1
|
Plastid Transformation in Tomato: A Vegetable Crop and Model Species. Methods Mol Biol 2021; 2317:217-228. [PMID: 34028771 DOI: 10.1007/978-1-0716-1472-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Tomato (Solanum lycopersicum L.), a member of the nightshade family (Solanaceae), is one of the most important vegetable crops and has long been an important model species in plant biology. Plastid biology in tomato is especially interesting due to the chloroplast-to-chromoplast conversion occurring during fruit ripening. Moreover, as tomato represents a major food crop with a fleshy fruit that can be eaten raw, the development of a plastid transformation protocol for tomato was of particular interest to plant biotechnologists. Recent methodological improvements have made tomato plastid transformation more efficient, and facilitated applications in metabolic engineering and molecular farming. This chapter describes the basic methods involved in the generation and analysis of tomato plants with transgenic chloroplast genomes and summarizes recent applications of tomato plastid transformation in plant biotechnology.
Collapse
|
2
|
Franco Cairo JPL, Cannella D, Oliveira LC, Gonçalves TA, Rubio MV, Terrasan CRF, Tramontina R, Mofatto LS, Carazzolle MF, Garcia W, Felby C, Damasio A, Walton PH, Squina F. On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. J Inorg Biochem 2020; 216:111316. [PMID: 33421883 DOI: 10.1016/j.jinorgbio.2020.111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.
Collapse
Affiliation(s)
- João Paulo L Franco Cairo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Chemistry, University of York, Heslington, York, United Kingdom; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba - UNISO, Sorocaba, SP, Brazil
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Production and Biocatalysis - CPBL, Biomass Transformation lab - BTL, Interfaculty School of Bioengineers, Université Libre de Bruxelles, Belgium
| | - Leandro C Oliveira
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Thiago A Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba - UNISO, Sorocaba, SP, Brazil
| | - Marcelo V Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Cesar R F Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Robson Tramontina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba - UNISO, Sorocaba, SP, Brazil
| | - Luciana S Mofatto
- Department of Genetic, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Department of Genetic, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; São Paulo Fungal Group, Brazil
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, York, United Kingdom.
| | - Fabio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba - UNISO, Sorocaba, SP, Brazil.
| |
Collapse
|
3
|
Cai Z, He F, Feng X, Liang T, Wang H, Ding S, Tian X. Transcriptomic Analysis Reveals Important Roles of Lignin and Flavonoid Biosynthetic Pathways in Rice Thermotolerance During Reproductive Stage. Front Genet 2020; 11:562937. [PMID: 33110421 PMCID: PMC7522568 DOI: 10.3389/fgene.2020.562937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Rice is one of the major staple cereals in the world, but heat stress is increasingly threatening its yield. Analyzing the thermotolerance mechanism from new thermotolerant germplasms is very important for rice improvement. Here, physiological and transcriptome analyses were used to characterize the difference between two germplasms, heat-sensitive MH101 and heat-tolerant SDWG005. Two genotypes exhibited diverse heat responses in pollen viability, pollination characteristics, and antioxidant enzymatic activity in leaves and spikelets. Through cluster analysis, the global transcriptomic changes indicated that the ability of SDWG005 to maintain a steady-state balance of metabolic processes played an important role in thermotolerance. After analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that the thermotolerance mechanism in SDWG00 was associated with reprogramming the cellular activities, such as response to abiotic stress and metabolic reorganization. In contrast, the down-regulated genes in MH101 that appeared to be involved in DNA replication and DNA repair proofreading, could cause serious injury to reproductive development when exposed to high temperature during meiosis. Furthermore, we identified 77 and 11 differentially expressed genes (DEGs) involved in lignin and flavonoids biosynthetic pathways, respectively. Moreover, we found that more lignin deposition and flavonoids accumulation happened in SDWG005 than in MH101 under heat stress. The results indicated that lignin and flavonoid biosynthetic pathways might play important roles in rice heat resistance during meiosis.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Fengyu He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Xin Feng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Tong Liang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Hongwei Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Shuangcheng Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Xiaohai Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Fukushima A, Hikosaka S, Kobayashi M, Nishizawa T, Saito K, Goto E, Kusano M. A Systems Analysis With "Simplified Source-Sink Model" Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments. FRONTIERS IN PLANT SCIENCE 2018; 9:1439. [PMID: 30364178 PMCID: PMC6191670 DOI: 10.3389/fpls.2018.01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/10/2018] [Indexed: 05/29/2023]
Abstract
Tomato (Solanum lycopersicum) is a model crop for studying development regulation and ripening in flesh fruits and vegetables. Supplementary light to maintain the optimal light environment can lead to the stable growth of tomatoes in greenhouses and areas without sufficient daily light integral. Technological advances in genome-wide molecular phenotyping have dramatically enhanced our understanding of metabolic shifts in the plant metabolism across tomato fruit development. However, comprehensive metabolic and transcriptional behaviors along the developmental process under supplementary light provided by light-emitting diodes (LEDs) remain to be fully elucidated. We present integrative omic approaches to identify the impact on the metabolism of a single tomato plant leaf exposed to monochromatic red LEDs of different intensities during the fruit development stage. Our special light delivery system, the "simplified source-sink model," involves the exposure of a single leaf below the second truss to red LED light of different intensities. We evaluated fruit-size- and fruit-shape variations elicited by different light intensities. Our findings suggest that more than high-light treatment (500 μmol m-2 s-1) with the red LED light is required to accelerate fruit growth for 2 weeks after anthesis. To investigate transcriptomic and metabolomic changes in leaf- and fruit samples we used microarray-, RNA sequencing-, and gas chromatography-mass spectrometry techniques. We found that metabolic shifts in the carbohydrate metabolism and in several key pathways contributed to fruit development, including ripening and cell-wall modification. Our findings suggest that the proposed workflow aids in the identification of key metabolites in the central metabolism that respond to monochromatic red-LED treatment and contribute to increase the fruit size of tomato plants. This study expands our understanding of systems-level responses mediated by low-, appropriate-, and high levels of red light irradiation in the fruit growth of tomato plants.
