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
6
|
Ho TL, Ahn SY, Ko EJ. Adjuvant potential of Peyssonnelia caulifera extract on the efficacy of an influenza vaccine in a murine model. Sci Rep 2024; 14:25353. [PMID: 39455811 PMCID: PMC11512024 DOI: 10.1038/s41598-024-76736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Natural adjuvants have recently garnered interest in the field of vaccinology as their immunostimulatory effects. In this study, we aimed to investigate the potential use of Peyssonnelia caulifera (PC), a marine alga, as a natural adjuvant for an inactivated split A/Puerto Rico/8/1934 H1N1 influenza vaccine (sPR8) in a murine model. We administered PC-adjuvanted vaccines to a murine model via intramuscular prime and boost vaccinations, and subsequently analyzed the induced immunological responses, particularly the production of antigen-specific IgG1 and IgG2a antibodies, memory T and B cell responses, and the protective efficacy against a lethal viral infection. PC extract significantly bolstered the vaccine efficacy, demonstrating balanced Th1/Th2 responses, increased memory T and B cell activities, and improved protection against viral infection. Notably, within 3 days post-vaccination, the PC adjuvant stimulated activation markers on dendritic cells (DCs) and macrophages at the inguinal lymph nodes (ILN), emphasizing its immunostimulatory capabilities. Furthermore, the safety profile of PC was confirmed, showing minimal local inflammation and no significant adverse effects post-vaccination. These findings contribute to our understanding of the immunomodulatory properties of natural adjuvants and suggest the promising roles of natural adjuvants in the development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
7
|
Burgos JM, Vega E, García ML, Pujol M, Sánchez-López E, Souto EB. Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:1385-1394. [PMID: 39245925 DOI: 10.1080/17425247.2024.2400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREASCOVERED CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.
Collapse
Affiliation(s)
- Jordi Madariaga Burgos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Estefanía Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Shi Z, Gao Z, Zhuang X, Si X, Huang Z, Di Y, Ma S, Guo Z, Li C, Jin N, Huang L, Tian M, Song W, Chen X. Dynamic Covalent Hydrogel as a Single-Dose Vaccine Adjuvant for Sustained Antigen Release and Significantly Elevated Humoral Immunity. Adv Healthc Mater 2024; 13:e2400886. [PMID: 38824421 DOI: 10.1002/adhm.202400886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, 10-30 d constant release of the loaded recombinant protein antigens is successfully realized, and it is proved that sustained release of antigens can significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32 000 times and 8000 times improvement is observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant is confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines.
Collapse
MESH Headings
- Animals
- Hydrogels/chemistry
- Mice, Inbred C57BL
- Mice
- Immunity, Humoral/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- SARS-CoV-2/immunology
- Antigens, Viral/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/administration & dosage
- Female
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/chemistry
- Influenza Vaccines/administration & dosage
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zihan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zichao Huang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yaxin Di
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wantong Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
10
|
Sajkov D, Woodman R, Honda-Okubo Y, Barbara J, Chew D, Toson B, Petrovsky N. A Multiseason Randomized Controlled Trial of Advax-Adjuvanted Seasonal Influenza Vaccine in Participants With Chronic Disease or Older Age. J Infect Dis 2024; 230:444-454. [PMID: 38157402 PMCID: PMC11326838 DOI: 10.1093/infdis/jiad589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The aim of the current study was to determine the safety and immunogenicity of trivalent inactivated influenza vaccine (TIV) alone or formulated with Advax delta inulin adjuvant in those who were older (aged >60 years) or had chronic disease. METHODS Over 4 consecutive years from 2008 through 2011, adult participants with chronic disease or >60 years of age were recruited into a randomized controlled study to assess the safety, tolerability and immunogenicity of Advax-adjuvanted TIV (TIV + Adj) versus standard TIV. The per-protocol population with ≥1 postbaseline measurement of influenza antibodies comprised 1297 participants, 447 in the TIV and 850 in the TIV + Adj) group. RESULTS No safety issues were identified. Variables negatively affecting vaccine responses included obesity and diabetes mellitus. Advax adjuvant had a positive impact on anti-influenza immunoglobulin M responses and on H3N2 and B strain seropositivity as assessed by hemagglutination inhibition. CONCLUSIONS TIV + Adj was safe and well tolerated in individuals with chronic disease. There is an ongoing need for research into improved influenza vaccines for high-risk populations. CLINICAL TRIALS REGISTRATION Australia New Zealand Clinical Trial Registry: ACTRN 12608000364370.
