1
|
Lu Q, Yang H, Feng S, Xie X, Liu S, Zhu H, Su Z, Zhou Y, Tang H. Establishment of a UPLC-MS method for quantitative analysis of tryptophan-kynurenine metabolism in IBS-D model rats. J Pharm Biomed Anal 2024; 251:116426. [PMID: 39180894 DOI: 10.1016/j.jpba.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Background and Aims Abnormalities in tryptophan (TRP) metabolism induce abdominal pain and intestinal motility disorders. The study of TRP metabolism in diarrhea-predominant-irritable bowel syndrome (IBS-D) is important for the prevention, diagnosis, and treatment of this disease. In this study, a rapid and reliable ultra performance liquid chromatography-mass spectrometry (UPLC-MS) method was established to quantify tryptophan-kynurenine (TRP-Kyn) metabolism in the colon of a rat model with IBS-D. Methods The proteins were precipitated by methanol, chromatographically separated on a Welch Ultimate® Polar RP column with a gradient elution for 12 min, and detected by high-resolution tandem mass spectrometry. Pure water were used as an alternative mechanism for standard calibration, and the stable structural analog 2-Cl-Phe was used as an internal standard. Results Within a certain range, the r of TRP, kynurenine (Kyn) and quinolinic acid (QA), kynurenic acid (KA) are greater than 0.99, were found to be accurate and precise. The metabolism of TRP was significantly up-regulated along the Kyn pathway in the IBS-D model rats and normalized after treatment with pivacurium bromide. Conclusion This study investigates the mechanisms of IBS-D gastrointestinal dysfunction from the perspective of colonic TRP metabolism, and also provides new directions for the diagnosis and therapeutic approach of this disease.
Collapse
Affiliation(s)
- Qin Lu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Chongqing Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine (Chongqing Beibei District Traditional Chinese Medicine Hospital), Chongqing 400000, China
| | - Huifei Yang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Department of Pathology, Fudan Cancer Hospital, Guangzhou 510000, China
| | - Siqi Feng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiangyu Xie
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shan Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Zhiqiang Su
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yingchun Zhou
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Hongmei Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
2
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Chojnacki J, Konrad P, Mędrek-Socha M, Kaczka A, Błońska A, Zajdel R, Chojnacki C, Gąsiorowska A. The Variability of Tryptophan Metabolism in Patients with Mixed Type of Irritable Bowel Syndrome. Int J Mol Sci 2024; 25:2550. [PMID: 38473797 DOI: 10.3390/ijms25052550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with a mixed type of irritable bowel syndrome (IBS-M) experience constipation and diarrhea, which alternate between weeks or months. The pathogenesis of this syndrome is still little understood. The aim of the study was mainly to evaluate the urinary excretion of selected tryptophan (TRP) metabolites during the constipation and diarrhea periods of this syndrome. In 36 patients with IBS-M and 36 healthy people, serum serotonin level was measured by ELISA and urinary levels of 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN) and indican (3-IS) were determined using the LC-MS/MS method. The levels of all above metabolites were higher in the patient group, and increased significantly during the diarrheal period of IBS-M. In particular, the changes concerned 5-HIAA (3.67 ± 0.86 vs. 4.59 ± 0.95 mg/gCr, p < 0.001) and 3-IS (80.2 ± 17.4 vs. 93.7 ± 25.1 mg/g/Cr, p < 0.001). These changes coexisted with gut microbiome changes, assessed using hydrogen-methane and ammonia breath tests. In conclusion, the variability of TRP metabolism and the gut microbiome may cause the alternation of IBS-M symptoms.
Collapse
Affiliation(s)
- Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marta Mędrek-Socha
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Aleksandra Kaczka
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Aleksandra Błońska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-255 Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
5
|
Nagy-Grócz G, Spekker E, Vécsei L. Kynurenines, Neuronal Excitotoxicity, and Mitochondrial Oxidative Stress: Role of the Intestinal Flora. Int J Mol Sci 2024; 25:1698. [PMID: 38338981 PMCID: PMC10855176 DOI: 10.3390/ijms25031698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal flora has been the focus of numerous investigations recently, with inquiries not just into the gastrointestinal aspects but also the pathomechanism of other diseases such as nervous system disorders and mitochondrial diseases. Mitochondrial disorders are the most common type of inheritable metabolic illness caused by mutations of mitochondrial and nuclear DNA. Despite the intensive research, its diagnosis is usually difficult, and unfortunately, treating it challenges physicians. Metabolites of the kynurenine pathway are linked to many disorders, such as depression, schizophrenia, migraine, and also diseases associated with impaired mitochondrial function. The kynurenine pathway includes many substances, for instance kynurenic acid and quinolinic acid. In this review, we would like to show a possible link between the metabolites of the kynurenine pathway and mitochondrial stress in the context of intestinal flora. Furthermore, we summarize the possible markers of and future therapeutic options for the kynurenine pathway in excitotoxicity and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | | | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Hazrati E, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Namazi M. Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions. Mol Pain 2024; 20:17448069241275097. [PMID: 39093627 PMCID: PMC11331475 DOI: 10.1177/17448069241275097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.
Collapse
Affiliation(s)
- Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Metri NJ, Butt AS, Murali A, Steiner-Lim GZ, Lim CK. Normative Data on Serum and Plasma Tryptophan and Kynurenine Concentrations from 8089 Individuals Across 120 Studies: A Systematic Review and Meta-Analysis. Int J Tryptophan Res 2023; 16:11786469231211184. [PMID: 38034059 PMCID: PMC10687991 DOI: 10.1177/11786469231211184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
In this systematic review and meta-analysis, a normative dataset is generated from the published literature on the kynurenine pathway in control participants extracted from case-control and methodological validation studies. Study characteristics were mapped, and studies were evaluated in terms of analytical rigour and methodological validation. Meta-analyses of variance between types of instruments, sample matrices and metabolites were conducted. Regression analyses were applied to determine the relationship between metabolite, sample matrix, biological sex, participant age and study age. The grand mean concentrations of tryptophan in the serum and plasma were 60.52 ± 15.38 μM and 51.45 ± 10.47 μM, respectively. The grand mean concentrations of kynurenine in the serum and plasma were 1.96 ± 0.51 μM and 1.82 ± 0.54 μM, respectively. Regional differences in metabolite concentrations were observed across America, Asia, Australia, Europe and the Middle East. Of the total variance within the data, mode of detection (MOD) accounted for up to 2.96%, sample matrix up to 3.23%, and their interaction explained up to 1.53%; the latter of which was determined to be negligible. This review was intended to inform future empirical research and method development studies and successfully synthesised pilot data. The pilot data reported in this study will inform future precision medicine initiatives aimed at targeting the kynurenine pathway by improving the availability and quality of normative data.
Collapse
Affiliation(s)
- Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ali S Butt
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ava Murali
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Genevieve Z Steiner-Lim
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
8
|
Liu A, Shen H, Li Q, He J, Wang B, Du W, Li G, Zhang M, Zhang X. Determination of tryptophan and its indole metabolites in follicular fluid of women with diminished ovarian reserve. Sci Rep 2023; 13:17124. [PMID: 37816920 PMCID: PMC10564947 DOI: 10.1038/s41598-023-44335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Tryptophan (TRP) and its indole metabolites exhibit numerous biological effects, especially their antioxidant properties. This study used untargeted metabolomics in conjunction with targeted metabolomics to investigate the differential expression of tryptophan and its indole metabolites in follicular fluid (FF) of diminished ovarian reserve (DOR) and normal ovarian reserve (NOR) populations. This study included patients with DOR (n = 50) and females with NOR (n = 35) who received in vitro fertilization and embryo transfer. Untargeted metabolomics suggests that diminished ovarian reserve affects the metabolic profile of FF, TRP and indole metabolites were significantly down-regulated in the DOR group. Targeted metabolomics quantification revealed that the levels of TRP, IPA and IAA in the FF of the DOR group were significantly lower than those of the NOR group (P < 0.01). The concentration of TRP in FF is positively correlated with the available embryo rate in NOR females. These results provide data support to explore the pathogenesis of DOR and to look for new biomarkers and ovarian protectors. Additionally, alterations in TRP and its indole metabolites in FF may indirectly reflect the interaction between intestinal flora and the follicular microenvironment.
