1
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
2
|
Hoseinzadeh A, Esmaeili SA, Sahebi R, Melak AM, Mahmoudi M, Hasannia M, Baharlou R. Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights. Stem Cell Res Ther 2025; 16:33. [PMID: 39901306 PMCID: PMC11792531 DOI: 10.1186/s13287-025-04158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
A large body of evidence suggests that mesenchymal stromal cells (MSCs) are able to respond rapidly to the cytokine milieu following systemic infusion. This encounter has the potential to dictate their therapeutic efficacy (also referred to as licensing). MSCs are able to rapidly react to cellular damage by migrating to the inflamed tissue and ultimately modifying the inflammatory microenvironment. However, the limited use of MSCs in clinical practice can be attributed to a lack of understanding of the fate of MSCs in patients after administration and long term MSC-derived therapeutic activity. While the known physiological effectors of viable MSCs make a relative contribution, an innate property of MSCs as a therapeutic agent is their caspase-dependent cell death. These mechanisms may be involving the functional reprogramming of myeloid phagocytes via efferocytosis, the process by which apoptotic bodies (ABs) are identified for engulfment by both specialized and non-specialized phagocytic cells. Recent studies have provided evidence that the uptake of ABs with a distinct genetic component can induce changes in gene expression through the process of epigenetic remodeling. This phenomenon, known as 'trained immunity', has a significant impact on immunometabolism processes. It is hypothesized that the diversity of recipient cells within the inflammatory stroma adjacent to MSCs may potentially serve as a biomarker for predicting the clinical outcome of MSC treatment, while also contributing to the variable outcomes observed with MSC-based therapies. Therefore, the long-term reconstructive process of MSCs may potentially be mediated by MSC apoptosis and subsequent phagocyte-mediated efferocytosis.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Mahmoudi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Wang B, Zhou B, Chen J, Sun X, Yang W, Yang T, Yu H, Chen P, Chen K, Huang X, Fan X, He W, Huang J, Lin T. Type III interferon inhibits bladder cancer progression by reprogramming macrophage-mediated phagocytosis and orchestrating effective immune responses. J Immunother Cancer 2024; 12:e007808. [PMID: 38589249 PMCID: PMC11015199 DOI: 10.1136/jitc-2023-007808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Interferons (IFNs) are essential for activating an effective immune response and play a central role in immunotherapy-mediated immune cell reactivation for tumor regression. Type III IFN (λ), related to type I IFN (α), plays a crucial role in infections, autoimmunity, and cancer. However, the direct effects of IFN-λ on the tumor immune microenvironment have not been thoroughly investigated. METHODS We used mouse MB49 bladder tumor models, constructed a retroviral vector expressing mouse IFN-λ3, and transduced tumor cells to evaluate the antitumor action of IFN-λ3 in immune-proficient tumors and T cell-deficient tumors. Furthermore, human bladder cancer samples (cohort 1, n=15) were used for immunohistochemistry and multiplex immunoflurescence analysis to assess the expression pattern of IFN-λ3 in human bladder cancer and correlate it with immune cells' infiltration. Immunohistochemistry analysis was performed in neoadjuvant immunotherapy cohort (cohort 2, n=20) to assess the correlation between IFN-λ3 expression and the pathological complete response rate. RESULTS In immune-proficient tumors, ectopic Ifnl3 expression in tumor cells significantly increased the infiltration of cytotoxic CD8+ T cells, Th1 cells, natural killer cells, proinflammatory macrophages, and dendritic cells, but reduced neutrophil infiltration. Transcriptomic analyses revealed significant upregulation of many genes associated with effective immune response, including lymphocyte recruitment, activation, and phagocytosis, consistent with increased antitumor immune infiltrates and tumor inhibition. Furthermore, IFN-λ3 activity sensitized immune-proficient tumors to anti-PD-1/PD-L1 blockade. In T cell-deficient tumors, increased Ly6G-Ly6C+I-A/I-E+ macrophages still enhanced tumor cell phagocytosis in Ifnl3 overexpressing tumors. IFN-λ3 is expressed by tumor and stromal cells in human bladder cancer, and high IFN-λ3 expression was positively associated with effector immune infiltrates and the efficacy of immune checkpoint blockade therapy. CONCLUSIONS Our study indicated that IFN-λ3 enables macrophage-mediated phagocytosis and antitumor immune responses and suggests a rationale for using Type III IFN as a predictive biomarker and potential immunotherapeutic candidate for bladder cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bingkun Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xi Sun
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wenjuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Tenghao Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Peng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xiaodong Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
4
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
5
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Abstract
Sepsis is a life-threatening syndrome with a high incidence and a weighty economic burden. The cytokines storm in the early stage and the state of immunosuppression in the late stage contribute to the mortality of sepsis. Immune checkpoints expressed on lymphocytes and APCs, including CD28, CTLA-4, CD80, CD86, PD-1 and PD-L1, CD40 and CD40L, OX40 and OX40L, 4-1BB and 4-1BBL, BTLA, TIM family, play significant roles in the pathogenesis of sepsis through regulating the immune disorder. The specific therapies targeting immune checkpoints exhibit great potentials in the animal and preclinical studies, and further clinical trials are planning to implement. Here, we review the current literature on the roles played by immune checkpoints in the pathogenesis and treatment of sepsis. We hope to provide further insights into this novel immunomodulatory strategy.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Interaction Differences of the Avian Host-Specific Salmonella enterica Serovar Gallinarum, the Host-Generalist S. Typhimurium, and the Cattle Host-Adapted S. Dublin with Chicken Primary Macrophage. Infect Immun 2019; 87:IAI.00552-19. [PMID: 31548317 DOI: 10.1128/iai.00552-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022] Open
Abstract
Most Salmonella serovars cause disease in many host species, while a few serovars have evolved to be host specific. Very little is known about the mechanisms that contribute to Salmonella host specificity. We compared the interactions between chicken primary macrophages (CDPM) and host-generalist serovar Salmonella enterica serovar Typhimurium, host-adapted Salmonella enterica serovar Dublin, and avian host-specific Salmonella enterica serovar Gallinarum. S Gallinarum was taken up in lower numbers by CDPM than S Typhimurium and S Dublin; however, a higher survival rate was observed for this serovar. In addition, S Typhimurium and S Dublin caused substantially higher levels of cell death to the CDPM, while significantly higher concentrations of NO were produced by S Gallinarum-infected cells. Global transcriptome analysis performed 2 h postinfection showed that S Gallinarum infection triggered a more comprehensive response in CDPM with 1,114 differentially expressed genes (DEGs) compared to the responses of S Typhimurium (625 DEGs) and S Dublin (656 DEGs). Comparable levels of proinflammation responses were observed in CDPM infected by these three different serovars at the initial infection phase, but a substantially quicker reduction in levels of interleukin-1β (IL-1β), CXCLi1, and CXCLi2 gene expression was detected in the S Gallinarum-infected macrophages than that of two other groups as infections proceeded. KEGG cluster analysis for unique DEGs after S Gallinarum infection showed that the JAK-STAT signaling pathway was top enriched, indicating a specific role for this pathway in response to S Gallinarum infection of CDPM. Together, these findings provide new insights into the interaction between Salmonella and the host and increase our understanding of S Gallinarum host specificity.