Collapse
Affiliation(s)
| | - Shoko Hikosaka
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | | | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Fukuda Y, Hirao T, Mishima K, Ohira M, Hiraoka Y, Takahashi M, Watanabe A. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. BMC PLANT BIOLOGY 2018; 18:201. [PMID: 30231856 PMCID: PMC6148763 DOI: 10.1186/s12870-018-1401-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/29/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Adventitious root formation is an essential physiological process for successful propagation of cuttings in various plant species. Because coniferous species are highly heterozygous, propagation of cuttings is of great practical use in breeding. Although various factors influence adventitious root formation, little is known of the associated regulatory mechanisms. Whereas adventitious roots generally form from the base of cuttings, this process is accompanied by physiological changes in leaves, which supply assimilates and metabolites. Herein, we present microarray analyses of transcriptome dynamics during adventitious root formation in whole cuttings in the coniferous species, Cryptomeria japonica. RESULTS Temporal patterns of gene expression were determined in the base, the middle, and needles of cuttings at eight time points during adventitious root formation. Global gene expression at the base had diverged from that in the middle by 3-h post-insertion, and changed little in the subsequent 3-days post-insertion, and global gene expression in needles altered characteristically at 3- and 6-weeks post-insertion. In Gene Ontology enrichment analysis of major gene clusters based on hierarchical clustering, the expression profiles of genes related to carbohydrates, plant hormones, and other categories indicated multiple biological changes that were involved in adventitious root formation. CONCLUSIONS The present comprehensive transcriptome analyses indicate major transcriptional turning and contribute to the understanding of the biological processes and molecular factors that influence adventitious root formation in C. japonica.
Collapse
Affiliation(s)
- Yuki Fukuda
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Tomonori Hirao
- Forest Bio-research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
| | - Mineko Ohira
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
| | - Yuichiro Hiraoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301 Japan
| | - Atsushi Watanabe
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
6
|
Kadam US, Chavhan RL, Schulz B, Irudayaraj J. Single molecule Raman spectroscopic assay to detect transgene from GM plants. Anal Biochem 2017; 532:60-63. [DOI: 10.1016/j.ab.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
|
7
|
Kadam US, Schulz B, Irudayaraj JMK. Multiplex single-cell quantification of rare RNA transcripts from protoplasts in a model plant system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1187-1195. [PMID: 28301688 DOI: 10.1111/tpj.13537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 05/23/2023]
Abstract
Here we demonstrate multiplex and simultaneous detection of four different rare RNA species from plant, Arabidopsis thaliana, using surface-enhanced Raman spectroscopy (SERS) and gold nanoprobes at single-cell resolution. We show the applicability of nanoparticle-based Raman spectroscopic sensor to study intracellular RNA copies. First, we demonstrate that gold-nanoparticles decorated with Raman probes and carrying specific nucleic acid probe sequences can be uptaken by the protoplasts. We confirm the internalization of gold nanoprobes by transmission electron microscopy, inductively-coupled plasma-mass spectrometry and fluorescence imaging. Second, we show the utility of a SERS platform to monitor individual alternatively spliced (AS) variants and miRNA copies within single cells. Finally, the distinctive spectral features of Raman-active dyes were exploited for multiplex analysis of AtPTB2, AtDCL2, miR156a and miR172a. Furthermore, single-cell studies were validated by in vitro quantification and evaluation of nanotoxicity of gold probes. Raman tag functionalized gold nanosensors yielded an approach for the tracking of rare RNAs within the protoplasts. The SERS-based approach for quantification of RNAs has the capability to be a highly sensitive, accurate and discerning method for single-cell studies including AS variants quantification and rare miRNA detection in specific plant species.
Collapse
Affiliation(s)
- Ulhas S Kadam
- VD College of Agricultural Biotechnology (VNMKV), Latur, Maharashtra, 413512, India
- Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center at Discovery Park, West Lafayette, IN, 47907, USA
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Burkhard Schulz
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph M K Irudayaraj
- Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center at Discovery Park, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Piro A, Serra IA, Spadafora A, Cardilio M, Bianco L, Perrotta G, Santos R, Mazzuca S. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics. Proteomics 2016; 15:4159-74. [PMID: 26444578 DOI: 10.1002/pmic.201500246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | - Ilia Anna Serra
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | - Antonia Spadafora
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| | | | - Linda Bianco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella (Matera), Italy
| | - Rui Santos
- ALGAE - Marine Plant Ecology, Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Silvia Mazzuca
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, Università della Calabria, Rende, Italy
| |
Collapse
|
9
|
Abstract
In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed.
Collapse
|
10
|
González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A, García-López C, Sánchez-Sevilla JF, Luque F, Trelles O, Bejarano ER, De La Rosa R, Valpuesta V, Beuzón CR. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. FRONTIERS IN PLANT SCIENCE 2016; 7:240. [PMID: 26973682 PMCID: PMC4773642 DOI: 10.3389/fpls.2016.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 05/20/2023]
Abstract
Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.
Collapse
Affiliation(s)
- Juan J. González-Plaza
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Inmaculada Ortiz-Martín
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Antonio Muñoz-Mérida
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Carmen García-López
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | - Oswaldo Trelles
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Eduardo R. Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | | | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Carmen R. Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
- *Correspondence: Carmen R. Beuzón
| |
Collapse
|
11
|
Mou W, Li D, Luo Z, Mao L, Ying T. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening. PLoS One 2015; 10:e0129598. [PMID: 26053166 PMCID: PMC4460000 DOI: 10.1371/journal.pone.0129598] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.
Collapse
Affiliation(s)
- Wangshu Mou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Dongdong Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
12
|
Osorio S, Ruan YL, Fernie AR. An update on source-to-sink carbon partitioning in tomato. FRONTIERS IN PLANT SCIENCE 2014; 5:516. [PMID: 25339963 PMCID: PMC4186278 DOI: 10.3389/fpls.2014.00516] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/14/2014] [Indexed: 05/18/2023]
Abstract
Plant growth and carbon metabolism are closely associated since carbohydrate in the form of sucrose generated by photosynthesis, provides the primary source of building blocks and energy for the production and maintenance of biomass. Regulation of carbon partitioning between source and sink tissues is important because it has a vast influence on both plant growth and development. The regulation of carbon partitioning at the whole plant level is directly linked to the cellular pathways of assimilate transport and the metabolism and allocation of sugars, mainly sucrose and hexoses in source leaves, and sink organs such as roots and fruit. By using tomato plant as a model, this review documents and discusses our current understanding of source-sink interactions from molecular to physiological perspectives focusing on those that regulate the growth and development of both vegetative and reproductive organs. It furthermore discusses the impact that environmental conditions play in maintenance of this balance in an attempt to address the link between physiological and ecological aspects of growth.
Collapse
Affiliation(s)
- Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Department of Molecular Biology and Biochemistry, University of Malaga – Consejo Superior de InvestigacionesCientíficas, Málaga, Spain
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Yong-Ling Ruan
- Australia–China Research Centre for Crop Improvement, The University of NewcastleCallaghan, NSW, Australia
- School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
13
|
Laur J, Hacke UG. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. THE NEW PHYTOLOGIST 2014; 203:388-400. [PMID: 24702644 DOI: 10.1111/nph.12806] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/09/2014] [Indexed: 05/25/2023]
Abstract
Conifer needles have been reported to absorb water under certain conditions. Radial water movement across needle tissues is likely influenced by aquaporin (AQP) water channels. Foliar water uptake and AQP localization in Picea glauca needles were studied using physiological and microscopic methods. AQP expression was measured using quantitative real-time PCR. Members of the AQP gene family in spruce were identified using homology search tools. Needles of drought-stressed plants absorbed water when exposed to high relative humidity (RH). AQPs were present in the endodermis-like bundle sheath, in phloem cells and in the transfusion parenchyma of needles. Up-regulation of AQPs in high RH coincided with embolism repair in stem xylem. The present study also provides the most comprehensive functional and phylogenetic analysis of spruce AQPs to date. Thirty putative complete AQP sequences were found. Our findings are consistent with the hypothesis that AQPs facilitate radial water movement from the needle epidermis towards the vascular tissue. Foliar water uptake may occur in late winter when needles are covered by melting snow and may provide a water source for embolism repair before the beginning of the growing season.
