1
|
Carr SC, Rehman F, Hagel JM, Chen X, Ng KKS, Facchini PJ. Two ubiquitous aldo-keto reductases in the genus Papaver support a patchwork model for morphine pathway evolution. Commun Biol 2024; 7:1410. [PMID: 39472466 PMCID: PMC11522673 DOI: 10.1038/s42003-024-07100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.
Collapse
Affiliation(s)
- Samuel C Carr
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Fasih Rehman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Enveric Biosciences Inc., Calgary, AB, Canada
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Tian Y, Kong L, Li Q, Wang Y, Wang Y, An Z, Ma Y, Tian L, Duan B, Sun W, Gao R, Chen S, Xu Z. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Nat Prod Rep 2024. [PMID: 39360417 DOI: 10.1039/d4np00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Covering: up to June 2024Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites derived from L-tyrosine, exhibiting significant pharmacological properties such as anti-microbial, anti-spasmodic, anti-cancer, cardiovascular protection, and analgesic effects. The industrial production of valuable BIAs relies on extraction from plants; however, challenges concerning their low concentration and efficiency hinder drug development. Hence, alternative approaches, including biosynthesis and chemoenzymatic synthesis, have been explored. Model species like Papaver somniferum and Coptis japonica have played a key role in unraveling the biosynthetic pathways of BIAs; however, many aspects, particularly modified steps like oxidation and methylation, remain unclear. Critical enzymes, e.g., CYP450s and methyltransferases, play a substantial role in BIA backbone formation and modification, which is essential for understanding the origin and adaptive evolution of these plant specialized metabolites. This review comprehensively analyzes the structural diversity of reported BIAs and their distribution in plant lineages. In addition, the progress in understanding biosynthesis, evolution, and catalytic mechanisms underlying BIA biosynthesis is summarized. Finally, we discuss the progress and challenges in metabolic engineering, providing valuable insights into BIA drug development and the sustainable utilization of BIA-producing plants.
Collapse
Affiliation(s)
- Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yongmiao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
3
|
Khaldari I, Naghavi MR, Motamedi E, Zargar M. The effects of green and chemically-synthesized copper oxide nanoparticles on the production and gene expression of morphinan alkaloids in Oriental poppy. Sci Rep 2024; 14:6000. [PMID: 38472367 PMCID: PMC10933268 DOI: 10.1038/s41598-024-56709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024] Open
Abstract
Oriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.
Collapse
Affiliation(s)
- Iman Khaldari
- Division of Biotechnology, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
- Department of Agrobiotechnology, Agrarian Technological Institute, RUDN University, Moscow, Russia.
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Agrarian Technological Institute, RUDN University, Moscow, Russia
| |
Collapse
|
4
|
Guo M, Lv H, Chen H, Dong S, Zhang J, Liu W, He L, Ma Y, Yu H, Chen S, Luo H. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:13-26. [PMID: 38375043 PMCID: PMC10874775 DOI: 10.1016/j.chmed.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2024] Open
Abstract
Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.
Collapse
Affiliation(s)
- Miaoxian Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haizhou Lv
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongyu Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianhong Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yimian Ma
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shilin Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
5
|
Diaz-Bárcena A, Fernandez-Pacios L, Giraldo P. Structural Characterization and Molecular Dynamics Study of the REPI Fusion Protein from Papaver somniferum L. Biomolecules 2023; 14:2. [PMID: 38275743 PMCID: PMC10813097 DOI: 10.3390/biom14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
REPI is a pivotal point enzyme in plant benzylisoquinoline alkaloid metabolism as it promotes the evolution of the biosynthetic branch of morphinan alkaloids. Experimental studies of its activity led to the identification of two modules (DRS and DRR) that catalyze two sequential steps of the epimerization of (S)- to (R)-reticuline. Recently, special attention has been paid to its genetic characterization and evolutionary history, but no structural analyses of the REPI protein have been conducted to date. We present here a computational structural characterization of REPI with heme and NADP cofactors in the apo state and in three complexes with substrate (S)-reticuline in DRS and intermediate 1,2-dehydroreticuline in DRS and in DRR. Since no experimental structure exists for REPI, we used its AlphaFold model as a scaffold to build up these four systems, which were submitted to all-atom molecular dynamics (MD) simulations. A comparison of MD results for the four systems revealed key dynamic changes associated with cofactor and ligand binding and provided a dynamic picture of the evolution of their structures and interactions. We also explored the possible dynamic occurrence of tunnels and electrostatic highways potentially involved in alternative mechanisms for channeling the intermediate from DRS to DRR.
Collapse
Affiliation(s)
- Alba Diaz-Bárcena
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (L.F.-P.); (P.G.)
| | | | | |
Collapse
|
6
|
Zhang Y, Wang X, Wang X, Wang Y, Liu J, Wang S, Li W, Jin Y, Akhter D, Chen J, Hu J, Pan R. Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1180647. [PMID: 37360717 PMCID: PMC10288848 DOI: 10.3389/fpls.2023.1180647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary β-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.
Collapse
Affiliation(s)
- Yuchan Zhang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| | - Xiaowen Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yukang Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jun Liu
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Saisai Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weiran Li
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yijun Jin
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Delara Akhter
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiarong Chen
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, United States
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
7
|
Reed J, Orme A, El-Demerdash A, Owen C, Martin LBB, Misra RC, Kikuchi S, Rejzek M, Martin AC, Harkess A, Leebens-Mack J, Louveau T, Stephenson MJ, Osbourn A. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. Science 2023; 379:1252-1264. [PMID: 36952412 DOI: 10.1126/science.adf3727] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.