Collapse
|
8
|
Ishida N, Ishiyama K, Saeki Y, Tanaka Y, Ohdan H. Cotransplantation of preactivated mesenchymal stem cells improves intraportal engraftment of islets by inhibiting liver natural killer cells in mice. Am J Transplant 2019; 19:2732-2745. [PMID: 30859713 DOI: 10.1111/ajt.15347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 01/25/2023]
Abstract
The activation of natural killer (NK) cells in the liver inhibits engraftment of intraportally transplanted islets. We attempted to modulate the activity of NK cells by cotransplanting mesenchymal stem cells (MSCs) with islets in mice. We first investigated the ability of MSCs to secrete prostaglandin E2 , a predominant inhibitor of NK cell function, in various combinations of inflammatory cytokines. Notably, we found that prostaglandin E2 production was partially delayed in MSCs activated by inflammatory cytokines in vitro, whereas liver NK cells were activated early after islet transplant in vivo. Accordingly, preactivated MSCs, but not naive MSCs, substantially suppressed the expression of activation markers in liver NK cells after cotransplant with islets. Similarly, cotransplant with preactivated MSCs, but not naive MSCs, markedly improved the survival of islet grafts. These results highlight MSC cotransplant as an effective and clinically feasible method for enhancing engraftment efficiency.
Collapse
Affiliation(s)
- Nobuki Ishida
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Ishiyama
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Saeki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
S-Nitrosoglutathione Reductase Deficiency Confers Improved Survival and Neurological Outcome in Experimental Cerebral Malaria. Infect Immun 2017; 85:IAI.00371-17. [PMID: 28674030 DOI: 10.1128/iai.00371-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
Artesunate remains the mainstay of treatment for cerebral malaria, but it is less effective in later stages of disease when the host inflammatory response and blood-brain barrier integrity dictate clinical outcomes. Nitric oxide (NO) is an important regulator of inflammation and microvascular integrity, and impaired NO bioactivity is associated with fatal outcomes in malaria. Endogenous NO bioactivity in mammals is largely mediated by S-nitrosothiols (SNOs). Based on these observations, we hypothesized that animals deficient in the SNO-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), which exhibit enhanced S-nitrosylation, would have improved outcomes in a preclinical model of cerebral malaria. GSNOR knockout (KO) mice infected with Plasmodium berghei ANKA had significantly delayed mortality compared to WT animals (P < 0.0001), despite higher parasite burdens (P < 0.01), and displayed markedly enhanced survival versus the wild type (WT) when treated with the antimalarial drug artesunate (77% versus 38%; P < 0.001). Improved survival was associated with higher levels of protein-bound NO, decreased levels of CD4+ and CD8+ T cells in the brain, improved blood-brain barrier integrity, and improved coma scores, as well as higher levels of gamma interferon. GSNOR KO animals receiving WT bone marrow had significantly reduced survival following P. berghei ANKA infection compared to those receiving KO bone barrow (P < 0.001). Reciprocal transplants established that survival benefits of GSNOR deletion were attributable primarily to the T cell compartment. These data indicate a role for GSNOR in the host response to malaria infection and suggest that strategies to disrupt its activity will improve clinical outcomes by enhancing microvascular integrity and modulating T cell tissue tropism.
Collapse
|
10
|
A Role for CD154, the CD40 Ligand, in Granulomatous Inflammation. Mediators Inflamm 2017; 2017:2982879. [PMID: 28785137 PMCID: PMC5529663 DOI: 10.1155/2017/2982879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Granulomatous inflammation is a distinctive form of chronic inflammation in which predominant cells include macrophages, epithelioid cells, and multinucleated giant cells. Mechanisms regulating granulomatous inflammation remain ill-understood. CD154, the ligand of CD40, is a key mediator of inflammation. CD154 confers a proinflammatory phenotype to macrophages and controls several macrophagic functions. Here, we studied the contribution of CD154 in a mouse model of toxic liver injury with carbon tetrachloride and a model of absorbable suture graft. In both models, granulomas are triggered in response to endogenous persistent liver calcified necrotic lesions or by grafted sutures. CD154-deficient mice showed delayed clearance of carbon tetrachloride-induced liver calcified necrotic lesions and impaired progression of suture-induced granuloma. In vitro, CD154 stimulated phagocytosis of opsonized erythrocytes by macrophages, suggesting a potential mechanism for the altered granulomatous inflammation in CD154KO mice. These results suggest that CD154 may contribute to the natural history of granulomatous inflammation.
Collapse
|
11
|
Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8:1041. [PMID: 28690590 PMCID: PMC5481322 DOI: 10.3389/fmicb.2017.01041] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.
