1
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
2
|
Alam A, Abbas S, Waheed N, Abbas A, Weibo Q, Huang J, Khan KA, Ghramh HA, Ali J, Zhao CR. Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70021. [PMID: 39726337 DOI: 10.1002/arch.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction. In contrast, indirect defenses do not affect insects directly but instead suppress them by releasing volatile compounds that attract the natural enemies of herbivores. Insects overcome plant defenses by deactivating biochemical defenses, suppressing defense signaling through effectors, and altering their behavior through chemical regulation. There is always a genetic war between plants and insects. In this genetic war, plant-insect co-evolution act as both weapons and messengers. Because plants always look for new strategies to avoid insects by developing adaptation. There are molecular processes that regulate the interaction between plants and insect. Here, we examine the genes and proteins involved in plant-insect interactions and explore how their discovery has shaped the current model of the plant genome's role. Plants detect damage-associated and herbivore-associated molecular patterns through receptors, which trigger early signaling pathways involving Ca2+, reactive oxygen species, and MAP kinases. The specific defense mechanisms are activated through gene signaling pathways, including phytohormones, secondary metabolites, and transcription factors. Expanding plant genome approaches to unexplored dimensions in fending off insects should be a future priority in order to develop management strategies.
Collapse
Affiliation(s)
- Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Noman Waheed
- College of Animal Sciences and Technology, Jilin Agricultural University, Changchun, PR China
| | - Arzlan Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Qin Weibo
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jingxuan Huang
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Khalid Ali Khan
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Chen Ri Zhao
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
3
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Hong Y, Yu Z, Zhou Q, Chen C, Hao Y, Wang Z, Zhu JK, Guo H, Huang AC. NAD + deficiency primes defense metabolism via 1O 2-escalated jasmonate biosynthesis in plants. Nat Commun 2024; 15:6652. [PMID: 39103368 PMCID: PMC11300881 DOI: 10.1038/s41467-024-51114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.
Collapse
Affiliation(s)
- Yechun Hong
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zongjun Yu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chunyu Chen
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuqiong Hao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, 041000, Shanxi, China
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ancheng C Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Kumar RMS, Ramesh SV, Sun Z, Thankappan S, Nulu NPC, Binodh AK, Kalaipandian S, Srinivasan R. Capsicum chinense Jacq.-derived glutaredoxin (CcGRXS12) alters redox status of the cells to confer resistance against pepper mild mottle virus (PMMoV-I). PLANT CELL REPORTS 2024; 43:108. [PMID: 38557872 DOI: 10.1007/s00299-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
KEY MESSAGE The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.
Collapse
Affiliation(s)
- R M Saravana Kumar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671 124, India
| | - Z Sun
- Sericultural Research Institute, Chengde Medical University, Chengde, 067000, China
| | - Sugitha Thankappan
- Department of Agriculture, School of Agriculture Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | | | - Asish Kanakaraj Binodh
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sundaravelpandian Kalaipandian
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| |
Collapse
|
6
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
7
|
Zhao Y, Liu T, Wu S, Zhang D, Xiao Z, Ren Z, Li L, Liu S, Xiao Y, Tang Q. Insight into the soil bacterial community succession of Nicotiana benthamiana in response to Tobacco mosaic virus. Front Microbiol 2024; 15:1341296. [PMID: 38357345 PMCID: PMC10864551 DOI: 10.3389/fmicb.2024.1341296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background Tobacco mosaic virus (TMV) is one famous plant virus responsible for substantial economic losses worldwide. However, the roles of bacterial communities in response to TMV in the tobacco rhizosphere remain unclear. Methods We explored the soil physicochemical properties and bacterial community succession of the healthy (YTH) and diseased (YTD) plants with TMV infection by 16S rRNA gene sequencing and bioinformatics analysis. Results We found that soil pH in the YTD group was significantly lower than in the YTH group, and the soil available nutrients were substantially higher. The bacterial community analysis found that the diversity and structure significantly differed post-TMV disease onset. With TMV inoculated, the alpha diversity of the bacterial community in the YTD was markedly higher than that in the YTH group at the early stage. However, the alpha diversity in the YTD group subsequently decreased to lower than in the YTH group. The early bacterial structure of healthy plants exhibited higher susceptibility to TMV infection, whereas, in the subsequent stages, there was an enrichment of beneficial bacterial (e.g., Ramlibacter, Sphingomonas, Streptomyces, and Niastella) and enhanced energy metabolism and nucleotide metabolism in bacteria. Conclusion The initial soil bacterial community exhibited susceptibility to TMV infection, which might contribute to strengthening resistance of Tobacco to TMV.