Collapse
Affiliation(s)
- Ahui Liu
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Haofei Shen
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Qiuyuan Li
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Juanjuan He
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Bin Wang
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenjing Du
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou, People's Republic of China
| | | | - Mingtong Zhang
- Gansu Inspection and Testing Technical Engineering Laboratory for Chinese Herbal and Tibetan Medicine, NMPA Key Laboratory for Quality Control of TCM, Gansu Institute for Drug Control, No.7 Yin'an Road, An Ning District, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou, People's Republic of China.
| |
Collapse
|
9
|
Nordin E, Hellström PM, Vuong E, Ribbenstedt A, Brunius C, Landberg R. IBS randomized study: FODMAPs alter bile acids, phenolic- and tryptophan metabolites, while gluten modifies lipids. Am J Physiol Regul Integr Comp Physiol 2023; 325:R248-R259. [PMID: 37399002 DOI: 10.1152/ajpregu.00016.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Diet is considered a culprit for symptoms in irritable bowel syndrome (IBS), although the mechanistic understanding of underlying causes is lacking. Metabolomics, i.e., the analysis of metabolites in biological samples may offer a diet-responsive fingerprint for IBS. Our aim was to explore alterations in the plasma metabolome after interventions with fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) or gluten versus control in IBS, and to relate such alterations to symptoms. People with IBS (n = 110) were included in a double-blind, randomized, crossover study with 1-wk provocations of FODMAPs, gluten, or placebo. Symptoms were evaluated with the IBS severity scoring system (IBS-SSS). Untargeted metabolomics was performed on plasma samples using LC-qTOF-MS. Discovery of metabolite alterations by treatment was performed using random forest followed by linear mixed modeling. Associations were studied using Spearman correlation. The metabolome was affected by FODMAP [classification rate (CR) 0.88, P < 0.0001], but less by gluten intake CR 0.72, P = 0.01). FODMAP lowered bile acids, whereas phenolic-derived metabolites and 3-indolepropionic acid (IPA) were higher compared with placebo. IPA and some unidentified metabolites correlated weakly to abdominal pain and quality of life. Gluten affected lipid metabolism weakly, but with no interpretable relationship to IBS. FODMAP affected gut microbial-derived metabolites relating to positive health outcomes. IPA and unknown metabolites correlated weakly to IBS severity. Minor symptom worsening by FODMAP intake must be weighed against general positive health aspects of FODMAP. The gluten intervention affected lipid metabolism weakly with no interpretable association to IBS severity. Registration: www.clinicaltrials.gov as NCT03653689.NEW & NOTEWORTHY In irritable bowel syndrome (IBS), fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) affected microbial-derived metabolites relating to positive health outcomes such as reduced risk of colon cancer, inflammation, and type 2 diabetes, as shown in previous studies. The minor IBS symptom induction by FODMAP intake must be weighed against the positive health aspects of FODMAP consumption. Gluten affected lipids weakly with no association to IBS severity.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Eddie Vuong
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Anton Ribbenstedt
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Nordin E, Hellström PM, Dicksved J, Pelve E, Landberg R, Brunius C. Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study. Nutrients 2023; 15:3045. [PMID: 37447371 DOI: 10.3390/nu15133045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the effects of dietary treatment in irritable bowel syndrome (IBS) is lacking. Our aim was therefore to investigate how fermentable oligo- di-, monosaccharides, and polyols (FODMAPs) and gluten affected gut microbiota and circulating metabolite profiles, as well as to investigate potential links between gut microbiota, metabolites, and IBS symptoms. METHODS We used data from a double-blind, randomized, crossover study with week-long provocations of FODMAPs, gluten, and placebo in participants with IBS. To study the effects of the provocations on fecal microbiota, fecal and plasma short-chain fatty acids, the untargeted plasma metabolome, and IBS symptoms, we used Random Forest, linear mixed model and Spearman correlation analysis. RESULTS FODMAPs increased fecal saccharolytic bacteria, plasma phenolic-derived metabolites, 3-indolepropionate, and decreased isobutyrate and bile acids. Gluten decreased fecal isovalerate and altered carnitine derivatives, CoA, and fatty acids in plasma. For FODMAPs, modest correlations were observed between microbiota and phenolic-derived metabolites and 3-indolepropionate, previously associated with improved metabolic health, and reduced inflammation. Correlations between molecular data and IBS symptoms were weak. CONCLUSIONS FODMAPs, but not gluten, altered microbiota composition and correlated with phenolic-derived metabolites and 3-indolepropionate, with only weak associations with IBS symptoms. Thus, the minor effect of FODMAPs on IBS symptoms must be weighed against the effect on microbiota and metabolites related to positive health factors.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Carl Brunius
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Chojnacki C, Poplawski T, Blonska A, Konrad P, Chojnacki J, Blasiak J. The Usefulness of the Low-FODMAP Diet with Limited Tryptophan Intake in the Treatment of Diarrhea-Predominant Irritable Bowel Syndrome. Nutrients 2023; 15:nu15081837. [PMID: 37111056 PMCID: PMC10145220 DOI: 10.3390/nu15081837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: A low-FODMAP diet is often recommended in the treatment of irritable bowel syndrome, but it does not improve abdominal symptoms in all patients, and an alternative diet is desirable. The purpose of this study was to evaluate the efficacy of a low-FODMAP diet with a concomitant reduction in tryptophan (TRP) intake in irritable bowel syndrome with diarrhea predominance (IBS-D) in relation to its metabolism via the serotonin and kynurenine pathways. (2) Methods: 40 healthy people (Group I, Controls) and 80 patients with IBS-D were included in the study. IBS-D patients were randomly divided into two groups of 40 each (Groups IIA and IIB). In Group IIA, the low-FODMAP diet was recommended, while in Group IIB, the same diet was recommended but with limited TRP intake for 8 weeks. The TRP intake was analyzed with the use of the nutritional calculator. Abdominal complaints were assessed using the Gastrointestinal Symptom Rating Scale (GSRS-IBS), and psychological status was simultaneously determined using two scales: the Hamilton Anxiety Scale (HAM-A) and the Hamilton Depression Scale (HAM-D). TRP and its metabolites: 5-hydoxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QA) were measured in urine using liquid chromatography tandem mass spectrometry (LC-MS/MS). (3) Results: The consumption of TRP per mg/kg/b.w./24 h has decreased in Group IIA from 20.9 ± 2.39 to 17.45 ± 2.41 (16.5%) and in Group IIB from 21.3 ± 2.33 to 14.32 (34.4%). Significantly greater improvement was found after nutritional treatment in patients in Group IIB as compared to Group IIA (GSRS score: 38.1% vs. 49.8%; HAM-A: 38.7% vs. 49.9%; HAM-D: 13.8% vs. 35.0%; p < 0.01). Reducing TRP intake showed a negative correlation with the degree of improvement in the GSRS score. (4) Conclusions: Lowering the TRP content in a low-FODMAP diet may be useful in treating IBS-D.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 90-236 Lodz, Poland
| | - Aleksandra Blonska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
12
|
Chojnacki C, Błońska A, Konrad P, Chojnacki M, Podogrocki M, Poplawski T. Changes in Tryptophan Metabolism on Serotonin and Kynurenine Pathways in Patients with Irritable Bowel Syndrome. Nutrients 2023; 15:nu15051262. [PMID: 36904262 PMCID: PMC10005076 DOI: 10.3390/nu15051262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
(1) Background: L-tryptophan is a substrate for the synthesis of many biological compounds through the serotonin and kynurenine pathways. These compounds have a significant influence on gastrointestinal functions and mental processes. The aim of the study was to evaluate the urinary excretion of selected tryptophan metabolites in patients with constipation-predominant and diarrhoea-predominant irritable bowel syndrome (IBS-C and IBS-D, respectively), related to somatic and mental symptoms. (2) Methods: 120 people were included in the study and three groups were distinguished, with 40 individuals each, including healthy subjects (controls), patients with IBS-C and patients with IBS-D. The Gastrointestinal Symptoms Rating Scale (GSRS-IBS) was used to assess the severity of abdominal symptoms. The Hamilton Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-D) were used to evaluate the mental state of patients. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), L-tryptophan and the following metabolites in urine, related to the creatinine level, were measured: 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA). (3) Results: In both groups of patients with IBS, changes in tryptophan metabolism were found as compared to the control group. We observed an increase in the activity of the serotonin pathway and a positive correlation between the 5-HIAA level and the GSRS score (p < 0.01) and HAM-A score (p < 0.001) in IBS-D patients. The IBS-C group was characterized by a higher concentration of kynurenines (KYN, QA) in urine. Moreover, the QA (p < 0.001) and KYNA (p < 0.05) levels were correlated with the HAM-D score among IBS-C patients. (4) Conclusions: Various changes in the tryptophan metabolism pathway can determine the differences in the clinical picture of irritable bowel syndrome. These results should be included in the nutritional and pharmacological treatment of this syndrome.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
- Correspondence: (C.C.); (T.P.)
| | - Aleksandra Błońska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marcin Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
- Correspondence: (C.C.); (T.P.)