Collapse
Affiliation(s)
- Denise E. Morris
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - David W. Cleary
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - Stuart C. Clarke
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
- Global Health Research Institute, University of SouthamptonSouthampton, United Kingdom
- NIHR Southampton Respiratory Biomedical Research UnitSouthampton, United Kingdom
| |
Collapse
|
12
|
Ma WT, Jia YJ, Liu QZ, Yang YQ, Yang JB, Zhao ZB, Yang ZY, Shi QH, Ma HD, Gershwin ME, Lian ZX. Modulation of liver regeneration via myeloid PTEN deficiency. Cell Death Dis 2017; 8:e2827. [PMID: 28542148 PMCID: PMC5520744 DOI: 10.1038/cddis.2017.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Molecular mechanisms that modulate liver regeneration are of critical importance for a number of hepatic disorders. Kupffer cells and natural killer (NK) cells are two cell subsets indispensable for liver regeneration. We have focused on these two populations and, in particular, the interplay between them. Importantly, we demonstrate that deletion of the myeloid phosphatase and tensin homolog on chromosome 10 (PTEN) leading to an M2-like polarization of Kupffer cells, which results in decreased activation of NK cells. In addition, PTEN-deficient Kupffer cells secrete additional factors that facilitate the proliferation of hepatocytes. In conclusion, PTEN is critical for inhibiting M2-like polarization of Kupffer cells after partial hepatectomy, resulting in NK cell activation and thus the inhibition of liver regeneration. Furthermore, PTEN reduces growth factor secretion by Kupffer cells. Our results suggest that targeting PTEN on Kupffer cells may be useful in altering liver regeneration in patients undergoing liver resection.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Zhi Liu
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen-Ye Yang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Hua Shi
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
13
|
Tabata R, Yasumizu R, Tabata C, Kojima M. Bone marrow macrophages in Waldenström's macroglobulinemia: a report of four cases. J Clin Exp Hematop 2015; 54:103-10. [PMID: 25318942 DOI: 10.3960/jslrt.54.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is well known that some B-cell lymphomas are accompanied by a prominent epithelioid cell response, caused by activated macrophages, such as marginal zone B-cell lymphoma of a mucosa-associated lymphoid tissue. We investigated six bone marrow samples from four cases of Waldenström's macroglobulinemia and report a unique observation that large conjugates of tumor cells around a macrophage were prominent in all cases, particularly in one case, the bone marrow of which contained increased CD163-positive macrophages. Mast cells were increased in all the samples, some of which seemed to be in close contact with tumor cells. We consider that the conjugates represented close interactions of tumor cells, macrophages, and mast cells by cell-to-cell contact. Three of the present cases showed a favorable course. On the other hand, one case suffered from severe anemia and thrombocytopenia due to hemophagocytic syndrome at the second admission and showed a severe clinical course. Clinicians should be aware of the risk of lymphoma-associated hemophagocytic syndrome in this low-grade lymphoma, although many of the patients with hemophagocytic syndrome in Japan have aggressive lymphomas such as diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Rie Tabata
- Departments of Hematology and Oncology, Hyogo Prefectural Tsukaguchi Hospital
| | | | | | | |
Collapse
|
14
|
Gras Navarro A, Kmiecik J, Leiss L, Zelkowski M, Engelsen A, Bruserud Ø, Zimmer J, Enger PØ, Chekenya M. NK cells with KIR2DS2 immunogenotype have a functional activation advantage to efficiently kill glioblastoma and prolong animal survival. THE JOURNAL OF IMMUNOLOGY 2014; 193:6192-206. [PMID: 25381437 DOI: 10.4049/jimmunol.1400859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glioblastomas (GBMs) are lethal brain cancers that are resistant to current therapies. We investigated the cytotoxicity of human allogeneic NK cells against patient-derived GBM in vitro and in vivo, as well as mechanisms mediating their efficacy. We demonstrate that KIR2DS2 immunogenotype NK cells were more potent killers, notwithstanding the absence of inhibitory killer Ig-like receptor (KIR)-HLA ligand mismatch. FACS-sorted and enriched KIR2DS2(+) NK cell subpopulations retained significantly high levels of CD69 and CD16 when in contact with GBM cells at a 1:1 ratio and highly expressed CD107a and secreted more soluble CD137 and granzyme A. In contrast, KIR2DS2(-) immunogenotype donor NK cells were less cytotoxic against GBM and K562, and, similar to FACS-sorted or gated KIR2DS2(-) NK cells, significantly diminished CD16, CD107a, granzyme A, and CD69 when in contact with GBM cells. Furthermore, NK cell-mediated GBM killing in vitro depended upon the expression of ligands for the activating receptor NKG2D and was partially abrogated by Ab blockade. Treatment of GBM xenografts in NOD/SCID mice with NK cells from a KIR2DS2(+) donor lacking inhibitory KIR-HLA ligand mismatch significantly prolonged the median survival to 163 d compared with vehicle controls (log-rank test, p = 0.0001), in contrast to 117.5 d (log-rank test, p = 0.0005) for NK cells with several inhibitory KIR-HLA ligand mismatches but lacking KIR2DS2 genotype. Significantly more CD56(+)CD16(+) NK cells from a KIR2DS2(+) donor survived in nontumor-bearing brains 3 wk after infusion compared with KIR2DS2(-) NK cells, independent of their proliferative capacity. In conclusion, KIR2DS2 identifies potent alloreactive NK cells against GBM that are mediated by commensurate, but dominant, activating signals.
Collapse
Affiliation(s)
| | - Justyna Kmiecik
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway; Department of Neurology and Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Mateusz Zelkowski
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Agnete Engelsen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Øystein Bruserud
- Department of Haematology, Haukeland University Hospital, 5021 Bergen, Norway; and
| | - Jacques Zimmer
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health, L-1445, Luxembourg, Luxembourg
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway; Department of Neurology and Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
15
|
Cheadle WG, Barnett R. Never Say Never Again! The Thirty-third Presidential Address to the Surgical Infection Society. Surg Infect (Larchmt) 2014. [DOI: 10.1089/sur.2013.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
| | - Rebecca Barnett
- Research and Development Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| |
Collapse
|
16
|
Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z. T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 2014; 59:1715-25. [PMID: 24319005 DOI: 10.1002/hep.26968] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Uncontrolled natural killer (NK) cell activation during the early response to acute viral infection can lead to severe immunopathology, and the mechanisms NK cells use to achieve self-tolerance in such contexts are currently unclear. Here, NK cells up-regulated a coinhibitory receptor, T-cell Ig and ITIM domain (TIGIT), during challenge with the viral double-stranded RNA (dsRNA) analog poly I:C. Blocking TIGIT by antibody treatment in vivo or a genetic deficiency in Tigit enhanced NK cell activation and aggravated liver injury in a poly I:C/D-GalN-induced model of acute fulminant hepatitis, suggesting that TIGIT is normally required for protecting against NK cell-mediated liver injury. Furthermore, adoptively transferring Tigit(-/-) NK cells into NK cell-deficient Nfil3(-/-) mice also resulted in elevated liver injury. Reconstituting Kupffer cell-depleted mice with poliovirus receptor (PVR/CD155, a TIGIT ligand)-silenced Kupffer cells led to aggravated liver injury in a TIGIT-dependent manner. Blocking TIGIT in an NK-Kupffer cell coculture in vitro enhanced NK cell activation and interferon-gamma (IFN-γ) production in a PVR-dependent manner. We also found that TIGIT was up-regulated selectively on NK cells and protected against liver injury in an acute adenovirus infection model in both an NK cell- and Kupffer cell-dependent manner. Knocking down PVR in Kupffer cells resulted in aggravated liver injury in response to adenovirus infection in a TIGIT-dependent manner. CONCLUSION TIGIT negatively regulates NK-Kupffer cell crosstalk and alleviates liver injury in response to poly I:C/D-GalN challenge or acute adenovirus infection, suggesting a novel mechanism of NK cell self-tolerance in liver homeostasis during acute viral infection.