Collapse
Affiliation(s)
- Joan Laur
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
14
|
Kadam U, Moeller CA, Irudayaraj J, Schulz B. Effect of T-DNA insertions on mRNA transcript copy numbers upstream and downstream of the insertion site in Arabidopsis thaliana explored by surface enhanced Raman spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:568-77. [PMID: 24460907 DOI: 10.1111/pbi.12161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 05/23/2023]
Abstract
We report the effect of a T-DNA insertion on the expression level of mRNA transcripts of the TWISTED DWARF 1 (TWD1) gene upstream and downstream of the T-DNA insertion site in Arabidopsis. A novel approach based on surface-enhanced Raman spectroscopy (SERS) was developed to detect and quantify the effect of a T-DNA insertion on mRNA transcript accumulation at 5'- and 3'-ends of the TWD1 gene. A T-DNA insertion mutant in the TWD1 gene (twd1-2) was chosen to test the sensitivity and the feasibility of the approach. The null mutant of the FK506-like immunophilin protein TWD1 in Arabidopsis shows severe dwarfism and strong disoriented growth of plant organs. A spontaneous arising suppressor allele of twd1-2 called twd-sup displayed an intermediate phenotype between wild type and the knockout phenotype of twd1-2. Both twd1 mutant alleles have identical DNA sequences at the TWD1 locus including the T-DNA insertion in the fourth intron of the TWD1 gene but they show clear variability in the mutant phenotype. We present here the development and application of SERS-based mRNA detection and quantification using the expression of the TWD1 gene in wild type and both mutant alleles. The hallmarks of our SERS approach are a robust and fast assay to detect up to 0.10 fm of target molecules including the ability to omit in vitro transcription and amplification steps after RNA isolation. Instead we perform direct quantification of RNA molecules. This enables us to detect and quantify rare RNA molecules at high levels of precision and sensitivity.
Collapse
Affiliation(s)
- Ulhas Kadam
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
15
|
Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC PLANT BIOLOGY 2014; 14:122. [PMID: 24885873 PMCID: PMC4031900 DOI: 10.1186/1471-2229-14-122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/30/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Resequencing can be used to identify genome variations underpinning many morphological and physiological phenotypes. Legume model plant Medicago truncatula ecotypes Jemalong A17 (J. A17) and R108 differ in their responses to mineral toxicity of aluminum and sodium, and mineral deficiency of iron in growth medium. The difference may result from their genome variations, but no experimental evidence supports this hypothesis. RESULTS A total of 12,750 structure variations, 135,045 short insertions/deletions and 764,154 single nucleotide polymorphisms were identified by resequencing the genome of R108. The suppressed expression of MtAACT that encodes a putative aluminum-induced citrate efflux transporter by deletion of partial sequence of the second intron may account for the less aluminum-induced citrate exudation and greater accumulation of aluminum in roots of R108 than in roots of J. A17, thus rendering R108 more sensitive to aluminum toxicity. The higher expression-level of MtZpt2-1 encoding a TFIIIA-related transcription factor in J. A17 than R108 under conditions of salt stress can be explained by the greater number of stress-responsive elements in its promoter sequence, thus conferring J. A17 more tolerant to salt stress than R108 plants by activating the expression of downstream stress-responsive genes. YSLs (Yellow Stripe-Likes) are involved in long-distance transport of iron in plants. We found that an YSL gene was deleted in the genome of R108 plants, thus rendering R108 less tolerance to iron deficiency than J. A17 plants. CONCLUSIONS The deletion or change in several genes may account for the different responses of M. truncatula ecotypes J. A17 and R108 to mineral toxicity of aluminum and sodium as well as iron deficiency. Uncovering genome variations by resequencing is an effective method to identify different traits between species/ecotypes that are genetically related. These findings demonstrate that analyses of genome variations by resequencing can shed important light on differences in responses of M. truncatula ecotypes to abiotic stress in general and mineral stress in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiu-Ying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Bao-Lan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Min-Gui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Wang X, Kayesh E, Han J, Liu C, Wang C, Song C, Ge A, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 2014; 41:4397-412. [PMID: 24728608 DOI: 10.1007/s11033-014-3311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Collapse
Affiliation(s)
- Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops and has long been an important model species in plant biology. Plastid biology in tomato is especially interesting due to the chloroplast-to-chromoplast conversion occurring during fruit ripening. Moreover, as tomato represents a major food crop with an edible fruit that can be eaten raw, the development of a plastid transformation protocol for tomato was of particular interest to plant biotechnology. Recent methodological improvements have made tomato plastid transformation more efficient and facilitated applications in metabolic engineering and molecular farming. This article describes the basic methods involved in the generation and analysis of tomato plants with transgenic chloroplast genomes and summarizes current applications of tomato plastid transformation.
Collapse
|
18
|
Musser RO, Hum-Musser SM, Gallucci M, DesRochers B, Brown JK. Microarray analysis of tomato plants exposed to the nonviruliferous or viruliferous whitefly vector harboring Pepper golden mosaic virus. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:230. [PMID: 25525099 PMCID: PMC5634132 DOI: 10.1093/jisesa/ieu092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/05/2013] [Indexed: 05/23/2023]
Abstract
Plants are routinely exposed to biotic and abiotic stresses to which they have evolved by synthesizing constitutive and induced defense compounds. Induced defense compounds are usually made, initially, at low levels; however, following further stimulation by specific kinds of biotic and abiotic stresses, they can be synthesized in relatively large amounts to abate the particular stress. cDNA microarray hybridization was used to identify an array of genes that were differentially expressed in tomato plants 15 d after they were exposed to feeding by nonviruliferous whiteflies or by viruliferous whiteflies carrying Pepper golden mosaic virus (PepGMV) (Begomovirus, Geminiviridae). Tomato plants inoculated by viruliferous whiteflies developed symptoms characteristic of PepGMV, whereas plants exposed to nonviruliferous whitefly feeding or nonwounded (negative) control plants exhibited no disease symptoms. The microarray analysis yielded over 290 spotted probes, with significantly altered expression of 161 putative annotated gene targets, and 129 spotted probes of unknown identities. The majority of the differentially regulated "known" genes were associated with the plants exposed to viruliferous compared with nonviruliferous whitefly feeding. Overall, significant differences in gene expression were represented by major physiological functions including defense-, pathogen-, photosynthesis-, and signaling-related responses and were similar to genes identified for other insect-plant systems. Viruliferous whitefly-stimulated gene expression was validated by real-time quantitative polymerase chain reaction of selected, representative candidate genes (messenger RNA): arginase, dehydrin, pathogenesis-related proteins 1 and -4, polyphenol oxidase, and several protease inhibitors. This is the first comparative profiling of the expression of tomato plants portraying different responses to biotic stress induced by viruliferous whitefly feeding (with resultant virus infection) compared with whitefly feeding only and negative control nonwounded plants exposed to neither. These results may be applicable to many other plant-insect-pathogen system interactions.