Collapse
Affiliation(s)
- Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute Ltd, Clovelly Park, South Australia, Australia
- Respiratory Department, Flinders University, Bedford Park, South Australia, Australia
| | - Richard Woodman
- Epidemiology and Biostatistics, Flinders University, Bedford Park, South Australia, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jeffrey Barbara
- Renal Department, Flinders University, Bedford Park, South Australia, Australia
| | - Derek Chew
- Cardiology Department, Flinders University, Bedford Park, South Australia, Australia
| | - Barbara Toson
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Nikolai Petrovsky
- Australian Respiratory and Sleep Medicine Institute Ltd, Clovelly Park, South Australia, Australia
- Vaxine Pty Ltd, Warradale, South Australia, Australia
| |
Collapse
|
11
|
Rahman NAA, Fuaad AAHA, Azami NAM, Amin MCIM, Azmi F. Next-generation Dengue Vaccines: Leveraging Peptide-Based Immunogens and Advanced Nanoparticles as Delivery Platforms. J Pharm Sci 2024; 113:2044-2054. [PMID: 38761864 DOI: 10.1016/j.xphs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Abdullah Al-Hadi Ahmad Fuaad
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Federal Territory of Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
13
|
Liu T, Li M, Tian Y, Dong Y, Liu N, Wang Z, Zhang H, Zheng A, Cui C. Immunogenicity and safety of a self-assembling ZIKV nanoparticle vaccine in mice. Int J Pharm 2024; 660:124320. [PMID: 38866086 DOI: 10.1016/j.ijpharm.2024.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that highly susceptibly causes Guillain-Barré syndrome and microcephaly in newborns. Vaccination is one of the most effective measures for preventing infectious diseases. However, there is currently no approved vaccine to prevent ZIKV infection. Here, we developed nanoparticle (NP) vaccines by covalently conjugating self-assembled 24-subunit ferritin to the envelope structural protein subunit of ZIKV to achieve antigen polyaggregation. The immunogenicityof the NP vaccine was evaluated in mice. Compared to monomer vaccines, the NP vaccine achieved effective antigen presentation, promoted the differentiation of follicular T helper cells in lymph nodes, and induced significantly greater antigen-specific humoral and cellular immune responses. Moreover, the NP vaccine enhanced high-affinity antigen-specific IgG antibody levels, increased secretion of the cytokines IL-4 and IFN-γ by splenocytes, significantly activated T/B lymphocytes, and improved the generation of memory T/B cells. In addition, no significant adverse reactions occurred when NP vaccine was combined with adjuvants. Overall, ferritin-based NP vaccines are safe and effective ZIKV vaccine candidates.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yuhan Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China.
| |
Collapse
|
14
|
Guisasola-Serrano A, Bilbao-Arribas M, Varela-Martínez E, Abendaño N, Pérez M, Luján L, Jugo BM. Identifying transcriptomic profiles in ovine spleen after repetitive vaccination. Front Immunol 2024; 15:1386590. [PMID: 39076984 PMCID: PMC11284609 DOI: 10.3389/fimmu.2024.1386590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Aluminum hydroxide has long been employed as a vaccine adjuvant for its safety profile, although its precise mechanism of action remains elusive. In this study, we investigated the transcriptomic responses in sheep spleen following repetitive vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. Notably, this work represents the first exploration of the sheep spleen transcriptome in such conditions. Animals were splitted in 3 treatment groups: vaccine group, adjuvant alone group and control group. A total of 18 high-depth RNA-seq libraries were sequenced, resulting in a rich dataset which also allowed isoform-level analysis. The comparisons between vaccine-treated and control groups (V vs C) as well as between vaccine-treated and adjuvant-alone groups (V vs A) revealed significant alterations in gene expression profiles, including protein coding genes and long non-coding RNAs. Among the differentially expressed genes, many were associated with processes such as endoplasmic reticulum (ER) stress, immune response and cell cycle. The analysis of co-expression modules further indicated a correlation between vaccine treatment and genes related to ER stress and unfolded protein response. Surprisingly, adjuvant-alone treatment had little impact on the spleen transcriptome. Additionally, the role of alternative splicing in the immune response was explored. We identified isoform switches in genes associated with immune regulation and inflammation, potentially influencing protein function. In conclusion, this study provides valuable insights into the transcriptomic changes in sheep spleen following vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. These findings shed light on the molecular mechanisms underlying vaccine-induced immune responses and emphasize the significance of antigenic components in aluminum adjuvant mechanism of action. Furthermore, the analysis of alternative splicing revealed an additional layer of complexity in the immune response to vaccination in a livestock species.
Collapse
Affiliation(s)
- Aitor Guisasola-Serrano
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Martin Bilbao-Arribas
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martínez
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara Abendaño
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Pérez
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Begoña Marina Jugo
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
15
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
16
|
Rohokale R, Guo J, Guo Z. Monophosphoryl Lipid A-Rhamnose Conjugates as a New Class of Vaccine Adjuvants. J Med Chem 2024; 67:7458-7469. [PMID: 38634150 PMCID: PMC11081837 DOI: 10.1021/acs.jmedchem.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Adjuvant is an integral part of all vaccine formulations but only a few adjuvants with limited efficacies or application scopes are available. Thus, developing more robust and diverse adjuvants is necessary. To this end, a new class of adjuvants having α- and β-rhamnose (Rha) attached to the 1- and 6'-positions of monophosphoryl lipid A (MPLA) was designed, synthesized, and immunologically evaluated in mice. The results indicated a synergistic effect of MPLA and Rha, two immunostimulators that function via interacting with toll-like receptor 4 and recruiting endogenous anti-Rha antibodies, respectively. All the tested MPLA-Rha conjugates exhibited potent adjuvant activities to promote antibody production against both protein and carbohydrate antigens. Overall, MPLA-α-Rha exhibited better activities than MPLA-β-Rha, and 6'-linked conjugates were slightly better than 1-linked ones. Particularly, MPLA-1-α-Rha and MPLA-6'-α-Rha were the most effective adjuvants in promoting IgG antibody responses against protein antigen keyhole limpet hemocyanin and carbohydrate antigen sTn, respectively.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Hiller J, Göen T, Drexler H, Berking C, Wagner N. Elevated aluminum excretion in patients by long-term subcutaneous immunotherapy - A cross-sectional case-control study. Int J Hyg Environ Health 2024; 258:114337. [PMID: 38461738 DOI: 10.1016/j.ijheh.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Aluminum (Al) adjuvants have been used in vaccines and subcutaneous immunotherapy (SCIT) for decades. Despite indisputable neurotoxic properties of Al, there is no clear evidence of a causal relationship between their use and any neurotoxic side effects. However, recent rat studies have shown an accumulation of Al from adjuvants in tissues, especially in bones. OBJECTIVES Since the human toxicokinetics of Al-adjuvants are poorly understood, this study aimed to evaluate whether up-dosed or long-term SCIT with Al-coupled extracts leads to increased Al load in humans. METHODS This observational cross-sectional case-control study explored Al excretion in hymenoptera venom allergy patients recruited in 2020 before initiation (n = 10) and during ongoing (n = 12) SCIT with Al-based preparations. Urine samples were collected before and 24 h after the SCIT injections and analyzed for aluminum content by using atomic absorption spectrometry. The cumulative administered Al dose was extracted from patient records. Patients receiving long-term immunotherapy were treated between 2.8 and 13.6 years (mean 7.1). Other potential sources of Al exposure were surveyed. RESULTS Patients who had received Al-coupled immunotherapy for several years showed significantly (p < 0.001) higher Al excretion than the controls at initiation of immunotherapy (mean 18.2 μg/gC vs. 7.9 μg/gC) and predominantly (73%) were above the 95th percentile of the general populations' exposure (>15 μg/gC), however, without reaching levels of toxicological concern (>50 μg/gC). Taking both groups together excreted Al levels correlated with the cumulative administered Al dose from SCIT (linear regression: Alurine = 8.258 + 0.133*Alcum; p = 0.001). DISCUSSION These results suggest a relevant iatrogenic contribution of long-term SCIT to human internal Al burden and potential accumulation. Considering the medical benefits of Al-adjuvants and SCIT a differentiated risk-benefit analysis is needed. For certain scenarios of potential toxicological concern in clinical practice biomonitoring might be advisable.