Collapse
Affiliation(s)
- Jiacheng Bi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
17
|
TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 2013; 92:256-62. [PMID: 24366517 DOI: 10.1038/icb.2013.99] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are important in innate immunity, first described as guardians for the detection and clearance of transformed or virus-infected cells. Later, this cell type was revealed to be also able to recognize and respond to bacteria-infected cells. NK cells possess receptors allowing them to sense and respond to viral and bacterial patterns, including Toll-like receptors (TLRs). Initially described in other innate immune cells, particularly monocytes/macrophages, TLRs have more recently been characterized in NK cells. Controversies remain regarding the TLR expression in NK cells and their responsiveness to agonists, specifically the requirement for the presence of accessory cells, such as dendritic cells, or of accessory cytokines (IL-2, IL-12, IL-15 and IL-18) to respond to TLR agonists. Upon TLR activation, NK cells are an important source of IFN-γ and granulocyte macrophage colony-stimulating factor, cytokines necessary to fight infection but that can also contribute to deleterious inflammation if produced in excessive amounts. Here, we review the current knowledge concerning the expression of TLRs in and on NK cells and the responsiveness to their agonists and review the literature on the role of NK cells in the sensing of bacterial or viral patterns and in combatting infection.
Collapse
|
18
|
Hirbod-Mobarakeh A, Aghamohammadi A, Rezaei N. Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again. Expert Rev Clin Immunol 2013; 10:91-105. [PMID: 24308834 DOI: 10.1586/1744666x.2014.864554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunoglobulin class switch recombination deficiency or hyper-IgM syndrome is characterized by normal or elevated serum IgM and low serum levels of other immunoglobulins. Since the first reported patient with hyper-IgM, more than 200 patients with this phenotype resulted from CD40 ligand deficiency have been reported. However, in addition to this common finding, they presented with different manifestations like opportunistic infections, autoimmunity and malignancies each of them are worth a detailed look. In this review, we will focus on different underlying mechanisms of these presentations to review what we have learned from our patients. In the end, we will discuss different treatment options available for these patients using this knowledge.
Collapse
Affiliation(s)
- Armin Hirbod-Mobarakeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
19
|
Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, Remick DG. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev 2013; 93:1247-88. [PMID: 23899564 DOI: 10.1152/physrev.00037.2012] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed.
Collapse
Affiliation(s)
- Kendra N Iskander
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Effect of N-salicyloyltryptamine (STP), a novel tryptamine analogue, on parameters of cell viability, oxidative stress, and immunomodulation in RAW 264.7 macrophages. Cell Biol Toxicol 2013; 29:175-87. [PMID: 23605514 DOI: 10.1007/s10565-013-9245-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
Immunomodulatory actions exerted by some classes of tryptamines, such as benzoyltryptamine analogues, suggest these molecules as promising candidates to develop new therapies to treat conditions associated to acute and chronic pain and inflammation. N-salicyloyltryptamine (STP) was observed to act as an anticonvulsive agent and exert antinociceptive effects in mouse. In the present work, we performed a screening of cytotoxic, cytoprotective, immunomodulatory, and redox properties of STP in RAW 264.7 macrophages challenged with hydrogen peroxide and LPS. Our results show that STP presents no cytotoxicity in the range of 0.001 to 1 μg/mL, but doses of 50 and 100 μg/mL caused loss of cell viability (IC(50) = 22.75 μg/mL). Similarly, STP at 0.001 to 1 μg/mL did not cause oxidative stress to RAW 264.7 cells, although it did not prevent cell death induced by H(2)O(2) 0.5 mM. At 1 μg/mL, STP reversed some redox and inflammatory parameters induced by LPS. These include thiol (sulfhydryl) oxidation, superoxide dismutase activation, and morphological changes associated to macrophage activation. Besides, STP significantly inhibited LPS-induced TNF-α and IL-1β release, as well as CD40 and TNF-α protein upregulation. Signaling events induced by LPS, such as phosphorylation of ERK 1/2 and IκBα and p65 nuclear translocation (NF-kB activation) were also inhibited by STP. These data indicate that STP is able to modulate inflammatory parameters at doses that do not interfere in cell viability.
Collapse
|
21
|
Michel T, Hentges F, Zimmer J. Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front Immunol 2013; 3:403. [PMID: 23316194 PMCID: PMC3539656 DOI: 10.3389/fimmu.2012.00403] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/15/2012] [Indexed: 11/13/2022] Open
Abstract
The interaction between natural killer (NK) cells and different other immune cells like T cells and dendritic cells is well-described, but the crosstalk with monocytes or macrophages and the nature of ligands/receptors implicated are just emerging. The macrophage-NK interaction is a major first-line defense against pathogens (bacteria, viruses, fungi, and parasites). The recruitment and the activation of NK cells to perform cytotoxicity or produce cytokines at the sites of inflammation are important to fight infections. The two main mechanisms by which macrophages can prime NK cells are (1) activation through soluble mediators such as IL-12, IL-18, and (2) stimulation through direct cell-to-cell contact. We will discuss the progress in matters of modulation of NK cell functions by monocytes and macrophages, in the steady state and during diseases.