Collapse
Affiliation(s)
- James Reed
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anastasia Orme
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Charlotte Owen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Rajesh C Misra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shingo Kikuchi
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Rejzek
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Thomas Louveau
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
8
|
Ozber N, Yu L, Hagel JM, Facchini PJ. Strong Feedback Inhibition of Key Enzymes in the Morphine Biosynthetic Pathway from Opium Poppy Detectable in Engineered Yeast. ACS Chem Biol 2023; 18:419-430. [PMID: 36735832 DOI: 10.1021/acschembio.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systematic screening of morphine pathway intermediates in engineered yeast revealed key biosynthetic enzymes displaying potent feedback inhibition: 3'-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT), which yields (S)-reticuline, and the coupled salutaridinol-7-O-acetyltransferase (SalAT) and thebaine synthase (THS2) enzyme system that produces thebaine. The addition of deuterated reticuline-d1 to a yeast strain able to convert (S)-norcoclaurine to (S)-reticuline showed reduced product accumulation in response to the feeding of all four successive pathway intermediates. Similarly, the addition of deuterated thebaine-d3 to a yeast strain able to convert salutaridine to thebaine showed reduced product accumulation from exogenous salutaridine or salutaridinol. In vitro analysis showed that reticuline is a noncompetitive inhibitor of 4'OMT, whereas thebaine exerts mixed inhibition on SalAT/THS2. In a yeast strain capable of de novo morphine biosynthesis, the addition of reticuline and thebaine resulted in the accumulation of several pathway intermediates. In contrast, morphine had no effect, suggesting that circumventing the interaction of reticuline and thebaine with 4'OMT and SalAT/THS2, respectively, could substantially increase opiate alkaloid titers in engineered yeast.
Collapse
Affiliation(s)
- Natali Ozber
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lisa Yu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Ali M, Nishawy E, Ramadan WA, Ewas M, Rizk MS, Sief-Eldein AGM, El-Zayat MAS, Hassan AHM, Guo M, Hu GW, Wang S, Ahmed FA, Amar MH, Wang QF. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis. PLoS One 2022; 17:e0269045. [PMID: 35657794 PMCID: PMC9165828 DOI: 10.1371/journal.pone.0269045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia officinalis is one of the most important medicinal and aromatic plants in terms of nutritional and medicinal value because it contains a variety of vital active ingredients. Terpenoid compounds, particularly monoterpenes (C10) and sesquiterpenes, are the most important and abundant among these active substances (C15). Terpenes play a variety of roles and have beneficial biological properties in plants. With these considerations, the current study sought to clone theNAD+-dependent farnesol dehydrogenase (SoFLDH, EC: 1.1.1.354) gene from S. officinalis. Functional analysis revealed that, SoFLDH has an open reading frame of 2,580 base pairs that encodes 860 amino acids.SoFLDH has two conserved domains and four types of highly conserved motifs: YxxxK, RXR, RR (X8) W, TGxxGhaG. However, SoFLDH was cloned from Salvia officinalis leaves and functionally overexpressed in Arabidopsis thaliana to investigate its role in sesquiterpenoid synthases. In comparison to the transgenic plants, the wild-type plants showed a slight delay in growth and flowering formation. To this end, a gas chromatography-mass spectrometry analysis revealed that SoFLDH transgenic plants were responsible for numerous forms of terpene synthesis, particularly sesquiterpene. These results provide a base for further investigation on SoFLDH gene role and elucidating the regulatory mechanisms for sesquiterpene synthesis in S. offcinalis. And our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. offcinalis.
Collapse
Affiliation(s)
- Mohammed Ali
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Elsayed Nishawy
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Walaa A. Ramadan
- Genetics and Cytology Department, Biotechnology Research institute, National Research Centre, Giza, Egypt
| | - Mohamed Ewas
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Mokhtar Said Rizk
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | | | | | | | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | | | - Fatma A. Ahmed
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Mohamed Hamdy Amar
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
- * E-mail:
| | - Qing-Feng Wang
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Minzu University, Enshi, China
| |
Collapse
|
10
|
A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago. Nat Commun 2022; 13:3150. [PMID: 35672295 PMCID: PMC9174169 DOI: 10.1038/s41467-022-30856-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe STORR gene fusion event is considered essential for the evolution of the promorphinan/morphinan subclass of benzylisoquinoline alkaloids (BIAs) in opium poppy as the resulting bi-modular protein performs the isomerization of (S)- to (R)-reticuline essential for their biosynthesis. Here, we show that of the 12 Papaver species analysed those containing the STORR gene fusion also contain promorphinans/morphinans with one important exception. P. californicum encodes a functionally conserved STORR but does not produce promorphinans/morphinans. We also show that the gene fusion event occurred only once, between 16.8-24.1 million years ago before the separation of P. californicum from other Clade 2 Papaver species. The most abundant BIA in P. californicum is (R)-glaucine, a member of the aporphine subclass of BIAs, raising the possibility that STORR, once evolved, contributes to the biosynthesis of more than just the promorphinan/morphinan subclass of BIAs in the Papaveraceae.
Collapse
|
11
|
Gene discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in Euphorbia peplus. Proc Natl Acad Sci U S A 2022; 119:e2203890119. [PMID: 35584121 PMCID: PMC9173813 DOI: 10.1073/pnas.2203890119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEuphorbia peplus, a member of the Euphorbia genus, is rich in jatrophane and ingenane diterpenoids. Using a metabolomics-guided transcriptomic approach to gene candidate identification, we have discovered a short-chain dehydrogenase gene involved in the production of the lathyrane jolkinol E. We have developed a virus-induced gene-silencing method in E. peplus that has allowed us to demonstrate the direct relationship between casbene and polycyclic diterpenoids and that jolkinol C acts as a key branch point intermediate in the production of ingenanes and jatrophanes. This work contributes both knowledge and tools for engineering production of bioactive diterpenoids in heterologous host systems, thus enabling their further evaluation and development.
