1
|
Wade E, Mulholland K, Shaw I, Cundy T, Robertson S. Idiopathic juvenile osteoporosis-a polygenic disorder? JBMR Plus 2024; 8:ziae099. [PMID: 39193113 PMCID: PMC11347881 DOI: 10.1093/jbmrpl/ziae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic juvenile osteoporosis (IJO) is a rare condition presenting with vertebral and metaphyseal fractures that affects otherwise healthy prepubertal children. Bone mineral density (BMD) measurements are very low. The primary problem appears to be deficient bone formation, with a failure to accrue bone normally during growth. The onset in childhood suggests IJO is a genetic disorder, and a number of reports indicate that some children carry heterozygous pathogenic variants in genes known to be associated with defective osteoblast function and low bone mass, most commonly LRP5 or PLS3. However, a positive family history is unusual in IJO, suggesting the genetic background can be complex. We describe a young man with classical IJO who was investigated with a bone fragility gene panel and whole genome sequencing. The proband was found to carry four variants in three different genes potentially affecting osteoblast function. From his mother he had inherited mutations in ALPL (p.Asn417Ser) and LRP5 (p.Arg1036Gln), and from his father mutations in LRP5 (p.Asp1551Alsfs*13) and activating transcription factor 4 (ATF4) (p.Leu306Ile). His sister had also inherited the LRP5 (p.Asp1551Alsfs*13) from her father, but not the ATF4 mutation. Their spinal BMD z-scores differed substantially (sister -1.6, father -3.2) pointing to the potential importance of the ATF4 mutation. Activating transcription factor 4 acts downstream from RUNX2 and osterix and plays an important role in osteoblast differentiation and function. This case, together with others recently published, supports the view that IJO can result from clustering of mutations in genes related to osteoblast development and function. Novel genes in these pathways may be involved. Our case also emphasizes the value of detailed study of other family members. After a bone biopsy had excluded a mineralization defect due to hypophosphatasia, the proband was treated with zoledronate infusions with good clinical effect.
Collapse
Affiliation(s)
- Emma Wade
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Katie Mulholland
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Ian Shaw
- Department of Pediatrics, Southland Hospital, Invercargill, 9812, New Zealand
| | - Tim Cundy
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Stephen Robertson
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
2
|
Heidari A, Homaei A, Saffari F. Novel Homozygous Nonsense Mutation in the LRP5 Gene in Two Siblings with Osteoporosis-pseudoglioma Syndrome. J Clin Res Pediatr Endocrinol 2023; 15:318-323. [PMID: 34965700 PMCID: PMC10448547 DOI: 10.4274/jcrpe.galenos.2021.2021.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive disorder characterized by severe osteoporosis and eye abnormalities that lead to vision loss. In this study, clinical findings and genetic study of two siblings with OPPG are presented. Whole exome sequencing of DNA enriched for exonic regions was performed with SureSelect 38Mbp all exon kit v. 7.0. The two siblings presented with different clinical manifestations of OPPG. The younger female sibling had blindness and severe osteoporosis with multiple fractures, while her older brother was also blind but with less severe osteoporosis and no fractures. On analysis, a novel homozygous nonsense mutation (c.351G>A) in exon 2 of LRP5 (NM_002335) was found, predicted to change a tryptophan at 117 to a stop codon (p. Trp117Ter). Thus, a variable phenotype was associated with an identical variant in these two siblings. The novel mutation reported herein expands the spectrum of the underlying genetic pathology of OPPG.
Collapse
Affiliation(s)
- Abolfazl Heidari
- Reference Laboratory of Qazvin Medical University, Iran Sana Medical Genetics Laboratory, Qazvin, Iran
| | - Ali Homaei
- Shahid Beheshti University of Medical Sciences, Department of General Surgery, Tehran, Iran
| | - Fatemeh Saffari
- Qazvin University of Medical Sciences, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Department of Pediatric Endocrinology, Qazvin, Iran
| |
Collapse
|
3
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Zeng Y, Zhang Z, Liang S, Chang X, Qin R, Chen H, Guo L. Paternal sleep deprivation induces metabolic perturbations in male offspring via altered LRP5 DNA methylation of pancreatic islets. J Pineal Res 2023; 74:e12863. [PMID: 36808627 DOI: 10.1111/jpi.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Diabetes and metabolic perturbation are global health challenges. Sleep insufficiency may trigger metabolic dysregulation leading to diabetes. However, the intergenerational transmission of this environmental information is not clearly understood. The research objective was to determine the possible effect of paternal sleep deprivation on the metabolic phenotype of the offspring and to investigate the underlying mechanism of epigenetic inheritance. Male offspring of sleep-deprived fathers exhibit glucose intolerance, insulin resistance, and impaired insulin secretion. In these SD-F1 offspring, a reduction in beta cell mass and proliferation of beta cells were observed. Mechanistically, in pancreatic islets of SD-F1 offspring, we identified alterations in DNA methylation at the promoter region of the LRP5 (LDL receptor related protein 5) gene, a coreceptor of Wnt signaling, resulting in downregulation of downstream effectors cyclin D1, cyclin D2, and Ctnnb1. Restoration of Lrp5 in the pancreas of SD-F1 male mice could improve impaired glucose tolerance and expression of cyclin D1, cyclin D2, and Ctnnb1. This study might significantly contribute to our understanding of the effects of sleeplessness on health and metabolic disease risk from the perspective of the heritable epigenome.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R., China
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - SiTing Liang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - XinMiao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R., China
| | - RuiJie Qin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R., China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - LiXin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R., China
| |
Collapse
|
5
|
Abstract
Osteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < - 2.0 in growing children and a Z-score ≤ - 2.0 or a T-score ≤ - 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.
Collapse
Affiliation(s)
- Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland.
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 3015, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Karakilic-Ozturan E, Altunoglu U, Ozturk AP, Kardelen Al AD, Yavas Abali Z, Avci S, Wollnik B, Poyrazoglu S, Bas F, Uyguner ZO, Kayserili H, Darendeliler F. Evaluation of growth, puberty, osteoporosis, and the response to long-term bisphosphonate therapy in four patients with osteoporosis-pseudoglioma syndrome. Am J Med Genet A 2022; 188:2061-2070. [PMID: 35393770 DOI: 10.1002/ajmg.a.62742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG; MIM #259770) is a rare autosomal recessively inherited disease, characterized by early-onset osteoporosis and congenital blindness, caused by loss-of-function mutations in the LRP5 gene. Beneficial effects of bisphosphonate treatment in patients with OPPG are well known, while follow-up data on growth and pubertal parameters are limited. This article provides clinical follow-up data and long-term bisphosphonate treatment results in four OPPG patients from three unrelated families, ranging between 2.5 and 7 years of age at presentation. Clinical diagnosis was molecularly confirmed in all patients, with four different germline biallelic LRP5 mutations including a novel nonsense variant c.3517C>T (p.(Gln1173*)) in two siblings with marked phenotypic variability. Anthropometric and pubertal data and bone mineral density (BMD) measurements were evaluated retrospectively. Early puberty was observed in two patients. The bisphosphonate treatment duration of patients varied around 4-7 years and improvement in BMD z-scores with bisphosphonate treatment was demonstrated in all patients (z-score changes were +5.6, +4.0, +1.0, and +1.3). Although further research is needed to identify the possible association between early puberty and OPPG, all OPPG patients should be followed up with detailed endocrinological evaluation regarding pubertal status.
Collapse
Affiliation(s)
- Esin Karakilic-Ozturan
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Ayse Pinar Ozturk
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Asli Derya Kardelen Al
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Zehra Yavas Abali
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Sahin Avci
- Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Bernd Wollnik
- University Medical Center Göttingen, Institute of Human Genetics, Göttingen, Germany
| | - Sukran Poyrazoglu
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University, School of Medicine, Istanbul, Turkey
| | - Feyza Darendeliler
- Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Lipopolysaccharide-Induced Transcriptional Changes in LBP-Deficient Rat and Its Possible Implications for Liver Dysregulation during Sepsis. J Immunol Res 2022; 2021:8356645. [PMID: 35005033 PMCID: PMC8739918 DOI: 10.1155/2021/8356645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.
Collapse
|
8
|
Yoshii I, Chijiwa T, Sawada N, Kokei S. Musculoskeletal ambulation disability symptom complex as a risk factor of incident bone fragility fracture. Osteoporos Sarcopenia 2021; 7:115-120. [PMID: 34632115 PMCID: PMC8486644 DOI: 10.1016/j.afos.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Influence of presenting musculoskeletal ambulation disability symptom complex (MADS) on occurrence of bone fragility fracture (BFF) is investigated with retrospective cohort study. Methods A total of 931 subjects joined in the study. Subjects were selected as bone fragility risk positive in the fracture assessment tool questionnaire. Their assumed risk factors were harvested from the medical records and X-ray pictures. They were followed up at least 8 years consecutively, and occurrence of incident BFF was set as primary endpoint. Each assumed risk factor including MADS was evaluated using Cox regression analysis. Subjects were divided into 2 groups according to presence of MADS (G-MADS and G-noMADS). Adjusted hazard ratios between the 2 groups was evaluated using Cox regression analysis. The statistical procedures were performed before and after propensity score matching (PSM) procedures in order to make parallel with assumed risk factors. Results Statistically significant risk factors within 5% were prevalent vertebral body fracture, disuse, MADS, cognitive disorder, hypertension, contracture, Parkinsonism, being female sex, hyperlipidemia, insomnia, T-score in the femoral neck ≤ −2.3, chronic kidney disease ≥ stage 2, chronic obstructive pulmonary diseases, glucocorticoid steroid administrated, and osteoarthritis in order of the adjusted hazard ratios (from highest to lowest). Adjusted hazard ratios between G-MADS and G-noMADS were 2.70 and 1.83 for before and after PSM, respectively. Conclusions MADS demonstrated as a significant risk factor of BFF occurrence. In treating osteoporosis, fall risk should be aware of as well as bone fragility risk.