Collapse
Affiliation(s)
- Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Hans Drexler
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany.
| | - Nicola Wagner
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
18
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
19
|
Lee C, Imran I, Thomas S, Nouri-Shirazi M. A comprehensive method for the phenotypical and functional characterization of recalled human memory B and T cells specific to vaccine antigens. J Immunol Methods 2024; 527:113650. [PMID: 38428517 DOI: 10.1016/j.jim.2024.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Current methodologies for assessing vaccine effectiveness and longevity primarily center on measuring vaccine-induced neutralizing antibodies in serum or plasma. However, these methods overlook additional parameters such as the presence of memory B cells, even as antibody levels wane, and the pivotal role played by memory T cells in shaping antigen-specific memory B cell responses. Several studies have employed a combination of polyclonal activators, such as CpG and R848, along with various cytokines to provoke the recall of memory B cells from peripheral blood mononuclear cells (PBMCs) into antibody-secreting cells (ASCs). Other studies have examined the use of live attenuated viruses to stimulate antigen-specific memory T cells within PBMCs into effector T cells that produce Th1/Th2 cytokines. However, these studies have not fully elucidated the distinct effects of these polyclonal activators on individual subsets, nor have they evaluated whether the vaccine antigen alone is sufficient to trigger the recall of memory T cells. Thus, in this study, we directly compared the capacity of two B cell polyclonal activators to induce the transition of existing vaccine-specific memory cells present in peripheral blood samples into ASCs. Simultaneously, we also assessed the transition of existing memory T cells into effector subsets in response to vaccine antigens. Our findings demonstrate that both polyclonal activator combinations, CpG with IL-6 and IL-15, as well as R848 with IL-2, effectively induce the terminal differentiation of memory B cells into ASCs. Notably, CpG treatment preferentially expanded naïve and non-class-switched B cells, while R848 expanded class-switched memory cells, plasmablasts, and plasma cells. Consequently, R848 treatment led to a greater overall production of total and antigen-specific IgG immunoglobulins. Additionally, the exposure of isolated PBMCs to vaccine antigens alone proved sufficient for recalling the rare antigen-specific memory T cells into effector subsets, predominantly consisting of IFN-γ-producing CD4 T cells and TNF-β-producing CD8 T cells. This study not only establishes a rationale for the selection of methods to expand and detect antigen-specific lymphocyte subsets but also presents a means to quantify vaccine effectiveness by correlating serum antibody levels with preexisting memory cells within peripheral blood samples.
Collapse
Affiliation(s)
- Czdari Lee
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Imtisal Imran
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Sara Thomas
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA.
| |
Collapse
|
20
|
Li L, Liu Z, Shi J, Yang M, Yan Y, Fu Y, Shen Z, Peng G. The CDE region of feline Calicivirus VP1 protein is a potential candidate subunit vaccine. BMC Vet Res 2024; 20:80. [PMID: 38443948 PMCID: PMC10916247 DOI: 10.1186/s12917-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
21
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
22
|
Pandey A, Singh BK, Gayathiri E, Balasubramani S, Duraisamy SM, Kothari A, Patel DK. Nanoparticles in Biomedical and Clinical Research: A Current Perspective and Future Implications. NANOMATERIALS FOR BIOMEDICAL AND BIOENGINEERING APPLICATIONS 2024:415-457. [DOI: 10.1007/978-981-97-0221-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Methods Mol Biol 2024; 2821:135-156. [PMID: 38997486 DOI: 10.1007/978-1-0716-3914-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hybridoma technology is a well-established and indispensable tool for generating high-quality monoclonal antibodies and has become one of the most common methods for monoclonal antibody production. In this process, antibody-producing B cells are isolated from mice following immunization of mice with a specific immunogen and fused with an immortal myeloma cell line to form antibody-producing hybridoma cell lines. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents but have also emerged as the most rapidly expanding class of therapeutic biologicals. In spite of the development of new high-throughput monoclonal antibody generation technologies, hybridoma technology still is applied for antibody production due to its ability to preserve innate functions of immune cells and to preserve natural cognate antibody paring information. In this chapter, an overview of hybridoma technology and the laboratory procedures used for hybridoma production and antibody screening of peptide-specific antibodies are presented.