| |
Collapse
|
13
|
Concentrations of Plasma Amino Acids and Neurotransmitters in Participants with Functional Gut Disorders and Healthy Controls. Metabolites 2023; 13:metabo13020313. [PMID: 36837931 PMCID: PMC9959678 DOI: 10.3390/metabo13020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Amino acids are important in several biochemical pathways as precursors to neurotransmitters which impact biological processes previously linked to functional gastrointestinal disorders (FGIDs). Dietary protein consumption, metabolic host processes, and the gut microbiome can influence the plasma concentration of amino acids and neurotransmitters, and their uptake by tissues. The aim of this analysis was to quantify 19 proteogenic and 4 non-proteogenic amino acids and 19 neurotransmitters (including precursors and catabolites, herein referred to as neurotransmitters) to ascertain if their circulating concentrations differed between healthy participants and those with FGIDs. Plasma proteogenic and non-proteogenic amino acids and neurotransmitters were measured using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry, respectively, from 165 participants (Rome IV: irritable bowel syndrome (IBS-constipation, IBS-diarrhea), functional constipation, functional diarrhea, and healthy controls). There were significant differences (p < 0.05) in pairwise comparisons between healthy controls and specific FGID groups for branched-chain amino acids (BCAAs), ornithine, and alpha-aminobutyric acid. No other significant differences were observed for the neurotransmitters or any other amino acids analyzed. Multivariate and bivariate correlation analyses between proteogenic and non-proteogenic amino acids and neurotransmitters for constipation (constipation (IBS-C and functional constipation) and phenotypes diarrhea (IBS-D and functional diarrhea)) and healthy controls suggested that associations between BCAAs, 5-hydroxytryptophan, and kynurenine in combination with tyrosine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid and associations with gamma-aminobutyric acid, glutamate, asparagine, and serine are likely disrupted in FGID phenotypes. In conclusion, although correlations were evident between some proteogenic and non-proteogenic amino acids and neurotransmitters, the results showed minor concentration differences in plasma proteogenic and non-proteogenic amino acids, amino acid-derived metabolites, and neurotransmitters between FGID phenotypes and healthy controls.
Collapse
|
14
|
Chojnacki C, Popławski T, Konrad P, Fila M, Błasiak J, Chojnacki J. Antimicrobial treatment improves tryptophan metabolism and mood of patients with small intestinal bacterial overgrowth. Nutr Metab (Lond) 2022; 19:66. [PMID: 36167589 PMCID: PMC9513933 DOI: 10.1186/s12986-022-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal composition of intestinal bacteria is an essential condition for good health. Excessive growth of these bacteria can cause various ailments. The aim of this study was to assess the mental state and gastrointestinal complaints of patients with small intestinal bacterial overgrowth (SIBO) in relation to tryptophan metabolism and rifaximin treatment. METHODS 120 subjects, aged 23-61 years, were enrolled in the study, and divided into 3 groups, 40 individuals each: healthy subjects (Controls), patients with SIBO and chronic diarrhea (SIBO-D), and with chronic constipation (SIBO-C). The lactulose hydrogen breath test (LHBT) was performed to diagnose SIBO. The mental state of patients was assessed using the Hamilton Anxiety Rating Scale (HAM-A), and the Hamilton Depression Rating Scale (HAM-D). L-tryptophan (TRP) and its metabolites: 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), xanthurenic acid (XA) and quinolinic acid (QA) were measured in urine by liquid-chromatography-tandem mass spectrometry and related to creatinine level. Patients with SIBO were recommended to take rifaximin for 10 days at daily dose 1200 mg, and this cycle was repeated in subsequent two months. RESULTS Mild and moderate anxiety, as well as mild depression were diagnosed in all SIBO patients. Changes in TRP metabolism were also observed in these patients. Specifically, an increase in the activity of the serotonin pathway of TRP metabolism in the group SIBO-D was observed. The SIBO-C patients showed an increase in the concentration of KYN, XA and QA. 5-HIAA/TRP and KYN/TRP ratios significantly decreased in group SIBO-D, and KYN and QA levels decreased in group SIBO-C after treatment with rifaximin. The levels of anxiety and depression decreased in both groups. CONCLUSION Rifaximin treatment of SIBO patients ameliorated their mood disorders and gastrointestinal aliments underlined by changes in tryptophan metabolism. Trial registration Retrospectively registered (if applicable).
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry Medical, University of Lodz, 90-136, Lodz, Poland.,Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland
| | - Michał Fila
- Department of Developmental Neurology and Epileptology, Polish Mother Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland.
| |
Collapse
|
15
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
16
|
Zhao C, Bao L, Qiu M, Feng L, Chen L, Liu Z, Duan S, Zhao Y, Wu K, Zhang N, Hu X, Fu Y. Dietary Tryptophan-Mediated Aryl Hydrocarbon Receptor Activation by the Gut Microbiota Alleviates Escherichia coli-Induced Endometritis in Mice. Microbiol Spectr 2022; 10:e0081122. [PMID: 35727038 PMCID: PMC9430277 DOI: 10.1128/spectrum.00811-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Intestinal microbiota-mediated aryl hydrocarbon receptor (AhR) activation plays an important role in host-microbiota interactions and disease development. However, whether AhR activation mediates infection-induced inflammation in remote organs is not clear. The purpose of this study is to assess the effects and underlying mechanism of AhR activation and gut microbiota-mediated dietary tryptophan (Trp) metabolism on infection-induced inflammation using an Escherichia coli (E. coli)-induced endometritis model in mice. We found that AhR activation by 6-formylindolo (3,2-b) carbazole (Ficz), which is an AhR agonist derived from the photooxidation of Trp, alleviated E. coli-induced endometritis by repairing barrier function and inhibiting inflammatory responses, while inhibition of AhR by CH223191, which is a synthetic AhR antagonist, aggravated E. coli-induced endometritis. Gut dysbiosis damaged AhR activation and exacerbated E. coli-induced endometritis in mice, which responded to the reduced abundance of AhR ligand producers, such as Lactobacillus spp. Supplementation with dietary Trp ameliorated E. coli-induced endometritis in a microbiota-dependent manner, which was associated with the production of AhR ligands. Administration of AhR ligands, including indole and indole aldehyde, but not indole-3-propionic acid, rescued the protective effect of Trp on E. coli-induced endometritis in dysbiotic mice. Moreover, consumption of Lactobacillus reuteri (L. reuteri) containing AhR ligand-producing capability also alleviated E. coli-induced endometritis in mice in an AhR-dependent manner. Our results demonstrate that microbiota-mediated AhR activation is a key factor in fighting pathogen-caused inflammation, which leads to a potential strategy to regulate the gut microbiota and metabolism by dietary Trp or probiotics for the intervention of infectious diseases and reproductive health. IMPORTANCE Infection-induced endometritis is a common and frequently occurring disease in humans and animals. Accumulating evidence suggests an important role of the gut microbiota in the development of infection-induced inflammation. Whether and how gut microbiota-mediated AhR activation regulates the pathogenesis of pathogen-induced endometritis remains unknown. The current study found that AhR activation ameliorated E. coli-induced endometritis, and inhibition of AhR produced negative results. Gut dysbiosis reduced the abundance of AhR ligand producers including Lactobacillus spp., damaged AhR activation, and exacerbated E. coli-induced endometritis. Supplementation with dietary Trp, AhR ligands, and L. reuteri containing AhR ligand-producing capability alleviated E. coli-induced endometritis in mice. Our results suggest an important role of microbiota-mediated AhR activation in the pathogenesis of endometritis and provide potential strategies for the intervention of infectious diseases and reproductive health by regulating the gut microbiota and metabolism.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Luotong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
17
|
Chojnacki C, Konrad P, Błońska A, Medrek-Socha M, Przybylowska-Sygut K, Chojnacki J, Poplawski T. Altered Tryptophan Metabolism on the Kynurenine Pathway in Depressive Patients with Small Intestinal Bacterial Overgrowth. Nutrients 2022; 14:nu14153217. [PMID: 35956393 PMCID: PMC9370164 DOI: 10.3390/nu14153217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The causes of depression are diverse and are still not fully understood. Recently, an increasing role is attributed to nutritional and inflammatory factors. The aim of this study was to evaluate selected metabolites of the tryptophan kynurenine pathway in depressive patients with small intestinal bacterial overgrowth (SIBO). The study involved 40 healthy people (controls) and 40 patients with predominant small intestinal bacterial overgrowth (SIBO-D). The lactulose hydrogen breath test (LHBT) was performed to diagnose SIBO. The severity of symptoms was assessed using the Gastrointestinal Symptom Rating Scale (GSRS–IBS) and the Hamilton Depression Rating Scale (HAM-D). The concentration of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QA) in urine was determined using an LC–MS/MS method, before and after cyclic treatment with an antibiotic drug, rifaximin, for three months. The number of intraepithelial lymphocytes (IELs) in the duodenum and small intestinal mucosa, fecal calprotectin (FC) and serum level of C-reactive protein (CRP) were also determined. In patients with SIBO, a higher level of KYN and QA were found as compared to the control group. These two groups also differed in KYN/TRP (higher in SIBO) and KYNA/KYN ratios (lower in SIBO). A positive correlation was found between HAM-D and the number of IELs and the level of FC. Treatment with rifaximin improves the kynurenic pathway, as well as abdominal and mental complaints. Therefore, small intestinal bacterial overgrowth can be a cause of abdominal symptoms, but also mental disorders.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Aleksandra Błońska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marta Medrek-Socha
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | | | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
- Correspondence: (J.C.); (T.P.)