Collapse
Affiliation(s)
- Richard O Musser
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455
| | - Sue M Hum-Musser
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455
| | - Matthew Gallucci
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721
| | - Brittany DesRochers
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
19
|
Pesaresi P, Mizzotti C, Colombo M, Masiero S. Genetic regulation and structural changes during tomato fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2014; 5:124. [PMID: 24795731 PMCID: PMC4006027 DOI: 10.3389/fpls.2014.00124] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Fruits are an important evolutionary acquisition of angiosperms, which afford protection for seeds and ensure their optimal dispersal in the environment. Fruits can be divided into dry or fleshy. Dry fruits are the more ancient and provide for mechanical seed dispersal. In contrast, fleshy fruits develop soft tissues in which flavor compounds and pigments accumulate during the ripening process. These serve to attract animals that eat them and disseminate the indigestible seeds. Fruit maturation is accompanied by several striking cytological modifications. In particular, plastids undergo significant structural alterations, including the dedifferentiation of chloroplasts into chromoplasts. Chloroplast biogenesis, their remodeling in response to environmental constraints and their conversion into alternative plastid types are known to require communication between plastids and the nucleus in order to coordinate the expression of their respective genomes. In this review, we discuss the role of plastid modifications in the context of fruit maturation and ripening, and consider the possible involvement of organelle-nucleus crosstalk via retrograde (plastid to nucleus) and anterograde (nucleus to plastid) signaling in the process.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Monica Colombo
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all’Adige (Trento), Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Simona Masiero, Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy e-mail:
| |
Collapse
|
20
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Miyazaki FA, Guardia GDA, Vêncio RZN, de Farias CRG. Semantic integration of gene expression analysis tools and data sources using software connectors. BMC Genomics 2013; 14 Suppl 6:S2. [PMID: 24341380 PMCID: PMC3908368 DOI: 10.1186/1471-2164-14-s6-s2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. RESULTS We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. CONCLUSIONS The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
Collapse
Affiliation(s)
- Flávia A Miyazaki
- Department of Computer Science and Mathematics (DCM/FFCLRP), University of São Paulo (USP) Av. Bandeirantes, 3900 - Monte Alegre - Ribeirão Preto - SP - 14040-901 - Brazil
| | - Gabriela DA Guardia
- Department of Computer Science and Mathematics (DCM/FFCLRP), University of São Paulo (USP) Av. Bandeirantes, 3900 - Monte Alegre - Ribeirão Preto - SP - 14040-901 - Brazil
| | - Ricardo ZN Vêncio
- Department of Computer Science and Mathematics (DCM/FFCLRP), University of São Paulo (USP) Av. Bandeirantes, 3900 - Monte Alegre - Ribeirão Preto - SP - 14040-901 - Brazil
| | - Cléver RG de Farias
- Department of Computer Science and Mathematics (DCM/FFCLRP), University of São Paulo (USP) Av. Bandeirantes, 3900 - Monte Alegre - Ribeirão Preto - SP - 14040-901 - Brazil
| |
Collapse
|
22
|
de Vega-Bartol JJ, Simões M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD, Miguel CM. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC PLANT BIOLOGY 2013; 13:123. [PMID: 23987738 PMCID: PMC3844413 DOI: 10.1186/1471-2229-13-123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/24/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. RESULTS Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. CONCLUSIONS This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms.
Collapse
Affiliation(s)
- José J de Vega-Bartol
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Simões
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - W Walter Lorenz
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Andreia S Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rob Alba
- Monsanto Company, Mailstop CC4, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | - Jeffrey F D Dean
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Célia M Miguel
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
23
|
Estornell LH, Pons C, Martínez A, O'Connor JE, Orzaez D, Granell A. A VIN1 GUS::GFP fusion reveals activated sucrose metabolism programming occurring in interspersed cells during tomato fruit ripening. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1113-21. [PMID: 23598179 DOI: 10.1016/j.jplph.2013.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 05/22/2023]
Abstract
The tomato is a model for fleshy fruit development and ripening. Here we report on the identification of a novel unique cell autonomous/cellular pattern of expression that was detected in fruits of transgenic tomato lines carrying a GFP GUS driven by the fruit specific vacuolar invertase promoter VIN1. The VIN1 promoter sequence faithfully reproduced the global endogenous VIN expression by conferring a biphasic pattern of expression with a second phase clearly associated to fruit ripening. A closer view revealed a salt and pepper pattern of expression characterized by individual cells exhibiting a range of expression levels (from high to low) surrounded by cells with no expression. This type of pattern was detected across different fruit tissues and cell types with some preferences for vascular, sub-epidermal layer and the inner part of the fruit. Cell ability to show promoter activity was neither directly associated with overall ripening - as we find VIN+ and - VIN- cells at all stages of ripening, nor with cell size. Nevertheless the number of cells with active VIN-driven expression increased with ripening and the activity of the VIN promoter seems to be inversely correlated with cell size in VIN+ cells. Gene expression analysis of FACS-sorted VIN+ cells revealed a transcriptionally distinct subpopulation of cells defined by increased expression of genes related to sucrose metabolism, and decreased activity in protein synthesis and chromatin remodeling. This finding suggests that local micro heterogeneity may underlie some aspects (i.e. the futile cycles involving sucrose metabolism) of an otherwise more uniform looking ripening program.
Collapse
Affiliation(s)
- Leandro Hueso Estornell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. PLANTS 2013; 2:489-506. [PMID: 27137389 PMCID: PMC4844380 DOI: 10.3390/plants2030489] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023]
Abstract
Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.
