1
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Huo Y, Cheng M, Tang M, Zhang M, Yang X, Zheng Y, Zhao T, He P, Yu J. GhCTSF1, a short PPR protein with a conserved role in chloroplast development and photosynthesis, participates in intron splicing of rpoC1 and ycf3-2 transcripts in cotton. PLANT COMMUNICATIONS 2024; 5:100858. [PMID: 38444162 PMCID: PMC11211521 DOI: 10.1016/j.xplc.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Cotton is one of the most important textile fibers worldwide. As crucial agronomic traits, leaves play an essential role in the growth, disease resistance, fiber quality, and yield of cotton plants. Pentatricopeptide repeat (PPR) proteins are a large family of nuclear-encoded proteins involved in organellar or nuclear RNA metabolism. Using a virus-induced gene silencing assay, we found that cotton plants displayed variegated yellow leaf phenotypes with decreased chlorophyll content when expression of the PPR gene GhCTSF1 was silenced. GhCTSF1 encodes a chloroplast-localized protein that contains only two PPR motifs. Disruption of GhCTSF1 substantially reduces the splicing efficiency of rpoC1 intron 1 and ycf3 intron 2. Loss of function of the GhCTSF1 ortholog EMB1417 causes splicing defects in rpoC1 and ycf3-2, leading to impaired chloroplast structure and decreased photosynthetic rates in Arabidopsis. We also found that GhCTSF1 interacts with two splicing factors, GhCRS2 and GhWTF1. Defects in GhCRS2 and GhWTF1 severely affect intron splicing of rpoC1 and ycf3-2 in cotton, leading to defects in chloroplast development and a reduction in photosynthesis. Our results suggest that GhCTSF1 is specifically required for splicing rpoC1 and ycf3-2 in cooperation with GhCRS2 and GhWTF1.
Collapse
Affiliation(s)
- Yuzhu Huo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxue Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaofan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yating Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Huynh SD, Melonek J, Colas des Francs-Small C, Bond CS, Small I. A unique C-terminal domain contributes to the molecular function of Restorer-of-fertility proteins in plant mitochondria. THE NEW PHYTOLOGIST 2023; 240:830-845. [PMID: 37551058 DOI: 10.1111/nph.19166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Restorer-of-fertility (Rf) genes encode pentatricopeptide repeat (PPR) proteins that are targeted to mitochondria where they specifically bind to transcripts that induce cytoplasmic male sterility and repress their expression. In searching for a molecular signature unique to this class of proteins, we found that a majority of known Rf proteins have a distinct domain, which we called RfCTD (Restorer-of-fertility C-terminal domain), and its presence correlates with the ability to induce cleavage of the mitochondrial RNA target. A screen of 219 angiosperm genomes from 123 genera using a sequence profile that can quickly and accurately identify RfCTD sequences revealed considerable variation in RFL/RfCTD gene numbers across flowering plants. We observed that plant genera with bisexual flowers have significantly higher numbers of RFL genes compared to those with unisexual flowers, consistent with a role of these proteins in restoration of male fertility. We show that removing the RfCTD from the RFL protein RNA PROCESSING FACTOR 2-nad6 prevented cleavage of its RNA target, the nad6 transcript, in Arabidopsis thaliana mitochondria. We provide a simple way of identifying putative Rf candidates in genome sequences, new insights into the molecular mode of action of Rf proteins and the evolution of fertility restoration in flowering plants.
Collapse
Affiliation(s)
- Sang Dang Huynh
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joanna Melonek
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
7
|
Ma X, Wang D, Xue G, Zheng X, Lu Y, Shi J, Hao Z, Chen J. Characterization of the Liriodendron chinense Pentatricopeptide Repeat (PPR) Gene Family and Its Role in Osmotic Stress Response. Genes (Basel) 2023; 14:1125. [PMID: 37372305 DOI: 10.3390/genes14061125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The Pentatricopeptide repeat (PPR) superfamily is a large gene family in plants that regulates organelle RNA metabolism, which is important for plant growth and development. However, a genome-wide analysis of the PPR gene family and its response to abiotic stress has not been reported for the relict woody plant Liriodendron chinense. In this paper, we identified 650 PPR genes from the L. chinense genome. A phylogenetic analysis showed that the LcPPR genes could roughly be divided into the P and PLS subfamilies. We found that 598 LcPPR genes were widely distributed across 19 chromosomes. An intraspecies synteny analysis indicated that duplicated genes from segmental duplication contributed to the expansion of the LcPPR gene family in the L. chinense genome. In addition, we verified the relative expression of Lchi03277, Lchi06624, Lchi18566, and Lchi23489 in the roots, stems, and leaves and found that all four genes had the highest expression in the leaves. By simulating a drought treatment and quantitative reverse transcription PCR (qRT-PCR) analysis, we confirmed the drought-responsive transcriptional changes in four LcPPR genes, two of which responded to drought stress independent of endogenous ABA biosynthesis. Thus, our study provides a comprehensive analysis of the L. chinense PPR gene family. It contributes to research into their roles in this valuable tree species' growth, development, and stress resistance.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Guoxia Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese Fir at Fujian Yangkou Forest Farm, Shunchang 353211, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Lv Y, Wang Y, Zhang Q, Chen C, Qian Q, Guo L. WAL3 encoding a PLS-type PPR protein regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111382. [PMID: 35850283 DOI: 10.1016/j.plantsci.2022.111382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast development is a complex process that is critical for the growth and development of plants. Pentapeptide repeat (PPR) proteins contain large members but only few of them have been characterized in rice. In this study, we identified a new PLS-type protein, WAL3 (Whole Albino Leaf on Chromosome 3), playing important roles in plant chloroplast development. Knockout of WAL3 gene in Nipponbare variety caused abnormal chloroplast development and showed an albino lethal phenotype. Expression analysis showed that WAL3 gene was constitutively expressed with the highest expression in leaves. The WAL3 protein localized in chloroplasts and affected the splicing of multiple group II introns. Transcriptome sequencing showed that WAL3 involved in multiple metabolic pathways including the chlorophyll synthesis and photosynthetic related metabolic pathways. The decreased abundance of photosynthesis-related proteins in wal3 mutants indicated WAL3 influence photosynthesis. In summary, our study revealed that WAL3 is essential for chloroplast development in rice.