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (J.C.); (T.P.)
| |
Collapse
|
18
|
Kavyani B, Lidbury BA, Schloeffel R, Fisher PR, Missailidis D, Annesley SJ, Dehhaghi M, Heng B, Guillemin GJ. Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle? Cell Mol Life Sci 2022; 79:412. [PMID: 35821534 PMCID: PMC9276562 DOI: 10.1007/s00018-022-04380-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease with a substantial social and economic impact on individuals and their community. Despite its importance and deteriorating impact, progresses in diagnosis and treatment of ME/CFS is limited. This is due to the unclear pathophysiology of the disease and consequently lack of prognostic biomarkers. To investigate pathophysiology of ME/CFS, several potential pathologic hallmarks have been investigated; however, these studies have failed to report a consistent result. These failures in introducing the underlying reason for ME/CFS have stimulated considering other possible contributing mechanisms such as tryptophan (TRP) metabolism and in particular kynurenine pathway (KP). KP plays a central role in cellular energy production through the production of nicotinamide adenine dinucleotide (NADH). In addition, this pathway has been shown to mediate immune response and neuroinflammation through its metabolites. This review, we will discuss the pathology and management of ME/CFS and provide evidence pertaining KP abnormalities and symptoms that are classic characteristics of ME/CFS. Targeting the KP regulation may provide innovative approaches to the management of ME/CFS.
Collapse
Affiliation(s)
- Bahar Kavyani
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Brett A Lidbury
- The National Centre for Epidemiology and Population Health, RSPH, College of Health and Medicine, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Schloeffel
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
- The Grove Health Pymble, Sydney, NSW, Australia
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Daniel Missailidis
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Pandis.org, Melbourne, Australia.
| |
Collapse
|
19
|
Shute A, Bihan DG, Lewis IA, Nasser Y. Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Front Neurosci 2022; 16:917197. [PMID: 35812241 PMCID: PMC9260117 DOI: 10.3389/fnins.2022.917197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.
Collapse
Affiliation(s)
- Adam Shute
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
21
|
Jovanovic F, Sudhakar A, Knezevic NN. The Kynurenine Pathway and Polycystic Ovary Syndrome: Inflammation as a Common Denominator. Int J Tryptophan Res 2022; 15:11786469221099214. [PMID: 35620306 PMCID: PMC9128055 DOI: 10.1177/11786469221099214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex metabolic disorder commonly seen in females of reproductive age. The pathophysiology of PCOS is multifactorial and includes dysfunction in ovarian steroidogenesis and folliculogenesis, impaired gonadotropin levels, insulin resistance, gut microbiota imbalance, genetic predisposition, and lifestyle preferences. Low-grade inflammatory conditions such as obesity and impaired glucose tolerance are common metabolic disturbances in women with PCOS. A growing body of literature suggests strong evidence rendering PCOS in close proximity with chronic inflammation as documented by high levels of serum white blood cells, C-reactive protein, and various proinflammatory cytokines seen in this condition. Inflammation seems to be the most common metabolic denominator between the kynurenine pathway and PCOS. The association of tryptophan and kynurenine pathway has already been well documented in mood disorders, neurodegenerative diseases, chronic pain conditions, and different inflammatory states. In this manuscript, we describe the influence of sex steroid hormones on different enzymes of the KP; inflammatory nature of PCOS and CRP as a marker of IDO/TDO activity; and the effects of altered gut flora in women with PCOS. This review provides a novel view of the available evidence of tryptophan and downstream metabolites in PCOS in the context of underlying inflammation.
Collapse
Affiliation(s)
- Filip Jovanovic
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS, USA
| | - Aboorva Sudhakar
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, USA
- Department of Anesthesiology, University of Illinois, Chicago, USA
- Department of Surgery, University of Illinois, Chicago, USA
| |
Collapse
|
22
|
The Microbiota-Gut Axis in Premature Infants: Physio-Pathological Implications. Cells 2022; 11:cells11030379. [PMID: 35159189 PMCID: PMC8834399 DOI: 10.3390/cells11030379] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Intriguing evidence is emerging in regard to the influence of gut microbiota composition and function on host health from the very early stages of life. The development of the saprophytic microflora is conditioned by several factors in infants, and peculiarities have been found for babies born prematurely. This population is particularly exposed to a high risk of infection, postnatal antibiotic treatment, feeding difficulties and neurodevelopmental disabilities. To date, there is still a wide gap in understanding all the determinants and the mechanism behind microbiota disruption and its influence in the development of the most common complications of premature infants. A large body of evidence has emerged during the last decades showing the existence of a bidirectional communication axis involving the gut microbiota, the gut and the brain, defined as the microbiota–gut–brain axis. In this context, given that very few data are available to demonstrate the correlation between microbiota dysbiosis and neurodevelopmental disorders in preterm infants, increasing interest has arisen to better understand the impact of the microbiota–gut–brain axis on the clinical outcomes of premature infants and to clarify how this may lead to alternative preventive, diagnostic and therapeutic strategies. In this review, we explored the current evidence regarding microbiota development in premature infants, focusing on the effects of delivery mode, type of feeding, environmental factors and possible influence of the microbiota–gut–brain axis on preterm clinical outcomes during their hospital stay and on their health status later in life.
Collapse
|
23
|
Meynier M, Baudu E, Rolhion N, Defaye M, Straube M, Daugey V, Modoux M, Wawrzyniak I, Delbac F, Villéger R, Méleine M, Borras Nogues E, Godfraind C, Barnich N, Ardid D, Poirier P, Sokol H, Chatel JM, Langella P, Livrelli V, Bonnet M, Carvalho FA. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes 2022; 14:2022997. [PMID: 35090380 PMCID: PMC8803069 DOI: 10.1080/19490976.2021.2022997] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Alterations in brain/gut/microbiota axis are linked to Irritable Bowel Syndrome (IBS) physiopathology. Upon gastrointestinal infection, chronic abdominal pain and anxio-depressive comorbidities may persist despite pathogen clearance leading to Post-Infectious IBS (PI-IBS). This study assesses the influence of tryptophan metabolism, and particularly the microbiota-induced AhR expression, on intestinal homeostasis disturbance following gastroenteritis resolution, and evaluates the efficacy of IL-22 cytokine vectorization on PI-IBS symptoms. The Citrobacter rodentium infection model in C57BL6/J mice was used to mimic Enterobacteria gastroenteritis. Intestinal homeostasis was evaluated as low-grade inflammation, permeability, mucosa-associated microbiota composition, and colonic sensitivity. Cognitive performances and emotional state of animals were assessed using several tests. Tryptophan metabolism was analyzed by targeted metabolomics. AhR activity was evaluated using a luciferase reporter assay method. One Lactococcus lactis strain carrying an eukaryotic expression plasmid for murine IL-22 (L. lactisIL-22) was used to induce IL-22 production in mouse colonic mucosa. C. rodentium-infected mice exhibited persistent colonic hypersensitivity and cognitive impairments and anxiety-like behaviors after pathogen clearance. These post-infectious disorders were associated with low-grade inflammation, increased intestinal permeability, decrease of Lactobacillaceae abundance associated with the colonic layer, and increase of short-chain fatty acids (SCFAs). During post-infection period, the indole pathway and AhR activity were decreased due to a reduction of tryptophol production. Treatment with L. lactisIL-22 restored gut permeability and normalized colonic sensitivity, restored cognitive performances and decreased anxiety-like behaviors. Data from the video-tracking system suggested an upgrade of welfare for mice receiving the L.lactisIL-22 strain. Our findings revealed that AhR/IL-22 signaling pathway is altered in a preclinical PI-IBS model. IL-22 delivering alleviate PI-IBS symptoms as colonic hypersensitivity, cognitive impairments, and anxiety-like behaviors by acting on intestinal mucosa integrity. Thus, therapeutic strategies targeting this pathway could be developed to treat IBS patients suffering from chronic abdominal pain and associated well-being disorders.