Collapse
Affiliation(s)
| | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|
24
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Kim JC, Choi JA, Park H, Yang E, Noh S, Kim JS, Kim MJ, Song M, Park JH. Pharmaceutical and Immunological Evaluation of Cholera Toxin A1 Subunit as an Adjuvant of Hepatitis B Vaccine Microneedles. Pharm Res 2023; 40:3059-3071. [PMID: 37914841 DOI: 10.1007/s11095-023-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine. METHODS In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine. RESULTS All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide-based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide-based formulation induced. CONCLUSIONS CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.
Collapse
Affiliation(s)
- Jong-Chan Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Hayan Park
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Eunji Yang
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Shinyoung Noh
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Ji-Seok Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Moon-Jin Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, South Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea.
| |
Collapse
|
26
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
27
|
Liu R, Lv Y, Sun W, Li M, Ge N, Zhu C, Ding Y, Liu Z, Ma R, Huang Y, Hou S, Ying Q, Gu T, Wang F, Nie L, Wang Y, Huang W, Shu J, Wu X. Investigation of a subunit protein vaccine for HFRS based on a consensus sequence between envelope glycoproteins of HTNV and SEOV. Virus Res 2023; 334:199149. [PMID: 37329903 PMCID: PMC10410520 DOI: 10.1016/j.virusres.2023.199149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Due to the global resurgence of hemorrhagic fever with renal syndrome (HFRS), more attention is being focused on this dangerous illness. In China and Korea, the only vaccines available are the virus-inactivated vaccine against Hantaan virus (HTNV) or Seoul virus (SEOV), but their efficacy and safety are inadequate. Therefore, it is important to develop new vaccines that are safer and more efficient to neutralize and regulate areas with a high prevalence of HFRS. We employed bioinformatics methods to design a recombinant protein vaccine based on conserved regions of protein consensus sequences in HTNV and SEOV membranes. The S2 Drosophila expression system was utilized to enhance protein expression, solubility and immunogenicity. After the Gn and Gc proteins of HTNV and SEOV were successfully expressed, mice were immunized, and the humoral immunity, cellular immunity, and in vivo protection of the HFRS universal subunit vaccine were systematically evaluated in mouse models. These results indicated that the HFRS subunit vaccine generated elevated levels of binding and neutralizing antibodies, particularly IgG1, compared to that of the traditional inactivated HFRS vaccine. Additionally, the spleen cells of immunized mice secreted IFN-r and IL-4 cytokines effectively. Moreover, the HTNV-Gc protein vaccine successfully protected suckling mice from HTNV infection and stimulated GC responses. In this research, a new scientific approach is investigated to develop a universal HFRS subunit protein vaccine that is capable of producing effective humoral and cellular immunity in mice. The results suggest that this vaccine could be a promising candidate for preventing HFRS in humans.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenjie Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China; Northwest University, Xi'an, China
| | - Min Li
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ningning Ge
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yaxin Ding
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China; Northwest University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuxiao Huang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianle Gu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.
| | - Jiayi Shu
- Clinical Center for Biotherapy, Zhongshan Hospital & Zhongshan Hospital (Xiamen), Fudan University, Shanghai, China.
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
28
|
Honda-Okubo Y, Sakala IG, André G, Tarbet EB, Hurst BL, Petrovsky N. An Advax-CpG55.2 adjuvanted recombinant hemagglutinin vaccine provides immunity against H7N9 influenza in adult and neonatal mice. Vaccine 2023; 41:5592-5602. [PMID: 37532610 DOI: 10.1016/j.vaccine.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
29
|
Salunke DB, Lindsley CW. Call for Papers: Medicinal Chemistry of Next Generation Vaccine Adjuvants. J Med Chem 2023; 66:10119-10121. [PMID: 37490392 DOI: 10.1021/acs.jmedchem.3c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Affiliation(s)
- Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh 160 014, India
| | - Craig W Lindsley
- Vanderbilt Institute of Chemical Biology Program in Drug Discovery, Department of Pharmacology, Vanderbilt Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
30
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
31
|
Laotee S, Duangkaew M, Jivapetthai A, Tharakhet K, Kaewpang P, Prompetchara E, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Somsaard T, Roytrakul S, Duangkhae P, Ongpipattanakul B, Limpikirati P, Pornputtapong N, Arunmanee W. CHO-produced RBD-Fc subunit vaccines with alternative adjuvants generate immune responses against SARS-CoV-2. PLoS One 2023; 18:e0288486. [PMID: 37450510 PMCID: PMC10348575 DOI: 10.1371/journal.pone.0288486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Subunit vaccines feature critical advantages over other vaccine platforms such as stability, price, and minimal adverse effects. To maximize immunological protection of subunit vaccines, adjuvants are considered as main components that are formulated within the subunit vaccine. They can modulate adverse effects and enhance immune outcomes. However, the most suitable formulation providing the best immunological outcomes and safety are still under investigation. In this report, we combined recombinant RBD with human IgG1 Fc to create an RBD dimer. This fusion protein was expressed in CHO and formulated with alternative adjuvants with different immune activation including Montanide ISA51, Poly (I:C), and MPLA/Quil-A® as potential vaccine candidate formulations. Using the murine model, a potent induction of anti-RBD IgG antibodies in immunized mice sera were observed. IgG subclass analyses (IgG1/IgG2a) illustrated that all adjuvanted formulations could stimulate both Th1 and Th2-type immune responses in particular Poly (I:C) and MPLA/Quil-A®, eliciting greater balance. In addition, Montanide ISA51-formulated RBD-Fc vaccination provided a promising level of neutralizing antibodies against live wild-type SARS-CoV-2 in vitro followed by Poly (I:C) and MPLA/Quil-A®, respectively. Also, mice sera from adjuvanted formulations could strongly inhibit RBD:ACE2 interaction. This study offers immunogenicity profiles, forecasted safety based on Vaccine-associated enhanced disease (VAED) caused by Th1-skewed immunity, and neutralizing antibody analysis of candidates of RBD-Fc-based subunit vaccine formulations to obtain an alternative subunit vaccine formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Sedthawut Laotee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Araya Jivapetthai