Collapse
Affiliation(s)
- Tatiana Michel
- Laboratory of Immunogenetics and Allergology, Centre de Recherche Public de la Santé Luxembourg, Luxembourg
| | | | | |
Collapse
|
22
|
Short KR, Habets MN, Hermans PWM, Diavatopoulos DA. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol 2012; 7:609-24. [PMID: 22568716 DOI: 10.2217/fmb.12.29] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Historically, most research on infectious diseases has focused on infections with single pathogens. However, infections with pathogens often occur in the context of pre-existing viral and bacterial infections. Clinically, this is of particular relevance for coinfections with Streptococcus pneumoniae and influenza virus, which together are an important cause of global morbidity and mortality. In recent years new evidence has emerged regarding the underlying mechanisms of influenza virus-induced susceptibility to secondary pneumococcal infections, in particular regarding the sustained suppression of innate recognition of S. pneumoniae. Conversely, it is also increasingly being recognized that there is not a unidirectional effect of the virus on S. pneumoniae, but that asymptomatic pneumococcal carriage may also affect subsequent influenza virus infection and the clinical outcome. Here, we will review both aspects of pneumococcal influenza virus infection, with a particular focus on the age-related differences in pneumococcal colonization rates and invasive pneumococcal disease.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-85. [PMID: 22105606 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
|
24
|
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:19-48. [PMID: 20887193 DOI: 10.1146/annurev-pathol-011110-130327] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a serious clinical condition that represents a patient's response to a severe infection and has a very high mortality rate. Normal immune and physiologic responses eradicate pathogens, and the pathophysiology of sepsis is due to the inappropriate regulation of these normal reactions. In an ideal scenario, the first pathogen contact with the inflammatory system should eliminate the microbe and quickly return the host to homeostasis. The septic response may accelerate due to continued activation of neutrophils and macrophages/monocytes. Upregulation of lymphocyte costimulatory molecules and rapid lymphocyte apoptosis, delayed apoptosis of neutrophils, and enhanced necrosis of cells/tissues also contribute to the pathogenesis of sepsis. The coagulation system is closely tied to the inflammatory response, with cross talk between the two systems driving the dysregulated response. Biomarkers may be used to help diagnose patients with sepsis, and they may also help to identify patients who would benefit from immunomodulatory therapies.
Collapse
Affiliation(s)
- Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Massachusetts 02218, USA.
| | | | | | | | | |
Collapse
|
25
|
LOSS OF CD40 ENDOGENOUS S-NITROSYLATION DURING INFLAMMATORY RESPONSE IN ENDOTOXEMIC MICE AND PATIENTS WITH SEPSIS. Shock 2010; 33:626-33. [DOI: 10.1097/shk.0b013e3181cb88e6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Small CL, Shaler CR, McCormick S, Jeyanathan M, Damjanovic D, Brown EG, Arck P, Jordana M, Kaushic C, Ashkar AA, Xing Z. Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. THE JOURNAL OF IMMUNOLOGY 2010; 184:2048-56. [PMID: 20083661 DOI: 10.4049/jimmunol.0902772] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza viral infection is well-known to predispose to subsequent bacterial superinfection in the lung but the mechanisms have remained poorly defined. We have established a murine model of heterologous infections by an H1N1 influenza virus and Staphylococcus aureus. We found that indeed prior influenza infection markedly increased the susceptibility of mice to secondary S. aureus superinfection. Severe sickness and heightened bacterial infection in flu and S. aureus dual-infected animals were associated with severe immunopathology in the lung. We further found that flu-experienced lungs had an impaired NK cell response in the airway to subsequent S. aureus bacterial infection. Thus, adoptive transfer of naive NK cells to the airway of prior flu-infected mice restored flu-impaired antibacterial host defense. We identified that TNF-alpha production of NK cells played an important role in NK cell-mediated antibacterial host defense as NK cells in flu-experienced lungs had reduced TNF-alpha expression and adoptive transfer of TNF-alpha-deficient NK cells to the airway of flu-infected mice failed to restore flu-impaired antibacterial host defense. Defected NK cell function was found to be an upstream mechanism of depressed antibacterial activities by alveolar macrophages as contrast to naive wild-type NK cells, the NK cells from flu-infected or TNF-alpha-deficient mice failed to enhance S. aureus phagocytosis by alveolar macrophages. Together, our study identifies the weakened NK cell response in the lung to be a novel critical mechanism for flu-mediated susceptibility to bacterial superinfection.
Collapse
Affiliation(s)
- Cherrie-Lee Small
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Etogo AO, Nunez J, Lin CY, Toliver-Kinsky TE, Sherwood ER. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis. THE JOURNAL OF IMMUNOLOGY 2008; 180:6334-45. [PMID: 18424757 DOI: 10.4049/jimmunol.180.9.6334] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence suggests that NK and NKT cells contribute to inflammation and mortality during septic shock caused by cecal ligation and puncture (CLP). However, the specific contributions of these cell types to the pathogenesis of CLP-induced septic shock have not been fully defined. The goal of the present study was to determine the mechanisms by which NK and NKT cells mediate the host response to CLP. Control, NK cell-deficient, and NKT cell-deficient mice underwent CLP. Survival, cytokine production, and bacterial clearance were measured. NK cell trafficking and interaction with myeloid cells was also studied. Results show that mice treated with anti-asialoGM1 (NK cell deficient) or anti-NK1.1 (NK/NKT cell deficient) show less systemic inflammation and have improved survival compared with IgG-treated controls. CD1 knockout mice (NKT cell deficient) did not demonstrate decreased cytokine production or improved survival compared with wild type mice. Trafficking studies show migration of NK cells from blood and spleen into the inflamed peritoneal cavity where they appear to facilitate the activation of peritoneal macrophages (F4-80(+)GR-1(-)) and F4-80(+)Gr-1(+) myeloid cells. These findings indicate that NK but not CD1-restricted NKT cells contribute to acute CLP-induced inflammation. NK cells appear to mediate their proinflammatory functions during septic shock, in part, by migration into the peritoneal cavity and amplification of the proinflammatory activities of specific myeloid cell populations. These findings provide new insights into the mechanisms used by NK cells to facilitate acute inflammation during septic shock.