Collapse
Affiliation(s)
- Yuqiang Zhao
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | | | | | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Zuohua Ren
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Lingling Li
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Suoni Liu
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunhua Xiao
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qianjun Tang
- College of Plant Protection and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Commun 2023; 14:6848. [PMID: 37891163 PMCID: PMC10611778 DOI: 10.1038/s41467-023-42629-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Mingxi Zhou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Feng Y, Tang M, Xiang J, Liu P, Wang Y, Chen W, Fang Z, Wang W. Genome-wide characterization of L-aspartate oxidase genes in wheat and their potential roles in the responses to wheat disease and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1210632. [PMID: 37476177 PMCID: PMC10354440 DOI: 10.3389/fpls.2023.1210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
L-aspartate oxidase (AO) is the first enzyme in NAD+ biosynthesis and is widely distributed in plants, animals, and microorganisms. Recently, AO family members have been reported in several plants, including Arabidopsis thaliana and Zea mays. Research on AO in these plants has revealed that AO plays important roles in plant growth, development, and biotic stresses; however, the nature and functions of AO proteins in wheat are still unclear. In this study, nine AO genes were identified in the wheat genome via sequence alignment and conserved protein domain analysis. These nine wheat AO genes (TaAOs) were distributed on chromosomes 2, 5, and 6 of sub-genomes A, B, and D. Analysis of the phylogenetic relationships, conserved motifs, and gene structure showed that the nine TaAOs were clustered into three groups, and the TaAOs in each group had similar conserved motifs and gene structure. Meanwhile, the subcellular localization analysis of transient expression mediated by Agrobacterium tumetioniens indicated that TaAO3-6D was localized to chloroplasts. Prediction of cis-elements indicated that a large number of cis-elements involved in responses to ABA, SA, and antioxidants/electrophiles, as well as photoregulatory responses, were found in TaAO promoters, which suggests that the expression of TaAOs may be regulated by these factors. Finally, transcriptome and real-time PCR analysis showed that the expression of TaAOs belonging to Group III was strongly induced in wheat infected by F. graminearum during anthesis, while the expression of TaAOs belonging to Group I was heavily suppressed. Additionally, the inducible expression of TaAOs belonging to Group III during anthesis in wheat spikelets infected by F. graminearum was repressed by ABA. Finally, expression of almost all TaAOs was induced by exposure to cold treatment. These results indicate that TaAOs may participate in the response of wheat to F. graminearum infection and cold stress, and ABA may play a negative role in this process. This study lays a foundation for further investigation of TaAO genes and provides novel insights into their biological functions.
Collapse
Affiliation(s)
- Yanqun Feng
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Mingshuang Tang
- Nanchong Academy of Agriculture Sciences, Nanchong, Sichuan, China
| | - Junhui Xiang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Pingu Liu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Wang Chen
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhengwu Fang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenli Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Liu L, Liu J, Xu N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1201805. [PMID: 37396638 PMCID: PMC10311507 DOI: 10.3389/fpls.2023.1201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lectin receptor-like kinases (LecRKs) locate on the cell membrane and play diverse roles in perceiving environmental factors in higher plants. Studies have demonstrated that LecRKs are involved in plant development and response to abiotic and biotic stresses. In this review, we summarize the identified ligands of LecRKs in Arabidopsis, including extracellular purine (eATP), extracellular pyridine (eNAD+), extracellular NAD+ phosphate (eNADP+) and extracellular fatty acids (such as 3-hydroxydecanoic acid). We also discussed the posttranslational modification of these receptors in plant innate immunity and the perspectives of future research on plant LecRKs.