Collapse
|
12
|
Ozber N, Facchini PJ. Phloem-specific localization of benzylisoquinoline alkaloid metabolism in opium poppy. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153641. [PMID: 35240512 DOI: 10.1016/j.jplph.2022.153641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 05/28/2023]
Abstract
Opium poppy is the only commercial source of the narcotic analgesics morphine and codeine, and semi-synthetic derivatives of the natural opiate precursor thebaine, including oxycodone and the opioid antagonist naloxone. The plant also accumulates the vasodilator and antitussive agents papaverine and noscapine, respectively, which together with morphine, codeine and thebaine comprise the major benzylisoquinoline alkaloids (BIAs) in opium poppy. A majority of enzymes involved in the highly branched BIA metabolism in opium poppy have now been discovered, with many specifically localized to sieve elements of the phloem based on immunofluorescence labeling techniques. Transcripts corresponding to sieve element-localized biosynthetic enzymes were detected in companion cells, as expected. The more recent application of shotgun proteomics has shown that several enzymes operating late in the morphine and noscapine biosynthetic pathways occur primarily in laticifers that are adjacent or proximal to sieve elements. BIA biosynthesis and accumulation in opium poppy involves three phloem cell types and implicates the translocation of key pathway intermediates between sieve elements and laticifers. The recent isolation of uptake transporters associated with laticifers supports an apoplastic rather than a symplastic route for translocation. In spite of the extensive elucidation of BIA biosynthetic enzymes in opium poppy, additional transporters and other auxiliary proteins are clearly necessary to support the complex spatial organization and dynamics involved in product formation and sequestration. In this review, we provide an update of BIA metabolism in opium poppy with a focus on the role of phloem in the biosynthesis of the major alkaloids.
Collapse
Affiliation(s)
- Natali Ozber
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
13
|
Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves. J Adv Res 2022; 34:123-136. [PMID: 35024185 PMCID: PMC8655131 DOI: 10.1016/j.jare.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.
Collapse
|
14
|
Mathianaki K, Tzatzarakis M, Karamanou M. Poppies as a sleep aid for infants: The "Hypnos" remedy of Cretan folk medicine. Toxicol Rep 2021; 8:1729-1733. [PMID: 34692423 PMCID: PMC8511716 DOI: 10.1016/j.toxrep.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Cretan traditional Medicine, used Opium poppies as sedatives for children. Poppies’ folk preparations were called Hypnos. The practice to offer Hypnos to children was alive until the early 20th century. Iatrosofia are written collections of traditional remedies. Hypnos related recipes are absent in Cretan Iatrosofia after the 17th century.
Opium Poppy (Papaver somniferum L.) is considered as one of the earliest medicinal plants known to mankind. Derived from the Greek name “opos” meaning juice, referring to its psychotropic latex, the plant was known and extensively used since Antiquity during religious rituals and for Medical purposes, mainly as hypnotic and pain reliever agent. In Cretan folk medicine it was recommended along with other poppies until the early 20th century to induce children sedation, by the name: “Hypnos” meaning sleep.
Collapse
Affiliation(s)
- Kleopatra Mathianaki
- Department of History of Medicine, University of Crete, School of Medicine, Heraklion, Greece
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, GR, 70013, Greece
| | - Marianna Karamanou
- Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, Athens, GR, 11527, Greece
| |
Collapse
|
15
|
Yu S, Sun Q, Wu J, Zhao P, Sun Y, Guo Z. Genome-Wide Identification and Characterization of Short-Chain Dehydrogenase/Reductase (SDR) Gene Family in Medicago truncatula. Int J Mol Sci 2021; 22:9498. [PMID: 34502406 PMCID: PMC8430790 DOI: 10.3390/ijms22179498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/25/2022] Open
Abstract
Short-chain dehydrogenase/reductase (SDR) belongs to the NAD(P)(H)-dependent oxidoreductase superfamily. Limited investigations reveal that SDRs participate in diverse metabolisms. A genome-wide identification of the SDR gene family in M. truncatula was conducted. A total of 213 MtSDR genes were identified, and they were distributed on all chromosomes unevenly. MtSDR proteins were categorized into seven subgroups based on phylogenetic analysis and three types including 'classic', 'extended', and 'atypical', depending on the cofactor-binding site and active site. Analysis of the data from M. truncatula Gene Expression Atlas (MtGEA) showed that above half of MtSDRs were expressed in at least one organ, and lots of MtSDRs had a preference in a tissue-specific expression. The cis-acting element responsive to plant hormones (salicylic acid, ABA, auxin, MeJA, and gibberellin) and stresses were found in the promoter of some MtSDRs. Many genes of MtSDR7C,MtSDR65C, MtSDR110C, MtSDR114C, and MtSDR108E families were responsive to drought, salt, and cold. The study provides useful information for further investigation on biological functions of MtSDRs, especially in abiotic stress adaptation, in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (S.Y.); (Q.S.); (J.W.); (P.Z.); (Y.S.)
| |
Collapse
|
16
|
Han J, Wu Y, Zhou Y, Li S. Engineering Saccharomyces cerevisiae to produce plant benzylisoquinoline alkaloids. ABIOTECH 2021; 2:264-275. [PMID: 34377581 PMCID: PMC8286646 DOI: 10.1007/s42994-021-00055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a diverse family of plant natural products with extensive pharmacological properties, but the yield of BIAs from plant is limited. The understanding of BIA biosynthetic mechanism in plant and the development of synthetic biology enable the possibility to produce BIAs through microbial fermentation, as an alternative to agriculture-based supply chains. In this review, we discussed the engineering strategies to synthesize BIAs in Saccharomyces cerevisiae (yeast) and improve BIA production level, including heterologous pathway reconstruction, enzyme engineering, expression regulation, host engineering and fermentation engineering. We also highlight recent metabolic engineering advances in the production of BIAs in yeast.