Collapse
Affiliation(s)
- Anthony O Etogo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
28
|
Takahara M, Miyai M, Tomiyama M, Mutou M, Nicol AJ, Nieda M. Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via Vgamma9gammadelta T cell activation. J Leukoc Biol 2007; 83:742-54. [PMID: 18156189 DOI: 10.1189/jlb.0307185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We demonstrate that Vgamma9gammadelta T cells activated by zoledronate can link innate and acquired immunity through crosstalk with dendritic cells (DCs) in a way that can amplify activation and proliferation of tumor antigen-specific CD8+ T cells. DCs pulsed with antigen alone or antigen plus zoledronate were used to stimulate the in vitro expansion of antigen-specific CD8+ T cells. MART-1-modified peptide (A27L peptide) and apoptotic HLA-A*0201-positive, MART-1-positive JCOCB tumor cell lines were used as tumor antigen sources. The percentage of A27L-specific CD8+ T cells within the responding lymphocytes on Day 7 when immature DCs (imDCs) were cultured in the presence of A27L peptide and 0.01 microM zoledronate was significantly higher (P=0.002, n=11) than that observed when imDCs were cultured with the lymphocytes in the presence of the A27L peptide alone. This enhancing effect of zoledronate was significantly reduced when gammadelta T cells were depleted from responding lymphocytes (P=0.030, n=5), indicating that the effect is mediated mainly through Vgamma9gammadelta T cells activated by zoledronate-pulsed imDCs. When imDCs copulsed with zoledronate and apoptotic JCOCB tumor cell lines were used, the percentage of A27L-specific CD8+ T cells was higher than that observed using imDCs with the apoptotic JCOCB lines alone, suggesting that zoledronate treatment of imDCs enhances the cross-presentation ability of DCs. These findings suggest a potentially valuable role for Vgamma9gammadelta T cell activation for expanding antigen-specific CD8+T cells using DCs copulsed with tumor antigen and zoledronate in the design of vaccine therapies for malignancy.
Collapse
Affiliation(s)
- Masashi Takahara
- Medinet Medical Institute, Medinet Co. Ltd., 4-20-18 Seta, Setagaya-ku, Tokyo 158-0095, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Li S, Yan Y, Lin Y, Bullens DM, Rutgeerts O, Goebels J, Segers C, Boon L, Kasran A, De Vos R, Dewolf-Peeters C, Waer M, Billiau AD. Rapidly induced, T-cell–independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells. Blood 2007; 110:3926-35. [PMID: 17630353 DOI: 10.1182/blood-2007-01-065482] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AbstractXenoantibody production directed at a wide variety of T lymphocyte–dependent and T lymphocyte–independent xenoantigens remains the major immunologic obstacle for successful xenotransplantation. The B lymphocyte subpopulations and their helper factors, involved in T-cell–independent xenoantibody production are only partially understood, and their identification will contribute to the clinical applicability of xenotransplantation. Here we show, using models involving T-cell–deficient athymic recipient mice, that rapidly induced, T-cell–independent xenoantibody production is mediated by marginal zone B lymphocytes and requires help from natural killer (NK) cells. This collaboration neither required NK-cell–mediated IFN-γ production, nor NK-cell–mediated cytolytic killing of xenogeneic target cells. The T-cell–independent IgM xenoantibody response could be partially suppressed by CD40L blockade.
Collapse
Affiliation(s)
- Shengqiao Li
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim AJ, Kim YO, Shim JS, Hwang JK. Immunostimulating activity of crude polysaccharide extract isolated from Curcuma xanthorrhiza Roxb. Biosci Biotechnol Biochem 2007; 71:1428-38. [PMID: 17587672 DOI: 10.1271/bbb.60241] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Curcuma xanthorrhiza Roxb., commonly known as Javanese turmeric, has been reported to possess a variety of biological activities, including anti-inflammatory effects, anticarcinogenic effects, wound healing effects, and serum cholesterol-lowering effects. CPE, crude polysaccharide extract isolated from the rhizome of C. xanthorrhiza using 0.1 N NaOH, consisted of arabinose (18.69%), galactose (14.0%), glucose (50.67%), mannose (12.97%), rhamnose (2.73%), and xylose (0.94%), with an average molecular weight of 33,000 Da. In the present study, we investigated the effect of CPE on nitric oxide (NO), hydrogen peroxide (H2O2), tumor necrosis factor-alpha (TNF-alpha), and prostaglandin E2 (PGE2) production in RAW 264.7 cells. The uptake of fluorescein-labeled Escherichia coli was measured to determine whether CPE stimulates the phagocytic activity of RAW 264.7 cells. CPE significantly increased the phagocytosis of macrophages and the release of NO, H2O2, TNF-alpha, and PGE2 in a dose-dependent manner, and showed a similar activity to lipopolysaccharide (LPS). To study the mechanisms of CPE, we examined induction of iNOS and COX-2. NO and PGE2 were produced as a result of stimulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) respectively. Both modulations of iNOS and COX-2 expression by CPE were evaluated by Western immunoblotting and RT-PCR. Since transcription of these enzymes is under the control of nuclear factor-kappa B (NF-kappaB), we assessed the phosphorylation of inhibitor kappaBalpha (IkappaBalpha) through Western immunoblotting. CPE clearly induced phosphorylation of IkappaBalpha, suggesting a role as an NF-kappaB activator. Taking all this together, we conclude that CPE isolated from Curcuma xanthorrhiza stimulates the immune functions of macrophages, which is mediated in part by specific activation of NF-kappaB.
Collapse
Affiliation(s)
- Ah-Jin Kim
- Department of Biotechnology, Yonsei University, Korea
| | | | | | | |
Collapse
|
31
|
Newman KC, Riley EM. Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 2007; 7:279-91. [PMID: 17380157 DOI: 10.1038/nri2057] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells have a crucial role in combating infections and cancers and their surface receptors can directly recognize and respond to damaged, transformed or non-self cells. Whereas some virus-infected cells are recognized by this same route, NK-cell responses to many pathogens are triggered by a different mechanism. Activation of NK cells by these pathogens requires the presence of accessory cells such as monocytes, macrophages and dendritic cells. Recent studies have identified numerous pathogen-recognition receptors that enable accessory cells to recognize different pathogens and subsequently transmit signals--both soluble and contact-dependent--to NK cells, which respond by upregulating their cytotoxic potential and the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Kirsty C Newman
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
32
|
Schneider DF, Glenn CH, Faunce DE. Innate Lymphocyte Subsets and Their Immunoregulatory Roles in Burn Injury and Sepsis. J Burn Care Res 2007; 28:365-79. [PMID: 17438501 DOI: 10.1097/bcr.0b013e318053d40b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vast majority of clinical and basic science research on the immune consequences of burn injury and sepsis conducted during the last three decades has focused mainly on the roles of macrophages, neutrophils and, to a lesser extent, conventional T lymphocytes. During recent years, however, it has become increasingly clear that minor subsets of innate immune cells, innate regulatory lymphocytes in particular, are central to processes involved in both protective immunity and immunopathology. Recent reports by our laboratory and others have just begun to shed light on the critical roles of innate lymphocyte subsets, including natural killer T cells, natural killer cells, gamma-delta T cells, and naturally occurring CD4+CD25+ regulatory T cells during the immune response to burn injury and sepsis. Given their emerging importance and documented upstream regulatory capacities over macrophage, dendritic cell, and T lymphocyte functions, innate regulatory lymphocytes represent attractive new targets for therapeutic intervention for the overall immune paralysis that occurs with injury and sepsis. Here, we provide an overview of the current state of knowledge of these particular cell subsets in the immune response to burn injury and sepsis.