Collapse
Affiliation(s)
- Ichiro Yoshii
- Department of Rheumatology and Musculoskeletal Medicine, Yoshii Hospital, Shimanto City, 787-0033, Kochi Prefecture, Japan
- Corresponding author. 6-7-5 Nakamura-Ohashidori, Shimanto City, 787-0033, Kochi Prefecture, Japan.
| | - Tatsumi Chijiwa
- Department of Rheumatology, Kochi Memorial Hospital, Kochi, 780-0824, Kochi Prefecture, Japan
| | - Naoya Sawada
- Department of Rheumatology, Dohgo Onsen Hospital, Matsuyama, 790-0858, Ehime Prefecture, Japan
| | - Shohei Kokei
- Department of Internal Medicine, Yoshii Hospital, Shimanto City, 787-0033, Kochi Prefecture, Japan
| |
Collapse
|
9
|
Identification of Rare LRP5 Variants in a Cohort of Males with Impaired Bone Mass. Int J Mol Sci 2021; 22:ijms221910834. [PMID: 34639175 PMCID: PMC8509722 DOI: 10.3390/ijms221910834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.
Collapse
|
10
|
Bagchi DP, MacDougald OA. Wnt Signaling: From Mesenchymal Cell Fate to Lipogenesis and Other Mature Adipocyte Functions. Diabetes 2021; 70:1419-1430. [PMID: 34155042 PMCID: PMC8336005 DOI: 10.2337/dbi20-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Wnt signaling is an ancient and evolutionarily conserved pathway with fundamental roles in the development of adipose tissues. Roles of this pathway in mesenchymal stem cell fate determination and differentiation have been extensively studied. Indeed, canonical Wnt signaling is a significant endogenous inhibitor of adipogenesis and promoter of other cell fates, including osteogenesis, chondrogenesis, and myogenesis. However, emerging genetic evidence in both humans and mice suggests central roles for Wnt signaling in body fat distribution, obesity, and metabolic dysfunction. Herein, we highlight recent studies that have begun to unravel the contributions of various Wnt pathway members to critical adipocyte functions, including carbohydrate and lipid metabolism. We further explore compelling evidence of complex and coordinated interactions between adipocytes and other cell types within adipose tissues, including stromal, immune, and endothelial cells. Given the evolutionary conservation and ubiquitous cellular distribution of this pathway, uncovering the contributions of Wnt signaling to cell metabolism has exciting implications for therapeutic intervention in widespread pathologic states, including obesity, diabetes, and cancers.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
11
|
Langdahl BL, Hofbauer LC, Forfar JC. Cardiovascular Safety and Sclerostin Inhibition. J Clin Endocrinol Metab 2021; 106:1845-1853. [PMID: 33755157 DOI: 10.1210/clinem/dgab193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Sclerostin, which is primarily produced by the osteocytes, inhibits the canonical Wnt pathway and thereby the osteoblasts and stimulates RANKL release by the osteocytes and thereby osteoclast recruitment. Inhibition of sclerostin therefore causes stimulation of bone formation and inhibition of resorption. In clinical trials, romosozumab, an antibody against sclerostin, increases bone mineral density and reduces the risk of fractures compared with placebo and alendronate. The cardiovascular safety of romosozumab was adjudicated in 2 large clinical osteoporosis trials in postmenopausal women. Compared with placebo, the incidence of cardiovascular events was similar in the 2 treatment groups. Compared with alendronate, the incidence of serious cardiovascular events was higher in women treated with romosozumab. The incidence of serious cardiovascular adverse events was low and post hoc analyses should therefore be interpreted with caution; however, the relative risk seemed unaffected by preexisting cardiovascular disease or risk factors. Sclerostin is expressed in the vasculature, predominantly in vascular smooth muscle cells in the media. However, preclinical and genetic studies have not demonstrated any increased cardiovascular risk with continuously low sclerostin levels or inhibition of sclerostin. Furthermore, no potential mechanisms for such an effect have been identified. In conclusion, while there is no preclinical or genetic evidence of a harmful effect of sclerostin inhibition on cardiovascular safety, the evidence from the large clinical trials in postmenopausal women is conflicting. Romosozumab should therefore be used for the treatment of postmenopausal women with osteoporosis at high risk of fracture after careful consideration of the cardiovascular risk and the balance between benefits and risks.
Collapse
Affiliation(s)
- Bente Lomholt Langdahl
- Dept of Endocrinology and Internal Medicine, Aarhus University Hospital, DK8200 Aarhus N, Denmark
- Institute of Clinical Medicine, Aarhus University, Denmark
| | - Lorenz Christian Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - John Colin Forfar
- Former Clinical Director, Oxford Heart Centre, Oxford University Hospitals Foundation Trust, OX1 5DG Oxford, UK
| |
Collapse
|
12
|
Stürznickel J, Rolvien T, Delsmann A, Butscheidt S, Barvencik F, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R. Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J Bone Miner Res 2021; 36:271-282. [PMID: 33118644 DOI: 10.1002/jbmr.4197] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Reduced bone mineral density (BMD; ie, Z-score ≤-2.0) occurring at a young age (ie, premenopausal women and men <50 years) in the absence of secondary osteoporosis is considered early-onset osteoporosis (EOOP). Mutations affecting the WNT signaling pathway are of special interest because of their key role in bone mass regulation. Here, we analyzed the effects of relevant LRP5 and LRP6 variants on the clinical phenotype, bone turnover, BMD, and bone microarchitecture. After exclusion of secondary osteoporosis, EOOP patients (n = 372) were genotyped by gene panel sequencing, and segregation analysis of variants in LRP5/LRP6 was performed. The clinical assessment included the evaluation of bone turnover parameters, BMD by dual-energy X-ray absorptiometry, and microarchitecture via high-resolution peripheral quantitative computed tomography (HR-pQCT). In 50 individuals (31 EOOP index patients, 19 family members), relevant variants affecting LRP5 or LRP6 were detected (42 LRP5 and 8 LRP6 variants), including 10 novel variants. Seventeen variants were classified as disease causing, 14 were variants of unknown significance, and 19 were BMD-associated single-nucleotide polymorphisms (SNPs). One patient harbored compound heterozygous LRP5 mutations causing osteoporosis-pseudoglioma syndrome. Fractures were reported in 37 of 50 individuals, consisting of vertebral (18 of 50) and peripheral (29 of 50) fractures. Low bone formation was revealed in all individuals. A Z-score ≤-2.0 was detected in 31 of 50 individuals, and values at the spine were significantly lower than those at the hip (-2.1 ± 1.3 versus -1.6 ± 0.8; p = .003). HR-pQCT analysis (n = 34) showed impaired microarchitecture in trabecular and cortical compartments. Significant differences regarding the clinical phenotype were detectable between index patients and family members but not between different variant classes. Relevant variants in LRP5 and LRP6 contribute to EOOP in a substantial number of individuals, leading to a high number of fractures, low bone formation, reduced Z-scores, and impaired microarchitecture. This detailed skeletal characterization improves the interpretation of known and novel LRP5 and LRP6 variants. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Lauterlein JJL, Hermann P, Konrad T, Wolf P, Nilsson P, Sánchez RG, Ferrannini E, Balkau B, Højlund K, Frost M. Serum sclerostin and glucose homeostasis: No association in healthy men. Cross-sectional and prospective data from the EGIR-RISC study. Bone 2021; 143:115681. [PMID: 33035729 DOI: 10.1016/j.bone.2020.115681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Sclerostin, an inhibitor of bone formation, has emerged as a potential negative regulator of glucose homeostasis. We aimed to investigate if serum sclerostin associates with insulin sensitivity, beta cell function, prediabetes or metabolic syndrome in healthy men. MATERIALS AND METHODS Serum sclerostin was measured in basal and insulin-stimulated samples from 526 men without diabetes from the RISC cohort study. An OGTT was performed at baseline and after 3 years. An IVGTT and a hyperinsulinaemic-euglycaemic clamp were performed at baseline. Insulin sensitivity was estimated by the oral glucose sensitivity index (OGIS) and the M-value relative to insulin levels. Beta cell function was assessed by the acute and total insulin secretion (ISRtot) and by beta cell glucose sensitivity. RESULTS Serum sclerostin levels correlated positively with age but were similar in individuals with (n = 69) and without (n = 457) prediabetes or the metabolic syndrome. Serum sclerostin was associated with measures of neither insulin sensitivity nor beta cell function at baseline in age-adjusted analyses including all participants. However, baseline serum sclerostin correlated inversely with OGIS at follow-up in men without prediabetes (B: -0.29 (-0.57, -0.01) p = 0.045), and inversely with beta cell glucose sensitivity in men with prediabetes (B: -13.3 (-26.3, -0.2) p = 0.046). Associations between serum sclerostin and 3-year changes in measures of glucose homeostasis were not observed. Acute hyperinsulinemia suppressed serum sclerostin (p = 0.02), and this reduction correlated with OGIS and ISRtot. CONCLUSIONS Overall, serum sclerostin was not associated with prediabetes, insulin sensitivity or insulin secretion in healthy men. The inverse relationship between serum sclerostin and insulin sensitivity at follow-up was weak and likely not of clinical relevance. The ability of insulin to reduce sclerostin, possibly promoting bone formation, needs to be clarified.
Collapse
Affiliation(s)
| | - Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Thomas Konrad
- Institute for Metabolic Research, Goethe University, Frankfurt am Main, Germany
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Peter Nilsson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | | | - Beverley Balkau
- Clinical Epidemiology, Université Paris-Saclay, UVSQ, Inserm, CESP, 94807 Villejuif, France
| | - Kurt Højlund
- Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
Mohd Ramli ES, Sukalingam K, Kamaruzzaman MA, Soelaiman IN, Pang KL, Chin KY. Direct and Indirect Effect of Honey as a Functional Food Against Metabolic Syndrome and Its Skeletal Complications. Diabetes Metab Syndr Obes 2021; 14:241-256. [PMID: 33500644 PMCID: PMC7822078 DOI: 10.2147/dmso.s291828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardiovascular diseases and diabetes. Evidence suggesting the presence of direct and indirect associations between MetS and osteoporosis is growing. Many studies have reported the beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through their antioxidant and anti-inflammation actions. This review aims to summarize the effects of honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each component of MetS. A literature search was performed using the PubMed and Scopus databases using specific search strings. Original studies related to components of MetS and bone, and the effects of honey on components of MetS and bone were included. Honey polyphenols could act synergistically in alleviating MetS by preventing oxidative damage and inflammation. Honey intake is shown to reduce blood glucose levels and prevent excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, apart from its direct action on the skeletal system. In conclusion, honey supplementation could be integrated into the management of MetS and MetS-induced bone loss as a preventive and adjunct therapeutic agent.