Collapse
Affiliation(s)
- Yang Lv
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yueying Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Changzhao Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Qian
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
9
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
10
|
Wang Y, Yang Z, Zhang M, Ai P. A chloroplast-localized pentatricopeptide repeat protein involved in RNA editing and splicing and its effects on chloroplast development in rice. BMC PLANT BIOLOGY 2022; 22:437. [PMID: 36096762 PMCID: PMC9469629 DOI: 10.1186/s12870-022-03819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The chloroplast is the organelle responsible for photosynthesis in higher plants. The generation of functional chloroplasts depends on the precise coordination of gene expression in the nucleus and chloroplasts and is essential for the development of plants. However, little is known about nuclear-plastid regulatory mechanisms at the early stage of chloroplast generation in rice. RESULTS In this study, we identified a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes and named it ssa1(seedling stage albino1). Transmission electron microscopy (TEM) analysis indicated that the chloroplasts of ssa1 did not have organized thylakoid lamellae and that the chloroplast structure was destroyed. Genetic analysis revealed that the albino phenotypes of ssa1 were controlled by a pair of recessive nuclear genes. Map-based cloning experiments found that SSA1 encoded a pentapeptide repeat (PPR) protein that was allelic to OSOTP51,which was previously reported to participate in Photosystem I (PSI) assembly. The albino phenotype was reversed to the wild type (WT) phenotype when the normal SSA1 sequence was expressed in ssa1 under the drive of the actin promoter. Knockout experiments further created mutants ssa1-2/1-9, which had a phenotype similar to that of ssa1. SSA1 consisted of 7 pentatricopeptide repeat domains and two C-terminal LAGLIDADG tandem sequence motifs and was located in the chloroplast. GUS staining and qRT-PCR analysis showed that SSA1 was mainly expressed in young leaves and stems. In the ssa1 mutants, plastid genes transcribed by plastid-encoded RNA polymerase decreased, while those transcribed by nuclear-encoded RNA polymerase increased at the mRNA level. Loss-of-function SSA1 destroys RNA editing of ndhB-737 and intron splicing of atpF and ycf3-2 in the plastid genome. Yeast two-hybrid and BiFC assays revealed that SSA1 physically interacted with two new RNA editing partners, OsMORF8 and OsTRXz, which have potential functions in RNA editing and chloroplast biogenesis. CONCLUSIONS Rice SSA1 encodes a pentatricopeptide repeat protein, which is targeted to the chloroplast. SSA1 regulates early chloroplast development and plays a critical role in RNA editing and intron splicing in rice. These data will facilitate efforts to further elucidate the molecular mechanism of chloroplast biogenesis.
Collapse
Affiliation(s)
- Yanwei Wang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Zhimin Yang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Meng Zhang
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Pengfei Ai
- Collage of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China.
| |
Collapse
|
11
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Ren W, Jiang Z, Zhang M, Kong L, Zhang H, Liu Y, Fu Q, Ma W. The chloroplast genome of Salix floderusii and characterization of chloroplast regulatory elements. FRONTIERS IN PLANT SCIENCE 2022; 13:987443. [PMID: 36092427 PMCID: PMC9459086 DOI: 10.3389/fpls.2022.987443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Salix floderusii is a rare alpine tree species in the Salix genus. Unfortunately, no extensive germplasm identification, molecular phylogeny, and chloroplast genomics of this plant have been conducted. We sequenced the chloroplast (cp) genome of S. floderusii for the first time using second-generation sequencing technology. The cp genome was 155,540 bp long, including a large single-copy region (LSC, 84,401 bp), a small single-copy region (SSC, 16,221 bp), and inverted repeat regions (IR, 54,918 bp). A total of 131 genes were identified, including 86 protein genes, 37 tRNA genes, and 8 rRNA genes. The S. floderusii cp genome contains 1 complement repeat, 24 forward repeats, 17 palindromic repeats, and 7 reverse repeats. Analysis of the IR borders showed that the IRa and IRb regions of S. floderusii and Salix caprea were shorter than those of Salix cinerea, which may affect plastome evolution. Furthermore, four highly variable regions were found, including the rpl22 coding region, psbM/trnD-GUC non-coding region, petA/psbJ non-coding region, and ycf1 coding region. These high variable regions can be used as candidate molecular markers and as a reference for identifying future Salix species. In addition, phylogenetic analysis indicated that the cp genome of S. floderusii is sister to Salix cupularis and belongs to the Subgenus Vetrix. Genes (Sf-trnI, Sf-PpsbA, aadA, Sf-TpsbA, Sf-trnA) obtained via cloning were inserted into the pBluescript II SK (+) to yield the cp expression vectors, which harbored the selectable marker gene aadA. The results of a spectinomycin resistance test indicated that the cp expression vector had been successfully constructed. Moreover, the aadA gene was efficiently expressed under the regulation of predicted regulatory elements. The present study provides a solid foundation for establishing subsequent S. floderusii cp transformation systems and developing strategies for the genetic improvement of S. floderusii.
Collapse
Affiliation(s)
- Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Meiqi Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Houliang Zhang
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Qifeng Fu
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Xue C, Liu G, Sun S, Liu X, Guo R, Cheng Z, Yu H, Gu M, Liu K, Zhou Y, Zhang T, Gong Z. De novo centromere formation in pericentromeric region of rice chromosome 8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:859-871. [PMID: 35678753 DOI: 10.1111/tpj.15862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shang Sun
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Rui Guo
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Kai Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Li Y, Belt K, Alqahtani SF, Saha S, Fenske R, Van Aken O, Whelan J, Millar AH, Murcha MW, Huang S. The mitochondrial LYR protein SDHAF1 is required for succinate dehydrogenase activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:499-512. [PMID: 35080330 PMCID: PMC9306560 DOI: 10.1111/tpj.15684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 06/02/2023]
Abstract
Succinate dehydrogenase (SDH, complex II), which plays an essential role in mitochondrial respiration and tricarboxylic acid metabolism, requires the assembly of eight nuclear-encoded subunits and the insertion of various cofactors. Here, we report on the characterization of an Arabidopsis thaliana leucine-tyrosine-arginine (LYR) protein family member SDHAF1, (At2g39725) is a factor required for SDH activity. SDHAF1 is located in mitochondria and can fully complement the yeast SDHAF1 deletion strain. Knockdown of SDHAF1 using RNA interference resulted in a decrease in seedling hypocotyl elongation and reduced SDH activity. Proteomic analyses revealed a decreased abundance of various SDH subunits and assembly factors. Protein interaction assays revealed that SDHAF1 can interact exclusively with the Fe-S cluster-containing subunit SDH2 and HSCB, a cochaperone involved in Fe-S cluster complex recruitment. Therefore, we propose that in Arabidopsis, SDHAF1 plays a role in the biogenesis of SDH2 to form the functional complex II, which is essential for mitochondrial respiration and metabolism.