Collapse
Affiliation(s)
- Maëva Meynier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Elodie Baudu
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Nathalie Rolhion
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Manon Defaye
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Marjolène Straube
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Morgane Modoux
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Ivan Wawrzyniak
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Frédéric Delbac
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Romain Villéger
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Mathieu Méleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Esther Borras Nogues
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Catherine Godfraind
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Neuropathology Unit, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Philippe Poirier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Harry Sokol
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Valérie Livrelli
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | | |
Collapse
|
24
|
Fila M, Chojnacki J, Pawlowska E, Szczepanska J, Chojnacki C, Blasiak J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders. Int J Mol Sci 2021; 22:ijms221810134. [PMID: 34576297 PMCID: PMC8469852 DOI: 10.3390/ijms221810134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine, the leading cause of disability in the population aged below 50, is associated with functional gastrointestinal (GI) disorders (FGIDs) such as functional nausea, cyclic vomiting syndrome, and irritable bowel syndrome (IBS). Conversely, changes in intestinal GI transit may cause diarrhea or constipation and are a component of the autonomic symptoms associated with pre- and post-dorsal phases of migraine attack. These mutual relationships provoke a question on a common trigger in migraine and FGIDs. The kynurenine (l-kyn) pathway (KP) is the major route for l-tryptophan (l-Trp) metabolism and transforms l-Trp into several neuroactive compounds. Changes in KP were reported in both migraine and FGIDs. Migraine was largely untreatable, but several drugs approved lately by the FDA, including monoclonal antibodies for calcitonin gene-related peptide (CGRP) and its receptor, create a hope for a breakthrough in migraine treatment. Derivatives of l-kyn were efficient in pain relief with a mechanism including CGRP inhibition. KP products are important ligands to the aryl hydrocarbon receptor (AhR), whose activation is implicated in the pathogenesis of GI and migraine. Toll-like receptors (TLRs) may play a role in migraine and IBS pathogeneses, and KP metabolites detected downstream of TLR activation may be an IBS marker. The TLR4 signaling was observed in initiating and maintaining migraine-like behavior through myeloid differentiation primary response gene 88 (MyD88) in the mouse. The aim of this review is to justify the view that KP modulation may provide common triggers for migraine and FGIDs with the involvement of TLR, AhR, and MyD88 activation.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
25
|
Zambrana LE, Weber AM, Borresen EC, Zarei I, Perez J, Perez C, Rodríguez I, Becker-Dreps S, Yuan L, Vilchez S, Ryan EP. Daily Rice Bran Consumption for 6 Months Influences Serum Glucagon-Like Peptide 2 and Metabolite Profiles without Differences in Trace Elements and Heavy Metals in Weaning Nicaraguan Infants at 12 Months of Age. Curr Dev Nutr 2021; 5:nzab101. [PMID: 34514286 PMCID: PMC8421236 DOI: 10.1093/cdn/nzab101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is associated with chronic gut inflammation affecting nutrient absorption and development of children, primarily in low- and middle-income countries. Several studies have shown that rice bran (RB) supplementation provides nutrients and modulates gut inflammation, which may reduce risk for undernutrition. OBJECTIVE The aim was to evaluate the effect of daily RB dietary supplementation for 6 mo on serum biomarkers in weaning infants and associated changes in serum and stool metabolites. METHODS A 6-mo randomized-controlled dietary intervention was conducted in a cohort of weaning 6-mo-old infants in León, Nicaragua. Anthropometric indices were obtained at 6, 8, and 12 mo. Serum and stool ionomics and metabolomics were completed at the end of the 6-mo intervention using inductively coupled plasma MS and ultra-high performance LC-tandem MS. The ɑ1-acid glycoprotein, C-reactive protein, and glucagon-like peptide 2 (GLP-2) serum EED biomarkers were measured by ELISA. RESULTS Twenty-four infants in the control group and 23 in the RB group successfully completed the 6-mo dietary intervention with 90% dietary compliance. RB participants had higher concentrations of GLP-2 as compared with control participants at 12 mo [median (IQR): 743.53 (380.54) pg/mL vs. 592.50 (223.59) pg/mL; P = 0.04]. Metabolite profiles showed significant fold differences of 39 serum metabolites and 44 stool metabolites from infants consuming RB compared with control, and with significant metabolic pathway enrichment scores of 4.7 for the tryptophan metabolic pathway, 5.7 for polyamine metabolism, and 5.7 for the fatty acid/acylcholine metabolic pathway in the RB group. No differences were detected in serum and stool trace elements or heavy metals following daily RB intake for 6 mo. CONCLUSIONS RB consumption influences a suite of metabolites associated with growth promotion and development, while also supporting nutrient absorption as measured by changes in serum GLP-2 in Nicaraguan infants. This clinical trial was registered at https://clinicaltrials.gov as NCT02615886.
Collapse
Affiliation(s)
- Luis E Zambrana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Annika M Weber
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Johann Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Claudia Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Iker Rodríguez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Biotic Products Development Center, National Polytechnic Institute, Morelos, Mexico
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
26
|
AKTAS B, ASLIM B. Neuropathy in COVID-19 associated with dysbiosis-related inflammation. Turk J Biol 2021; 45:390-403. [PMID: 34803442 PMCID: PMC8573843 DOI: 10.3906/biy-2105-53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut-lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut-lung and gut-brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.
Collapse
Affiliation(s)
- Busra AKTAS
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, BurdurTurkey
| | - Belma ASLIM
- Department of Biology, Faculty of Sciences, Gazi University, AnkaraTurkey
| |
Collapse
|
27
|
Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110145. [PMID: 33203568 DOI: 10.1016/j.pnpbp.2020.110145] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
The intestine and the gut-associated limphoid tissue constitute the largest immunity organ of the human body. Among several possible tryptophan metabolism routes, the kynurenine pathway can be influenced by the gut microbiota. Disturbances of gut biodiversity may cause increased gut permeability and cause systemic inflammation, also related to central nervous system. Proinflammatory cytokines induce kynurenine pathway enzymes resulting in formation of neuroactive metabolites, which are being associated with several psychiatric disorders. The kynurenine pathway may also be influenced by certain bacteria species directly. The aim of this review is to highlight the current knowledge on the interaction of gut microbiota and the central nervous system with the kynurenine pathway taken into special account. Up to date study results on specific psychiatric disorders such as schizophrenia, bipolar disorder, Alzheimer's disease, autism spectrum disorders, depression and alcoholism are presented. Available evidence suggests that toxicity of kynurenine metabolites may be reduced by adjunction of probiotics which can affect proinflammatory cytokines. Due to their potential for modulation of the kynurenine pathway, gut microbiota pose an interesting target for future therapies.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland.
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| | | | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
28
|
Enko D, Zelzer S, Wenninger J, Holasek S, Schnedl WJ, Baranyi A, Herrmann M, Meinitzer A. Interleukin-6 is associated with tryptophan metabolism and signs of depression in individuals with carbohydrate malabsorption. EXCLI JOURNAL 2020; 19:1414-1422. [PMID: 33312105 PMCID: PMC7726491 DOI: 10.17179/excli2020-2940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate possible associations between interleukin-6 (IL-6), interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), lactoferrin and lipopolysaccharide binding protein (LBP) with TRP metabolism and signs of depression in a large cohort of outpatients referred for carbohydrate malabsorption testing. Serum concentrations of IL-6, INF-γ, TNF-α, lactoferrin, LBP, tryptophan (TRP), kynurenine (KYN) and kynuric acid were determined in 250 adults referred for lactose and fructose malabsorption testing. All participants filled out the Beck Depression Inventory (BDI). Serum IL-6 levels were positively correlated with the BDI score (p = 0.001, ρ = 0.205) and indicators of TRP metabolism (KYN/TRP ratio, KYN) (P-values < 0.05, ρ = 0.176 and 0.136). Ninety-five individuals with a BDI score > 13 showed significantly higher IL-6 serum levels (1.7 [1.0 - 2.8] vs. 1.1 [0.8 - 1.7] pg/mL, p < 0.001) compared to 115 individuals with a BDI score ≤ 13. LBP showed a positive correlation with the KYN/TRP ratio (p = 0.005, ρ = 0.177). IL-6 and LBP were associated with indicators of TRP metabolism. IL-6 was found to be linked to signs of depression. Individuals with the presence of depressive symptoms showed higher serum IL-6 levels compared to individuals without depressive symptoms.