Collapse
Affiliation(s)
- Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kumeshini Sukalingam
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, Mori H, Hardij J, Learman BS, Lumeng CN, MacDougald OA. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab 2020; 42:101078. [PMID: 32919095 PMCID: PMC7554252 DOI: 10.1016/j.molmet.2020.101078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Canonical Wnt/β-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific β-catenin (β-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of β-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific β-catenin deletion on adipose tissues and systemic metabolism. RESULTS We report that in adipocytes, the canonical Wnt/β-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, β-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of β-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that β-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Akira Nishii
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jennifer B DelProposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Carey N Lumeng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R. The rs2302685 polymorphism in the LRP6 gene is associated with bone mineral density and body composition in Iranian children. J Gene Med 2020; 22:e3245. [PMID: 32573887 DOI: 10.1002/jgm.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/25/2020] [Accepted: 03/15/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Some 60-80% of the variability in bone mineral density (BMD) is determined by genetic factors. In the present study, we investigated the impact of the rs2302685 polymorphism of LRP6 on BMD and body composition in Iranian children. METHODS In total, 200 children (101 boys and 99 girls) were enrolled in the study. Body composition and BMD were computed using the Hologic DXA System (Hologic, Marlborough, MA, USA). The single nucleotide polymorphism of LRP6 rs2302685 (V1062I) was determined using a polymerase chain reaction/restriction fragment length polymorphism. A generalized linear model was performed to find the association between LRP6 polymorphisms, BMD and body composition in two adjusted models. RESULTS In model 1, a significant difference was found between LRP6 (rs2302685) polymorphism, trochanteric BMD (p = 0.007), intertrochanteric BMD (p = 0.007), total fat (p = 0.001), total fat (%) (p = 0.034), total lean mass (p = 0.031), total Lean + BMC (p = 0.036) and total mass (p = 0.001). In model 2, LRP6 (rs2302685) polymorphisms showed a significant effect on the trochanteric BMD (p = 0.005), intertrochanteric BMD (p = 0.005), total fat (p = 0.001), total fat (%) (p = 0.013) and total mass (p = 0.01). Total fat, total fat (%) and total body mass were higher in subjects with the CC genotype compared to the TT/CT genotype, whereas total lean mass and total Lean + BMC were higher in the TT/CT genotype. CONCLUSIONS The present study shows that the LRP6 polymorphism may be associated with body composition and BMD in Iranian children.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rajeeh Mohammadian Amiri
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Bovijn J, Krebs K, Chen CY, Boxall R, Censin JC, Ferreira T, Pulit SL, Glastonbury CA, Laber S, Millwood IY, Lin K, Li L, Chen Z, Milani L, Smith GD, Walters RG, Mägi R, Neale BM, Lindgren CM, Holmes MV. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med 2020; 12:eaay6570. [PMID: 32581134 PMCID: PMC7116615 DOI: 10.1126/scitranslmed.aay6570] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Inhibition of sclerostin is a therapeutic approach to lowering fracture risk in patients with osteoporosis. However, data from phase 3 randomized controlled trials (RCTs) of romosozumab, a first-in-class monoclonal antibody that inhibits sclerostin, suggest an imbalance of serious cardiovascular events, and regulatory agencies have issued marketing authorizations with warnings of cardiovascular disease. Here, we meta-analyze published and unpublished cardiovascular outcome trial data of romosozumab and investigate whether genetic variants that mimic therapeutic inhibition of sclerostin are associated with higher risk of cardiovascular disease. Meta-analysis of up to three RCTs indicated a probable higher risk of cardiovascular events with romosozumab. Scaled to the equivalent dose of romosozumab (210 milligrams per month; 0.09 grams per square centimeter of higher bone mineral density), the SOST genetic variants were associated with lower risk of fracture and osteoporosis (commensurate with the therapeutic effect of romosozumab) and with a higher risk of myocardial infarction and/or coronary revascularization and major adverse cardiovascular events. The same variants were also associated with increased risk of type 2 diabetes mellitus and higher systolic blood pressure and central adiposity. Together, our findings indicate that inhibition of sclerostin may elevate cardiovascular risk, warranting a rigorous evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors.
Collapse
Affiliation(s)
- Jonas Bovijn
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth Boxall
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Jenny C Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Ferreira
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Sara L Pulit
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Craig A Glastonbury
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Samantha Laber
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing 100191, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia M Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michael V Holmes
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
19
|
Janssen LGM, Van Dam AD, Hanssen MJW, Kooijman S, Nahon KJ, Reinders H, Jazet IM, Van Marken Lichtenbelt WD, Rensen PCN, Appelman-Dijkstra NM, Boon MR. Higher Plasma Sclerostin and Lower Wnt Signaling Gene Expression in White Adipose Tissue of Prediabetic South Asian Men Compared with White Caucasian Men. Diabetes Metab J 2020; 44:326-335. [PMID: 31701693 PMCID: PMC7188965 DOI: 10.4093/dmj.2019.0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND South Asians generally have an unfavourable metabolic phenotype compared with white Caucasians, including central obesity and insulin resistance. The Wnt protein family interacts with insulin signaling, and impaired Wnt signaling is associated with adiposity and type 2 diabetes mellitus. We aimed to investigate Wnt signaling in relation to insulin signaling in South Asians compared with white Caucasians. METHODS Ten Dutch South Asian men with prediabetes and overweight or obesity and 10 matched Dutch white Caucasians were included. Blood samples were assayed for the Wnt inhibitor sclerostin. Subcutaneous white adipose tissue (WAT) and skeletal muscle biopsies were assayed for Wnt and insulin signaling gene expression with quantitative reverse transcription polymerase chain reaction (Clinicaltrials.gov NCT02291458). RESULTS Plasma sclerostin was markedly higher in South Asians compared with white Caucasians (+65%, P<0.01). Additionally, expression of multiple Wnt signaling genes and key insulin signaling genes were lower in WAT in South Asians compared with white Caucasians. Moreover, in WAT in both ethnicities, Wnt signaling gene expression strongly positively correlated with insulin signaling gene expression. In skeletal muscle, WNT10B expression in South Asians was lower, but expression of other Wnt signaling and insulin signaling genes was comparable between ethnicities. Wnt and insulin signaling gene expression also positively correlated in skeletal muscle, albeit less pronounced. CONCLUSION South Asian men with overweight or obesity and prediabetes have higher plasma sclerostin and lower Wnt signaling gene expression in WAT compared with white Caucasians. We interpret that reduced Wnt signaling could contribute to impaired insulin signaling in South Asians.
Collapse
Affiliation(s)
- Laura G M Janssen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Andrea D Van Dam
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark J W Hanssen
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanneke Reinders
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter D Van Marken Lichtenbelt
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasha M Appelman-Dijkstra
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center for Bone Quality, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Ghorabi S, Shab-Bidar S, Sadeghi O, Nasiri M, Khatibi SR, Djafarian K. Lipid Profile and Risk of Bone Fracture: A Systematic Review and Meta-Analysis of Observational Studies. Endocr Res 2019; 44:168-184. [PMID: 31165667 DOI: 10.1080/07435800.2019.1625057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose: Earlier studies have linked lipid profile to osteoporotic fractures; however, to our knowledge, no study had summarized available data on this relationship. We aimed to summarize the current evidence on the association between lipid profile and bone fractures. Material and Methods: A systematic search of PubMed and Scopus was done to find relevant published studies until March 2018. To combine effect sizes, we applied fixed- or random-effects analysis, where appropriate. Cochran's Q test and I2 were used to assess between-study heterogeneity. Results: Overall, 11 studies (seven prospective, three cross-sectional and one case-control studies) were included in the current systematic review. Out of them, 10 studies with a total sample size of 60,484 individuals, aged 25 years or more, were used in the meta-analysis. The results showed that total cholesterol concentration was positively associated with risk of bone fracture; such that a 50-mg/dl increase in plasma level of TC was associated with 15% greater odds of bone fracture (combined effect size: 1.15, 95% CI: 1.02-1.30, P = .02). Furthermore, we found that individuals with a decreased level of HDL (<40 mg/dl) had a lower risk of bone fracture compared with those with a normal level (≥40 mg/dl) (combined effect size: 0.82, 95% CI: 0.71-0.96, P = .01). No significant association was found between plasma level of TG and LDL with the risk of bone fractures either in prospective or cross-sectional studies. Conclusions: We found that plasma levels of total cholesterol were positively associated with bone fractures. In addition, decreased levels of HDL were associated with an increased risk of osteoporotic fractures. Abbreviations: TG: triglycerides, TC: total cholesterol, HDL: high-density lipoprotein, LDL: low-density lipoprotein, OR: odds ratio, RR: relative risk, HR: hazard ratio, DXA: dual-energy X-ray absorptiometry, ICD: International Classification of Diseases, SD: standard deviation.
Collapse
Affiliation(s)
- Sima Ghorabi
- Students' Scientific Research Center, Tehran University of Medical Sciences , Tehran , Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences , Tehran , Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| | - Morteza Nasiri
- Student Research Committee, Shiraz University of Medical Sciences , Shiraz , Iran
- Department of Operating Room Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyed Reza Khatibi
- Department of Public Health, School of Health, Torbat Heydariyeh University of Medical Sciences , Torbat Heydariyeh , Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences , Torbat Heydariyeh , Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
21
|
Associations of IDUA and PTCH1 with Bone Mineral Density, Bone Turnover Markers, and Fractures in Chinese Elderly Patients with Osteoporosis. DISEASE MARKERS 2019; 2019:9503762. [PMID: 31275456 PMCID: PMC6589188 DOI: 10.1155/2019/9503762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
Introduction Osteoporosis (OP) is a common polygenic disorder in the aging population, and several single nucleotide polymorphisms (SNPs) in the alpha-L-iduronidase (IDUA) gene and patched homolog 1 (PTCH1) gene regulate bone metabolism and affect bone mass. The study aimed at investigating the relationships of rs3755955 and rs6831280 in the IDUA gene and rs28377268 in the PTCH1 gene with bone mineral density (BMD), bone turnover markers (BTMs), and fractures in the elderly Chinese subjects with OP. Materials and Methods A cohort of 328 unrelated senile osteoporosis (SOP) patients with or without osteoporotic fractures was recruited. rs3755955, rs6831280, and rs28377268 polymorphisms were identified using SNaPshot technology. BTM levels were determined by electrochemiluminescence (ECL). Bone mineral densities (BMDs) at the lumbar spine (LS) and proximal femur sites were measured by dual-energy X-ray absorptiometry (DEXA) in all subjects. The Hardy-Weinberg equilibrium (HWE) test was performed. HWE P values and comparisons of genotype frequencies were estimated using the chi-square test. Analysis of covariance (ANCOVA) adjusted for confounding factors was performed to investigate associations of SNPs with BMDs and BTMs in subgroups. Results The chi-square test indicated that genotype distributions in the control group conformed to HWE (P > 0.05). The distributions of allele and genotype frequencies of rs6831280 between fracture and osteoporotic participants were significantly different (P-allele = 0.002 and P-genotype = 0.012, respectively). Concerning rs6831280, ANCOVA found BMDs at LS 2-4 (L2-4) and total hip (TH) among the study subjects suffering from SOP with GA genotype were lower than in those carrying GG or AA (P-L2-4 = 0.004 and P-TH = 0.027, respectively). Conclusions IDUA rs6831280 is associated with BMDs at L2-4 and TH in the elderly Chinese population with SOP and may serve as a marker for the genetic susceptibility to osteoporotic fractures.