Collapse
Affiliation(s)
- Ying Li
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Saad F. Alqahtani
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Biochemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Saurabh Saha
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Department of Biology, Faculty of ScienceLund UniversitySE‐223 62LundSweden
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life ScienceLa Trobe UniversityVictoriaAustralia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Monika W. Murcha
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| |
Collapse
|
15
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
16
|
Zhang L, Chen J, Zhang L, Wei Y, Li Y, Xu X, Wu H, Yang ZN, Huang J, Hu F, Huang W, Cui YL. The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in Arabidopsis chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1952-1966. [PMID: 34427970 DOI: 10.1111/jipb.13165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yajuan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyun Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
17
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
18
|
Mishra LS, Funk C. The FtsHi Enzymes of Arabidopsis thaliana: Pseudo-Proteases with an Important Function. Int J Mol Sci 2021; 22:5917. [PMID: 34072887 PMCID: PMC8197885 DOI: 10.3390/ijms22115917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023] Open
Abstract
FtsH metalloproteases found in eubacteria, animals, and plants are well-known for their vital role in the maintenance and proteolysis of membrane proteins. Their location is restricted to organelles of endosymbiotic origin, the chloroplasts, and mitochondria. In the model organism Arabidopsis thaliana, there are 17 membrane-bound FtsH proteases containing an AAA+ (ATPase associated with various cellular activities) and a Zn2+ metalloprotease domain. However, in five of those, the zinc-binding motif HEXXH is either mutated (FtsHi1, 2, 4, 5) or completely missing (FtsHi3), rendering these enzymes presumably inactive in proteolysis. Still, homozygous null mutants of the pseudo-proteases FtsHi1, 2, 4, 5 are embryo-lethal. Homozygous ftshi3 or a weak point mutant in FTSHi1 are affected in overall plant growth and development. This review will focus on the findings concerning the FtsHi pseudo-proteases and their involvement in protein import, leading to consequences in embryogenesis, seed growth, chloroplast, and leaf development and oxidative stress management.
Collapse
Affiliation(s)
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden;
| |
Collapse
|
19
|
Arabidopsis Mitochondrial Transcription Termination Factor mTERF2 Promotes Splicing of Group IIB Introns. Cells 2021; 10:cells10020315. [PMID: 33546419 PMCID: PMC7913559 DOI: 10.3390/cells10020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022] Open
Abstract
Plastid gene expression (PGE) is essential for chloroplast biogenesis and function and, hence, for plant development. However, many aspects of PGE remain obscure due to the complexity of the process. A hallmark of nuclear-organellar coordination of gene expression is the emergence of nucleus-encoded protein families, including nucleic-acid binding proteins, during the evolution of the green plant lineage. One of these is the mitochondrial transcription termination factor (mTERF) family, the members of which regulate various steps in gene expression in chloroplasts and/or mitochondria. Here, we describe the molecular function of the chloroplast-localized mTERF2 in Arabidopsis thaliana. The complete loss of mTERF2 function results in embryo lethality, whereas directed, microRNA (amiR)-mediated knockdown of MTERF2 is associated with perturbed plant development and reduced chlorophyll content. Moreover, photosynthesis is impaired in amiR-mterf2 plants, as indicated by reduced levels of photosystem subunits, although the levels of the corresponding messenger RNAs are not affected. RNA immunoprecipitation followed by RNA sequencing (RIP-Seq) experiments, combined with whole-genome RNA-Seq, RNA gel-blot, and quantitative RT-PCR analyses, revealed that mTERF2 is required for the splicing of the group IIB introns of ycf3 (intron 1) and rps12.
Collapse
|
20
|
Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J. Roles of Reactive Oxygen Species and Mitochondria in Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:781734. [PMID: 34956279 PMCID: PMC8695494 DOI: 10.3389/fpls.2021.781734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.
Collapse
Affiliation(s)
- Muhammad Awais Farooq
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | | | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- *Correspondence: Wei Ma,
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Jianjun Zhao,
| |
Collapse
|
21
|
Chen J, Zhu H, Huang J, Huang W. A new method for functional analysis of plastid EMBRYO-DEFECTIVE PPR genes by efficiently constructing cosuppression lines in Arabidopsis. PLANT METHODS 2020; 16:154. [PMID: 33292320 PMCID: PMC7673100 DOI: 10.1186/s13007-020-00696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/09/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pentatricopeptide-repeat proteins (PPRs) characterized by tandem arrays of a degenerate 35-amino-acid repeat (PPR motif) can bind a single strand RNA and regulate organelle gene expression at the post-transcriptional level, including RNA cleavage, splicing, editing and stability etc. PPRs are conserved in all eukaryotes and extremely expanded in higher plants. Many knockout mutants of PPR genes are embryonically lethal. These genes are named EMB PPRs and functional analysis of them is hindered by the difficulty in obtaining their knockout mutants. RESULTS Here, we report a new method for functional analysis of plastid EMB PPRs by efficiently constructing their cosuppression lines in Arabidopsis. When we overexpressed a mutated full length or truncated coding sequence (CDS) of EMB PPRs, such as EMB2279, EMB2654 and EMB976 (all belong to the P family PPRs) in the wild-type (WT) background, a large portion of T1 plants displayed chlorosis phenotypes, which are similar to those of the weak allele mutants, knockdown lines or partially complementary lines. RT-PCR analysis showed that overexpression of the truncated EMB PPRs led to significant and specific downregulation of their corresponding endogenous mRNAs. However, when these EMB PPRs were overexpressed in the Post transcriptional Gene Silencing (PTGS) deficient mutant, RNA-dependent RNA polymerase 6 (rdr6), none of the T1 plants displayed chlorosis phenotypes. These results indicate that the chlorosis phenotype results from post transcriptional silencing of the corresponding endogenous gene (also known as sense cosuppression). CONCLUSIONS Overexpression of an appropriately truncated EMB PPR CDS in WT leads to gene silencing in a RDR6-dependent manner, and this method can be employed to study the unknown function of EMB PPR genes. By this method, we showed that EMB976 is required for splicing of chloroplast clpP1 intron 2 and ycf3 intron 1.