Collapse
|
25
|
Cai G, Restrepo S, Myers K, Zuluaga P, Danies G, Smart C, Fry W. Gene profiling in partially resistant and susceptible near-isogenic tomatoes in response to late blight in the field. MOLECULAR PLANT PATHOLOGY 2013; 14:171-84. [PMID: 23127185 PMCID: PMC6638620 DOI: 10.1111/j.1364-3703.2012.00841.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to better understand resistance to Phytophthora infestans in tomato, we compared the global gene expression of the susceptible tomato, M82, with its more resistant near-isogenic line, 6-2 (IL6-2), under field conditions using a microarray with more than 12 800 tomato expressed sequence tags (ESTs). Because variance in the field was a major concern, we investigated the likelihood of false positives or false negatives and demonstrated that either probability was very low. The two isolines had indistinguishable constitutive gene expressions prior to inoculation. However, a few genes were particularly prone to variation in both isolines in the absence of P. infestans. Included among these genes were catalase, genes coding for pathogenesis-related proteins, endochitinase and cytochrome P450. In response to inoculation with P. infestans, a time course of gene expression identified 1248 transcripts that were similarly induced or repressed in each line, and 991 that were differentially expressed between the two lines. These differences provide hypotheses to explain the difference in resistance between the two isolines. For example, one hypothesis is that genes up-regulated in IL6-2 in response to inoculation with P. infestans, but not up-regulated in M82, contribute to the resistance in IL6-2. Using virus-induced gene silencing (VIGS), we were able to partially silence two such genes-one encoded a protein with homology to an R gene with the Toll/interleukin-1 receptor-nucleotide-binding site-leucine-rich repeat (TIR-NBS-LRR) motif (37O19) and the other encoded a peroxisomal membrane protein (35P7). Partial silencing of 37O19 reduced the resistance in IL6-2 (P = 0.001), but had no effect on the response of M82. Partial silencing of 35P7 reduced the resistance in IL6-2 moderately significantly (P = 0.067), but had no effect in M82. We expect that hypotheses developed from this gene expression study performed under field conditions will provide an important avenue to an accurate understanding of the genes involved in resistance.
Collapse
Affiliation(s)
- Guohong Cai
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Analysis of Expressed Sequence Tags from Chinese Bayberry Fruit (Myrica rubra Sieb. and Zucc.) at Different Ripening Stages and Their Association with Fruit Quality Development. Int J Mol Sci 2013; 14:3110-23. [PMID: 23377019 PMCID: PMC3588034 DOI: 10.3390/ijms14023110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
A total of 2000 EST sequences were produced from cDNA libraries generated from Chinese bayberry fruit (Myrica rubra Sieb. and Zucc. cv. “Biqi”) at four different ripening stages. After cluster and assembly analysis of the datasets by UniProt, 395 unigenes were identified, and their presumed functions were assigned to 14 putative cellular roles. Furthermore, a sequence BLAST was done for the top ten highly expressed genes in the ESTs, and genes associated with disease/defense and anthocyanin accumulation were analyzed. Gene-encoding elements associated with ethylene biosynthesis and signal transductions, in addition to other senescence-regulating proteins, as well as those associated with quality formation during fruit ripening, were also identified. Their possible roles were subsequently discussed.
Collapse
|
27
|
Dattolo E, Gu J, Bayer PE, Mazzuca S, Serra IA, Spadafora A, Bernardo L, Natali L, Cavallini A, Procaccini G. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. FRONTIERS IN PLANT SCIENCE 2013; 4:195. [PMID: 23785376 PMCID: PMC3683636 DOI: 10.3389/fpls.2013.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/27/2013] [Indexed: 05/11/2023]
Abstract
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Collapse
Affiliation(s)
- Emanuela Dattolo
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| | - Jenny Gu
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Philipp E. Bayer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Silvia Mazzuca
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
- *Correspondence: Silvia Mazzuca, Associate Professor in Plant Biology, Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Bucci, 12 A, 87036 Arcavacata di Rende (CS), Italy e-mail:
| | - Ilia A. Serra
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Antonia Spadafora
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Letizia Bernardo
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Gabriele Procaccini
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
28
|
Li X, Korir NK, Liu L, Shangguan L, Wang Y, Han J, Chen M, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1776-1788. [PMID: 23036314 DOI: 10.1016/j.jplph.2012.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
Microarray analysis is a technique that can be employed to provide expression profiles of single genes and new insights to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between Prunus mume and Prunus armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1418 ESTs were selected after quality control of microarray spots and analysis for differential gene expression patterns during fruit development of P. mume and P. Armeniaca. From these, 707 up-regulated and 711 down-regulated genes showing more than two-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate, galactose, and starch and sucrose metabolism as well as in biosynthesis of other secondary metabolites via KEGG. This could provide detailed information on the fruit quality differences during development and ripening of these two species. With the results obtained, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay a theoretical foundation for the cloning of genes regulating in a series of important rate-limiting enzymes involved in vital metabolic pathways during fruit development.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki H, Dowd PF, Johnson ET, Hum-Musser SM, Musser RO. Effects of elevated peroxidase levels and corn earworm feeding on gene expression in tomato. J Chem Ecol 2012; 38:1247-63. [PMID: 23135603 DOI: 10.1007/s10886-012-0205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 01/04/2023]
Abstract
Microarray analysis was used to measure the impact of herbivory by Helicoverpa zea, (corn earworm caterpillar) on wild-type and transgenic tomato, Solanum lycopersicum, plants that over-express peroxidase. Caterpillar herbivory had by far the greatest affect on gene expression, but the peroxidase transgene also altered the expression of a substantial number of tomato genes. Particularly high peroxidase activity resulted in the up-regulation of genes encoding proteinase inhibitors, pathogenesis-related (PR) proteins, as well as proteins associated with iron and calcium transport, and flowering. In a separate experiment conducted under similar conditions, real-time quantitative polymerase chain reaction (qPCR) analysis confirmed our microarray results for many genes. There was some indication that multiple regulatory interactions occurred due to the interaction of the different treatments. While herbivory had the greatest impact on tomato gene expression, our results suggest that levels of expression of a multifunctional gene, such as peroxidase and its products, can influence other gene expression systems distinct from conventional signaling pathways, further indicating the complexity of plant defensive responses to insects.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | | | | | | | | |
Collapse
|
30
|
Musser RO, Hum-Musser SM, Lee HK, DesRochers BL, Williams SA, Vogel H. Caterpillar Labial Saliva Alters Tomato Plant Gene Expression. J Chem Ecol 2012; 38:1387-401. [DOI: 10.1007/s10886-012-0198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
|
31
|
Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech JC. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. PLANT PHYSIOLOGY 2012; 160:708-25. [PMID: 22908117 PMCID: PMC3461550 DOI: 10.1104/pp.112.203679] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 05/18/2023]
Abstract
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Egea
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Michel Rossignol
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - David Bouyssie
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Carole Pichereaux
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Eduardo Purgatto
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Mondher Bouzayen
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Alain Latché
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| | - Jean-Claude Pech
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Supérieure Agronomique de Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Institut National de la Recherche Agronomique, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan F–31326, France (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F–31077 Toulouse, France (M.R., C.P.); Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse F–31077, France (M.R., D.B., C.P.); and Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Depto. de Alimentos e Nutrição Experimental, 05508–000 São Paulo, Brazil (E.P.)
| |
Collapse
|
32
|
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4901-17. [PMID: 22844095 PMCID: PMC3427993 DOI: 10.1093/jxb/ers167] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization. This phenotype was associated with only slight modifications of auxin homeostasis at early stages of flower bud development and with minor alterations of ARF and Aux/IAA gene expression. However, microarray transcriptome analysis and large-scale quantitative RT-PCR profiling of transcription factors in developing flower bud and fruit highlighted differentially expressed regulatory genes, which are potential targets for auxin control of fruit set and development in tomato. In conclusion, this work provides clear evidence that the tomato PIN protein SlPIN4 plays a major role in auxin regulation of tomato fruit set, possibly by preventing precocious fruit development in the absence of pollination, and further gives new insights into the target genes involved in fruit set.