Collapse
|
22
|
Asadipooya K, Weinstock A. Cardiovascular Outcomes of Romosozumab and Protective Role of Alendronate. Arterioscler Thromb Vasc Biol 2019; 39:1343-1350. [PMID: 31242037 DOI: 10.1161/atvbaha.119.312371] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis and cardiovascular diseases are major public health issues. Bone and cardiovascular remodeling share multiple biological markers and pathways. Medical intervention, such as using romosozumab, an antisclerostin antibody, improves the clinical outcome of osteoporosis. However, blocking sclerostin leads to Wnt (wingless/integrated) activation and participation in the cardiovascular remodeling process, which could potentially lead to adverse events. Based on the opposing roles of bisphosphonates and the Wnt pathway on endothelial dysfunction, lipid accumulation and calcification of the vessel walls, the combination of romosozumab and bisphosphonates could be a new therapeutic approach to reducing the risks of adverse cardiovascular events in romosozumab receivers. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- From the Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington (K.A.)
| | - Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York (A.W.)
| |
Collapse
|
23
|
Papadopoulos I, Bountouvi E, Attilakos A, Gole E, Dinopoulos A, Peppa M, Nikolaidou P, Papadopoulou A. Osteoporosis-pseudoglioma syndrome: clinical, genetic, and treatment-response study of 10 new cases in Greece. Eur J Pediatr 2019; 178:323-329. [PMID: 30499050 DOI: 10.1007/s00431-018-3299-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal-recessive disorder, characterized by severe osteoporosis and early-onset blindness. Loss of function mutations in the gene encoding low-density lipoprotein receptor-related protein 5 (LRP5) have been established as the genetic defect of the disease. We report the clinical and genetic evaluation of ten OPPG cases in eight related nuclear families and their close relatives. Bone mineral density (BMD) in OPPG patients was assessed by dual-energy X-ray absorptiometry (DXA). Genotyping of LRP5 gene and targeted detection of index mutation were performed by DNA direct sequencing. Four patients were introduced to bisphosphonates. Mutational screening of LRP5 gene revealed the c.2409_2503+79del deletion in homozygous state, expected to result in a truncated protein. Among 44 members of the pedigree, 10 (22%) were identified homozygous and 34 (59%) heterozygous for this mutation. All patients had congenital blindness and 7 of them had also impaired bone mineral density. Four of them received bisphosphonates and responded with decreased bone pain and improvement in BMD; however, 3 patients presented with one fracture during treatment.Conclusion: The current study presents the molecular and clinical profiles of 10 new OPPG cases, being part of an extended pedigree. Patients who received bisphosphonate treatment responded well with increase in their BMD, though fractures occurred during therapy. What is known: • OPPG syndrome is a rare genetic disorder characterized by congenital blindness and juvenile osteoporosis. • Loss of function mutations in the gene encoding low-density lipoprotein receptor-related protein 5 (LRP5) is the genetic defect of the disease. What is new: • Genetic and clinical phenotype of 10 new OPPG patients. • The ten new OPPG patients presented with phenotypical variability in osseous manifestations.
Collapse
Affiliation(s)
- Iordanis Papadopoulos
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Evangelia Bountouvi
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Achilleas Attilakos
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece.
| | - Evangelia Gole
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Argirios Dinopoulos
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Melpomeni Peppa
- Second Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Polyxeni Nikolaidou
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Anna Papadopoulou
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| |
Collapse
|
24
|
Mäkitie RE, Costantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:70. [PMID: 30858824 PMCID: PMC6397842 DOI: 10.3389/fendo.2019.00070] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis, characterized by deteriorated bone microarchitecture and low bone mineral density, is a chronic skeletal disease with high worldwide prevalence. Osteoporosis related to aging is the most common form and causes significant morbidity and mortality. Rare, monogenic forms of osteoporosis have their onset usually in childhood or young adulthood and have specific phenotypic features and clinical course depending on the underlying cause. The most common form is osteogenesis imperfecta linked to mutations in COL1A1 and COL1A2, the two genes encoding type I collagen. However, in the past years, remarkable advancements in bone research have expanded our understanding of the intricacies behind bone metabolism and identified novel molecular mechanisms contributing to skeletal health and disease. Especially high-throughput sequencing techniques have made family-based studies an efficient way to identify single genes causative of rare monogenic forms of osteoporosis and these have yielded several novel genes that encode proteins partaking in type I collagen modification or regulating bone cell function directly. New forms of monogenic osteoporosis, such as autosomal dominant osteoporosis caused by WNT1 mutations or X-linked osteoporosis due to PLS3 mutations, have revealed previously unidentified bone-regulating proteins and clarified specific roles of bone cells, expanded our understanding of possible inheritance mechanisms and paces of disease progression, and highlighted the potential of monogenic bone diseases to extend beyond the skeletal tissue. The novel gene discoveries have introduced new challenges to the classification and diagnosis of monogenic osteoporosis, but also provided promising new molecular targets for development of pharmacotherapies. In this article we give an overview of the recent discoveries in the area of monogenic forms of osteoporosis, describing the key cellular mechanisms leading to skeletal fragility, the major recent research findings and the essential challenges and avenues in future diagnostics and treatments.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J. Alm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Outi Mäkitie
| |
Collapse
|
25
|
Rolvien T, Stürznickel J, Schmidt FN, Butscheidt S, Schmidt T, Busse B, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R. Comparison of Bone Microarchitecture Between Adult Osteogenesis Imperfecta and Early-Onset Osteoporosis. Calcif Tissue Int 2018; 103:512-521. [PMID: 29946973 DOI: 10.1007/s00223-018-0447-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Diagnosis and management of adult individuals with low bone mass and increased bone fragility before the age of 50 can be challenging. A number of these patients are diagnosed with mild osteogenesis imperfecta (OI) through detection of COL1A1 or COL1A2 mutations; however, a clinical differentiation from early-onset osteoporosis (EOOP) may be difficult. The purpose of this study was to determine the bone microstructural differences between mild OI and EOOP patients. 29 patients showed mutations in COL1A1 or COL1A2 and were classified as OI. Skeletal assessment included dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and bone turnover serum analyses. Bone microstructure of 21/29 OI patients was assessed and compared to 23 age- and sex-matched patients clinically classified EOOP but without mutations in the known disease genes as well as to 20 healthy controls. In the OI patients, we did not observe an age-dependent decrease in DXA Z-scores. HR-pQCT revealed a significant reduction in volumetric BMD and microstructural parameters in the distal radius and tibia in both the OI and EOOP cohorts compared to the healthy controls. When comparing the bone microstructure of OI patients with the EOOP cohort, significant differences were found in terms of bone geometry in the radius, while no significant changes were detected in all other HR-pQCT parameters at the radius and tibia. Taken together, adult mild OI patients demonstrate a predominantly high bone turnover trabecular bone loss syndrome that shows minor microstructural differences compared to EOOP without mutation detection.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| |
Collapse
|
26
|
Souza KSCD, Ururahy MAG, Oliveira YMDC, Loureiro MB, Silva HPVD, Bortolin RH, Luchessi AD, Arrais RF, Hirata RDC, Almeida MDG, Hirata MH, Rezende AAD. The low-density lipoprotein receptor-related protein 5 (LRP5) 4037C>T polymorphism: candidate for susceptibility to type 1 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:480-484. [PMID: 30304114 PMCID: PMC10118729 DOI: 10.20945/2359-3997000000057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/09/2018] [Indexed: 04/22/2023]
Abstract
OBJECTIVE The present study has investigated the association between low-density lipoprotein receptor-related protein 5 (LRP5) 4037C>T polymorphism and type 1 diabetes mellitus (T1DM) susceptibility in a Brazilian population. SUBJECTS AND METHODS A total number of 134 T1DM patients and 180 normoglycemic individuals (NG) aged 6-20 years were studied. Glycated hemoglobin and glucose levels were determined. Genotyping of LRP5 4037C>T (rs3736228) was performed. RESULTS T1DM patients showed poor glycemic control. Genotypes in the codominant (CT: OR = 2.99 [CI 95%: 1.71-5.24], p < 0.001; TT: OR = 5.34 [CI 95%: 1.05-2702], p < 0.001), dominant (CT + TT: OR = 3.16 [CI 95%: 1.84-5.43], p < 0.001) and log-additive (OR = 2.78 [CI 95%: 1.70-4.52], p < 0.001) models, and LRP5 4037T allele (OR = 2.88, [CI 95%: 1.78-4.77], p < 0.001) were associated with an increased risk of developing T1DM. LRP5 4037CT and CT+TT carriers in T1DM group showed higher concentrations of serum glucose and glycated hemoglobin when compared with CC carriers. CONCLUSION The LRP5 4037C>T may represent a candidate for T1DM susceptibility, as well as poor glycemic control.