Collapse
|
12
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
13
|
Huang Y, Liu Q, Jibrin M, Mou Z, Dufault N, Li Y, Zhang S. Evaluating Nicotinamide Adenine Dinucleotide for Its Effects on Halo Blight of Snap Bean. PLANT DISEASE 2023; 107:675-681. [PMID: 35881875 DOI: 10.1094/pdis-05-22-1126-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halo blight, caused by Pseudomonas syringae pv. phaseolicola, is one of the major bacterial diseases on snap bean in Florida, and the outbreaks of this disease have occurred more often in recent years. Current management of this disease primarily depends on application of fixed copper-based bactericides but climate change and resistance development in the pathogen populations still cause hardship for management of this disease, especially in south Florida. In this study, nicotinamide adenine dinucleotide (NAD+) was evaluated in the greenhouse for its potential to reduce halo blight on snap bean. When NAD+ at 5 mM was applied by soil drench, foliar spray, or leaf infiltration, NAD+ significantly (P < 0.05) reduced disease severity of halo blight on snap bean compared with the untreated control. When NAD+ was applied by leaf infiltration, among the tested concentrations, NAD+ at 0.5 to 1.0 mM was most effective in decreasing halo blight disease. NAD+ at 2.5 mM applied as a foliar spray in rotation with Kocide 3000 (copper hydroxide) at 0.5 mg/ml further reduced disease severity compared with Kocide 3000 alone. In the in vitro study, no inhibitory effects of NAD+ were detected on the bacterial pathogen P. syringae pv. phaseolicola. Results of real-time PCR showed that the defense-related genes PR1, AZI1, EDS1, SARD1, PDF1.2, and PAL1 were upregulated in the NAD+ treatment. Taken together, these data indicated that NAD+ significantly suppressed halo blight on snap bean, and application of NAD+ has the potential in management of this important disease.
Collapse
Affiliation(s)
- Yi Huang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Qingchun Liu
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Mustafa Jibrin
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL 32601
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Shouan Zhang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| |
Collapse
|
14
|
Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int J Mol Sci 2022; 23:ijms232012418. [PMID: 36293272 PMCID: PMC9603868 DOI: 10.3390/ijms232012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, 30-084 Kraków, Poland
| |
Collapse
|
15
|
Wang S, Wang S, Li M, Su Y, Sun Z, Ma H. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches' broom disease. BMC PLANT BIOLOGY 2022; 22:291. [PMID: 35701735 PMCID: PMC9199210 DOI: 10.1186/s12870-022-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nerium indicum Mill. is an ornamental plant that is found in parks, riversides, lakesides, and scenic areas in China and other parts of the world. Our recent survey indicated the prevalence of witches' broom disease (WBD) in Guangdong, China. To find out the possible defense strategies against WBD, we performed a MiSeq based ITS sequencing to identify the possible casual organism, then did a de novo transcriptome sequencing and metabolome profiling in the phloem and stem tip of N. indicum plants suffering from WBD compared to healthy ones. RESULTS The survey showed that Wengyuen county and Zengcheng district had the highest disease incidence rates. The most prevalent microbial species in the diseased tissues was Cophinforma mamane. The transcriptome sequencing resulted in the identification of 191,224 unigenes of which 142,396 could be annotated. There were 19,031 and 13,284 differentially expressed genes (DEGs) between diseased phloem (NOWP) and healthy phloem (NOHP), and diseased stem (NOWS) and healthy stem (NOHS), respectively. The DEGs were enriched in MAPK-signaling (plant), plant-pathogen interaction, plant-hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, linoleic acid and α-linoleic acid metabolism pathways. Particularly, we found that N. indicum plants activated the phytohormone signaling, MAPK-signaling cascade, defense related proteins, and the biosynthesis of phenylpropanoids and flavonoids as defense responses to the pathogenic infection. The metabolome profiling identified 586 metabolites of which 386 and 324 metabolites were differentially accumulated in NOHP vs NOWP and NOHS and NOWS, respectively. The differential accumulation of metabolites related to phytohormone signaling, linoleic acid metabolism, phenylpropanoid and flavonoid biosynthesis, nicotinate and nicotinamide metabolism, and citrate cycle was observed, indicating the role of these pathways in defense responses against the pathogenic infection. CONCLUSION Our results showed that Guangdong province has a high incidence of WBD in most of the surveyed areas. C. mamane is suspected to be the causing pathogen of WBD in N. indicum. N. indicum initiated the MAPK-signaling cascade and phytohormone signaling, leading to the activation of pathogen-associated molecular patterns and hypersensitive response. Furthermore, N. indicum accumulated high concentrations of phenolic acids, coumarins and lignans, and flavonoids under WBD. These results provide scientific tools for the formulation of control strategies of WBD in N. indicum.