Collapse
Affiliation(s)
- Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Leoben, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Department of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Lyte JM, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Dinan TG, Cryan JF, Clarke G. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 2020; 32:e13881. [PMID: 32391630 DOI: 10.1111/nmo.13881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the mechanisms underpinning the response to acute stress is critical for determining how this can be modulated in both health and disease and across sexes. Stress can markedly alter the microbiome and gut-brain axis signaling with the serotonergic system being particularly sensitive to acute stress. As the impact of acute stress on regional serotonergic dynamics in the gut-brain axis and the contribution of the microbiome to this are poorly appreciated, we used microbiota-deficient mice to assess whether the serotonergic response to acute stress exposure is microbiome dependent. METHODS Adult male and female conventional, germ-free, and colonized germ-free mice underwent a single acute stressor and samples were harvested immediately or 45 minutes following stress. Serotonin and related metabolites and serotonergic gene expression were determined. KEY RESULTS Our data clearly show the microbiota influenced gastrointestinal serotonergic response to acute stress in a sex- and region-dependent manner. Male-specific poststress increases in colonic serotonin were absent in germ-free mice but normalized following colonization. mRNA serotonergic gene expression was differentially expressed in colon and ileum of germ-free mice on a sex-dependent basis. Within the frontal cortex, absence of the microbiome altered basal serotonin, its main metabolite 5-hydroxyindoleacetic acid, and prevented stress-induced increases in serotonin turnover. CONCLUSIONS AND INFERENCES The gut microbiome influences the set points of the brain and gastrointestinal serotonergic systems and affected their response to acute stress in a sex- and region-dependent manner.
Collapse
Affiliation(s)
- Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Antioch I, Ilie OD, Ciobica A, Doroftei B, Fornaro M. Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E504. [PMID: 32992963 PMCID: PMC7600172 DOI: 10.3390/medicina56100504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Background: Pain, a distinctive undesirable experience, encompasses several different and fluctuating presentations across varying mood disorders. Therefore, the present narrative review aimed to shed further light on the matter, accounting for both experimental animal models and clinical observations about major depressive disorder (MDD) pathology. Method: Major databases were inquired from inception until April 2016 for records about MDD and pain. Results: Pain and MDD are tightly associated with each other in a bi-directional fashion. Several cross-sectional and retrospective studies indicated a high presence of pain in the context of mood disorders, including MDD (up to 65%), but also increased prevalence rates in the case of mood disorders documented among people with a primary diagnosis of either psychological or somatic pain (prevalence rates exceeding 45%). The clinical implications of these observations suggest the need to account for mood and pain manifestations as a whole rather than distinct entities in order to deliver more effective interventions. Limitations: Narrative review, lack of systematic control groups (e.g., people with the primary diagnosis at review, but not the associated comorbidity as a study) to allow reliable comparisons. Prevalence rates and clinical features associated with pain varied across different studies as corresponding operational definitions did. Conclusions: Pain may have a detrimental effect on the course of mood disorders-the opposite holds. Promoting a timely recognition and management of such an often neglected comorbidity would therefore represent a primary goal toward the delivery of effective, multi-disciplinary care.
Collapse
Affiliation(s)
- Iulia Antioch
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700505 Iasi, Romania; (I.A.); (O.-D.I.)
| | - Ovidiu-Dumitru Ilie
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700505 Iasi, Romania; (I.A.); (O.-D.I.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700505 Iasi, Romania; (I.A.); (O.-D.I.)
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Michele Fornaro
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
31
|
Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int J Tryptophan Res 2020; 13:1178646920928984. [PMID: 32577079 PMCID: PMC7290275 DOI: 10.1177/1178646920928984] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ‘microbiota-gut-brain axis’ plays a fundamental role in maintaining host homeostasis, and different immune, hormonal, and neuronal signals participate to this interkingdom communication system between eukaryota and prokaryota. The essential aminoacid tryptophan, as a precursor of several molecules acting at the interface between the host and the microbiota, is fundamental in the modulation of this bidirectional communication axis. In the gut, tryptophan undergoes 3 major metabolic pathways, the 5-HT, kynurenine, and AhR ligand pathways, which may be directly or indirectly controlled by the saprophytic flora. The importance of tryptophan metabolites in the modulation of the gastrointestinal tract is suggested by several preclinical and clinical studies; however, a thorough revision of the available literature has not been accomplished yet. Thus, this review attempts to cover the major aspects on the role of tryptophan metabolites in host-microbiota cross-talk underlaying regulation of gut functions in health conditions and during disease states, with particular attention to 2 major gastrointestinal diseases, such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), both characterized by psychiatric disorders. Research in this area opens the possibility to target tryptophan metabolism to ameliorate the knowledge on the pathogenesis of both diseases, as well as to discover new therapeutic strategies based either on conventional pharmacological approaches or on the use of pre- and probiotics to manipulate the microbial flora.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
32
|
Ghoshal UC. Marshall and Warren Lecture 2019: A paradigm shift in pathophysiological basis of irritable bowel syndrome and its implication on treatment. J Gastroenterol Hepatol 2020; 35:712-721. [PMID: 32162356 DOI: 10.1111/jgh.15032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS), a common functional gastrointestinal disorder (FGID), has often been considered rather inappropriately as psychogenic in the past. Though psychological issues are important comorbidities in a proportion of IBS patients, the evidences are far from enough to label this condition as psychogenic only. In the recent past, evidences are emerging that underscores the concept supporting pure psychogenic theory of IBS and suggest this disorder to be rather microorganic. Accordingly, a move of Rome IV Committee attempting to delete the term "functional" and designating these to be disorders of "gut-brain interaction" rather than that of "brain-gut interaction," it emphasizes the importance of the gut over the brain in the pathogenesis. The introduction of the concept of multidimensional clinical profile in Rome IV requires attention to diagnostic category of FGID, overlap, severity, psychological issues, and physiological dysfunction or biomarkers; this attempts to recognize clinical variability and multidimensionality of pathophysiology and management of these disorders. The recognition of the biological factors in the pathogenesis of IBS is a significant paradigm shift in the recent time. This is somewhat similar to the progress in the pathogenesis of peptic ulcer disease from psychological factor to acid to Helicobacter pylori infection. It is expected that in the near future, therapeutic modalities targeting the different pathogenic mechanisms of different subtypes of IBS may bring revolution in management of the disorder.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
33
|
Evrensel A, Ünsalver BÖ, Ceylan ME. Immune-Kynurenine Pathways and the Gut Microbiota-Brain Axis in Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:155-167. [PMID: 32002928 DOI: 10.1007/978-981-32-9705-0_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety disorders are a complex set of illnesses in which genetic factors, particularly stress, play a role in the etiopathogenesis. In recent years, inflammation and intestinal microbiota have also been included in this complex network of relationships. The functions associated with tryptophan catabolism and serotonin biosynthesis have long been associated with anxiety disorders. Tryptophan catabolism progresses toward the path of the kynurenine in the presence of stress and inflammation. The catabolism of kynurenine is a pathway in which many enzymes play a role and a large number of catabolites with neuroactive properties occur. The body's serotonin biosynthesis is primarily performed by enterochromaffin cells located in the intestines. A change in the intestinal microbiota composition (dysbiosis) directly affects the serotonin biosynthesis. Stress, unhealthy nutrition, and the use of antibiotics cause dysbiosis. In the light of this new perspective, the role of dysbiosis-induced inflammation and kynurenine pathway catabolites activated sequentially come into prominence in the etiopathogenesis of anxiety disorders.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Umraniye, Istanbul, Turkey.
| | - Barış Önen Ünsalver
- Vocational School of Health Services, Department of Medical Documentation and Secretariat, Uskudar University, Istanbul, Turkey
| | - Mehmet Emin Ceylan
- Departments of Psychology and Philosophy, Uskudar University, Istanbul, Turkey
| |
Collapse
|
34
|
Gu F, Wu Y, Liu Y, Dou M, Jiang Y, Liang H. Lactobacillus casei improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food Funct 2020; 11:6148-6157. [DOI: 10.1039/d0fo00373e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L. casei improves depression-like behavior in stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota.