Collapse
Affiliation(s)
- Karla Simone Costa de Souza
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | - Marcela Abbott Galvão Ururahy
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | - Yonara Monique da Costa Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
- Centro de Educação e Saúde, Universidade Federal de Campina Grande (UFCG), Cuité, PB, Brasil
| | - Melina Bezerra Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | | | - Raul Hernandes Bortolin
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | - Ricardo Fernando Arrais
- Departamento de Pediatria, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | | | - Maria das Graças Almeida
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| | - Mário Hiroyuki Hirata
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Adriana Augusto de Rezende
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brasil
| |
Collapse
|
27
|
Mäkitie RE, Niinimäki R, Kakko S, Honkanen T, Kovanen PE, Mäkitie O. Defective WNT signaling associates with bone marrow fibrosis-a cross-sectional cohort study in a family with WNT1 osteoporosis. Osteoporos Int 2018; 29:479-487. [PMID: 29147753 DOI: 10.1007/s00198-017-4309-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 01/28/2023]
Abstract
UNLABELLED This study explores bone marrow function in patients with defective WNT1 signaling. Bone marrow samples showed increased reticulin and altered granulopoiesis while overall hematopoiesis was normal. Findings did not associate with severity of osteoporosis. These observations provide new insight into the role of WNT signaling in bone marrow homeostasis. INTRODUCTION WNT signaling regulates bone homeostasis and survival and self-renewal of hematopoietic stem cells. Aberrant activation may lead to osteoporosis and bone marrow pathology. We aimed to explore bone marrow findings in a large family with early-onset osteoporosis due to a heterozygous WNT1 mutation. METHODS We analyzed peripheral blood samples, and bone marrow aspirates and biopsies from 10 subjects with WNT1 mutation p.C218G. One subject was previously diagnosed with idiopathic myelofibrosis and others had no previously diagnosed hematologic disorders. The findings were correlated with the skeletal phenotype, as evaluated by number of peripheral and spinal fractures and bone mineral density. RESULTS Peripheral blood samples showed no abnormalities in cell counts, morphology or distributions but mild increase in platelet count. Bone marrow aspirates (from 8/10 subjects) showed mild decrease in bone marrow iron storages in 6 and variation in cell distributions in 5 subjects. Bone marrow biopsies (from 6/10 subjects) showed increased bone marrow reticulin (grade MF-2 in the myelofibrosis subject and grade MF-1 in 4 others), and an increase in overall, and a shift towards early-phase, granulopoiesis. The bone marrow findings did not associate with the severity of skeletal phenotype. CONCLUSIONS Defective WNT signaling associates with a mild increase in bone marrow reticulin and may predispose to myelofibrosis, while overall hematopoiesis and peripheral blood values are unaltered in individuals with a WNT1 mutation. In this family with WNT1 osteoporosis, bone marrow findings were not related to the severity of osteoporosis.
Collapse
Affiliation(s)
- R E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland.
| | - R Niinimäki
- Department of Children and Adolescents, Oulu University Hospital and Oulu University, Oulu, Finland
| | - S Kakko
- Internal Medicine and Clinical Research Center, University of Oulu, Oulu, Finland
| | - T Honkanen
- Department of Hematology, Päijät-Häme Central Hospital, Lahti, Finland
| | - P E Kovanen
- HUSLAB, Helsinki University Hospital and Department of Pathology, University of Helsinki, Helsinki, Finland
| | - O Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Solis-Moruno M, de Manuel M, Hernandez-Rodriguez J, Fontsere C, Gomara-Castaño A, Valsera-Naranjo C, Crailsheim D, Navarro A, Llorente M, Riera L, Feliu-Olleta O, Marques-Bonet T. Potential damaging mutation in LRP5 from genome sequencing of the first reported chimpanzee with the Chiari malformation. Sci Rep 2017; 7:15224. [PMID: 29123202 PMCID: PMC5680330 DOI: 10.1038/s41598-017-15544-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The genus Pan is the closest related to humans (Homo sapiens) and it includes two species: Pan troglodytes (chimpanzees) and Pan paniscus (bonobos). Different characteristics, some of biomedical aspect, separate them from us. For instance, some common human medical conditions are rare in chimpanzees (menopause, Alzheimer disease) although it is unclear to which extent longevity plays an active role in these differences. However, both humans and chimpanzees present similar pathologies, thus, understanding traits in chimpanzees can help unravel the molecular basis of human conditions. Here, we sequenced the genome of Nico, a central chimpanzee diagnosed with a particular biomedical condition, the Chiari malformation. We performed a variant calling analysis comparing his genome to 25 whole genomes from healthy individuals (bonobos and chimpanzees), and after predicting the effects of the genetic variants, we looked for genes within the OMIM database. We found a novel, private, predicted as damaging mutation in Nico in LRP5, a gene related to bone density alteration pathologies, and we suggest a link between this mutation and his Chiari malformation as previously shown in humans. Our results reinforce the idea that a comparison between humans and chimpanzees can be established in this genetic frame of common diseases.
Collapse
Affiliation(s)
- Manuel Solis-Moruno
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain.
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Alba Gomara-Castaño
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | | | - Dietmar Crailsheim
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, 08028, Spain
| | - Miquel Llorente
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Laura Riera
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Olga Feliu-Olleta
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain.
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, 08028, Spain.
| |
Collapse
|
29
|
Zhang L, Wang J, Zhang M, Wang G, Shen Y, Wu D, Wang C, Li L, Ren Y, Wang B, Zhang H, Yang X, Zhao Y, Han C, Zhou J, Pang C, Yin L, Zhao J, Luo X, Hu D. Association of type 2 diabetes mellitus with the interaction between low-density lipoprotein receptor-related protein 5 (LRP5) polymorphisms and overweight and obesity in rural Chinese adults. J Diabetes 2017; 9:994-1002. [PMID: 28067456 DOI: 10.1111/1753-0407.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 5 (LRP5) plays an important role in glucose and cholesterol metabolism. The present cohort study evaluated associations of LRP5 variants with the incidence of type 2 diabetes mellitus (T2DM) in a rural adult Chinese population. METHODS In all, 7751 subjects aged ≥18 years without T2DM underwent genotyping at baseline; 6326 subjects (81.62%) were followed-up, and 5511 with a clear disease outcome were eligible for analysis. The same questionnaire was administered and the same anthropometric and blood biochemical examinations were performed at baseline and follow-up. Association analysis was performed for five single nucleotide polymorphisms and haplotypes of LRP5. RESULTS Cox proportional hazards testing of three different genetic models found no significant association between T2DM and LRP5 after adjusting for potential risk factors (P > 0.05). However, the incidence of T2DM in subjects with LRP5 mutational genotypes was higher in the overweight/obese than normal weight population. Under the dominant model, the risk of T2DM was increased with an interaction between rs11228303 and the waist-to-height ratio adjusted for baseline age, sex, and family history of T2DM (synergy index [SI] = 4.172; 95% confidence interval [CI] 1.014-17.166)], and body mass index (SI = 3.237; 95% CI 1.102-9.509). Furthermore, the A allele of rs3758644 was related to decreased fasting plasma insulin and homeostatic model assessment of β-cell function levels, whereas the T allele of rs12363572 was related to increased high-density lipoprotein cholesterol levels in new-onset diabetes patients (P < 0.05). CONCLUSIONS The risk of T2DM may be associated with interactions between the LRP5 gene and overweight and obesity. Polymorphisms of LRP5 are related to β-cell function and lipid metabolism.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinjin Wang
- Discipline of Public Health and Preventive Medicine, Center of Preventive Medicine Research and Assessment, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Zhang
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Guo'an Wang
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Yanxia Shen
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Dongting Wu
- Department of Prevention and Health Care, Military Hospital of Henan Province, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongcheng Ren
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingyuan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Hongyan Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chengyi Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junmei Zhou
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Chao Pang
- Department of Prevention and Health Care, Military Hospital of Henan Province, Zhengzhou, China
| | - Lei Yin
- Department of Prevention and Health Care, Military Hospital of Henan Province, Zhengzhou, China
| | - Jingzhi Zhao
- Department of Prevention and Health Care, Military Hospital of Henan Province, Zhengzhou, China
| | - Xinping Luo
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
30
|
Bernardes M, Vieira T, Lucas R, Pereira J, Costa L, Simões-Ventura F, Martins MJ. Serum serotonin levels and bone in rheumatoid arthritis patients. Rheumatol Int 2017; 37:1891-1898. [PMID: 28993870 DOI: 10.1007/s00296-017-3836-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
In rheumatoid arthritis (RA), a disease characterized by bone loss, increased levels of serotonin have been reported. Recent studies have demonstrated a role for circulating serotonin as a regulator of osteoblastogenesis, inhibiting bone formation. Thus, we measured serum serotonin levels (SSL) in a Portuguese sample of 205 RA patients and related these to anthropometric variables, disease parameters, serum bone biomarkers, and bone mineral density (BMD) assessed by dual-energy X-ray absorptiometry at several sites (total proximal femur, lumbar spine, left hand, and left second proximal phalange). SSL were inversely associated with body mass index (BMI) in RA women (r = - 0.218; p = 0.005), independent of exposure to biologics and/or bisphosphonates. Among biologic naïves, there was an inverse association between SSL and osteoprotegerin in RA women (r = - 0.260; p = 0.022). Serum β-CTX and dickkopf-1 were strongly associated with SSL in RA men not treated with bisphosphonates (r = 0.590; p < 0.001/r = 0.387; p = 0.031, respectively). There was also an inverse association between SSL and sclerostin in RA men (r = - 0.374; p < 0.05), stronger among biologic naïve or bisphosphonates-unexposed RA men. In crude models, SSL presented as a significant negative predictor of total proximal femur BMD in RA women as well as in postmenopausal RA women. After adjustment for BMI, disease duration, and years of menopause, SSL remained a significant negative predictor of total proximal femur BMD only in postmenopausal RA women. Our data reinforce a role, despite weak, for circulating serotonin in regulating bone mass in RA patients, with some differences in terms of gender and anatomical sites.