Collapse
Affiliation(s)
- David F Schneider
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Bldg 110, Room 4236, 2160 South 1st Avenue, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
33
|
Inwald DP, Faust SN, Lister P, Peters MJ, Levin M, Heyderman R, Klein NJ. Platelet and soluble CD40L in meningococcal sepsis. Intensive Care Med 2006; 32:1432-7. [PMID: 16810523 DOI: 10.1007/s00134-006-0250-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 05/24/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine the influence of meningococcal sepsis on levels of platelet derived CD40L and on endothelial CD40 expression. DESIGN AND SETTING Prospective observational study in two tertiary paediatric intensive care units. PATIENTS AND PARTICIPANTS 63 children with meningococcal sepsis and 10 age-matched controls. MEASUREMENTS AND RESULTS (a) sCD40L ELISA of plasma from patients with meningococcal sepsis (n = 49) and age matched controls (n = 10). This demonstrated higher sCD40L levels in patients (median 0.29 ng/ml, IQR 0.2-0.41) than controls (0.09 ng/ml, 0.08-0.12). However, there was no relationship between plasma sCD40L level and platelet count or disease severity. (b) Flow cytometry of fresh blood from patients with meningococcal sepsis (n = 11) and age-matched controls (n = 10) for membrane bound CD40L and CD62P on circulating platelets. This demonstrated low levels of CD40L and CD62P in patients and controls. CD40L+ platelets were 3.5% (3.0-4.8) in patients and 4.9% (3.5-4.3) in controls. CD62P+ platelets were 10.7% (6.4-12.8) in patients and 7.9% (5.9-13.0) in controls. (c) Immunohistochemistry of skin biopsy specimens from six patients, staining for endothelial CD40 expression at sites of microthrombus formation, which demonstrated preserved CD40 expression in vascular endothelium at sites of microthrombus formation. CONCLUSIONS The elevated sCD40L level in meningococcal sepsis implies release of sCD40L from platelets. However, there was no relationship between plasma sCD40L level and the degree of thrombocytopenia or disease severity. Furthermore, platelet surface bound CD40L was similar in controls and patients. Thus, further investigation is needed to determine whether platelet CD40L contributes to inflammation and thrombosis in MCS.
Collapse
Affiliation(s)
- David P Inwald
- Department of Paediatrics, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, W2 1PG, London, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL. Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. THE JOURNAL OF IMMUNOLOGY 2006; 176:309-18. [PMID: 16365423 DOI: 10.4049/jimmunol.176.1.309] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that macrophages (Mphi) can be activated by CD40 ligation to become cytotoxic against tumor cells in vitro. Here we show that treatment of mice with agonistic anti-CD40 mAb (anti-CD40) induced up-regulation of intracellular TLR9 in Mphi and primed them to respond to CpG-containing oligodeoxynucleotides (CpG), resulting in synergistic activation. The synergy between anti-CD40 and CpG was evidenced by increased production of IFN-gamma, IL-12, TNF-alpha, and NO by Mphi, as well as by augmented apoptogenic effects of Mphi against tumor cells in vitro. The activation of cytotoxic Mphi after anti-CD40 plus CpG treatment was dependent on IFN-gamma but not TNF-alpha or NO, and did not require T cells and NK cells. Anti-CD40 and CpG also synergized in vivo in retardation of tumor growth in both immunocompetent and immunodeficient mice. Inactivation of Mphi in SCID/beige mice by silica treatment abrogated the antitumor effect. Taken together, our results show that Mphi can be activated via CD40/TLR9 ligation to kill tumor cells in vitro and inhibit tumor growth in vivo even in immunocompromised tumor-bearing hosts, indicating that this Mphi-based immunotherapeutic strategy may be appropriate for clinical testing.
Collapse
Affiliation(s)
- Ilia N Buhtoiarov
- Department of Human Oncology and Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
35
|
Vowinkel T, Wood KC, Stokes KY, Russell J, Krieglstein CF, Granger DN. Differential expression and regulation of murine CD40 in regional vascular beds. Am J Physiol Heart Circ Physiol 2006; 290:H631-9. [PMID: 16172156 DOI: 10.1152/ajpheart.00733.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is emerging evidence for a role of the CD40/CD40 ligand (CD40L) dyad as a signaling mechanism in different inflammatory conditions. The aims of this study were to 1) quantify the constitutive and induced expression of CD40 in different regional vascular beds of the mouse and 2) assess the role of CD40L as a modulator of vascular endothelial CD40 expression. The dual radiolabeled monoclonal antibody technique was used to quantify the expression of endothelial CD40 in control and LPS-challenged wild-type (WT) mice. Significant constitutive CD40 expression was detected in several vascular beds of WT mice with lung, kidney, and small intestine exhibiting the highest expression, whereas the liver and stomach showed no detectable baseline expression. LPS administration elicited two- to sevenfold increases in CD40 expression in several tissues (heart, kidney, and intestine) within 4 h, whereas other organs (brain) required up to 48 h to exhibit CD40 upregulation. CD40 expression was not detected in unstimulated or LPS-challenged CD40−/− mice. Constitutive expression of CD40 was profoundly reduced in unstimulated CD40L−/− mice, but the LPS-induced CD40 upregulation did not differ between CD40L−/− and WT mice. Depletion of platelets or T lymphocytes, the major CD40L-expressing cells in blood, also resulted in a profound reduction in basal CD40 expression. These findings demonstrate significant endothelial expression of CD40 under basal conditions in different vascular beds and increased CD40 expression after endothelial cell activation with LPS. Platelet- and T-lymphocyte-associated CD40L appears to play a major role in regulating the density of CD40 expression on vascular endothelial cells in vivo.