Collapse
Affiliation(s)
- Fang Gu
- College of Mechanical and Electronic Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Yanyan Wu
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Ying Liu
- College of Basic Medicine
- Qingdao University
- Qingdao 266071
- China
| | - Mei Dou
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Yushan Jiang
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Hui Liang
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
35
|
Burr RL, Gu H, Cain K, Djukovic D, Zhang X, Han C, Callan N, Raftery D, Heitkemper M. Tryptophan Metabolites in Irritable Bowel Syndrome: An Overnight Time-course Study. J Neurogastroenterol Motil 2019; 25:551-562. [PMID: 31587547 PMCID: PMC6786437 DOI: 10.5056/jnm19042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/01/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Patients with irritable bowel syndrome (IBS) often report poor sleep quality. Whether poor sleep is associated with tryptophan (Trp) metabolites is unknown. We compared serum Trp metabolites in women with IBS and healthy controls (HCs) using targeted liquid chromatography mass spectrometry (LC-MS)-based profiling. In IBS only, we explored whether Trp metabolites are associated with IBS symptoms and subjective and objective sleep indices, serum cortisol, plasma adrenocorticotropic hormone (ACTH), and cortisol/ACTH levels. Methods Blood samples were obtained every 80 minutes in 21 HCs and 38 IBS subjects following an anticipation-of-public-speaking stressor during a sleep laboratory protocol. Subjects completed symptom diaries for 28 days. Adjacent values of metabolites were averaged to represent 4 time-periods: awake, early sleep, mid-sleep, and mid-to-late sleep. Thirteen of 20 targeted Trp metabolites were identified. Results Ten of 13 Trp metabolites decreased across the night, while nicotinamide increased in both groups. A MANOVA omnibus test performed after principal component analysis showed a significant difference in these 13 principal component (P = 0.014) between groups. Compared to HCs, nicotinamide levels were higher and indole-3-lactic acid levels lower in the IBS group. Melatonin and indole-3-acetic acid levels were associated with several subjective/objective sleep measures; decreased stool consistency/frequency and abdominal pain were positively associated with melatonin and serotonin in the IBS group. The kynurenine and kynurenic acid were associated with ACTH (positively) and cortisol/ACTH (negatively). Conclusions Nighttime Trp metabolites may provide clues to poor sleep and stress with IBS. Further study of the mechanism of metabolite action is warranted.
Collapse
Affiliation(s)
- Robert L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA.,Office for Nursing Research, University of Washington, Seattle, WA, USA
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Office for Nursing Research, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xinyu Zhang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Claire Han
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nini Callan
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Barjandi G, Louca Jounger S, Löfgren M, Bileviciute‐Ljungar I, Kosek E, Ernberg M. Plasma tryptophan and kynurenine in females with temporomandibular disorders and fibromyalgia—An exploratory pilot study. J Oral Rehabil 2019; 47:150-157. [DOI: 10.1111/joor.12892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Golnaz Barjandi
- Department of Dental Medicine Karolinska Institutet & Scandinavian Center for Oral Neurosciences Huddinge Sweden
| | - Sofia Louca Jounger
- Department of Dental Medicine Karolinska Institutet & Scandinavian Center for Oral Neurosciences Huddinge Sweden
| | - Monika Löfgren
- Department of Clinical Sciences Karolinska Institutet Stockholm Sweden
- Department of Rehabilitation Medicine Danderyd Hospital Stockholm Sweden
| | - Indre Bileviciute‐Ljungar
- Department of Clinical Sciences Karolinska Institutet Stockholm Sweden
- Department of Rehabilitation Medicine Danderyd Hospital Stockholm Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
| | - Malin Ernberg
- Department of Dental Medicine Karolinska Institutet & Scandinavian Center for Oral Neurosciences Huddinge Sweden
| |
Collapse
|
38
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
39
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 1243] [Impact Index Per Article: 248.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Abstract
The gut microbiota is a crucial actor in human physiology. Many of these effects are mediated by metabolites that are either produced by the microbes or derived from the transformation of environmental or host molecules. Among the array of metabolites at the interface between these microorganisms and the host is the essential aromatic amino acid tryptophan (Trp). In the gut, the three major Trp metabolism pathways leading to serotonin (5-hydroxytryptamine), kynurenine (Kyn), and indole derivatives are under the direct or indirect control of the microbiota. In this review, we gather the most recent advances concerning the central role of Trp metabolism in microbiota-host crosstalk in health and disease. Deciphering the complex equilibrium between these pathways will facilitate a better understanding of the pathogenesis of human diseases and open therapeutic opportunities.
Collapse
|
41
|
Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Front Neuroendocrinol 2018; 51:80-101. [PMID: 29753796 DOI: 10.1016/j.yfrne.2018.04.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
The human gut harbours trillions of symbiotic bacteria that play a key role in programming different aspects of host physiology in health and disease. These intestinal microbes are also key components of the gut-brain axis, the bidirectional communication pathway between the gut and the central nervous system (CNS). In addition, the CNS is closely interconnected with the endocrine system to regulate many physiological processes. An expanding body of evidence is supporting the notion that gut microbiota modifications and/or manipulations may also play a crucial role in the manifestation of specific behavioural responses regulated by neuroendocrine pathways. In this review, we will focus on how the intestinal microorganisms interact with elements of the host neuroendocrine system to modify behaviours relevant to stress, eating behaviour, sexual behaviour, social behaviour, cognition and addiction.
Collapse
Affiliation(s)
- Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
42
|
Michels N, Clarke G, Olavarria-Ramirez L, Gómez-Martínez S, Díaz LE, Marcos A, Widhalm K, Carvalho LA. Psychosocial stress and inflammation driving tryptophan breakdown in children and adolescents: A cross-sectional analysis of two cohorts. Psychoneuroendocrinology 2018; 94:104-111. [PMID: 29775873 DOI: 10.1016/j.psyneuen.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tryptophan breakdown is an important mechanism in several diseases e.g. inflammation and stress-induced inflammation have been associated with the development of depression via enhanced tryptophan breakdown. Depression is a major public health problem which commonly starts during adolescence, thus identifying underlying mechanisms during early life is crucial in prevention. The aim of this work was to verify whether independent and interacting associations of psychosocial stress and inflammation on tryptophan breakdown already exist in children and adolescents as a vulnerable age group. METHODS Two cross-sectional population-based samples of children/adolescents (8-18 y) were available: 315 from the European HELENA study and 164 from the Belgian ChiBS study. In fasting serum samples, tryptophan, kynurenine, kynurenic acid, C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-ɣ, soluble vascular adhesion molecule 1 (sVCAM1) and soluble intercellular adhesion molecule 1 (sICAM1) were measured. Psychological stress was measured by stress reports (subjective) and cortisol (objective - awakening salivary cortisol or hair cortisol). Linear regressions with stress or inflammation as predictor were adjusted for age, sex, body mass index, puberty, socio-economic status and country. RESULTS In both cohorts, inflammation as measured by higher levels of CRP, sVCAM1 and sICAM1 was associated with kynurenine/tryptophan ratio and thus enhanced tryptophan breakdown (beta: 0.145-0.429). Psychological stress was only associated with tryptophan breakdown in the presence of higher inflammatory levels (TNF-α in both populations). CONCLUSIONS Inflammatory levels were replicable key in enhancing tryptophan breakdown along the kynurenine pathway, even at young age and in a non-clinical sample. The stress-inflammation interaction indicated that only the stress exposures inducing higher inflammatory levels (or in an already existing inflammatory status) were associated with more tryptophan breakdown. This data further contributes to our understanding of pathways to disease development, and may help identifying those more likely to develop stress or inflammation-related illnesses.
Collapse
Affiliation(s)
- Nathalie Michels
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Loreto Olavarria-Ramirez
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Sonia Gómez-Martínez
- Immunonutrition Research Group, Department of Metabolism & Nutrition, Institute of Food Science, Technology and Nutrition, Madrid, Spain; ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN), Spain
| | - Ligia Esperanza Díaz
- Immunonutrition Research Group, Department of Metabolism & Nutrition, Institute of Food Science, Technology and Nutrition, Madrid, Spain; ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN), Spain
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism & Nutrition, Institute of Food Science, Technology and Nutrition, Madrid, Spain; ImFINE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN), Spain
| | - Kurt Widhalm
- Department of Pediatric, Division of Clinical Nutrition, Medical University of Vienna, Vienna, Austria
| | - Livia A Carvalho
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, EC1 M 6BQ, UK
| |
Collapse
|
43
|
Wang YT, Xu WX. Role of stress in pathophysiology of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2018; 26:1064-1070. [DOI: 10.11569/wcjd.v26.i17.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS), one of the most common functional gastrointestinal disorders in the world, is characterized by chronic intermittent abdominal discomfort and colon dysmotility with altered bowel habits, significantly impacting patients' quality of life. The pathophysiology of IBS remains incompletely understood although some contributing factors have been identified. Increased visceral sensitivity and intestinal permeability may play an important role in the pathophysiology of IBS. Psychological factors, especially stress, play an important role in the occurrence, development, and regulation of IBS. To facilitate further research of IBS, this review focuses on the relationship between stress and IBS in animal models, as well as the role of stress in increased visceral sensitivity and intestinal permeability in IBS.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
44
|
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol 2018; 8:13. [PMID: 29468141 PMCID: PMC5808205 DOI: 10.3389/fcimb.2018.00013] [Citation(s) in RCA: 741] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system-intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp-microbiome-immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation. Moreover, this review provides new insight regarding the influence of the gut microbiota on Trp metabolism. Additional comprehensive analyses of targeted Trp metabolites (including endogenous and bacterial metabolites) are essential for experimental preciseness, as the influence of the gut microbiota cannot be neglected, and may explain contradictory results in the literature.