Collapse
Affiliation(s)
- Jianing Han
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Yinan Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Yilun Zhou
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
17
|
Nomani M, Tohidfar M. Plant regeneration and transformation of Trachyspermum ammi using Agrobacterium tumefaciens and zygotic embryos. J Genet Eng Biotechnol 2021; 19:68. [PMID: 33974146 PMCID: PMC8113424 DOI: 10.1186/s43141-021-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Trachyspermum ammi is one of the key medicinal plant species with many beneficial properties. Thymol is the most important substance in the essential oil of this plant. Thymol is a natural monoterpene phenol with high anti-microbial, anti-bacterial, and anti-oxidant properties. Thymol in the latest research has a significant impact on slowing the progression of cancer cells in human. In this research, embryos were employed as convenient explants for the fast and effectual regeneration and transformation of T. ammi. To regenerate this plant, Murashige and Skoog (MS) and Gamborg's B5 (B5) media were supplemented with diverse concentrations of plant growth regulators, such as 6-benzyladenine (BA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and kinetin (kin). Transgenic Trachyspermum ammi plants were also obtained using Agrobacterium-mediated transformation and zygotic embryos explants. Moreover, two Agrobacterium tumefaciens strains (EHA101 and LBA4404) harboring pBI121-TPS2 were utilized for genetic transformation to Trachyspermum ammi. RESULTS According to the obtained results, the highest plant-regeneration frequency was obtained with B5 medium supplemented with 0.5 mg/l BA and 1 mg/l NAA. The integrated gene was also approved using the PCR reaction and the Southern blot method. Results also showed that the EHA101 strain outperformed another strain in inoculation time (30 s) and co-cultivation period (1 day) (transformation efficiency 19.29%). Furthermore, HPLC method demonstrated that the transformed plants contained a higher thymol level than non-transformed plants. CONCLUSIONS In this research, a fast protocol was introduced for the regeneration and transformation of Trachyspermum ammi, using zygotic embryo explants in 25-35 days. Our findings confirmed the increase in the thymol in the aerial part of Trachyspermum ammi. We further presented an efficacious technique for enhancing thymol content in Trachyspermum ammi using Agrobacterium-mediated plant transformation system that can be beneficial in genetic transformation and other plant biotechnology techniques.
Collapse
Affiliation(s)
- Masoumeh Nomani
- Department of Agronomy and Plant breeding - College of Aburaihan, University of Tehran, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology - College of Life Science and Biotechnology, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 19839-63113, Iran.
| |
Collapse
|
18
|
Qing Z, Yan F, Huang P, Zeng J. Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus. PHYTOCHEMISTRY 2021; 185:112696. [PMID: 33581597 DOI: 10.1016/j.phytochem.2021.112696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Metabolic networks can provide insight into the biosynthesis pathways of natural products present in plant-derived medicines. Here, we primarily established a highly efficient and targeted method for the systematic screening of isoquinoline alkaloids from the Macleaya genus. A total of 392 potential alkaloids were detected, 204 of which were further identified according to their tandem mass spectrometry (MS/MS) spectra and the characteristic fragmentation patterns of references. A metabolic network of isoquinoline alkaloids from the Macleaya genus was then constructed based on the structural relationships, metabolic level differences, and the isotopically labeled [ring-13C6]-tyrosine feeding experiments. New biosynthesis pathways for well-known alkaloids (berberine, sanguinarine, and chelerythrine) in the Macleaya genus were proposed on the basis of the established metabolic network. This work marks the first comprehensive study of the metabolic network of isoquinoline alkaloids in the Macleaya genus and provides a template for constructing the metabolic networks of other plant-derived medicines.
Collapse
Affiliation(s)
- Zhixing Qing
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; School of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangqin Yan
- School of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 2020; 47:815-828. [PMID: 32772209 DOI: 10.1007/s10295-020-02300-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 01/26/2023]
Abstract
Microbial fermentation platforms offer a cost-effective and sustainable alternative to plant cultivation and chemical synthesis for the production of many plant-derived pharmaceuticals. Plant alkaloids, particularly benzylisoquinoline alkaloids and monoterpene indole alkaloids, and recently cannabinoids have become attractive targets for microbial biosynthesis owing to their medicinal importance. Recent advances in the discovery of pathway components, together with the application of synthetic biology tools, have facilitated the assembly of plant alkaloid and cannabinoid pathways in the microbial hosts Escherichia coli and Saccharomyces cerevisiae. This review highlights key aspects of these pathways in the framework of overcoming bottlenecks in microbial production to further improve end-product titers. We discuss the opportunities that emerge from a better understanding of the pathway components by further study of the plant, and strategies for generation of new and advanced medicinal compounds.