Collapse
Affiliation(s)
- Shengjie Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Shengkun Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Ming Li
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yuhang Su
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhan Sun
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Haibin Ma
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
16
|
Infantes L, Rivera-Moreno M, Daniel-Mozo M, Benavente JL, Ocaña-Cuesta J, Coego A, Lozano-Juste J, Rodriguez PL, Albert A. Structure-Based Modulation of the Ligand Sensitivity of a Tomato Dimeric Abscisic Acid Receptor Through a Glu to Asp Mutation in the Latch Loop. FRONTIERS IN PLANT SCIENCE 2022; 13:884029. [PMID: 35734246 PMCID: PMC9207482 DOI: 10.3389/fpls.2022.884029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The binding of the plant phytohormone Abscisic acid (ABA) to the family of ABA receptors (PYR/PYL/RCAR) triggers plant responses to abiotic stress. Thus, the implementation of genetic or chemical strategies to modulate PYR/PYL activity might be biotechnologically relevant. We have employed the available structural information on the PYR/PYL receptors to design SlPYL1, a tomato receptor, harboring a single point mutation that displays enhanced ABA dependent and independent activity. Interestingly, crystallographic studies show that this mutation is not directly involved in ABA recognition or in the downstream phosphatase (PP2C) inhibitory interaction, rather, molecular dynamic based ensemble refinement restrained by crystallographic data indicates that it enhances the conformational variability required for receptor activation and it is involved in the stabilization of an active form of the receptor. Moreover, structural studies on this receptor have led to the identification of niacin as an ABA antagonist molecule in vivo. We have found that niacin blocks the ABA binding site by mimicking ABA receptor interactions, and the niacin interaction inhibits the biochemical activity of the receptor.
Collapse
Affiliation(s)
- Lourdes Infantes
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria Rivera-Moreno
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miguel Daniel-Mozo
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Luis Benavente
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Ocaña-Cuesta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Armando Albert
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
18
|
Nounurai P, Afifah A, Kittisenachai S, Roytrakul S. Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 Proteins Induce Resistance in Tomatoes Infected by Ralstonia solanacearum. PLANTS 2022; 11:plants11060726. [PMID: 35336608 PMCID: PMC8954572 DOI: 10.3390/plants11060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Ralstonia solanacaerum is one of the most devastating bacteria causing bacterial wilt disease in more than 200 species of plants, especially those belonging to the family Solanaceae. To cope with this pathogen, plants have evolved different resistance mechanisms depending on signal transduction after perception. Phosphorylation is the central regulatory component of the signal transduction pathway. We investigated a comparative phosphoproteomics analysis of the stems of resistant and susceptible tomatoes at 15 min and 30 min after inoculation with Ralstonia solanacearum to determine the phosphorylated proteins involved in induced resistance. Phosphoprotein profiling analyses led to the identification of 969 phosphoproteins classified into 10 functional categories. Among these, six phosphoproteins were uniquely identified in resistant plants including cinnamyl alcohol dehydrogenase 1 (CAD1), mitogen-activated protein kinase kinase kinase 18 (MAPKKK18), phospholipase D delta (PLDDELTA), nicotinamide adenine dinucleotide transporter 1 (NDT1), B3 domain-containing transcription factor VRN1, and disease resistance protein RPM1 (RPM1). These proteins are typically involved in defense mechanisms across different plant species. qRT-PCR analyses were performed to evaluate the level of expression of these genes in resistant and susceptible tomatoes. This study provides useful data, leading to an understanding of the early defense mechanisms of tomatoes against R. solanacearum.
Collapse
Affiliation(s)
- Prachumporn Nounurai
- Innovative Plant Biotechnology and Precision Agriculture Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Correspondence: (P.N.); (S.R.); Tel.: +66-25646700 (P.N. & S.R.)
| | - Anis Afifah
- Molecular and Applied Microbiology Laboratory, Diponegoro University, Jawa Tengah 50275, Indonesia;
| | - Suthathip Kittisenachai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
- Correspondence: (P.N.); (S.R.); Tel.: +66-25646700 (P.N. & S.R.)
| |
Collapse
|
19
|
Llamazares-Miguel D, Bodin E, Laurens M, Corio-Costet M, Nieto J, Fernández-Navarro J, Mena-Petite A, Diez-Navajas AM. Genetic regulation in Vitis vinifera by approved basic substances against downy mildew. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Wang Z, Gou X. The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. Int J Mol Sci 2021; 23:ijms23010343. [PMID: 35008769 PMCID: PMC8745683 DOI: 10.3390/ijms23010343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.