Collapse
Affiliation(s)
- Fabien Mounet
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Present address: UMR 5546, Laboratoire de Recherche en Sciences VégétalesF-31326 Castanet TolosanFrance
| | - Annick Moing
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Present address: Institute of Soil Science and Plant Cultivation, Department of Biochemistry and Crop Quality24100 PulawyPoland
| | - Johannes Rohrmann
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Johann Petit
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Virginie Garcia
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Mickaël Maucourt
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Kentaro Yano
- Meiji University1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, 214-8571Japan
| | - Catherine Deborde
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Koh Aoki
- Kazusa DNA Research Institute2-6-7 Kazusa-Kamatari, KisarazuJapan
- Present address: Osaka Prefecture University, Environmental and Life Sciences, 1-1 Gakuen-cho, Naka-ku, SakaiOsaka 599-8531Japan
| | - Hélène Bergès
- INRA-Centre National de Ressources Génomiques VégétalesF-31326 Castanet TolosanFrance
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC46022 ValenciaSpain
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Institut Jean-Pierre Bourgin, UMR1318-INRA-AgroParisTech, INRA Centre of Versailles-GrignonF-78026 Versailles cedexFrance
| | - Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Robb J, Shittu H, Soman KV, Kurosky A, Nazar RN. Arsenal of elevated defense proteins fails to protect tomato against Verticillium dahliae. PLANTA 2012; 236:623-33. [PMID: 22481138 DOI: 10.1007/s00425-012-1637-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/23/2012] [Indexed: 05/11/2023]
Abstract
Although the hypersensitive reaction in foliar plant diseases has been extensively described, little is clear regarding plant defense strategies in vascular wilt diseases affecting numerous economically important crops and trees. We have examined global genetic responses to Verticillium wilt in tomato (Lycopersicon esculentum Mill.) plants differing in Ve1 resistance alleles. Unexpectedly, mRNA analyses in the susceptible plant (Ve1-) based on the microarrays revealed a very heroic but unsuccessful systemic response involving many known plant defense genes. In contrast, the response is surprisingly low in plants expressing the Ve1+ R-gene and successfully resisting the pathogen. Similarly, whole-cell protein analyses, based on 2D gel electrophoresis and mass spectrometry, demonstrate large systemic increases in a variety of known plant defense proteins in the stems of susceptible plants but only modest changes in the resistant plant. Taken together, the results indicate that the large systemic increases in plant defense proteins do not protect the susceptible plant. Indeed, since a number of the highly elevated proteins are known to participate in the plant hypersensitive response as well as natural senescence, the results suggest that some or all of the disease symptoms, including ultimate plant death, actually may be the result of this exaggerated plant response.
Collapse
Affiliation(s)
- Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
34
|
Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. PLANT PHYSIOLOGY 2012; 159:1713-29. [PMID: 22685169 PMCID: PMC3425208 DOI: 10.1104/pp.112.199711] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
Integrative comparative analyses of transcript and metabolite levels from climacteric and nonclimacteric fruits can be employed to unravel the similarities and differences of the underlying regulatory processes. To this end, we conducted combined gas chromatography-mass spectrometry and heterologous microarray hybridization assays in tomato (Solanum lycopersicum; climacteric) and pepper (Capsicum chilense; nonclimacteric) fruits across development and ripening. Computational methods from multivariate and network-based analyses successfully revealed the difference between the covariance structures of the integrated data sets. Moreover, our results suggest that both fruits have similar ethylene-mediated signaling components; however, their regulation is different and may reflect altered ethylene sensitivity or regulators other than ethylene in pepper. Genes involved in ethylene biosynthesis were not induced in pepper fruits. Nevertheless, genes downstream of ethylene perception such as cell wall metabolism genes, carotenoid biosynthesis genes, and the never-ripe receptor were clearly induced in pepper as in tomato fruit. While signaling sensitivity or actual signals may differ between climacteric and nonclimacteric fruit, the evidence described here suggests that activation of a common set of ripening genes influences metabolic traits. Also, a coordinate regulation of transcripts and the accumulation of key organic acids, including malate, citrate, dehydroascorbate, and threonate, in pepper fruit were observed. Therefore, the integrated analysis allows us to uncover additional information for the comprehensive understanding of biological events relevant to metabolic regulation during climacteric and nonclimacteric fruit development.
Collapse
Affiliation(s)
| | | | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| | - Andrej Kochevenko
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| | | | - James J. Giovannoni
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| |
Collapse
|
35
|
Gouws LM, Botes E, Wiese AJ, Trenkamp S, Torres-Jerez I, Tang Y, Hills PN, Usadel B, Lloyd JR, Fernie AR, Kossmann J, van der Merwe MJ. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. FRONTIERS IN PLANT SCIENCE 2012; 3:120. [PMID: 22701462 PMCID: PMC3371600 DOI: 10.3389/fpls.2012.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/18/2012] [Indexed: 05/08/2023]
Abstract
Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.
Collapse
Affiliation(s)
- Liezel M. Gouws
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Eileen Botes
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Anna J. Wiese
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Sandra Trenkamp
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Yuhong Tang
- The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Paul N. Hills
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Björn Usadel
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - James R. Lloyd
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | | | - Jens Kossmann
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Margaretha J. van der Merwe
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| |
Collapse
|
36
|
Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 2012; 19:335-45. [PMID: 22619309 PMCID: PMC3415295 DOI: 10.1093/dnares/dss016] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cassava is an important crop that provides food security and income generation in many tropical countries and is known for its adaptability to various environmental conditions. Despite its global importance, the development of cassava microarray tools has not been well established. Here, we describe the development of a 60-mer oligonucleotide Agilent microarray representing ∼20,000 cassava genes and how it can be applied to expression profiling under drought stress using three cassava genotypes (MTAI16, MECU72 and MPER417-003). Our results identified about 1300 drought stress up-regulated genes in cassava and indicated that cassava has similar mechanisms for drought stress response and tolerance as other plant species. These results demonstrate that our microarray is a useful tool for analysing the cassava transcriptome and that it is applicable for various cassava genotypes.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library. Mol Biol Rep 2012; 39:7221-35. [DOI: 10.1007/s11033-012-1553-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
|
38
|
Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:191-204. [PMID: 22111515 DOI: 10.1111/j.1365-313x.2011.04863.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum (tomato) and its wild relatives harbor genetic diversity that yields heritable variation in fruit chemistry that could be exploited to identify genes regulating their synthesis and accumulation. Carotenoids, for example, are essential in plant and animal nutrition, and are the visual indicators of ripening for many fruits, including tomato. Whereas carotenoid synthesis is well characterized, factors regulating flux through the pathway are poorly understood at the molecular level. To exploit the impact of tomato genetic diversity on carotenoids, Solanum pennellii introgression lines were used as a source of defined natural variation and as a resource for the identification of candidate regulatory genes. Ripe fruits were analyzed for numerous fruit metabolites and transcriptome profiles generated using a 12,000 unigene oligoarray. Correlation analysis between carotenoid content and gene expression profiles revealed 953 carotenoid-correlated genes. To narrow the pool, subnetwork analysis of carotenoid-correlated transcription revealed 38 candidates. One candidate for impact on trans-lycopene and β-carotene accumulation was functionally charaterized, SlERF6, revealing that it indeed influences carotenoid biosynthesis and additional ripening phenotypes. Reduced expression of SlERF6 by RNAi enhanced both carotenoid and ethylene levels during fruit ripening, demonstrating an important role for SlERF6 in ripening, integrating the ethylene and carotenoid synthesis pathways.