Collapse
|
20
|
Agarwal P, Pathak S, Kumar RS, Dhar YV, Pandey A, Shukla S, Trivedi PK. 3'O-Methyltransferase, Ps3'OMT, from opium poppy: involvement in papaverine biosynthesis. PLANT CELL REPORTS 2019; 38:1235-1248. [PMID: 31190213 DOI: 10.1007/s00299-019-02439-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Using, in silico, in vitro and in planta functional assays, we demonstrate that Ps3'OMT, an 3'-O methyl transferase is linked to papaverine biosynthesis in opium poppy. Papaverine, one of the benzylisoquinoline alkaloids (BIA) synthesized in the medicinally important plant, Papaver somniferum, is known for the potent pharmacological properties. Papaverine biosynthesis has remained debatable as two different pathways, NH (involving N-desmethylated intermediates) and the NCH3 (involving N-methylated intermediates), have been proposed. In addition, there are several intermediate steps in both the proposed pathways that are not very well characterized in terms of specific enzymes. In this study, we report the identification and functional characterization of 3'O-methyltransferase (Ps3'OMT) which might participate in the 3'O-methylation of the intermediates in the papaverine biosynthesis. Comparison of transcript and metabolite profiles of high and low papaverine producing cultivar revealed the occurrence of a 3'O-methyltransferase, Ps3'OMT, which was abundant in aerial organs and shared 72% identity with the GfLOMT7 predicted to have 3'OMT activity. In silico studies based on homology modeling, docking and MD simulations predicted (S)-norlaudanine as the potential substrate forming a stable complex with Ps3'OMT. Suppression of Ps3'OMT through virus-induced gene silencing resulted in a remarkable decrease in the level of papaverine in comparison to control plants. The characterization of the functionally unique Ps3'OMT involved in BIA metabolism suggests an involvement of the NH pathway leading to papaverine biosynthesis.
Collapse
Affiliation(s)
- Parul Agarwal
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumya Pathak
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Ravi Shankar Kumar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogeshwar Vikram Dhar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Pandey
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sudhir Shukla
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Niaz K, Khan F, Maqbool F, Momtaz S, Ismail Hassan F, Nobakht-Haghighi N, Rahimifard M, Abdollahi M. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach. EXCLI JOURNAL 2017; 16:688-711. [PMID: 28827985 PMCID: PMC5547394 DOI: 10.17179/excli2017-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis.
Collapse
Affiliation(s)
- Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nobakht-Haghighi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Mersin 10, Turkey
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
23
|
Zuo Z, Zheng Y, Liang Z, Liu Y, Tang Q, Liu X, Zhao Z, Zeng J. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:397-410. [PMID: 27943430 DOI: 10.1002/rcm.7804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Tissue-specific metabolite profiling helps to find trace alkaloids masked during organ analysis, which contributes to understanding the alkaloid biosynthetic pathways in vivo and evaluating the quality of medical plants by morphology. As Macleaya cordata contains diverse types of benzylisoquinoline alkaloids (BIAs), the alkaloid metabolite profiling was carried out on various tissues of the root. METHODS Laser microdissection with fluorescence detection was used to recognize and dissect different tissues from the root of M. cordata. Ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was applied to analyze the trace alkaloids in tissues. These detected alkaloids were elucidated using their accurate molecular weights, MS/MS data, MS fragmentation patterns and the known biosynthetic pathways of BIAs. Finally, the distribution of alkaloids in dissected tissues and whole sections was mapped. RESULTS Forty-nine alkaloids were identified from five microdissected tissues, and 24 of them were detected for the first time in M. cordata. Some types of alkaloids occurred specifically in dissected tissues. More alkaloids were detected in the cork and xylem vascular bundles which emit strong fluorescence under fluorescence microscopy. Some of the screened alkaloids were intermediates in sanguinarine and chelerythrine biosynthetic pathways, and others were speculated to be involved in the new branches of biosynthetic pathways. CONCLUSIONS The integrated method is sensitive, specific and reliable for determining trace alkaloids, which is also a powerful tool for metabolite profiling of tissue-specific BIAs in situ. The present findings should contribute to a better understanding of the biosynthesis of BIAs in M. cordata root and provide scientific evidence for its quality evaluation based on morphological characteristics. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zi Zuo
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410005, China
| | - Yajie Zheng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yisong Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qi Tang
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiubin Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Jianguo Zeng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
24
|
Kilgore MB, Holland CK, Jez JM, Kutchan TM. Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities. J Biol Chem 2016; 291:16740-52. [PMID: 27252378 DOI: 10.1074/jbc.m116.717827] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products.
Collapse
Affiliation(s)
- Matthew B Kilgore
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132 and the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Cynthia K Holland
- the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Joseph M Jez
- the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Toni M Kutchan
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132 and
| |
Collapse
|
25
|
Biocatalysts from alkaloid producing plants. Curr Opin Chem Biol 2016; 31:22-30. [DOI: 10.1016/j.cbpa.2015.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
|
26
|
Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Trends Biotechnol 2016; 34:228-241. [DOI: 10.1016/j.tibtech.2015.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
|
27
|
Gurkok T, Ozhuner E, Parmaksiz I, Özcan S, Turktas M, İpek A, Demirtas I, Okay S, Unver T. Functional Characterization of 4'OMT and 7OMT Genes in BIA Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:98. [PMID: 26909086 PMCID: PMC4754624 DOI: 10.3389/fpls.2016.00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/25/2023]
Abstract
Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4'OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4'OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4'OMT, and 7OMT) were observed upon manipulation of 4'OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4'OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues.