Collapse
Affiliation(s)
- Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Haojie Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
22
|
Wang X, Yang Z, Zhang Y, Zhou W, Zhang A, Lu C. Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1741-1761. [PMID: 32250043 DOI: 10.1111/jipb.12936] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/27/2020] [Indexed: 05/04/2023]
Abstract
To gain a better understanding of the molecular mechanisms of photosystem I (PSI) biogenesis, we characterized the Arabidopsis thaliana photosystem I biogenesis factor 2 (pbf2) mutant, which lacks PSI complex. PBF2 encodes a P-class pentatricopeptide repeat (PPR) protein. In the pbf2 mutants, we observed a striking decrease in the transcript level of only one gene, the chloroplast gene ycf3, which is essential for PSI assembly. Further analysis of ycf3 transcripts showed that PBF2 is specifically required for the splicing of ycf3 intron 1. Computational prediction of binding sequences and electrophoretic mobility shift assays reveal that PBF2 specifically binds to a sequence in ycf3 intron 1. Moreover, we found that PBF2 interacted with two general factors for group II intron splicing CHLOROPLAST RNA SPLICING2-ASSOCIATED FACTOR1 (CAF1) and CAF2, and facilitated the association of these two factors with ycf3 intron 1. Our results suggest that PBF2 is specifically required for the splicing of ycf3 intron 1 through cooperating with CAF1 and CAF2. Our results also suggest that additional proteins are required to contribute to the specificity of CAF-dependent group II intron splicing.
Collapse
Affiliation(s)
- Xuemei Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Wen Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
23
|
Shen L, Zhang Q, Wang Z, Wen H, Hu G, Ren D, Hu J, Zhu L, Gao Z, Zhang G, Guo L, Zeng D, Qian Q. OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC PLANT BIOLOGY 2020; 20:381. [PMID: 32811438 PMCID: PMC7437035 DOI: 10.1186/s12870-020-02593-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/12/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chloroplasts play an important role in plant growth and development. The chloroplast genome contains approximately twenty group II introns that are spliced due to proteins encoded by nuclear genes. CAF2 is one of these splicing factors that has been shown to splice group IIB introns in maize and Arabidopsis thaliana. However, the research of the OsCAF2 gene in rice is very little, and the effects of OsCAF2 genes on chloroplasts development are not well characterized. RESULTS In this study, oscaf2 mutants were obtained by editing the OsCAF2 gene in the Nipponbare variety of rice. Phenotypic analysis showed that mutations to OsCAF2 led to albino leaves at the seeding stage that eventually caused plant death, and oscaf2 mutant plants had fewer chloroplasts and damaged chloroplast structure. We speculated that OsCAF2 might participate in the splicing of group IIA and IIB introns, which differs from its orthologs in A. thaliana and maize. Through yeast two-hybrid experiments, we found that the C-terminal region of OsCAF2 interacted with OsCRS2 and formed an OsCAF2-OsCRS2 complex. In addition, the N-terminal region of OsCAF2 interacted with itself to form homodimers. CONCLUSION Taken together, this study improved our understanding of the OsCAF2 protein, and revealed additional information about the molecular mechanism of OsCAF2 in regulating of chloroplast development in rice.
Collapse
Affiliation(s)
- Lan Shen
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Hongling Wen
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Guanglian Hu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology / China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| |
Collapse
|
24
|
Lee K, Kang H. Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21124548. [PMID: 32604726 PMCID: PMC7352785 DOI: 10.3390/ijms21124548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Kwanuk Lee
- Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| | - Hunseung Kang
- Department of Applied Biology and AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (K.L.); (H.K.); Tel.: +49-157-8852-8990 (K.L.); +82-62-530-2181 (H.K.); Fax: +82-62-530-2079 (H.K.)
| |
Collapse
|
25
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
26
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
27
|
Hao Y, Wang Y, Wu M, Zhu X, Teng X, Sun Y, Zhu J, Zhang Y, Jing R, Lei J, Li J, Bao X, Wang C, Wang Y, Wan J. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4705-4720. [PMID: 31087099 PMCID: PMC6760278 DOI: 10.1093/jxb/erz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- Correspondence: ; ; or
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Correspondence: ; ; or
| |
Collapse
|
28
|
OsCAF1, a CRM Domain Containing Protein, Influences Chloroplast Development. Int J Mol Sci 2019; 20:ijms20184386. [PMID: 31500108 PMCID: PMC6770308 DOI: 10.3390/ijms20184386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are involved in the splicing of chloroplast gene introns. Numerous CRM domain proteins have been reported to play key roles in chloroplast development in several plant species. However, the functions of CRM domain proteins in chloroplast development in rice remain poorly understood. In the study, we generated oscaf1 albino mutants, which eventually died at the seedling stage, through the editing of OsCAF1 with two CRM domains using CRISPR/Cas9 technology. The mesophyll cells in oscaf1 mutant had decreased chloroplast numbers and damaged chloroplast structures. OsCAF1 was located in the chloroplast, and transcripts revealed high levels in green tissues. In addition, the OsCAF1 promoted the splicing of group IIA and group IIB introns, unlike orthologous proteins of AtCAF1 and ZmCAF1, which only affected the splicing of subgroup IIB introns. We also observed that the C-terminal of OsCAF1 interacts with OsCRS2, and OsCAF1–OsCRS2 complex may participate in the splicing of group IIA and group IIB introns in rice chloroplasts. OsCAF1 regulates chloroplast development by influencing the splicing of group II introns.
Collapse
|
29
|
Dedow LK, Bailey-Serres J. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:1927-1938. [PMID: 31329953 DOI: 10.1093/pcp/pcz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein-RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.