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sakalin Trisiriwanich
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Thitiporn Somsaard
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathumthani, Thailand
| | - Parichat Duangkhae
- Viral Vaccine Unit, Biologics Research Group, Research and Development Institute, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Lin HH, Wang CY, Hsieh FJ, Liao FZ, Su YK, Pham MD, Lee CY, Chang HC, Hsu HH. Nanodiamonds-in-oil emulsions elicit potent immune responses for effective vaccination and therapeutics. Nanomedicine (Lond) 2023; 18:1045-1059. [PMID: 37610004 DOI: 10.2217/nnm-2023-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Background: The use of nanodiamonds (NDs) and fluorescent nanodiamonds (FNDs) as nonallergenic biocompatible additives in incomplete Freund's adjuvant (IFA) to elicit immune responses in vivo was investigated. Methods: C57BL/6 mice were immunized with chicken egg ovalbumin (OVA) in IFA and also OVA-conjugated NDs (or OVA-conjugated FNDs) in IFA to produce antibodies. OVA-expressing E.G7 lymphoma cells and OVA-negative EL4 cells were inoculated in mice to induce tumor formation. Results: The new formulation significantly enhanced immune responses and thus disease resistance. It exhibited specific therapeutic activities, effectively inhibiting the growth of E.G7 tumor cells in mice over 35 days. Conclusion: The high biocompatibility and multiple functionalities of NDs/FNDs render them applicable as active and trackable vaccine adjuvants and antitumor agents.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chih-Yen Wang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Feng-Jen Hsieh
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Fang-Zhen Liao
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Yu-Kai Su
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi 100000, Vietnam
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei City 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei City 106, Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
33
|
Kalanaky S, Fakharzadeh S, Karimi P, Hafizi M, Jamaati H, Hassanzadeh SM, Khorasani A, Mahdavi M, Nazaran MH. Nanoadjuvants Produced by Advanced Nanochelating Technology in the Inactivated-Severe Acute Respiratory Syndrome Coronavirus-2 Vaccine Formulation: Preliminary Results on Cytokines and IgG Responses. Viral Immunol 2023; 36:409-423. [PMID: 37506342 DOI: 10.1089/vim.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Despite the great success of vaccines in various infectious diseases, most current vaccines are not effective enough, and on the contrary, clinically approved alum adjuvants cannot induce sufficient immune responses, including a potent cellular immune response to confer protection. In this study, we used Nanochelating Technology to develop novel nanoadjuvants to boost the potency of the alum-adjuvanted inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. BALB/c mice were immunized twice over 2 weeks with different doses of adjuvanted-vaccine formulations and immune responses were assessed. The analysis results of IFN-γ and IL-17 cytokines demonstrated the effectiveness of the nanoadjuvants produced by the Nanochelating Technology in shifting the alum-based vaccine toward a stronger Th1 pattern. In addition, these nanoadjuvants improved IL-2 cytokine response, which shows the efficacy of these novel formulations in inducing specific T lymphocyte proliferation. Using these nanoadjuvants increased IL-10 cytokine secretion that may be representative of a better immunoregulatory impact and may also potentially prevent immunopathology responses. Moreover, specific IgG titer analysis revealed the potency of these nanoadjuvants in improving humoral immune responses. The enzyme-linked immunosorbent assay of receptor-binding domain (RBD)-specific IgG response showed that the developed novel formulations induced strong IgG responses against this protein. This study shows that the nanostructures produced by the Advanced Nanochelating Technology have potent adjuvant effects on alum-based SARS-CoV-2 vaccines to not only compensate for alum weakness in inducing the cellular immune responses by smart regulation of the immune system but also significantly improve the humoral and cellular immune responses simultaneously.
Collapse
Affiliation(s)
- Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Hassanzadeh
- Department of BCG Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Medical Division, Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mohammad Hassan Nazaran
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
- Owner of Nanochelating Technology and Executive Manager and Chairman of Management Board of Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
34
|
Kim HW, Ko MK, Park SH, Hwang SY, Kim DH, Park SY, Ko YJ, Kim SM, Park JH, Lee MJ. Dectin-1 signaling coordinates innate and adaptive immunity for potent host defense against viral infection. Front Immunol 2023; 14:1194502. [PMID: 37334361 PMCID: PMC10272586 DOI: 10.3389/fimmu.2023.1194502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background Most commercial foot-and-mouth disease (FMD) vaccines have various disadvantages, such as low antibody titers, short-lived effects, compromised host defense, and questionable safety. Objectives To address these shortcomings, we present a novel FMD vaccine containing Dectin-1 agonist, β-D-glucan, as an immunomodulatory adjuvant. The proposed vaccine was developed to effectively coordinate innate and adaptive immunity for potent host defense against viral infection. Methods We demonstrated β-D-glucan mediated innate and adaptive immune responses in mice and pigs in vitro and in vivo. The expressions of pattern recognition receptors, cytokines, transcription factors, and co-stimulatory molecules were promoted via FMD vaccine containing β-D-glucan. Results β-D-glucan elicited a robust cellular immune response and early, mid-, and long-term immunity. Moreover, it exhibited potent host defense by modulating host's innate and adaptive immunity. Conclusion Our study provides a promising approach to overcoming the limitations of conventional FMD vaccines. Based on the proposed vaccine's safety and efficacy, it represents a breakthrough among next-generation FMD vaccines.