Collapse
Affiliation(s)
- Tugba Gurkok
- Eldivan SHMYO, Department of Anesthesia, Cankiri Karatekin UniversityCankiri, Turkey
| | - Esma Ozhuner
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Iskender Parmaksiz
- Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa UniversityTokat, Turkey
| | - Sebahattin Özcan
- Department of Field Crops, Faculty of Agriculture, Ankara UniversityAnkara, Turkey
| | - Mine Turktas
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Arif İpek
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Ibrahim Demirtas
- Department of Chemistry, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Cankiri Karatekin UniversityCankiri, Turkey
| |
Collapse
|
28
|
Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 2016; 7:10390. [PMID: 26847395 PMCID: PMC4748248 DOI: 10.1038/ncomms10390] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accomplished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l(-1) from glycerol, corresponding to a 300-fold increase from recently developed yeast systems. This improvement is presumably due to strong activity of enzymes related to thebaine synthesis from (R)-reticuline in E. coli. Furthermore, by adding two genes to the thebaine production system, we demonstrate the biosynthesis of hydrocodone, a clinically important opioid. Improvements in opiate production in this E. coli system represent a major step towards the development of alternative opiate production systems.
Collapse
|
29
|
ALAGÖZ Y, GÜRKÖK T, PARMAKSIZ İ, ÜNVER T. Identification and sequence analysis of alkaloid biosynthesisgenes in Papaver section Oxytona. Turk J Biol 2016. [DOI: 10.3906/biy-1505-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
30
|
Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast. Methods Enzymol 2016; 575:143-78. [DOI: 10.1016/bs.mie.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R, Ashford D, Thomas J, Walker C, Bowser TA, Graham IA. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 2015; 349:309-12. [PMID: 26113639 DOI: 10.1126/science.aab1852] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023]
Abstract
Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.
Collapse
Affiliation(s)
- Thilo Winzer
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Marcelo Kern
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew J King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Tony R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Roxana I Teodor
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Samantha L Donninger
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Jared Cartwright
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Rachel Bates
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - David Ashford
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Jerry Thomas
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Carol Walker
- GlaxoSmithKline, 1061 Mountain Highway, Post Office Box 168, Boronia, Victoria 3155, Australia
| | - Tim A Bowser
- GlaxoSmithKline, 1061 Mountain Highway, Post Office Box 168, Boronia, Victoria 3155, Australia
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
32
|
Augustin MM, Ruzicka DR, Shukla AK, Augustin JM, Starks CM, O’Neil-Johnson M, McKain MR, Evans BS, Barrett MD, Smithson A, Wong GKS, Deyholos MK, Edger PP, Pires JC, Leebens-Mack JH, Mann DA, Kutchan TM. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:991-1003. [PMID: 25939370 PMCID: PMC4464957 DOI: 10.1111/tpj.12871] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/15/2015] [Accepted: 04/24/2015] [Indexed: 05/05/2023]
Abstract
Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol.
Collapse
Affiliation(s)
| | - Dan R. Ruzicka
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Monsanto Company, 700 Chesterfield Parkway West, St Louis, MO 63017
| | - Ashutosh K. Shukla
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | | | | | | | | | | | - Matt D. Barrett
- Botanic Gardens and Parks Authority Kings Park and Botanic Garden, West Perth, Australia
- School of Plant Biology, University of Western Australia, Perth, Australia
| | - Ann Smithson
- Botanic Gardens and Parks Authority Kings Park and Botanic Garden, West Perth, Australia
- School of Plant Biology, University of Western Australia, Perth, Australia
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Department of Medicine, University of Alberta, Edmonton AB, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | | | - Patrick P. Edger
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - J. Chris Pires
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - David A. Mann
- Infinity Pharmaceuticals, Cambridge, Massachusetts, USA
- Cellular Dynamics International, 525 Science Drive, Madison, WI 53711
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Qing ZX, Cheng P, Liu XB, Liu YS, Zeng JG. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J Pharm Biomed Anal 2015; 103:26-34. [DOI: 10.1016/j.jpba.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/14/2014] [Accepted: 11/01/2014] [Indexed: 01/06/2023]
|
34
|
Beaudoin GAW, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy. PLANTA 2014; 240:19-32. [PMID: 24671624 DOI: 10.1007/s00425-014-2056-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 05/21/2023]
Abstract
Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.
Collapse
|
35
|
Bielecka M, Watanabe M, Morcuende R, Scheible WR, Hawkesford MJ, Hesse H, Hoefgen R. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25674096 DOI: 10.1007/s11105-014-0772-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using 'omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Wroclaw Medical University Wroclaw, Poland ; Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Rosa Morcuende
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany ; Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas Salamanca, Spain
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany ; Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| | | | - Holger Hesse
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max-Planck Institute of Molecular Plant Physiology Potsdam-Golm, Germany
| |
Collapse
|
36
|
Chen X, Facchini PJ. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:173-184. [PMID: 24708518 DOI: 10.1111/tpj.12379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.
Collapse
|
37
|
Higashi Y, Saito K. Network analysis for gene discovery in plant-specialized metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1597-606. [PMID: 23336321 DOI: 10.1111/pce.12069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 05/03/2023]
Abstract
Recent omics technologies provide information on multiple components of biological networks. Web-based data mining tools are continuously being developed. Because genes involved in specialized (secondary) metabolism are often co-ordinately regulated at the transcriptional level, a number of gene discovery studies have been successfully conducted using network analysis, especially by integrating gene co-expression network analysis and metabolomic investigation. In addition, next-generation sequencing technologies are currently utilized in functional genomics investigations of Arabidopsis and non-model plant species including medicinal plants. Systems-based approaches are expected to gain importance in medicinal plant research. This review discussed network analysis in Arabidopsis and gene discovery in plant-specialized metabolism in non-model plants.
Collapse
Affiliation(s)
- Yasuhiro Higashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
38
|
Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 2013; 14:11713-41. [PMID: 23727937 PMCID: PMC3709753 DOI: 10.3390/ijms140611713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/26/2013] [Accepted: 05/27/2013] [Indexed: 12/28/2022] Open
Abstract
The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer's disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.