Collapse
Affiliation(s)
- Thorsten Vowinkel
- Dept. of Molecular and Cellular Physiology, LSU Health Sciences Ctr., 1501 Kings Hwy., Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
36
|
Schierloh P, Alemán M, Yokobori N, Alves L, Roldán N, Abbate E, del C Sasiain M, de la Barrera S. NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology 2006; 116:541-52. [PMID: 16313368 PMCID: PMC1802446 DOI: 10.1111/j.1365-2567.2005.02259.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the role of natural killer (NK) cells in mycobacterial infections is unclear, it has been postulated that they contribute to protective immunity through the production of interferon (IFN)-gamma. In this study, we evaluate the effect of interleukin (IL)-10, IL-15 and IL-18 on NK lytic activity through the expression of CD16, CD11a and CD69 molecules and the induction of IFN-gamma production in patients with tuberculosis (TB) and healthy individuals (N). Our results showed an impairment of NK lytic activity and a gradual down-regulation of costimulatory and adhesion molecules on NK cells which were dependent on the severity of the disease. NK lytic activity was increased by exogenous IL-15 and IL-18 in both TB and N, and by neutralization of endogenous IL-10 only in TB; IL-15 and IL-18 increased CD69 receptor expression, while anti-IL-10 up-regulated CD16 and CD11a expression in TB. Mycobacterium tuberculosis reduced the number of intracellular adhesion molecule (ICAM)-1(+) CD14(+) cells, but in the presence of IL-15, IL-18 and anti-IL-10 its expression was up-regulated. In cells from TB patients, the observed effects of IL-15 and IL-18 on NK function were not dependent on IL-10 modulation of the surface expression of activator/adhesion molecules. In the absence of monocytes, IL-10 activated NK cells, suggesting an indirect effect on their function. Furthermore, in TB patients the depletion of monocytes increased the production of IFN-gamma by NK cells. Therefore, monocytes from TB patients regulated the NK function involving IL-10 which, through an indirect mechanism, led to the down-regulation of costimulatory/adhesion molecules and/or IFN-gamma production.
Collapse
Affiliation(s)
- Pablo Schierloh
- Immunology Department, Institute of Haemotology Research (IIHema), National Academy of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
37
|
al-Ramadi BK, Fernandez-Cabezudo MJ, Ullah A, El-Hasasna H, Flavell RA. CD154 Is Essential for Protective Immunity in ExperimentalSalmonellaInfection: Evidence for a Dual Role in Innate and Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2005; 176:496-506. [PMID: 16365443 DOI: 10.4049/jimmunol.176.1.496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CD40-CD154 interactions are of central importance in the induction of humoral and cellular immune responses. In the present study, CD154-deficient (CD154-/-) mice were used to assess the role of CD40-CD154 interactions in regulating the immune response to a systemic Salmonella infection. Compared with C57BL/6 (CD154+/+) controls, CD154-/- mice were hypersusceptible to infection by an attenuated strain of Salmonella enterica serovar Typhimurium (S. typhimurium), as evidenced by decreased survival rate and mean time to death, which correlated with increased bacterial burden and persistence in target organs. CD154-/- mice exhibited a defect both in the production of IL-12, IFN-gamma, and NO during the acute phase of the disease and in the generation of Salmonella-specific Ab responses and Ig isotype switching. Furthermore, when CD154-/- animals were administered a sublethal dose of attenuated S. typhimurium and subsequently challenged with a virulent homologous strain, all mice succumbed to an overwhelming infection. Similar treatment of CD154+/+ mice consistently resulted in > or =90% protection. The lack of protective immunity in CD154-/- mice correlated with a decreased T cell recall response to Salmonella Ags. Significant protection against virulent challenge was conferred to presensitized CD154-/- mice by transfer of serum or T cells from immunized CD154+/+ mice. For best protection, however, a combination of immune serum and T cells was required. We conclude that intercellular communications via the CD40-CD154 pathway play a critical role in the induction of type 1 cytokine responses, memory T cell generation, Ab formation, and protection against primary as well as secondary Salmonella infections.
Collapse
Affiliation(s)
- Basel K al-Ramadi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University.
| | | | | | | | | |
Collapse
|
38
|
Atochina O, Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1041-9. [PMID: 16148169 PMCID: PMC1235802 DOI: 10.1128/cdli.12.9.1041-1049.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lacto-N-fucopentaose III (LNFPIII) is a human milk sugar containing the biologically active Lewis X (LeX) trisaccharide. LNFPIII/LeX is also expressed by immunosuppressive helminth parasites, by bacteria, and on a number of tumor/cancer cells. In this report, we first demonstrate that LNFPIII activates macrophages in vitro as indicated by upregulation of Gr-1 expression on F4/80(+) cells. Further, we investigated the effect of LNFPIII-activated macrophages on NK cell activity. We found that LNFPIII-stimulated F4/80(+) cells were able to activate NK cells, inducing upregulation of CD69 expression and gamma interferon (IFN-gamma) production. The experiments show that NK cell activation is macrophage dependent, since NK cells alone did not secrete IFN-gamma in response to LNFPIII. Furthermore, we found that activation of NK cells by glycan-stimulated macrophages required cell-cell contact. As part of the cell-cell contact mechanism, we determined that CD40-CD40L interaction was critical for IFN-gamma secretion by NK cells, as the addition of anti-CD40L antibodies to the coculture blocked IFN-gamma production. We also demonstrated that LNFPIII-stimulated macrophages secrete prostaglandin E(2), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-alpha) but a very low level of IL-12. Interestingly, addition of anti-TNF-alpha, anti-IL-10, or anti-IL-12 monoclonal antibodies did not significantly alter NK cell activity. Our data show that these soluble mediators are not critical for LNFPIII-stimulated macrophage activation of NK cells and provide further evidence for the importance of cell-cell contact and CD40-CD40L interactions between macrophages and NK cells.
Collapse
Affiliation(s)
- Olga Atochina
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | |
Collapse
|