Collapse
Affiliation(s)
- Jing Gao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Hongnan Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Gang Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Miaomiao Bai
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Can Peng
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
45
|
Haverkamp GL, Loosman WL, Franssen CF, Kema IP, van Diepen M, Dekker FW, Honig A, Siegert CE. The role of tryptophan degradation in the association between inflammatory markers and depressive symptoms in chronic dialysis patients. Nephrol Dial Transplant 2018; 32:1040-1047. [PMID: 27220752 DOI: 10.1093/ndt/gfw212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/09/2016] [Indexed: 01/08/2023] Open
Abstract
Background Among chronic dialysis patients, associations have been found between inflammatory markers and depressive symptoms. In this population, no studies have examined the mechanism linking the association between inflammatory markers and depressive symptoms. We examined whether the association between inflammatory markers and depressive symptoms is mediated by tryptophan (TRP) degradation along the kynurenine (KYN) pathway. Methods The data are part of an observational, prospective cohort study in five urban dialysis centres in The Netherlands. Depressive symptoms were determined with the Beck Depression Inventory. Peripheral blood was collected before dialysis to measure inflammatory markers [high sensitivity C-reactive protein (HsCRP), interleukin (IL)-1β, IL-6, IL-10 and tumour necrosis factor-α (TNF-α)], TRP, KYN and 3-hydroxykynurenine. The KYN/TRP ratio was used as a measure of TRP degradation. The association between inflammatory markers and depressive symptoms was determined using linear regression analysis and adjusted for the KYN/TRP ratio. Results In total, 490 chronic dialysis patients were included. HsCRP [ β = 3.8; confidence interval (CI): 1.0-6.6], IL-6 ( β = 9.1; CI: 4.0-14.1) and TNF-α ( β = 1.3; CI: 0.9-1.7) were associated with the KYN/TRP ratio. We found significant associations between HsCRP ( β = 0.8; CI: 0.3-1.3) and IL-6 ( β = 1.2; CI: 0.3-2.2) levels and depressive symptoms. However, this association was not attenuated after adjustment for the KYN/TRP ratio. Also, no significant associations were found between the KYN/TRP ratio and depressive symptoms. Conclusion The association between inflammatory markers and depressive symptoms in chronic dialysis patients was not mediated by TRP degradation along the KYN pathway.
Collapse
Affiliation(s)
- Gertrud L Haverkamp
- Department of Nephrology, OLVG west, Amsterdam, The Netherlands.,Department of Psychiatry, OLVG west, Amsterdam, The Netherlands
| | - Wim L Loosman
- Department of Nephrology, OLVG west, Amsterdam, The Netherlands.,Department of Psychiatry, OLVG west, Amsterdam, The Netherlands
| | - Casper F Franssen
- Department of Nephrology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel van Diepen
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adriaan Honig
- Department of Psychiatry, OLVG west, Amsterdam, The Netherlands.,Department of Psychiatry, VU Medical Centre, Amsterdam, The Netherlands
| | - Carl E Siegert
- Department of Nephrology, OLVG west, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Wirthgen E, Hoeflich A, Rebl A, Günther J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front Immunol 2018; 8:1957. [PMID: 29379504 PMCID: PMC5770815 DOI: 10.3389/fimmu.2017.01957] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
Tryptophan metabolites are known to participate in the regulation of many cells of the immune system and are involved in various immune-mediated diseases and disorders. Kynurenic acid (KYNA) is a product of one branch of the kynurenine pathway of tryptophan metabolism. The influence of KYNA on important neurophysiological and neuropathological processes has been comprehensively documented. In recent years, the link of KYNA to the immune system, inflammation, and cancer has become more apparent. Given this connection, the anti-inflammatory and immunosuppressive functions of KYNA are of particular interest. These characteristics might allow KYNA to act as a "double-edged sword." The metabolite contributes to both the resolution of inflammation and the establishment of an immunosuppressive environment, which, for instance, allows for tumor immune escape. Our review provides a comprehensive update of the significant biological functions of KYNA and focuses on its immunomodulatory properties by signaling via G-protein-coupled receptor 35 (GPR35)- and aryl hydrocarbon receptor-mediated pathways. Furthermore, we discuss the role of KYNA-GPR35 interaction and microbiota associated KYNA metabolism for gut homeostasis.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Alexander Rebl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
47
|
Functional Bowel Disorders Are Associated with a Central Immune Activation. Gastroenterol Res Pract 2017; 2017:1642912. [PMID: 29201045 PMCID: PMC5672610 DOI: 10.1155/2017/1642912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022] Open
Abstract
Background Subjects with depression and unexplained neurological symptoms have a high prevalence of gastrointestinal comorbidity probably related to the brain-gut communication. This study explored associations between functional gastrointestinal disorders (FGID) and inflammatory markers in subjects with these disorders. Methods The FGID, including irritable bowel syndrome (IBS), were classified according to the Rome III criteria, and degree of symptoms was assessed with IBS symptom severity score (IBS-SSS). A range of interleukins (IL), chemokines and growth factors, tryptophan, and kynurenine were analysed in serum and the cerebrospinal fluid (CSF), and short-chain fatty acids (SCFA) were analysed in the faeces. The results are reported as partial correlation (pc) and p values. Results Sixty-six subjects were included. IBS was associated with high levels of tryptophan (p = 0.048) and kynurenine (p = 0.019) and low level of IL-10 (p = 0.047) in the CSF. IBS-SSS was associated with high tumor necrosis factor and low IL-10 in the CSF; pc = 0.341 and p = 0.009 and pc = −0.299 and p = 0.023, respectively. Propionic minus butyric acid in faeces was negatively associated with IL-10 in the CSF (pc = −0.416, p = 0.005). Conclusions FGID were associated with a proinflammatory immune activation in the central nervous system and a disturbed tryptophan metabolism that could have been mediated by the faecal microbiota.
Collapse
|
48
|
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr 2017; 59:72-88. [PMID: 28799778 DOI: 10.1080/10408398.2017.1357534] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan (Trp) is an amino acid and an essential component of the human diet. It plays a crucial role in many metabolic functions. Clinicians can use Trp levels in the course of diagnosing various metabolic disorders and the symptoms associated with those diseases. Furthermore, supplementation with this amino acid is considered in the treatment of depression and sleep disorders, mainly due to the Trp relationship with the synthesis of serotonin (5-HT) and melatonin. It is also used in helping to resolve cognitive disorders, anxiety, or neurodegenerative diseases. Reduced secretion of serotonin is associated with autism spectrum disorder, obesity, anorexia and bulimia nervosa, and other diseases presenting peripherals symptoms. The literature strongly suggests that Trp has a significant role in the correct functionality of the brain-gut axis and immunology. This information leads to the consideration of Trp as an essential dietary component due to its role in the serotonin pathway. A reduced availability of Trp in diet and nutraceutical supplementation should be considered with greater concern than one might expect. This paper constitutes a review of the more salient aspects gleaned from the current knowledge base about the role of Trp in diseases, associated nutritional disorders, and food science, in general.
Collapse
Affiliation(s)
- Joanna Kałużna-Czaplińska
- a Department of Chemistry, Institute of General and Ecological Chemistry , Lodz University of Technology , Lodz , Poland
| | - Paulina Gątarek
- a Department of Chemistry, Institute of General and Ecological Chemistry , Lodz University of Technology , Lodz , Poland
| | - Salvatore Chirumbolo
- b Department of Neurological and Movement Sciences , University of Verona , Italy
| | | | - Geir Bjørklund
- d Council for Nutritional and Environmental Medicine , Mo i Rana , Norway
| |
Collapse
|
49
|
Malhotra R, Persic V, Zhang W, Brown J, Tao X, Rosales L, Thijssen S, Finkelstein FO, Unruh ML, Ikizler A, Garimella PS, Ix JH, Kooman J, Levin NW, Handelman GJ, Kotanko P. Tryptophan and Kynurenine Levels and Its Association With Sleep, Nonphysical Fatigue, and Depression in Chronic Hemodialysis Patients. J Ren Nutr 2017; 27:260-266. [DOI: 10.1053/j.jrn.2017.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/12/2023] Open
|
50
|
Berstad A, Raa J, Valeur J. Functional food for functional disorders. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017. [PMCID: PMC5445634 DOI: 10.1080/16512235.2017.1281955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnold Berstad
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jan Raa
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|