Collapse
|
39
|
Pathak S, Lakhwani D, Gupta P, Mishra BK, Shukla S, Asif MH, Trivedi PK. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PLoS One 2013; 8:e65622. [PMID: 23738019 PMCID: PMC3667846 DOI: 10.1371/journal.pone.0065622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/26/2013] [Indexed: 11/24/2022] Open
Abstract
The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.
Collapse
Affiliation(s)
- Sumya Pathak
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Deepika Lakhwani
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Parul Gupta
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Brij Kishore Mishra
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Sudhir Shukla
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
- * E-mail:
| |
Collapse
|
40
|
Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, Hosseini Khalifani B. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World J Microbiol Biotechnol 2013; 29:2125-31. [PMID: 23681746 DOI: 10.1007/s11274-013-1377-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Papaver bracteatum is an important medicinal plant valued for its high content of thebaine and an alternative to P. somniferum for benzylisoquinoline alkaloid production. Salutaridinol 7-o-acetyltransferase (SalAT) is a key gene in morphinan alkaloids biosynthesis pathway. Over expression of SalAT gene was used for metabolic engineering in P. bracteatum hairy root cultures. Transcript level of the salutaridinol 7-o-acetyltransferase gene in transgenic hairy root lines increased up to 154 and 128 % in comparison with hairy roots without SalAT over expression and wild type roots, respectively. High performance liquid chromatography analysis showed that the transgenic hairy roots relatively improved levels of thebaine (1.28 % dry weight), codeine (0.02 % dry weight) and morphine (0.03 % dry weight) compared to those hairy roots without SalAT over expression. This suggests that P. bracteatum hairy roots expressing the SalAT gene could be potentially used for the production of valuable morphinan alkaloids.
Collapse
Affiliation(s)
- Ali Sharafi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
41
|
Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. PLANT & CELL PHYSIOLOGY 2013; 54:647-72. [PMID: 23385146 DOI: 10.1093/pcp/pct020] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites with a long history of investigation. Although the ecophysiological functions of most BIAs are unknown, the medicinal properties of many compounds have been exploited for centuries. These include the narcotic analgesics codeine and morphine, the antimicrobial agents sanguinarine and berberine, and the antitussive and anticancer drug noscapine. BIA biosynthesis involves a restricted number of enzyme types that catalyze landmark coupling reactions and subsequent functional group modifications. A pathogenesis-related (PR)10/Bet v1 'Pictet-Spenglerase', several O-methyl-, N-methyl- and O-acetyltransferases, cytochromes P450, FAD-dependent oxidases, non-heme dioxygenases and NADPH-dependent reductases have been implicated in the multistep pathways leading to structurally diverse alkaloids. A small number of plant species, including opium poppy (Papaver somniferum) and other members of the Ranunculales, have emerged as model systems to study BIA metabolism. The expansion of resources to include a wider range of plant species is creating an opportunity to investigate previously uncharacterized BIA pathways. Contemporary knowledge of BIA metabolism reflects over a century of research coupled with the development of key innovations such as radioactive tracing, enzyme isolation and molecular cloning, and functional genomics approaches such as virus-induced gene silencing. Recently, the emergence of transcriptomics, proteomics and metabolomics has expedited the discovery of new BIA biosynthetic genes. The growing repository of BIA biosynthetic genes is providing the parts required to apply emerging synthetic biology platforms to the development of production systems in microbes as an alternative to plants as a commecial source of valuable BIAs.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
42
|
Mishra S, Triptahi V, Singh S, Phukan UJ, Gupta MM, Shanker K, Shukla RK. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum. PLoS One 2013; 8:e52784. [PMID: 23382823 PMCID: PMC3559656 DOI: 10.1371/journal.pone.0052784] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/20/2012] [Indexed: 01/13/2023] Open
Abstract
Wounding is required to be made in the walls of the green seed pod of Opium poppy prior exudation of latex. To withstand this kind of trauma plants regulate expression of some metabolites through an induced transcript level. 167 unique wound-inducible ESTs were identified by a repetitive round of cDNA subtraction after 5 hours of wounding in Papaver somniferum seedlings. Further repetitive reverse northern analysis of these ESTs revealed 80 transcripts showing more than two fold induction, validated through semi-quantitative RT-PCR & real time expression analysis. One of the major classified categories among identified ESTs belonged to benzylisoquinoline transcripts. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to wounding revealed increased accumulation of narcotine and papaverine. Promoter analysis of seven transcripts of BIAs pathway showed the presence of W-box cis-element with the consensus sequence of TGAC, which is the proposed binding site for WRKY type transcription factors. One of the Wound inducible 'WRKY' EST isolated from our subtracted library was made full-length and named as 'PsWRKY'. Bacterially expressed PsWRKY interacted with the W-box element having consensus sequence TTGACT/C present in the promoter region of BIAs biosynthetic pathway genes. PsWRKY further activated the TYDC promoter in yeast and transiently in tobacco BY2 cells. Preferential expression of PsWRKY in straw and capsule and its interaction with consensus W-box element present in BIAs pathway gene transcripts suggest its possible involvement in the wound induced regulation of BIAs pathway.