Collapse
Affiliation(s)
- Je Min Lee
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University campus, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Abe R, Suzuki A, Nagayama T, Yano K, Ogihara Y. Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res 2012; 19:165-77. [PMID: 22334568 PMCID: PMC3325080 DOI: 10.1093/dnares/dss001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
About 1 million expressed sequence tag (EST) sequences comprising 125.3 Mb nucleotides were accreted from 51 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including abiotic stresses and pathogen challenges in common wheat (Triticum aestivum). Expressed sequence tags were assembled with stringent parameters after processing with inbuild scripts, resulting in 37,138 contigs and 215,199 singlets. In the assembled sequences, 10.6% presented no matches with existing sequences in public databases. Functional characterization of wheat unigenes by gene ontology annotation, mining transcription factors, full-length cDNA, and miRNA targeting sites were carried out. A bioinformatics strategy was developed to discover single-nucleotide polymorphisms (SNPs) within our large EST resource and reported the SNPs between and within (homoeologous) cultivars. Digital gene expression was performed to find the tissue-specific gene expression, and correspondence analysis was executed to identify common and specific gene expression by selecting four biotic stress-related libraries. The assembly and associated information cater a framework for future investigation in functional genomics.
Collapse
Affiliation(s)
- Alagu Manickavelu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lytovchenko A, Eickmeier I, Pons C, Osorio S, Szecowka M, Lehmberg K, Arrivault S, Tohge T, Pineda B, Anton MT, Hedtke B, Lu Y, Fisahn J, Bock R, Stitt M, Grimm B, Granell A, Fernie AR. Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development. PLANT PHYSIOLOGY 2011; 157:1650-63. [PMID: 21972266 PMCID: PMC3327185 DOI: 10.1104/pp.111.186874] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 10/04/2011] [Indexed: 05/19/2023]
Abstract
Fruit of tomato (Solanum lycopersicum), like those from many species, have been characterized to undergo a shift from partially photosynthetic to truly heterotrophic metabolism. While there is plentiful evidence for functional photosynthesis in young tomato fruit, the rates of carbon assimilation rarely exceed those of carbon dioxide release, raising the question of its role in this tissue. Here, we describe the generation and characterization of lines exhibiting a fruit-specific reduction in the expression of glutamate 1-semialdehyde aminotransferase (GSA). Despite the fact that these plants contained less GSA protein and lowered chlorophyll levels and photosynthetic activity, they were characterized by few other differences. Indeed, they displayed almost no differences in fruit size, weight, or ripening capacity and furthermore displayed few alterations in other primary or intermediary metabolites. Although GSA antisense lines were characterized by significant alterations in the expression of genes associated with photosynthesis, as well as with cell wall and amino acid metabolism, these changes were not manifested at the phenotypic level. One striking feature of the antisense plants was their seed phenotype: the transformants displayed a reduced seed set and altered morphology and metabolism at early stages of fruit development, although these differences did not affect the final seed number or fecundity. Taken together, these results suggest that fruit photosynthesis is, at least under ambient conditions, not necessary for fruit energy metabolism or development but is essential for properly timed seed development and therefore may confer an advantage under conditions of stress.
Collapse
Affiliation(s)
- Anna Lytovchenko
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | | | - Clara Pons
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Sonia Osorio
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Marek Szecowka
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Kerstin Lehmberg
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Stephanie Arrivault
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Benito Pineda
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Maria Teresa Anton
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Boris Hedtke
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Yinghong Lu
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Joachim Fisahn
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Ralph Bock
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Bernhard Grimm
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Antonio Granell
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (A.L., I.E., S.O., M.S., K.L., S.A., T.T., Y.L., J.F., R.B., M.S., A.R.F.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (C.P., B.P., M.T.A., A.G.); Humboldt University, Institute of Biology, Plant Physiology, 10115 Berlin, Germany (B.H., B.G.)
| |
Collapse
|
41
|
Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, Arvidsson S, van der Merwe MJ, Riaño-Pachón DM, Mueller-Roeber B, Fei Z, Nesi AN, Giovannoni JJ, Fernie AR. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:999-1013. [PMID: 21851430 DOI: 10.1111/j.1365-313x.2011.04750.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes.
Collapse
Affiliation(s)
- Johannes Rohrmann
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Khalaf AA, Gmitter FG, Conesa A, Dopazo J, Moore GA. Fortunella margarita transcriptional reprogramming triggered by Xanthomonas citri subsp. citri. BMC PLANT BIOLOGY 2011; 11:159. [PMID: 22078099 PMCID: PMC3235979 DOI: 10.1186/1471-2229-11-159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/11/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Citrus canker disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc) has become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative Fortunella margarita Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in Fortunella and citrus at the molecular level. RESULTS cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus. CONCLUSION Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.
Collapse
Affiliation(s)
- Abeer A Khalaf
- Plant Molecular and Cellular Biology Program (PMCB), Horticultural Sciences Department, University of Florida, Gainesville, Fl., 32611,USA
- PMCB, Citrus Research and Education Center, University of Florida, Lake Alfred, Fl., USA
| | - Frederick G Gmitter
- PMCB, Citrus Research and Education Center, University of Florida, Lake Alfred, Fl., USA
| | - Ana Conesa
- Centro de Investigación Príncipe Felipe,Valencia, SPAIN
| | | | - Gloria A Moore
- Plant Molecular and Cellular Biology Program (PMCB), Horticultural Sciences Department, University of Florida, Gainesville, Fl., 32611,USA
| |
Collapse
|
43
|
Sui C, Zhang J, Wei J, Chen S, Li Y, Xu J, Jin Y, Xie C, Gao Z, Chen H, Yang C, Zhang Z, Xu Y. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics 2011; 12:539. [PMID: 22047182 PMCID: PMC3219613 DOI: 10.1186/1471-2164-12-539] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. RESULTS One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. CONCLUSIONS A collection of high-quality ESTs for B. chinense obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of B. chinense and other Bupleurum species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the P450s and UGTs, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins.