Collapse
|
30
|
Mishra LS, Mielke K, Wagner R, Funk C. Reduced expression of the proteolytically inactive FtsH members has impacts on the Darwinian fitness of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2173-2184. [PMID: 30721974 PMCID: PMC6460958 DOI: 10.1093/jxb/erz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
FtsH (filamentation-temperature-sensitive protein H) proteases are a family of membrane-bound enzymes present in eubacteria, animals, and plants. Besides the 12 genes encoding proteolytically active members of the FtsH family in the genome of Arabidopsis, there are five genes coding for members that are assumed to be proteolytically inactive due to mutations in the protease domain; these are termed FtsHi (i for inactive). Despite their lack of proteolytic activity, these FtsHi members seem to be important for chloroplast and plant development as four out of five homozygous knockout-mutants of FtsHis are embryo-lethal. Here, we analysed the Darwinian fitness of weak homozygous (ftshi1,3,4) and heterozygous (ftshi/FTSHi2,4,5) mutants. We compared the growth and development of these mutants to their respective wild-type Arabidopsis plants under controlled laboratory conditions and in the field, and we also evaluated the photosynthetic efficiency by pulse-amplitude modulation fluorescence. Homologous genotypes were subjected to various stress conditions in a greenhouse and gene co-expression as well as phylogenetic analyses were performed. Analysis of the gene-expression network of the five FTSHi genes indicated common clusters with genes encoding FtsH12, OTP51, and methylase. Phylogenetic analyses pointed to a common evolution (and common disappearance in grasses and gymnosperms) of FtsH12 and multiple presumably proteolytically inactive FtsHi enzymes. Our data show that the FtsHi enzymes are highly important during the seedling stage and for Darwinian fitness analyses in semi-natural conditions.
Collapse
Affiliation(s)
| | - Kati Mielke
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Raik Wagner
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, Umeå, Sweden
- Correspondence:
| |
Collapse
|
31
|
Ebihara T, Matsuda T, Sugita C, Ichinose M, Yamamoto H, Shikanai T, Sugita M. The P-class pentatricopeptide repeat protein PpPPR_21 is needed for accumulation of the psbI-ycf12 dicistronic mRNA in Physcomitrella chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1120-1131. [PMID: 30536655 DOI: 10.1111/tpj.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Chloroplast gene expression is controlled by numerous nuclear-encoded RNA-binding proteins. Among these, pentatricopeptide repeat (PPR) proteins are known to be key players in post-transcriptional regulation in chloroplasts. However, the functions of many PPR proteins remain unknown. In this study, we characterized the function of a chloroplast-localized P-class PPR protein PpPPR_21 in Physcomitrella patens. Knockout (KO) mutants of PpPPR_21 exhibited reduced protonemata growth and lower photosynthetic activity. Immunoblot analysis and blue-native gel analysis showed a remarkable reduction of the photosystem II (PSII) reaction center protein and poor formation of the PSII supercomplexes in the KO mutants. To assess whether PpPPR_21 is involved in chloroplast gene expression, chloroplast genome-wide microarray analysis and Northern blot hybridization were performed. These analyses indicated that the psbI-ycf12 transcript encoding the low molecular weight subunits of PSII did not accumulate in the KO mutants while other psb transcripts accumulated at similar levels in wild-type and KO mutants. A complemented PpPPR_21KO moss transformed with the cognate full-length PpPPR_21cDNA rescued the level of accumulation of psbI-ycf12 transcript. RNA-binding experiments showed that the recombinant PpPPR_21 bound efficiently to the 5' untranslated and translated regions of psbImRNA. The present study suggests that PpPPR_21 may be essential for the accumulation of a stable psbI-ycf12mRNA.
Collapse
Affiliation(s)
- Tetsuo Ebihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Matsuda
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
32
|
Melonek J, Zhou R, Bayer PE, Edwards D, Stein N, Small I. High intraspecific diversity of Restorer-of-fertility-like genes in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:281-295. [PMID: 30276910 PMCID: PMC7380019 DOI: 10.1111/tpj.14115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/24/2023]
Abstract
Nuclear restorer of fertility (Rf) genes suppress the effects of mitochondrial genes causing cytoplasmic male sterility (CMS), a condition in which plants fail to produce viable pollen. Rf genes, many of which encode RNA-binding pentatricopeptide repeat (PPR) proteins, are applied in hybrid breeding to overcome CMS used to block self-pollination of the seed parent. Here, we characterise the repertoire of restorer-of-fertility-like (RFL) PPR genes in barley (Hordeum vulgare). We found 26 RFL genes in the reference genome ('Morex') and an additional 51 putative orthogroups (POGs) in a re-sequencing data set from 262 barley genotypes and landraces. Whereas the sequences of some POGs are highly conserved across hundreds of barley accessions, the sequences of others are much more variable. High sequence variation strongly correlates with genomic location - the most variable genes are found in a cluster on chromosome 1H. A much higher likelihood of diversifying selection was found for genes within this cluster than for genes present as singlets. This work includes a comprehensive analysis of the patterns of intraspecific variation of RFL genes. The RFL sequences characterised in this study will be useful for the development of new markers for fertility restoration loci.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Ruonan Zhou
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Philipp E. Bayer
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
- School of Agriculture and EnvironmentUniversity of Western AustraliaCrawleyWAAustralia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
33
|
Wang C, Aubé F, Quadrado M, Dargel-Graffin C, Mireau H. Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5131-5140. [PMID: 30053059 PMCID: PMC6184586 DOI: 10.1093/jxb/ery275] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/16/2018] [Indexed: 05/23/2023]
Abstract
Group II introns are common features of most angiosperm mitochondrial genomes. Intron splicing is thus essential for the expression of mitochondrial genes and is facilitated by numerous nuclear-encoded proteins. However, the molecular mechanism and the protein cofactors involved in this complex process have not been fully elucidated. In this study, we characterized three new pentatricopeptide repeat (PPR) genes, called MISF26, MISF68, and MISF74, of Arabidopsis and showed they all function in group II intron splicing and plant development. The three PPR genes encode P-type PPR proteins that localize in the mitochondrion. Transcript analysis revealed that the splicing of a single intron is altered in misf26 mutants, while several mitochondrial intron splicing defects were detected in misf68 and misf74 mutants. To our knowledge, MISF68 and MISF74 are the first two PPR proteins implicated in the splicing of more than one intron in plant mitochondria, suggesting that they may facilitate splicing differently from other previously identified PPR splicing factors. The splicing defects in the misf mutants induce a significant decrease in complex I assembly and activity, and an overexpression of mRNAs of the alternative respiratory pathway. These results therefore reveal that nuclear encoded proteins MISF26, MISF68, and MISF74 are involved in splicing of a cohort of mitochondrial group II introns and thereby required for complex I biogenesis.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, Orsay Cedex, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| |
Collapse
|
34
|
Colas des Francs-Small C, Vincis Pereira Sanglard L, Small I. Targeted cleavage of nad6 mRNA induced by a modified pentatricopeptide repeat protein in plant mitochondria. Commun Biol 2018; 1:166. [PMID: 30320233 PMCID: PMC6181959 DOI: 10.1038/s42003-018-0166-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genes encode key components of the cellular energy machinery, but their genetic analysis is difficult or impossible in most organisms (including plants) because of the lack of viable transformation approaches. We report here a method to block the expression of the mitochondrial nad6 gene encoding a subunit of respiratory complex I in Arabidopsis thaliana, via the modification of the specificity of the RNA-binding protein RNA PROCESSING FACTOR 2 (RPF2). We show that the modified RPF2 binds and specifically induces cleavage of nad6 RNA, almost eliminating expression of the Nad6 protein and consequently complex I accumulation and activity. To our knowledge, this is the first example of a targeted block in expression of a specific mitochondrial transcript by a custom-designed RNA-binding protein. This opens the path to reverse genetics studies on mitochondrial gene functions and leads to potential applications in agriculture. Catherine Colas des Francs-Small et al. used an engineered pentatricopeptide repeat protein to induce cleavage of nad6 mRNA in the mitochondria of Arabidopsis thaliana, eliminating its expression. The approach has potential for use in functional characterization of mitochondrial genes and future agricultural applications.