Collapse
|
35
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
36
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
37
|
Kim JY, Jeon K, Hong JJ, Park SI, Cho H, Park HJ, Kwak HW, Park HJ, Bang YJ, Lee YS, Bae SH, Kim SH, Hwang KA, Jung DI, Cho SH, Seo SH, Kim G, Oh H, Lee HY, Kim KH, Lim HY, Jeon P, Lee JY, Chung J, Lee SM, Ko HL, Song M, Cho NH, Lee YS, Hong SH, Nam JH. Heterologous vaccination utilizing viral vector and protein platforms confers complete protection against SFTSV. Sci Rep 2023; 13:8189. [PMID: 37210393 DOI: 10.1038/s41598-023-35328-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Kyeongseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Joo Hong
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sang-In Park
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Hyeonggon Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - So-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, Genetree Research, Seoul, Republic of Korea
| | - Dae-Im Jung
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Seong Hoo Cho
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Sang Hwan Seo
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Green Kim
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hanseul Oh
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hwal-Yong Lee
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee-Young Lim
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Pyeonghwa Jeon
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hae Li Ko
- Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
38
|
Maleki M, Hosseini SM, Farahmand B, Saleh M, Shokouhi H, Torabi A, Fotouhi F. Induction of Homosubtypic and Heterosubtypic Immunity to Influenza Viruses Using a Conserved Internal and External Proteins. Curr Microbiol 2023; 80:212. [PMID: 37191741 DOI: 10.1007/s00284-023-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
The immunogenicity and protective properties of the designed recombinant fusion peptide of 3M2e and truncated nucleoprotein (trNP), originating from Influenza A virus, were investigated in the BALB/c mice model in comparison with the Mix protein (3M2e + trNP). The results were evaluated by antibody response, cytokine production, lymphocyte proliferation assay, and mortality rate after challenge with homologous (H1N1) and heterologous (H3N2) influenza viruses in BALB/c mice. The animals that received the chimer protein with or without adjuvant had more specific antibody responses and elicited memory CD4 T cells, and cytokines of Th1 and Th2 cells compared to the Mix protein. Moreover, the Mix protein, like the recombinant chimer protein, provided equal and effective protection against both homologous and heterologous challenges in mice. Nevertheless, the chimer protein demonstrated superior immune protection compared to the Mix protein. The percentage of survived animals in the adjuvanted protein group (78.4%) was less than the non-adjuvanted one (85.7%). However, the Mix protein plus Alum could induce protective immunity in only 57.1% and 42.8% of homologous and heterologous virus-challenged mice, respectively. Regarding the sufficient immunogenicity and protectivity of the chimer protein construct against influenza viruses, the findings of the study suggest that the chimer protein without a requirement of adjuvant can be used as an adequate vaccine formulation to protect against a broad spectrum of influenza viruses.
Collapse
Affiliation(s)
- Mahnoosh Maleki
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Maryam Saleh
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Ali Torabi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran.
| |
Collapse
|
39
|
Chang AM, Chen CC, Lee JW, Hou DL, Huang HH, Ke GM. Effects of a novel recombinant Gonadotropin-Releasing Hormone-1 vaccine on the reproductive function of mixed-breed dogs (Canis familiaris) in Taiwan. Vaccine 2023; 41:2214-2223. [PMID: 36849340 DOI: 10.1016/j.vaccine.2023.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Immunocastration is an effective alternative to surgical castration for controlling the population of animals. As gonadotropin-releasing hormone (GnRH) regulates the reproductive endocrine system in mammals, it is a target antigen for vaccine formulation. Through this study, we evaluated the effectiveness of a recombinant subunit GnRH-1 vaccine for the immunocastration of the reproductive function of 16 mixed-breed dogs (Canis familiaris) provided voluntarily by different households. All the dogs were deemed clinically healthy prior to and during the experiment. A specific anti-GnRH immune response was detected at Week 4, which was maintained for at least 24 weeks after vaccination. Moreover, decreased levels of sexual hormones (testosterone as well as progesterone and estrogen, respectively) were observed in both male and female dogs. Estrous suppression was apparent in female dogs, and testicular atrophy and poor semen quality (concentration, abnormality, and viability) were observed in male dogs. In conclusion, the recombinant subunit GnRH-1 vaccine could successfully suppress fertility and delay the estrous cycle in canines. These results support the efficacy of the recombinant subunit GnRH-1 vaccine; thus, it is a suitable candidate for fertility control in dogs.