Collapse
Affiliation(s)
- Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jie Zhang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shilin Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jiesen Xu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yue Jin
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Caixiang Xie
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhihui Gao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hongjiang Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chengmin Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yanhong Xu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
44
|
Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK. Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. THE PLANT CELL 2011; 23:3893-910. [PMID: 22045915 PMCID: PMC3246317 DOI: 10.1105/tpc.111.091173] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.
Collapse
Affiliation(s)
- Antonio J. Matas
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Trevor H. Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Gregory J. Buda
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Subhasish Chatterjee
- Department of Chemistry, City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, New York 10031
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Avital Adato
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruth Stark
- Department of Chemistry, City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, New York 10031
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - Jocelyn K.C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
45
|
Lee JM, Sathish P, Donaghy DJ, Roche JR. Impact of defoliation severity on photosynthesis, carbon metabolism and transport gene expression in perennial ryegrass. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:808-817. [PMID: 32480938 DOI: 10.1071/fp11048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/09/2011] [Indexed: 06/11/2023]
Abstract
Defoliation severity affects grass regrowth. The changes to biological processes affecting regrowth induced by severe defoliation are not fully understood, nor have they been investigated at a molecular level in field-grown plants. Field-grown perennial ryegrass (Lolium perenne L.) plants were defoliated to 20, 40 or 60mm during winter. Throughout regrowth, transcript profiles of 17 genes involved in photosynthesis and carbon metabolism or transport were characterised in stubble and lamina tissue. Although defoliation to 20mm reduced residual lamina area and stubble water-soluble carbohydrate reserves compared with plants defoliated to 40 or 60mm, net herbage regrowth was not reduced. Transcript profiles indicated a potential compensatory mechanism that may have facilitated regrowth. At the one-leaf regrowth stage, plants defoliated to 20mm had greater abundance of photosynthesis-related gene transcripts (rca, rbcS1, rbcS2, fba, fbp and fnr) and 20% greater stubble total nitrogen than plants defoliated to 60mm. A greater capacity for photosynthesis in outer leaf sheaths may be one potential mechanism used by severely defoliated plants to compensate for the reduced residual lamina area; however, this premise requires further investigation.
Collapse
Affiliation(s)
- Julia M Lee
- DairyNZ Ltd, Private Bag 3221, Hamilton 3240, New Zealand
| | - Puthigae Sathish
- Pastoral Genomics, ViaLactia Biosciences (NZ) Ltd, PO Box 109185, Newmarket, Auckland 1149, New Zealand
| | - Daniel J Donaghy
- University of Tasmania, PO Box 3523, Burnie, Tas. 7320, Australia
| | - John R Roche
- DairyNZ Ltd, Private Bag 3221, Hamilton 3240, New Zealand
| |
Collapse
|
46
|
Abstract
Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. However, thanks to transcriptomics and proteomics approaches, novel information is now available. Data of proteomic and biochemical analysis revealed the importance of lipid metabolism and carotenoids biosynthetic activities. The loss of photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during tomato fruit ripening.
Collapse
|
47
|
Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. PLANT PHYSIOLOGY 2011; 157:405-25. [PMID: 21795583 PMCID: PMC3165888 DOI: 10.1104/pp.111.175463] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/24/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model to study fleshy fruit development and ripening. Tomato ripening is regulated independently and cooperatively by ethylene and transcription factors, including nonripening (NOR) and ripening-inhibitor (RIN). Mutations of NOR, RIN, and the ethylene receptor Never-ripe (Nr), which block ethylene perception and inhibit ripening, have proven to be great tools for advancing our understanding of the developmental programs regulating ripening. In this study, we present systems analysis of nor, rin, and Nr at the transcriptomic, proteomic, and metabolomic levels during development and ripening. Metabolic profiling marked shifts in the abundance of metabolites of primary metabolism, which lead to decreases in metabolic activity during ripening. When combined with transcriptomic and proteomic data, several aspects of the regulation of metabolism during ripening were revealed. First, correlations between the expression levels of a transcript and the abundance of its corresponding protein were infrequently observed during early ripening, suggesting that posttranscriptional regulatory mechanisms play an important role in these stages; however, this correlation was much greater in later stages. Second, we observed very strong correlation between ripening-associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell wall-related metabolites, underlining the importance of these metabolic pathways during fruit ripening. These results further revealed multiple ethylene-associated events during tomato ripening, providing new insights into the molecular biology of ethylene-mediated ripening regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., M.L., M.I.Z., T.T., B.U., A.R.F.); Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center (R.A., Z.F., J.J.G.) and Department of Plant Biology (C.M.B.D., G.L.-C., J.K.C.R.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
48
|
Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JFD. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 2011; 12:264. [PMID: 21609476 PMCID: PMC3123330 DOI: 10.1186/1471-2164-12-264] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/24/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. RESULTS Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. CONCLUSION PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.
Collapse
Affiliation(s)
- W Walter Lorenz
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Rob Alba
- Monsanto Company, Mailstop C1N, 800 N. Lindbergh Blvd., St. Louis, MO 63167, USA
| | - Yuan-Sheng Yu
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - John M Bordeaux
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Marta Simões
- Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa (ITQB-UNL), Av. República (EAN) 2784-505 Oeiras, Portugal
| | - Jeffrey FD Dean
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry & Molecular Biology, The University of Georgia, Life Sciences Building, Athens, GA 30602, USA
| |
Collapse
|
49
|
Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. THE PLANT CELL 2011; 23:600-27. [PMID: 21307286 PMCID: PMC3077794 DOI: 10.1105/tpc.110.081224] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 05/19/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Björn Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Daniela Fuentes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Martin Lehmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| |
Collapse
|
50
|
Centeno DC, Osorio S, Nunes-Nesi A, Bertolo AL, Carneiro RT, Araújo WL, Steinhauser MC, Michalska J, Rohrmann J, Geigenberger P, Oliver SN, Stitt M, Carrari F, Rose JK, Fernie AR. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. THE PLANT CELL 2011; 23:162-84. [PMID: 21239646 PMCID: PMC3051241 DOI: 10.1105/tpc.109.072231] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/10/2010] [Accepted: 12/19/2010] [Indexed: 05/18/2023]
Abstract
Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.
Collapse
Affiliation(s)
- Danilo C. Centeno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana L.F. Bertolo
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | - Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | | - Justyna Michalska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Johannes Rohrmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Sandra N. Oliver
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Centro de Investigación de Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agrícola, B1712WAA Castelar, Buenos Aires, Argentina
| | - Jocelyn K.C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Address correspondence to
| |
Collapse
|