Collapse
Affiliation(s)
- Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
35
|
Liu X, Lan J, Huang Y, Cao P, Zhou C, Ren Y, He N, Liu S, Tian Y, Nguyen T, Jiang L, Wan J. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3949-3961. [PMID: 29893948 PMCID: PMC6054151 DOI: 10.1093/jxb/ery214] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/18/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an essential role in plant growth and development, and cold conditions affect chloroplast development. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, many other components affecting chloroplast biogenesis under cold conditions have not been characterized. Here, we report the functional characterization of a white stripe leaf 5 (wsl5) mutant in rice. The mutant develops white-striped leaves during early leaf development and is albinic when planted under cold stress. Genetic and molecular analysis revealed that WSL5 encodes a novel chloroplast-targeted pentatricopeptide repeat protein. RNA sequencing analysis showed that expression of nuclear-encoded photosynthetic genes in the mutant was significantly repressed, and expression of many chloroplast-encoded genes was also significantly changed. Notably, the wsl5 mutation causes defects in editing of rpl2 and atpA, and splicing of rpl2 and rps12. wsl5 was impaired in chloroplast ribosome biogenesis under cold stress. We propose that the WSL5 allele is required for normal chloroplast development in maintaining retrograde signaling from plastids to the nucleus under cold stress.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yaken Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Niqing He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Huang W, Zhu Y, Wu W, Li X, Zhang D, Yin P, Huang J. The Pentatricopeptide Repeat Protein SOT5/EMB2279 Is Required for Plastid rpl2 and trnK Intron Splicing. PLANT PHYSIOLOGY 2018; 177:684-697. [PMID: 29686056 PMCID: PMC6001330 DOI: 10.1104/pp.18.00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 05/06/2023]
Abstract
Chloroplast biogenesis and development are highly complex processes requiring interaction between plastid and nuclear genomic products. Using a high-throughput screen for chloroplast biogenesis suppressors in Arabidopsis (Arabidopsis thaliana), we identified a suppressor of thf1 (sot5) that displays virescent and serrated leaves. Further characterization revealed that sot5 mutants are defective in leaf adaxial and abaxial polarity and act as enhancers of asymmetric leaves2 Map-based cloning identified SOT5 as a gene previously named EMB2279 that encodes a plastid-targeted pentatricopeptide repeat (PPR) protein with 11 PPR motifs. A G-to-A mutation in sot5 leads to a significant decrease in splicing efficiency, generating two additional mRNA variants. As reported previously, the sot5 null mutation is embryo lethal. SOT5 is predicted to bind to specific RNA sequences found in plastid rpl2 and trnK genes, and we found decreased splicing efficiency of the rpl2 and trnK genes in sot5 mutants. Together, our results reveal that the PPR protein SOT5/EMB2279 is required for intron splicing of plastid rpl2 and trnK, providing insights into the role of plastid translation in the coupled development between chloroplasts and leaves.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuan Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jirong Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
37
|
Ito A, Sugita C, Ichinose M, Kato Y, Yamamoto H, Shikanai T, Sugita M. An evolutionarily conserved P-subfamily pentatricopeptide repeat protein is required to splice the plastid ndhA transcript in the moss Physcomitrella patens and Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:638-648. [PMID: 29505122 DOI: 10.1111/tpj.13884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 05/10/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are known to play important roles in post-transcriptional regulation in plant organelles. However, the function of the majority of PPR proteins remains unknown. To examine their functions, Physcomitrella patens PpPPR_66 knockout (KO) mutants were generated and characterized. The KO mosses exhibited a wild-type-like growth phenotype but showed aberrant chlorophyll fluorescence due to defects in chloroplast NADH dehydrogenase-like (NDH) activity. Immunoblot analysis suggested that disruption of PpPPR_66 led to a complete loss of the chloroplast NDH complex. To examine whether the loss of PpPPR_66 affects the expression of plastid ndh genes, the transcript levels of 11 plastid ndh genes were analyzed by reverse transcription PCR. This analysis indicated that splicing of the ndhA transcript was specifically impaired while mRNA accumulation levels as well as the processing patterns of other plastid ndh genes were not affected in the KO mutants. Complemented PpPPR_66 KO lines transformed with the PpPPR_66 full-length cDNA rescued splicing of the ndhA transcript. Arabidopsis thaliana T-DNA tagged lines of a PPR_66 homolog (At2 g35130) showed deficient splicing of the ndhA transcript. This indicates that the two proteins are functionally conserved between bryophytes and vascular plants. An in vitro RNA-binding assay demonstrated that the recombinant PpPPR_66 bound preferentially to the region encompassing a part of exon 1 to a 5' part of the ndhA group II intron. Taken together, these results indicate that PpPPR_66 acts as a specific factor to splice ndhA pre-mRNA.