Collapse
Affiliation(s)
- Miguel Bernardes
- Department of Rheumatology, São João Hospital Center, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Medicine Department, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tiago Vieira
- Department of Nuclear Medicine, São João Hospital Center, Porto, Portugal
| | - Raquel Lucas
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal.,Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jorge Pereira
- Department of Nuclear Medicine, São João Hospital Center, Porto, Portugal
| | - Lúcia Costa
- Department of Rheumatology, São João Hospital Center, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | - Maria João Martins
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3s), University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Nuglozeh E. Whole-Exomes Sequencing Delineates Gene Variants Profile in a Young Saudi Male with Familial Hypercholesterolemia: Case Report. J Clin Diagn Res 2017; 11:GD01-GD06. [PMID: 28764195 DOI: 10.7860/jcdr/2017/28156.10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022]
Abstract
Familial hypercholesterolemia is an autosomal dominant genetic disease characterized by earlier elevated Low-Density Lipoprotein (LDL) cholesterol levels and increased risk for premature Myocardial Infarction (MI). Albeit the diagnosis of some medical Familial Hypercholesterolemia (FH) cases are due to mutations in PCSK9, APOB, or LDLR, detection of mutation rate and profiles relies heavily on different gene pools and ethnicity. We ran exome sequencing on blood genomic DNA (gDNA) from a 26-year-old Saudi patient on Ion Proton Platform (Ion Torrent, Guilford, Connecticut, USA) as part of a pilot study preluding the establishment of the Saudi Human Genome project. The sequencing results were analysed using Ion suit Bioinformatics system. The patient was matched with a lady of lean body mass and Welsh descent, who suffered from hypercholesterolemia. The first analysis of known FH genes identified five mutations in APOB, 25 mutations of known genes linked to FH, six mutations in LPR2, one mutation in LDLR, and three mutations in PCSK9. Finally, using disease filter algorithms, we filtered out more than 2000 intronic synonymous variants with likely no biological functions. No major new locus was found in FH. However, via variant reduction and TVC protocols we detected 15 new variants, among which 14 genes are linked to hypercholesterolemia, type-I, and type-II diabetes. We also detected three mutations in PCSK9 and confirmed one by Sanger. Taken together, this report suggests that the genetic determinant of FH in this Saudi patient is likely to be heterogeneous, complicating the diagnostic and novel gene discovery process.
Collapse
Affiliation(s)
- Edem Nuglozeh
- Assistant Professor, Department of Biochemistry, University of Hail, School of Medicine and Center for Molecular Diagnostic, Personalized and Therapeutic Unit, Hail, Saudi Arabia
| |
Collapse
|
32
|
Mäkitie RE, Kämpe AJ, Taylan F, Mäkitie O. Recent Discoveries in Monogenic Disorders of Childhood Bone Fragility. Curr Osteoporos Rep 2017; 15:303-310. [PMID: 28646443 DOI: 10.1007/s11914-017-0388-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes our current knowledge on primary osteoporosis in children with focus on recent genetic findings. RECENT FINDINGS Advances in genetic research, particularly next-generation sequencing, have found several genetic loci that associate with monogenic forms of inherited osteoporosis, widening the scope of primary osteoporosis beyond classical osteogenesis imperfecta. New forms of primary osteoporosis, such as those related to WNT1, PLS3, and XYLT2, have identified defects outside the extracellular matrix components and collagen-related pathways, in intracellular cascades directly affecting bone cell function. Primary osteoporosis can lead to severe skeletal morbidity, including abnormal longitudinal growth, compromised bone mass gain, and noticeable fracture tendency beginning at childhood. Early diagnosis and timely care are warranted to ensure the best achievable bone health. Future research will most likely broaden the spectrum of primary osteoporosis, hopefully provide more insight into the genetics governing bone health, and offer new targets for treatment.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P. O. Box 63, FIN-00014, Helsinki, Finland
| | - Anders J Kämpe
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P. O. Box 63, FIN-00014, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
33
|
Mäkitie RE, Niinimäki T, Nieminen MT, Schalin-Jäntti C, Niinimäki J, Mäkitie O. Impaired WNT signaling and the spine-Heterozygous WNT1 mutation causes severe age-related spinal pathology. Bone 2017; 101:3-9. [PMID: 28411110 DOI: 10.1016/j.bone.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/24/2017] [Accepted: 04/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND WNT signaling plays a major role in bone and cartilage metabolism. Impaired WNT/β-catenin signaling leads to early-onset osteoporosis, but specific features in bone and other tissues remain inadequately characterized. We have identified two large Finnish families with early-onset osteoporosis due to a heterozygous WNT1 mutation c.652T>G, p.C218G. This study evaluated the impact of impaired WNT/β-catenin signaling on spinal structures. METHODS Altogether 18 WNT1 mutation-positive (age range 11-76years, median 49years) and 14 mutation-negative subjects (10-77years, median 43years) underwent magnetic resonance imaging (MRI) of the spine. The images were reviewed for spinal alignment, vertebral compression fractures, intervertebral disc changes and possible endplate deterioration. The findings were correlated with clinical data. RESULTS Vertebral compression fractures were present in 78% (7/9) of those aged over 50years but were not seen in younger mutation-positive subjects. All those with fractures had several severely compressed vertebrae. Altogether spinal compression fractures were present in 39% of those with a WNT1 mutation. Only 14% (2/14) mutation-negative subjects had one mild compressed vertebra each. The mutation-positive subjects had a higher mean spinal deformity index (4.0±7.3 vs 0.0±0.4) and more often increased thoracic kyphosis (Z-score>+2.0 in 33% vs 0%). Further, they had more often Schmorl nodes (61% vs 36%), already in adolescence, and their intervertebral discs were enlarged. CONCLUSION Compromised WNT signaling introduces severe and progressive changes to the spinal structures. Schmorl nodes are prevalent even at an early age and increased thoracic kyphosis and compression fractures become evident after the age of 50years. Therapies targeting the WNT pathway may be an effective way to prevent spinal pathology not only in those harboring a mutation but also in the general population with similar pathology.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki FI-00290, Finland.
| | - Tuukka Niinimäki
- Department of Orthopedics, Oulu University Hospital, Oulu FI-90220, Finland.
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Department of Diagnostic Radiology, Oulu University Hospital, Oulu FI-90220, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu FI-90220, Finland.
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki FI-00290, Finland.
| | - Jaakko Niinimäki
- Research Unit of Medical Imaging, Physics and Technology, Department of Diagnostic Radiology, Oulu University Hospital, Oulu FI-90220, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu FI-90220, Finland.
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki FI-00290, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki FI-00290, Finland; Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
34
|
Foer D, Zhu M, Cardone RL, Simpson C, Sullivan R, Nemiroff S, Lee G, Kibbey RG, Petersen KF, Insogna KL. Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis. Osteoporos Int 2017; 28:2011-2017. [PMID: 28283687 PMCID: PMC6693506 DOI: 10.1007/s00198-017-3977-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED LRP5 loss-of-function mutations have been shown to cause profound osteoporosis and have been associated with impaired insulin sensitivity and dysregulated lipid metabolism. We hypothesized that gain-of-function mutations in LRP5 would also affect these parameters. We therefore studied individuals with LRP5 gain-of-function mutations exhibiting high bone mass (HBM) phenotypes and found that while there was no detected change in insulin sensitivity, there was a significant reduction in serum LDL. INTRODUCTION Wnt signaling through LRP5 represents a newly appreciated metabolic pathway, which potentially represents a target for drug discovery in type 2 diabetes and hyperlipidemia. Studies in animal models suggest a physiologic link between LRP5 and glucose and lipid homeostasis; however, whether it plays a similar role in humans is unclear. As current literature links loss-of-function LRP5 to impaired glucose and lipid metabolism, we hypothesized that individuals with an HBM-causing mutation in LRP5 would exhibit improved glucose and lipid homeostasis. Since studies in animal models have suggested that Wnt signaling augments insulin secretion, we also examined the effect of Wnt signaling on glucose-stimulated insulin secretion on human pancreatic islets. METHODS This was a matched case-control study. We used several methods to assess glucose and lipid metabolism in 11 individuals with HBM-causing mutations in LRP5. Affected study participants were recruited from previously identified kindreds with HBM-causing LRP5 mutations and included 9 males and 2 females. Two subjects that were being treated with insulin for type 2 diabetes were excluded from our analysis, as this would have obscured our ability to determine the impact of gain-of-function LRP5 mutations on glucose metabolism. The mean age of the evaluated study subjects was 55 ± 7 with a mean BMI of 27.2 ± 2.0. Control subjects were matched and recruited from the general community at an equivalent ratio, with 18 males and 4 females (mean age 56 ± 4; mean BMI 27.2 ± 1.0). Study testing was conducted at an academic medical center. RESULTS There were no statistically significant differences between affected and matched control populations for HbA1c (p = 0.06), eAG (p = 0.06), insulin (p = 0.82), HOMA-B (p = 0.34), or HOMA-IR (p = 0.66). The mean Insulin Sensitivity Index (ISI) was also similar between control and affected individuals. Total cholesterol (p = 0.43), triglycerides (TG) (p = 0.56), and HDL (p = 0.32) were not different between the same two groups. In a small subset of studied subjects, intramyocellular and hepatic lipid content were similar in the affected individuals and controls when quantified by proton magnetic resonance spectroscopy (MRS). However, the mean value for serum LDL was significantly lower (p = 0.04) in affected individuals. In primary human islets, there were no differences between control and Wnt treatment groups for insulin secretion measured as area under the curve (AUC) for first phase (p = 0.17) or second phase (p = 0.33) insulin secretion. CONCLUSIONS Although our sample size was small, our data do not support the hypothesis that HBM-causing LRP5 mutations, associated with increased Wnt signaling, improve glucose metabolism in humans. However, it does appear that LRP5 variants may affect LDL metabolism, a major risk factor for coronary artery disease. The molecular mechanisms underpinning this effect warrant further study.