Collapse
Affiliation(s)
- Sonal Mishra
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Vineeta Triptahi
- Botany Department, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Seema Singh
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ujjal J. Phukan
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - M. M. Gupta
- Analytical Chemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Karuna Shanker
- Analytical Chemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- * E-mail:
| |
Collapse
|
43
|
Analysis of alkaloids from different chemical groups by different liquid chromatography methods. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0037-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlkaloids are biologically active compounds widely used as pharmaceuticals and synthesised as secondary methabolites in plants. Many of these compounds are strongly toxic. Therefore, they are often subject of scientific interests and analysis. Since alkaloids — basic compounds appear in aqueous solutions as ionized and unionized forms, they are difficult for chromatographic separation for peak tailing, poor systems efficiency, poor separation and poor column-to-column reproducibility. For this reason it is necessity searching of more suitable chromatographic systems for analysis of the compounds. In this article we present an overview on the separation of selected alkaloids from different chemical groups by liquid chromatography thus indicating the range of useful methods now available for alkaloid analysis. Different selectivity, system efficiency and peaks shape may be achieved in different LC methods separations by use of alternative stationary phases: silica, alumina, chemically bonded stationary phases, cation exchange phases, or by varying nonaqueous or aqueous mobile phase (containing different modifier, different buffers at different pH, ion-pairing or silanol blocker reagents). Developments in TLC (NP and RP systems), HPLC (NP, RP, HILIC, ion-exchange) are presented and the advantages of each method for alkaloids analysis are discussed.
Collapse
|
44
|
Schilmiller AL, Pichersky E, Last RL. Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:338-344. [PMID: 22244679 DOI: 10.1016/j.pbi.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Specialized (traditionally called 'secondary') metabolism can be thought of as a hydra with hundreds of thousands of compounds produced by thousands of enzymes across the entire plant kingdom. Until recently, plants that produce the most interesting and valuable metabolites were recalcitrant to modern molecular biology approaches for gene and pathway discovery. Recent advances in technologies for genomic, transcriptomic, proteomic, and metabolomic methods now allow for deployment of 'systems biology' approaches to help elucidate unknown steps in specialized metabolite pathways, for example through co-expression analyses. Inexpensive transcriptome and whole genome sequencing (WGS) promises to provide direct access to metabolic pathways in plants not currently used as reference organisms. For example, WGS has uncovered cases of physical proximity of genes of specialized metabolism. Further integration of multiple 'omics' datasets through advances in bioinformatics tools will increase our knowledge of pathway architecture and regulation at an ever-increasing rate. As such the era of systems biology is rapidly providing a broader and deeper understanding of plant specialized metabolism.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
45
|
Desgagné-Penix I, Farrow SC, Cram D, Nowak J, Facchini PJ. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. PLANT MOLECULAR BIOLOGY 2012; 79:295-313. [PMID: 22527754 DOI: 10.1007/s11103-012-9913-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 04/06/2012] [Indexed: 05/31/2023]
Abstract
Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.
Collapse
Affiliation(s)
- Isabel Desgagné-Penix
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
46
|
Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 2012; 336:1704-8. [PMID: 22653730 DOI: 10.1126/science.1220757] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.
Collapse
Affiliation(s)
- Thilo Winzer
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hidalgo O, Bartholmes C, Gleissberg S. Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots). ANNALS OF BOTANY 2012; 109:911-20. [PMID: 22307568 PMCID: PMC3310490 DOI: 10.1093/aob/mcs008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Studies of evolutionary diversification in the basal eudicot family Papaveraceae, such as the transition from actinomorphy to zygomorphy, are hampered by the lack of comparative functional studies. So far, gene silencing methods are only available in the actinomorphic species Eschscholzia californica and Papaver somniferum. This study addresses the amenability of Cysticapnos vesicaria, a derived fumitory with zygomorphic flowers, to virus-induced gene silencing (VIGS), and describes vegetative and reproductive traits in this species. METHODS VIGS-mediated downregulation of the C. vesicaria PHYTOENE DESATURASE gene (CvPDS) and of the FLORICAULA gene CvFLO was carried out using Agrobacterium tumefaciens transfer of Tobacco rattle virus (TRV)-based vectors. Wild-type and vector-treated plants were characterized using reverse transcription-PCR (RT-PCR), in situ hybridization, and macroscopic and scanning electron microscopic imaging. KEY RESULTS Cysticapnos vesicaria germinates rapidly, can be grown at high density, has a short life cycle and is self-compatible. Inoculation of C. vesicaria with a CvPDS-VIGS vector resulted in strong photobleaching of green parts and reduction of endogenous CvPDS transcript levels. Gene silencing persisted during inflorescence development until fruit set. Inoculation of plants with CvFLO-VIGS affected floral phyllotaxis, symmetry and floral organ identities. CONCLUSIONS The high penetrance, severity and stability of pTRV-mediated silencing, including the induction of meristem-related phenotypes, make C. vesicaria a very promising new focus species for evolutionary-developmental (evo-devo) studies in the Papaveraceae. This now enables comparative studies of flower symmetry, inflorescence determinacy and other traits that diversified in the Papaveraceae.
Collapse
|
48
|
Wijekoon CP, Facchini PJ. Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1052-63. [PMID: 22098111 DOI: 10.1111/j.1365-313x.2011.04855.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi-synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post-transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus-induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real-time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase (T6ODM), codeinone reductase (COR), and codeine O-demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.
Collapse
Affiliation(s)
- Champa P Wijekoon
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
49
|
Panjikar S, Stoeckigt J, O'Connor S, Warzecha H. The impact of structural biology on alkaloid biosynthesis research. Nat Prod Rep 2012; 29:1176-200. [DOI: 10.1039/c2np20057k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Dang TTT, Onoyovwi A, Farrow SC, Facchini PJ. Biochemical Genomics for Gene Discovery in Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy and Related Species. Methods Enzymol 2012; 515:231-66. [DOI: 10.1016/b978-0-12-394290-6.00011-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|