Collapse
Affiliation(s)
- Ayaka Ito
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
38
|
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress. FRONTIERS IN PLANT SCIENCE 2018; 8:2212. [PMID: 29375595 PMCID: PMC5767312 DOI: 10.3389/fpls.2017.02212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Marta Sowa
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
39
|
Zhu XM, Shao XY, Pei YH, Guo XM, Li J, Song XY, Zhao MA. Genetic Diversity and Genome-Wide Association Study of Major Ear Quantitative Traits Using High-Density SNPs in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:966. [PMID: 30038634 PMCID: PMC6046616 DOI: 10.3389/fpls.2018.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
Kernel and ear traits are key components of grain yield in maize (Zea mays L.). Investigation of these traits would help to develop high-yield varieties in maize. Genome-wide association study (GWAS) uses the linkage disequilibrium (LD) in the whole genome to determine the genes affecting certain phenotype. In this study, five ear traits (kernel length and width, ear length and diameter, cob diameter) were investigated across multi-environments for 2 years. Combining with the genotype obtained from Maize SNP50 chip, genetic diversity and association mapping in a set of 292 inbred lines were performed. Results showed that maize lines were clustered into seven subgroups and a total of 20 SNPs were found to be associated with ear traits significantly (P < 3.95E-05). The candidate genes identified by GWAS mainly encoded ubiquitin-activation enzymes (GRMZM2G015287), carotenoid cleavage dioxygenase (GRMZM2G446858), MYB-CC type transfactor, and phosphate starvation response protein 3, and they were associated with kernel length (KL) and ear diameter (ED), respectively. Moreover, two novel genes corresponding to RNA processing and fructose metabolism were found. Further, the SNPs detected by GWAS were confirmed by meta-QTL analysis. These genes and SNPs identified in the study would offer essential information for yield-related genes clone and breeding program in maize.
Collapse
Affiliation(s)
- Xiao-Mei Zhu
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Yu Shao
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-He Pei
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xin-Mei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Jun Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xi-Yun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- *Correspondence: Mei-Ai Zhao Xi-Yun Song,
| | - Mei-Ai Zhao
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- *Correspondence: Mei-Ai Zhao Xi-Yun Song,
| |
Collapse
|
40
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
41
|
Tang J, Zhang W, Wen K, Chen G, Sun J, Tian Y, Tang W, Yu J, An H, Wu T, Kong F, Terzaghi W, Wang C, Wan J. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. PLANT MOLECULAR BIOLOGY 2017; 95:345-357. [PMID: 28856519 DOI: 10.1007/s11103-017-0654-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/18/2017] [Indexed: 05/10/2023]
Abstract
OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. The chloroplast has its own genetic material and genetic system, but it is also regulated by nuclear-encoded genes. However, little is known about nuclear-plastid regulatory mechanisms underlying early chloroplast biogenesis in rice. In this study, we isolated and characterized a mutant, osppr6, that showed early chloroplast developmental defects leading to albino leaves and seedling death. We found that the osppr6 mutant failed to form thylakoid membranes. Using map-based cloning and complementation tests, we determined that OsPPR6 encoded a new Pentatricopeptide Repeat (PPR) protein localized in plastids. In the osppr6 mutants, mRNA levels of plastidic genes transcribed by the plastid-encoded RNA polymerase decreased, while those of genes transcribed by the nuclear-encoded RNA polymerase increased. Western blot analyses validated these expression results. We further investigated plastidic RNA editing and splicing in the osppr6 mutants and found that the ndhB transcript was mis-edited and the ycf3 transcript was mis-spliced. Therefore, we demonstrate that OsPPR6, a PPR protein, regulates early chloroplast biogenesis and participates in editing of ndhB and splicing of ycf3 transcripts in rice.
Collapse
Affiliation(s)
- Jianpeng Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongzhou An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
42
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:114-131. [PMID: 28346704 DOI: 10.1111/tpj.13550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Katharine A Howell
- Plant Energy Biology, ARC Center of Excellence, University of Western Australia, Perth, Australia
| | - Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Margaret Staton
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
44
|
Tonti-Filippini J, Nevill PG, Dixon K, Small I. What can we do with 1000 plastid genomes? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:808-818. [PMID: 28112435 DOI: 10.1111/tpj.13491] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 05/21/2023]
Abstract
The plastid genome of plants is the smallest and most gene-rich of the three genomes in each cell and the one generally present in the highest copy number. As a result, obtaining plastid DNA sequence is a particularly cost-effective way of discovering genetic information about a plant. Until recently, the sequence information gathered in this way was generally limited to small portions of the genome amplified by polymerase chain reaction, but recent advances in sequencing technology have stimulated a substantial rate of increase in the sequencing of complete plastid genomes. Within the last year, the number of complete plastid genomes accessible in public sequence repositories has exceeded 1000. This sudden flood of data raises numerous challenges in data analysis and interpretation, but also offers the keys to potential insights across large swathes of plant biology. We examine what has been learnt so far, what more could be learnt if we look at the data in the right way, and what we might gain from the tens of thousands more genome sequences that will surely arrive in the next few years. The most exciting new discoveries are likely to be made at the interdisciplinary interfaces between molecular biology and ecology.
Collapse
Affiliation(s)
- Julian Tonti-Filippini
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Paul G Nevill
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Kingsley Dixon
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
45
|
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. Dek35 Encodes a PPR Protein that Affects cis-Splicing of Mitochondrial nad4 Intron 1 and Seed Development in Maize. MOLECULAR PLANT 2017; 10:427-441. [PMID: 27596292 DOI: 10.1016/j.molp.2016.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
In higher plants, the splicing of organelle-encoded mRNA involves a complex collaboration with nuclear-encoded proteins. Pentatricopeptide repeat (PPR) proteins have been implicated in these RNA-protein interactions. In this study, we performed the cloning and functional characterization of maize Defective kernel 35 (Dek35). The dek35-ref mutant is a lethal-seed mutant with developmental deficiency. Dek35 was cloned through Mutator tag isolation and further confirmed by four additional independent mutant alleles. Dek35 encodes an P-type PPR protein that targets the mitochondria. The dek35 mutation causes significant reduction in the accumulation of DEK35 proteins and reduced splicing efficiency of mitochondrial nad4 intron 1. Analysis of mitochondrial complex in dek35 immature seeds indicated severe deficiency in the complex I assembly and NADH dehydrogenase activity. Transcriptome analysis of dek35 endosperm revealed enhanced expression of genes involved in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function and activity. Collectively, these results indicate that Dek35 encodes an PPR protein that affects the cis-splicing of mitochondrial nad4 intron 1 and is required for mitochondrial function and seed development.