Collapse
Affiliation(s)
- D Foer
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - M Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R L Cardone
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - C Simpson
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R Sullivan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - S Nemiroff
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - G Lee
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - K F Petersen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
- Novo-Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - K L Insogna
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Chen X, Wang C, Zhang K, Xie Y, Ji X, Huang H, Yu X. Reduced femoral bone mass in both diet-induced and genetic hyperlipidemia mice. Bone 2016; 93:104-112. [PMID: 27669658 DOI: 10.1016/j.bone.2016.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023]
Abstract
Growing evidence argues for a relationship between lipid and bone metabolisms with inconsistent conclusions. Sphingosine-1-phosphate (S1P) has been recognized as a suitable candidate for possible link between lipid metabolism and bone metabolism. This study was designed to investigate the effects of hyperlipidemia on bone metabolism using diet-induced and genetic-induced hyperlipidemia animal models and to explore whether S1P is involved. Wild-type mice and low-density lipoprotein receptor gene deficient (LDLR-/-) mice at age of 8weeks were placed on either control diet or high-fat diet (HFD) for 12weeks. Bone structural parameters were determined using microCT. Cross-linked type I collagen (CTx) and S1P levels in plasma were measured by ELISA methods. Bone marrow cells from wild type and LDLR-/- mice were induced to differentiate into osteoblasts, osteoclasts and adipocytes respectively. Gene expressions in distal femur metaphyses and cultured cells were studied by qRT-PCR. Moderate hypercholesterolemia was found in HFD-feeding mice; severe hypercholesterolemia and moderate hypertriglyceridemia were present in LDLR-/- mice. Femoral trabecular bone mass was reduced in both diet-induced and genetic hyperlipidemia mice. Mice feeding on HFD showed higher CTx levels, and mice with hyperlipidemia had elevated S1P levels. Correlation analysis found a positive correlation between CTx and S1P levels. Lower Runx2 expression and higher TRAP expression were found in both diet-induced and genetic hyperlipidemia mice, indicating decreased osteoblastic functions and increased osteoclastic functions in these mice. Bone marrow cells from LDLR-/- mice also showed increased adipogenesis and inhibited osteogenesis accompanied by enhanced PPARγ expression. In conclusion, our study found decreased bone mass in both diet-induced and genetic hyperlipidemia mice.
Collapse
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Chunyu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Hui Huang
- Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| |
Collapse
|
37
|
Kämpe AJ, Mäkitie RE, Mäkitie O. New Genetic Forms of Childhood-Onset Primary Osteoporosis. Horm Res Paediatr 2016; 84:361-9. [PMID: 26517534 DOI: 10.1159/000439566] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
Recent developments in genetic technology have given us the opportunity to look at diseases in a new and more detailed way. This Mini Review discusses monogenetic forms of childhood-onset primary osteoporosis, with the main focus on osteoporosis caused by mutations in WNT1 and PLS3, two of the most recently discovered genes underlying early-onset osteoporosis. The importance of WNT1 in the accrual and maintenance of bone mass through activation of canonical WNT signaling was recognized in 2013. WNT1 was shown to be a key ligand for the WNT-signaling pathway, which is of major importance in the regulation of bone formation. More recently, mutations in PLS3, located on the X chromosome, were shown to be the cause of X-linked childhood-onset primary osteoporosis affecting mainly males. The function of PLS3 in bone metabolism is still not completely understood, but it has been speculated to have an important role in mechanosensing by osteocytes and in matrix mineralization. In this new era of genetics, our knowledge on genetic causes of childhood-onset osteoporosis expands constantly. These discoveries bring new possibilities, but also new challenges. Guidelines are needed to implement this new genetic knowledge to clinical patient care and to guide genetic investigations in affected families.
Collapse
Affiliation(s)
- Anders J Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Jia F, Sun R, Li J, Li Q, Chen G, Fu W. Interactions of Pri-miRNA-34b/c and TP53 Polymorphisms on the Risk of Osteoporosis. Genet Test Mol Biomarkers 2016; 20:398-401. [PMID: 27227383 DOI: 10.1089/gtmb.2015.0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common, multifactorial disorder. Here, we investigated the association between polymorphisms in pri-miR-34b/c (rs4938723) and TP53 (Arg72Pro) and the prevalence of OP. METHODS A total of 681 individuals were assessed in a case-control study, including 310 patients with OP and 371 controls. Variants in pri-miR-34b/c and TP53 were identified using a polymerase chain reaction-restriction fragment length polymorphism method. RESULTS The presence of the CC and CT/CC pri-miR-34b/c genotypes were associated with a significantly reduced risk of OP compared with the TT genotype (CC vs. TT: odds ratio [OR] = 0.32, 95% confidence intervals [CI] = 0.17-0.59; p < 0.001; CT/CC vs. TT: OR = 0.69, 95% CI = 0.51-0.93; p = 0.016). The CC genotype was also associated with a significantly reduced OP risk compared with the TT/CT genotypes (OR = 0.35, 95% CI = 0.19-0.64; p < 0.001). Furthermore, compared with the carriers of the Arg72Pro GG genotype, carriers of the CC genotype had a 2.21-fold increased OP risk (95% CI = 1.45-3.37; p < 0.001) and CG/CC genotypes carriers had a 1.96-fold increased OP risk (95% CI = 1.39-2.76; p < 0.001). CONCLUSIONS The present findings indicate that pri-miR-34b/c rs4938723 and TP53 Arg72Pro polymorphisms may contribute to the risk of OP.
Collapse
Affiliation(s)
- Fu Jia
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China .,2 Department of Orthopedic, National Clinical Key Specialty, Yunnan Hospital, Kunming Medical University , Kunming, China
| | - Ruifen Sun
- 3 Central Laboratory, Yunnan University of Chinese Traditional Medicine , Kunming, China
| | - Jian Li
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Qi Li
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Gang Chen
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Weili Fu
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| |
Collapse
|
39
|
Qu Y, Kang MY, Dong RP, Zhao JW. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism. Med Sci Monit 2016; 22:824-32. [PMID: 26970713 PMCID: PMC4793637 DOI: 10.12659/msm.895387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. Material/Methods Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). Results Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=−0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=−0. 212~1.821, P=0.121). Conclusions Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism.
Collapse
Affiliation(s)
- Yang Qu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ming-Yang Kang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Rong-Peng Dong
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jian-Wu Zhao
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
40
|
Abstract
OBJECTIVES Diabetes mellitus is associated with an increased risk of fractures, which is not fully explained by bone mineral density and common risk factors. The aim of this study is to investigate the association of medication and biochemical markers on the risk of fracture in a diabetes population. DESIGN AND SETTING A nested case-control study was conducted based on Danish diabetes patients from The Danish National Hospital Discharge Registry. PARTICIPANTS The cases of the study were diabetes patients with a fracture (n=24,349), and controls were diabetes patients with no fracture (n=132,349). A total of 2627 diabetes patients were available for an analysis of patient characteristics, comorbidities, biochemical parameters and drug usage. RESULTS Age (OR=1.02, 95% CI 1.01 to 1.04), diabetes duration (OR=1.06, 95% CI 1.02 to 1.09), a diagnosis of previous fracture (OR=2.20, 95% CI 1.55 to 3.11), an alcohol-related diagnosis (OR=2.94, 95% CI 1.76 to 4.91), total cholesterol level (OR=2.50, 95% CI 1.20 to 5.21) and the usage of antiepileptics (OR=2.12, 95% CI 1.39 to 3.59) all increased the odds of fracture. Low-density lipoprotein cholesterol levels decreased the odds of fracture (OR =0.34, 95% CI 0.16 to 0.74), where the level of 3.04-5.96 mmol/L was optimal with regard to fracture risk. CONCLUSIONS Low-density lipoprotein cholesterol may improve our understanding of fractures in diabetes patients, and it may be added to current fracture risk models in diabetes patients.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital THG, Aarhus, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital THG, Aarhus, Denmark
| | - Peter Vestergaard
- Clinical Institute, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
41
|
Alonso N, Soares DC, V McCloskey E, Summers GD, Ralston SH, Gregson CL. Atypical femoral fracture in osteoporosis pseudoglioma syndrome associated with two novel compound heterozygous mutations in LRP5. J Bone Miner Res 2015; 30:615-20. [PMID: 25384351 DOI: 10.1002/jbmr.2403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
Osteoporosis pseudoglioma syndrome (OPPG) is a rare autosomal recessive condition of congenital blindness and severe childhood osteoporosis with skeletal fragility, caused by loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. We report the first case of atypical (subtrochanteric) femoral fracture (AFF) in OPPG, occurring in a 38-year-old man within the context of relatively low bone turnover and trabecular osteoporosis on bone histology. We identify two novel LRP5 mutations: R752W is associated with low bone mineral density (BMD), as demonstrated by the heterozygous carriage identified in his 57-year-old mother; however, the combination of this R752W mutation with another novel W79R mutation, causes a severe case of compound heterozygous OPPG. We undertake 3D homology modeling of the four extracellular YWTD β-propeller/EGF-like domains (E1-E4) of LRP5, and show that both novel mutations destabilize the β-propeller domains that are critical for protein and ligand binding to regulate Wnt signaling and osteoblast function. Although AFFs have been reported in other rare bone diseases, this is the first in a genetic condition of primary osteoblast dysfunction. The relatively low bone turnover observed, and knowledge of LRP5 function, implicates impaired bone remodeling in the pathogenesis of AFF.
Collapse
Affiliation(s)
- Nerea Alonso
- Rheumatic Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
42
|
Loh NY, Neville MJ, Marinou K, Hardcastle SA, Fielding BA, Duncan EL, McCarthy MI, Tobias JH, Gregson CL, Karpe F, Christodoulides C. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion. Cell Metab 2015; 21:262-273. [PMID: 25651180 PMCID: PMC4321886 DOI: 10.1016/j.cmet.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 12/29/2022]
Abstract
Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK
| | - Kyriakoula Marinou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Department of Experimental Physiology, Athens University School of Medicine, Athens 11527, Greece
| | - Sarah A Hardcastle
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Barbara A Fielding
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Emma L Duncan
- University of Queensland Diamantina Institute, School of Medicine and University of Queensland Centre for Clinical Research, Faculty of Medicine and Biomedical Sciences, University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Endocrinology, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK.
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK.
| |
Collapse
|
43
|
Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:290531. [PMID: 25580429 PMCID: PMC4279179 DOI: 10.1155/2014/290531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023]
Abstract
The low-density lipoprotein receptor-related protein 5 gene (LRP5) was identified to be linked to the variation in bone mineral density and types of bone diseases. The present study was aimed at examining the association of LRP5 rs3736228 C>T gene with bone fracture and osteoporosis by meta-analysis. A systematic electronic search of literature was conducted to identify all published studies in English or Chinese on the association of the LRP5 gene with bone fracture and osteoporosis risks. All analyses were calculated using the Version 12.0 STATA software. Odds ratios (ORs) and their corresponding 95% confidence interval (95% CI) were calculated. An updated meta-analysis was currently performed, including seven independent case-control studies. Results identified that carriers of rs3736228 C>T variant in the LRP5 gene were associated with an increased risk of developing osteoporosis and fractures under 4 genetic models but not under the dominant model (OR = 1.19, 95% CI = 0.97~1.46, and P = 0.103). Ethnicity-subgroup analysis implied that LRP5 rs3736228 C>T mutation was more likely to develop osteoporosis and fractures among Asians and Caucasians in majority of subgroups. These results suggest that there is a modest effect of the LRP5 rs3736228 C>T on the increased susceptibility of bone fracture and osteoporosis.