Collapse
Affiliation(s)
- Ai-Mei Chang
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chen-Chih Chen
- National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Jai-Wei Lee
- National Pingtung University of Science and Technology, Pingtung, Taiwan; Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ding-Liang Hou
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsiao-Hui Huang
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Guan-Ming Ke
- National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
40
|
Phoolcharoen W, Shanmugaraj B, Khorattanakulchai N, Sunyakumthorn P, Pichyangkul S, Taepavarapruk P, Praserthsee W, Malaivijitnond S, Manopwisedjaroen S, Thitithanyanont A, Srisutthisamphan K, Jongkaewwattana A, Tomai M, Fox CB, Taychakhoonavudh S. Preclinical evaluation of immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052-Alum adjuvant. Vaccine 2023; 41:2781-2792. [PMID: 36963999 PMCID: PMC10027959 DOI: 10.1016/j.vaccine.2023.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Narach Khorattanakulchai
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sathit Pichyangkul
- US Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Pornnarin Taepavarapruk
- Center for Animal Research and Department of Physiology, Faculty of Medical Science, Naresuan University, Pitsanulok 65000, Thailand
| | | | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi 18110, Thailand
| | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Mark Tomai
- 3M Healthcare, 3M Center, Bldg 270-4N-04, St. Paul, MN 55144-1000, USA
| | - Christopher B Fox
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Ste 400, Seattle, WA 98102, USA
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
41
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
42
|
Hendy DA, Haven A, Bachelder EM, Ainslie KM. Preclinical developments in the delivery of protein antigens for vaccination. Expert Opin Drug Deliv 2023; 20:367-384. [PMID: 36731824 PMCID: PMC9992317 DOI: 10.1080/17425247.2023.2176844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Alex Haven
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Multiepitope Subunit Peptide-Based Nanovaccine against Porcine Circovirus Type 2 (PCV2) Elicited High Antibody Titers in Vaccinated Mice. Molecules 2023; 28:molecules28052248. [PMID: 36903494 PMCID: PMC10005372 DOI: 10.3390/molecules28052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.
Collapse
|
44
|
Nooraei S, Sarkar Lotfabadi A, Akbarzadehmoallemkolaei M, Rezaei N. Immunogenicity of Different Types of Adjuvants and Nano-Adjuvants in Veterinary Vaccines: A Comprehensive Review. Vaccines (Basel) 2023; 11:vaccines11020453. [PMID: 36851331 PMCID: PMC9962389 DOI: 10.3390/vaccines11020453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Vaccination is the best way to prevent and reduce the damage caused by infectious diseases in animals and humans. So, several vaccines are used for prophylactic purposes before the pathogen infects, while therapeutic vaccines strengthen the immune system after infection with the pathogen. Adjuvants are molecules, compounds, or macromolecules that enhance non-specific immunity and, in collaboration with antigen(s), can improve the body's immune responses and change the type of immune response. The potential and toxicity of adjuvants must be balanced to provide the safest stimulation with the fewest side effects. In order to overcome the limitations of adjuvants and the effective and controlled delivery of antigens, attention has been drawn to nano-carriers that can be a promising platform for better presenting and stimulating the immune system. Some studies show that nanoparticles have a more remarkable ability to act as adjuvants than microparticles. Because nano-adjuvants inactively target antigen-presenting cells (APCs) and change their chemical surface, nanoparticles also perform better in targeted antigen delivery because they cross biological barriers more easily. We collected and reviewed various types of nano-adjuvants with their specific roles in immunogenicity as a prominent strategy used in veterinary vaccines in this paper.
Collapse
Affiliation(s)
- Soren Nooraei
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 8818634141, Iran
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alireza Sarkar Lotfabadi
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Milad Akbarzadehmoallemkolaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Nima Rezaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Correspondence:
| |
Collapse
|
45
|
Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm 2023; 632:122559. [PMID: 36586639 PMCID: PMC9794530 DOI: 10.1016/j.ijpharm.2022.122559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
46
|
Stillman ZS, Decker GE, Dworzak MR, Bloch ED, Fromen CA. Aluminum-based metal-organic framework nanoparticles as pulmonary vaccine adjuvants. J Nanobiotechnology 2023; 21:39. [PMID: 36737783 PMCID: PMC9896814 DOI: 10.1186/s12951-023-01782-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The adoption of pulmonary vaccines to advantageously provide superior local mucosal protection against aerosolized pathogens has been faced with numerous logistical and practical challenges. One of these persistent challenges is the lack of effective vaccine adjuvants that could be well tolerated through the inhaled route of administration. Despite its widespread use as a vaccine adjuvant, aluminum salts (alum) are not well tolerated in the lung. To address this issue, we evaluated the use of porous aluminum (Al)-based metal-organic framework (MOF) nanoparticles (NPs) as inhalable adjuvants. We evaluate a suite of Al-based MOF NPs alongside alum including DUT-4, DUT-5, MIL-53 (Al), and MIL-101-NH2 (Al). As synthesized, MOF NPs ranged between ~ 200 nm and 1 µm in diameter, with the larger diameter MOFs matching those of commercial alum. In vitro examination of co-stimulatory markers revealed that the Al-based MOF NPs activated antigen presenting cells more effectively than alum. Similar results were found during in vivo immunizations utilizing ovalbumin (OVA) as a model antigen, resulting in robust mucosal humoral responses for all Al MOFs tested. In particular, DUT-5 was able to elicit mucosal OVA-specific IgA antibodies that were significantly higher than the other MOFs or alum dosed at the same NP mass. DUT-5 also was uniquely able to generate detectable IgG2a titers, indicative of a cellular immune response and also had superior performance relative to alum at equivalent Al dosed in a reduced dosage vaccination study. All MOF NPs tested were generally well-tolerated in the lung, with only acute levels of cellular infiltrates detected and no Al accumulation; Al content was largely cleared from the lung and other organs at 28 days despite the two-dose regime. Furthermore, all MOF NPs exhibited mass median aerodynamic diameters (MMADs) of ~ 1.5-2.5 µm when dispersed from a generic dry powder inhaler, ideal for efficient lung deposition. While further work is needed, these results demonstrate the great potential for use of Al-based MOFs for pulmonary vaccination as novel inhalable adjuvants.