Collapse
Affiliation(s)
- Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qun Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China.
| |
Collapse
|
46
|
Editing of Mitochondrial Transcripts nad3 and cox2 by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics 2017; 205:1489-1501. [PMID: 28213476 DOI: 10.1534/genetics.116.199331] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
Respiration, the core of mitochondrial metabolism, depends on the function of five respiratory complexes. Many respiratory chain-related proteins are encoded by the mitochondrial genome and their RNAs undergo post-transcriptional modifications by nuclear genome-expressed factors, including pentatricopeptide repeat (PPR) proteins. Maize defective kernel 10 (dek10) is a classic mutant with small kernels and delayed development. Through positional cloning, we found that Dek10 encodes an E-subgroup PPR protein localized in mitochondria. Sequencing analysis indicated that Dek10 is responsible for the C-to-U editing at nad3-61, nad3-62, and cox2-550 sites, which are specific editing sites in monocots. The defects of these editing sites result in significant reduction of Nad3 and the loss of Cox2. Interestingly, the assembly of complex I was not reduced, but its NADH dehydrogenase activity was greatly decreased. The assembly of complex IV was significantly reduced. Transcriptome and transmission electron microscopy (TEM) analysis revealed that proper editing of nad3 and cox2 is critical for mitochondrial functions, biogenesis, and morphology. These results indicate that the E-subgroup PPR protein Dek10 is responsible for multiple editing sites in nad3 and cox2, which are essential for mitochondrial functions and plant development in maize.
Collapse
|
47
|
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:472-485. [PMID: 27743418 DOI: 10.1111/tpj.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Chloroplast RNA metabolism depends on a multitude of nuclear-encoded RNA-binding proteins (RBPs). Most known chloroplast RBPs address specific RNA targets and RNA-processing functions. However, members of the small chloroplast ribonucleoprotein family (cpRNPs) play a global role in processing and stabilizing chloroplast RNAs. Here, we show that the cpRNP CP33A localizes to a distinct sub-chloroplastic domain and is essential for chloroplast development. The loss of CP33A yields albino seedlings that exhibit aberrant leaf development and can only survive in the presence of an external carbon source. Genome-wide RNA association studies demonstrate that CP33A associates with all chloroplast mRNAs. For a given transcript, quantification of CP33A-bound versus free RNAs demonstrates that CP33A associates with the majority of most mRNAs analyzed. Our results further show that CP33A is required for the accumulation of a number of tested mRNAs, and is particularly relevant for unspliced and unprocessed precursor mRNAs. Finally, CP33A fails to associate with polysomes or to strongly co-precipitate with ribosomal RNA, suggesting that it defines a ribodomain that is separate from the chloroplast translation machinery. Collectively, these findings suggest that CP33A contributes to globally essential RNA processes in the chloroplasts of higher plants.
Collapse
Affiliation(s)
- Marlene Teubner
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Janina Fuß
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | - Kristina Kühn
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | | |
Collapse
|
48
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
49
|
Liu JM, Xu ZS, Lu PP, Li WW, Chen M, Guo CH, Ma YZ. Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet. BMC Genomics 2016; 17:840. [PMID: 27793078 PMCID: PMC5084403 DOI: 10.1186/s12864-016-3184-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins are encoded by a large gene family of approximately 450 members in Arabidopsis and 477 in rice, which characterized by tandem repetitions of a degenerate 35 amino acid characteristic sequence motifs. A large majority of the PPR genes in the higher plants are localized in organelles. Their functions remain as yet largely unknown. The majority of characterized PPR proteins have been found to function in modulating the expression plastid and mitochondrial genes in plants. RESULTS Here, a genome-wide identification and comparison of the PPR genes from 5 organisms was performed, including the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, the eudicot Arabidopsis, and the monocots rice and foxtail millet. It appears that the expansion of this gene family prior to the divergence of the euphyllophytes and the lycophytes in land plants. The duplication and divergence rates of the foxtail millet PPR genes (SiPPRs) showed that the expansion period of this gene family around 400 Mya, and indicated that genome segmental duplication was very likely the primary mechanism underlying the expansion of the PPR gene family in vascular plants. An analysis of a complete set of SiPPR genes/proteins that included classification, chromosomal location, orthologous relationships, duplication analysis, and auxiliary motifs is presented. Expression analysis of the SiPPR genes under stress conditions revealed that the expression of 24 SiPPR genes was responsive to abiotic stress. Subcellular localization analysis of 11 PPR proteins indicated that 5 proteins were localized to chloroplasts, that 4 were localized to mitochondria, and that 2 were localized to the cytoplasm. CONCLUSIONS Our results contribute to a more comprehensive understanding the roles of PPR proteins and will be useful in the prioritization of particular PPR proteins for subsequent functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Jia-Ming Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Hong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
50
|
Goto S, Kawaguchi Y, Sugita C, Ichinose M, Sugita M. P-class pentatricopeptide repeat protein PTSF1 is required for splicing of the plastid pre-tRNA(I) (le) in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:493-503. [PMID: 27117879 DOI: 10.1111/tpj.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are widely distributed in eukaryotes and are mostly localized in mitochondria or plastids. PPR proteins play essential roles in various RNA processing steps in organelles; however, the function of the majority of PPR proteins remains unknown. To examine the function of plastid PPR proteins, PpPPR_4 gene knock-out mutants were characterized in Physcomitrella patens. The knock-out mosses displayed severe growth retardation and reduced effective quantum yield of photosystem II. Immunoblot analysis showed that knock-out of PpPPR_4 resulted in a strongly reduced level of plastid-encoded proteins, such as photosystem II reaction center protein D1, the β subunit of ATP synthase, and the stromal enzyme, Rubisco. To further investigate whether knock-out of the PpPPR_4 gene affects plastid gene expression, we analyzed steady-state transcript levels of protein- and rRNA-coding genes by quantitative RT-PCR. This analysis showed that the level of many protein-coding transcripts increased in the mutants. In contrast, splicing of a spacer tRNA(I) (le) precursor encoded by the rrn operon was specifically impaired in the mutants, whereas the accumulation of other plastid tRNAs and rRNAs was not largely affected. Thus, the defect in tRNA(I) (le) splicing leads to a considerable reduction of mature tRNA(I) (le) , which may be accountable for the reduced protein level. An RNA mobility shift assay showed that the recombinant PpPPR_4 bound preferentially to domain III of the tRNA(I) (le) group-II intron. These results provide evidence that PpPPR_4 functions in RNA splicing of the tRNA(I) (le) intron, and hence PpPPR_4 was named plastid tRNA splicing factor 1 (PTSF1).
Collapse
Affiliation(s)
- Seiya Goto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|