Collapse
|
44
|
Stagi S, Cavalli L, Seminara S, de Martino M, Brandi ML. The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Ital J Pediatr 2014; 40:55. [PMID: 24906390 PMCID: PMC4064514 DOI: 10.1186/1824-7288-40-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023] Open
Abstract
In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | | | | | | |
Collapse
|
45
|
Sen Gupta P, Grozinsky-Glasberg S, Drake WM, Akker SA, Perry L, Grossman AB, Druce MR. Are serotonin metabolite levels related to bone mineral density in patients with neuroendocrine tumours? Clin Endocrinol (Oxf) 2014; 80:246-52. [PMID: 23790044 DOI: 10.1111/cen.12270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bone mineral density (BMD) is influenced by multiple factors. Recent studies have highlighted a possible relationship between serotonin and BMD. Patients with neuroendocrine tumours (NETs) frequently have elevated urinary 5-hydroxy-indoleacetic acid (5-HIAA) levels, a serotonin metabolite. Evaluation of the relationship between 5-HIAA and BMD in patients with NETs may provide insights into the relationship between serotonin and BMD. METHODS One-year audit of consecutive patients with NETs within two institutions. Relationships between urinary 5-HIAA and dual X-ray absorptiometry (DEXA)-scan-measured BMD were investigated by group comparisons, correlation and regression. RESULTS Of 65 patients with NETs, 19 did not participate or were excluded. Of 46 subjects evaluated (48·9% males, 63·8 ± 10·5 years, BMI 26·6 ± 4·4 kg/m(2) ) with 32 gastrointestinal, 9 pancreatic, 3 pulmonary and 2 ovarian NETs, 72·3% had the carcinoid syndrome. Median interval from diagnosis was 4·0 years (IQR 2·0-6·0); 41·3% had osteoporosis and 32·6% osteopaenia (WHO definition). The group with a higher urinary 5-HIAA had a lower hip BMD (total T-score and Z-score), confirmed on individual analysis (Spearman's rank correlation -0·41, P = 0·004; -0·44, P = 0·002, respectively); urinary 5-HIAA was not found to be an independent predictor for BMD on multiple linear regression analysis. CONCLUSION These data of patients with NETs with higher serotonin metabolites having a lower BMD at the hip in group and individual comparisons, warrants further evaluation. Urinary 5-HIAA measurement alone cannot be used to predict future BMD. A larger cohort with prospective design including fractures as a clinical outcome will aid these data in determining whether patients with NETs should be subject to targeted osteoporosis prevention.
Collapse
Affiliation(s)
- Piya Sen Gupta
- Department of Endocrinology, Barts & the London School of Medicine, QMUL, London, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, Bowen ME, Paszty C, Warman ML, Robling AG. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med 2013; 5:211ra158. [PMID: 24225945 PMCID: PMC3964772 DOI: 10.1126/scitranslmed.3006627] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osteoporosis pseudoglioma syndrome (OPPG) is a rare genetic disease that produces debilitating effects in the skeleton. OPPG is caused by mutations in LRP5, a WNT co-receptor that mediates osteoblast activity. WNT signaling through LRP5, and also through the closely related receptor LRP6, is inhibited by the protein sclerostin (SOST). It is unclear whether OPPG patients might benefit from the anabolic action of sclerostin neutralization therapy (an approach currently being pursued in clinical trials for postmenopausal osteoporosis) in light of their LRP5 deficiency and consequent osteoblast impairment. To assess whether loss of sclerostin is anabolic in OPPG, we measured bone properties in a mouse model of OPPG (Lrp5(-/-)), a mouse model of sclerosteosis (Sost(-/-)), and in mice with both genes knocked out (Lrp5(-/-);Sost(-/-)). Lrp5(-/-);Sost(-/-) mice have larger, denser, and stronger bones than do Lrp5(-/-) mice, indicating that SOST deficiency can improve bone properties via pathways that do not require LRP5. Next, we determined whether the anabolic effects of sclerostin depletion in Lrp5(-/-) mice are retained in adult mice by treating 17-week-old Lrp5(-/-) mice with a sclerostin antibody for 3 weeks. Lrp5(+/+) and Lrp5(-/-) mice each exhibited osteoanabolic responses to antibody therapy, as indicated by increased bone mineral density, content, and formation rates. Collectively, our data show that inhibiting sclerostin can improve bone mass whether LRP5 is present or not. In the absence of LRP5, the anabolic effects of SOST depletion can occur via other receptors (such as LRP4/6). Regardless of the mechanism, our results suggest that humans with OPPG might benefit from sclerostin neutralization therapies.
Collapse
Affiliation(s)
- Rajendra Kedlaya
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shreya Veera
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel J. Horan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Rachel E. Moss
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ugur M. Ayturk
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Christina M. Jacobsen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Margot E. Bowen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chris Paszty
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Matthew L. Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Fahiminiya S, Majewski J, Roughley P, Roschger P, Klaushofer K, Rauch F. Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone 2013; 57:41-6. [PMID: 23886840 DOI: 10.1016/j.bone.2013.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/08/2013] [Accepted: 07/09/2013] [Indexed: 11/23/2022]
Abstract
Juvenile osteoporosis (JO) is characterized by bone fragility during development, low bone mass and absence of extraskeletal features. Heterozygous loss-of-function mutations in LRP5 have been found in a few patients, but bone tissue and bone material abnormalities associated with such mutations have not been determined. Here we report on a 6-year-old boy who presented with a history of seven low-energy long-bone fractures starting at 19months of age and absence of extraskeletal involvement. Spine radiographs revealed multiple vertebral compression fractures. Despite tall stature (95th percentile), lumbar spine areal bone mineral density was low (z-score=-3.2). Trabecular volumetric bone mineral density, measured by peripheral quantitative computed tomography at the distal radius, was low (z-score=-5.1), but cortical thickness at the radial diaphysis was normal. Iliac bone histomorphometry demonstrated low bone formation activity in trabecular but not in cortical bone. Quantitative backscattered electron imaging showed normal material bone density in trabecular bone, but elevated results in the cortex. Whole-exome sequencing revealed a heterozygous insertion of a nucleotide in exon 12 of LRP5. This mutation had previously been reported in another JO patient and had been shown to lead to nonsense-mediated decay. Thus, heterozygous loss-of-function mutations in LRP5 can be associated with a bone formation deficit that affects mostly the trabecular compartment and can result in bone fragility during the first years of life.
Collapse
Affiliation(s)
- Somayyeh Fahiminiya
- Department of Human Genetics, McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
49
|
Galli C, Macaluso G, Passeri G. Serotonin: a novel bone mass controller may have implications for alveolar bone. J Negat Results Biomed 2013; 12:12. [PMID: 23964727 PMCID: PMC3766083 DOI: 10.1186/1477-5751-12-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/23/2013] [Indexed: 12/21/2022] Open
Abstract
As recent studies highlight the importance of alternative mechanisms in the control of bone turnover, new therapeutic approaches can be envisaged for bone diseases and periodontitis-induced bone loss. Recently, it has been shown that Fluoxetine and Venlafaxine, serotonin re-uptake inhibitors commonly used as antidepressants, can positively or negatively affect bone loss in rat models of induced periodontitis. Serotonin is a neurotransmitter that can be found within specific nuclei of the central nervous system, but can also be produced in the gut and be sequestered inside platelet granules. Although it is known to be mainly involved in the control of mood, sleep, and intestinal physiology, recent evidence has pointed at far reaching effects on bone metabolism, as a mediator of the effects of Lrp5, a membrane receptor commonly associated with Wnt canonical signaling and osteoblast differentiation. Deletion of Lrp5 in mice lead to increased expression of Tryptophan Hydroxylase 1, the gut isoform of the enzyme required for serotonin synthesis, thus increasing serum levels of serotonin. Serotonin, in turn, could bind to HTR1B receptors on osteoblasts and stop their proliferation by activating PKA and CREB. Although different groups have reported controversial results on the existence of an Lrp5-serotonin axis and the action of serotonin in bone remodeling, there is convincing evidence that serotonin modulators such as SSRIs can affect bone turnover. Consequently, the effects of this drug family on periodontal physiology should be thoroughly explored.
Collapse
Affiliation(s)
- Carlo Galli
- Dep, Biomedicine, Biotechnology and Translational Sciences, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| | | | | |
Collapse
|
50
|
Boudin E, Jennes K, de Freitas F, Tegay D, Mortier G, Van Hul W. No mutations in the serotonin related TPH1 and HTR1B genes in patients with monogenic sclerosing bone disorders. Bone 2013; 55:52-6. [PMID: 23563356 DOI: 10.1016/j.bone.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/25/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Since the identification of LRP5 as the causative gene for the osteoporosis pseudoglioma syndrome (OPPG) as well as the high bone mass (HBM) phenotype, LRP5 and the Wnt/β-catenin signaling have been extensively studied for their role in the differentiation and proliferation of osteoblasts, in the apoptosis of osteoblasts and osteocytes and in the response of bone to mechanical loading. However, more recently the direct effect of LRP5 on osteoblasts and bone formation has been questioned. Gene expression studies showed that mice lacking lrp5 have increased expression of tph1, the rate limiting enzyme for the production of serotonin in the gut. Furthermore mice lacking either tph1 or htr1B, the receptor for serotonin on the osteoblasts, were reported to have an increased bone mass due to increased bone formation. This led to the still controversial hypothesis that LRP5 influences bone formation indirectly by regulating the expression of thp1 and as a consequence influencing the production of serotonin in the gut. Based on these data we decided to evaluate the role of TPH1 and HTR1B in the development of craniotubular hyperostoses, a group of monogenic sclerosing bone dysplasias. We screened the coding regions of both genes in 53 patients lacking a mutation in the known causative genes LRP5, LRP4 and SOST. We could not find disease-causing coding variants in neither of the tested genes and therefore, we cannot provide support for an important function of TPH1 and HTR1B in the pathogenesis of sclerosing bone dysplasias in our tested patient cohort.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University and University Hospital of Antwerp, Edegem, Belgium.
| | | | | | | | | | | |
Collapse
|