Collapse
Affiliation(s)
- Zachary S Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Gerald E Decker
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA.
| |
Collapse
|
47
|
Syntin P, Piras-Douce F, Dalençon F, Garinot M, Haensler J. Nonclinical safety assessments of a novel synthetic toll-like receptor 4 agonist and saponin based adjuvant. Toxicol Appl Pharmacol 2023; 460:116358. [PMID: 36572229 DOI: 10.1016/j.taap.2022.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
A full nonclinical safety package was performed to support the clinical use of SPA14, a novel liposome-based vaccine adjuvant containing the synthetic toll-like receptor 4 agonist E6020 and saponin QS21. E6020 and QS21 were tested negative for their potential genotoxic effects in Ames, micronucleus, or mouse-lymphoma TK (thymidine kinase) assay. To evaluate the potential local and systemic effects of SPA14, two toxicity studies were performed in rabbits. In the first dose range finding toxicity study, rabbits received two intramuscular injections of SPA14 at increasing doses of E6020 combined with two antigens, a control (saline), the two antigens alone, or the antigens adjuvanted with a liposome-based adjuvant AS01B. No systemic toxicity was detected, supporting the dose of 5 μg of E6020 for the subsequent pivotal study. In the second repeated dose toxicity study, rabbits received four intramuscular injections of SPA14 alone, a control (saline), SPA14 combined with two antigens, the two antigens alone, or the antigens combined with AF03 adjuvant, which is a squalene-based emulsion. SPA14 alone or in combination with the antigens was well tolerated and did not cause any systemic toxicity. Finally, two safety pharmacology studies were conducted to assess potential cardiovascular and respiratory effects of E6020 and SPA14 in conscious telemetered cynomolgus monkeys and beagle dogs, respectively. One subcutaneous injection of E6020 in monkeys and one intramuscular injection of SPA14 in dogs had no consequences on respiratory and cardiovascular functions. Altogether these results support the clinical development of SPA14.
Collapse
|
48
|
Spacova I, Patusco R, Lebeer S, Jensen MG. Influence of biotic interventions on the immune response to vaccines in young and older adults. Clin Nutr 2023; 42:216-226. [PMID: 36657219 DOI: 10.1016/j.clnu.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Vaccination is the most effective way to confer potent and long-term protection from infectious diseases. However, poorer responses to immunization are common in young adults with sub-optimal immune health and the elderly because of immunosenescence and increased comorbidities. Recent mechanistic studies have highlighted that the microbiota and its compounds modulate many molecular pathways that can influence the host immune system. Consequently, altering the microbiota composition or activity with immunonutrition, specifically with biotic interventions (probiotics, prebiotics, synbiotics, or postbiotics), may enhance the immune response and vaccine efficacy. This review aims to examine the available data for these biotic strategies to provide clinicians, researchers, and vaccine developers with a mechanistically driven synthesis of how biotic interventions could modulate the immune responses to vaccination. The article describes some postulated mechanistic pathways involved in immunological responses to vaccines and immunomodulation with biotic interventions. Randomized clinical trials were also reviewed to evaluate the impact of specific biotic interventions on vaccination outcomes in different age groups. Few strains and formulations significantly increased antigen-specific antibody titers in individual of all ages. However, studies have also pointed to a substantial heterogeneity that can be attributed to the difference in biotic intervention, strain, dose, viability, type of vaccine antigen, study location, as well as duration, and timing of administration. Future investigations should focus on establishing optimal strains, doses, and timing of administration with respect to vaccination, especially in the elderly and children, where vaccine effectiveness and duration of immunization matter.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium.
| | - Rachael Patusco
- Haleon (formerly GSK Consumer Healthcare Pvt Ltd), United States
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium
| | | |
Collapse
|
49
|
Kaplina ON, Gamaley SG, Ivanova OS, Danilenko ED. Double-stranded RNAs are promising adjuvants for enhancing immunogenicity of vaccines. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background. The most effective way to prevent infectious diseases is vaccination. Adjuvants contribute to the optimization of the immune response of vaccines. Double-stranded ribonucleic acids (dsRNAs) from natural sources are promising, but insufficiently studied adjuvants.
The aim of the work was to study the adjuvant activity of dsRNA obtained from the killer strain of Saccharomyces cerevisiae using two models of induction of a specific immune response.
Materials and methods. In the experiments, the substance of the drug Ridostin containing dsRNA, 21.72% (produced by Institute of Medical Biotechnology of the State Research Center of Virology and Biotechnology Vector), was used. A specific immune response was modeled using ovalbumin (OVA) or the substance of the EpiVacCorona vaccine (EVC). The experiments were carried out in 200 female BALB/c mice. Mice of the experimental groups were injected twice with antigen and adjuvant together with a 28-day interval, mice of the comparison group with antigen only. On the 10th day after the second immunization, blood samples were collected to determine the level of specific antibodies using enzyme immunoassay. The results were evaluated by calculation of the average geometric titers of specific antibodies against OVA or EVC.
Results. OVA or EVC administered twice induced the specific antibodies in mice in dose-dependent titers. The combined administration of antigen and dsRNA increased the strength of the immune response. The highest stimulating effect of dsRNA was observed in the dose of 100 g/mouse administered into mice immunized with OVA (1 g/mouse) or in the dose of 50 g/mouse in mice immunized with EVC substance (0.25 of a human dose per mouse).
Conclusion. The data obtained indicate that the substance of dsRNA exerts adjuvant properties, which gives reason to consider dsRNA as a promising adjuvant for peptide vaccines.
Collapse
|
50
|
Abstract
Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.
Collapse
|