Collapse
|
21
|
Regmi H, Abdelsamad N, DiGennaro P, Desaeger J. Potential of nicotinamide adenine dinucleotide (NAD) for management of root-knot nematode in tomato. J Nematol 2021; 53:e2021-94. [PMID: 34790900 PMCID: PMC8588725 DOI: 10.21307/jofnem-2021-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) has been shown to induce plant defense responses to different plant pathogens, including reducing northern root-knot nematode, Meloidogyne hapla, penetration and increasing plant mass in tomato. We wanted to further evaluate NAD that are effective against the more economically important species, M. incognita and whether NAD treatments of tomato seedlings in transplant trays can protect plants in the field. Different NAD concentrations (1 mM, 0.1 mM and 0.01 mM) and three application timings (pre; post; pre and post inoculation) were evaluated in growth room and greenhouse trials. The highest tested NAD concentration (1 mM) suppressed second-stage juveniles (J2) infection for all three application methods. Root gall ratings at 30 days after inoculation (DAI) were also suppressed by 1 mM NAD compared to the other two concentrations, and egg mass number was significantly suppressed for all concentrations and application timings compared to the non-treated control. The rate of 1 mM NAD for all three application timings also improved plant growth at 30 DAI. Long-term effects of 1 mM NAD (pre, pre + post, or post applications) on nematode infection, growth and yield of tomato were evaluated in two additional experiments. All NAD applications suppressed root galls after 60 days, but only the pre + post 1 mM NAD application suppressed gall severity at 105 days, as well as suppressed egg counts by 50% at 60 DAT. No significant difference in plant biomass and fruit yield after 105 days was observed among the treatments. Two field trials were conducted in spring and fall 2020 using tomato seedlings (cv. HM 1823) treated with two different NAD concentrations (1 mM and 5 mM in spring; 5 mM and 10 mM in fall) and transplanting seedlings in fumigated (chloropicrin ± 1,3-dichloropropene) and non-fumigated plastic-mulch beds. No significant impact of NAD in terms of reducing RKN severity or overall tomato growth and production was seen in fumigated beds, but in non-fumigated beds 5 mM NAD slightly increased early fruit yield in spring, and 10 mM NAD reduced root-knot soil populations in fall.
Collapse
Affiliation(s)
- Homan Regmi
- Entomology and Nematology Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL, 33598
| | - Noor Abdelsamad
- United States Department of Agriculture-Agriculture Research Services (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648
| | - Peter DiGennaro
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32608
| | - Johan Desaeger
- Entomology and Nematology Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL, 33598
| |
Collapse
|
22
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
23
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
24
|
Knockdown of Quinolinate Phosphoribosyltransferase Results in Decreased Salicylic Acid-Mediated Pathogen Resistance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22168484. [PMID: 34445186 PMCID: PMC8395217 DOI: 10.3390/ijms22168484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.
Collapse
|
25
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
26
|
Nicotinamide Effectively Suppresses Fusarium Head Blight in Wheat Plants. Int J Mol Sci 2021; 22:ijms22062968. [PMID: 33804001 PMCID: PMC8000930 DOI: 10.3390/ijms22062968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Pyridine nucleotides such as a nicotinamide adenine dinucleotide (NAD) are known as plant defense activators. We previously reported that nicotinamide mononucleotide (NMN) enhanced disease resistance against fungal pathogen Fusarium graminearum in barley and Arabidopsis. In this study, we reveal that the pretreatment of nicotinamide (NIM), which does not contain nucleotides, effectively suppresses disease development of Fusarium Head Blight (FHB) in wheat plants. Correspondingly, deoxynivalenol (DON) mycotoxin accumulation was also significantly decreased by NIM pretreatment. A metabolome analysis showed that several antioxidant and antifungal compounds such as trigonelline were significantly accumulated in the NIM-pretreated spikes after inoculation of F. graminearum. In addition, some metabolites involved in the DNA hypomethylation were accumulated in the NIM-pretreated spikes. On the other hand, fungal metabolites DON and ergosterol peroxide were significantly reduced by the NIM pretreatment. Since NIM is relative stable and inexpensive compared with NMN and NAD, it may be more useful for the control of symptoms of FHB and DON accumulation in wheat and other crops.
Collapse
|
27
|
Ueda K, Nakajima Y, Inoue H, Kobayashi K, Nishiuchi T, Kimura M, Yaeno T. Nicotinamide Mononucleotide Potentiates Resistance to Biotrophic Invasion of Fungal Pathogens in Barley. Int J Mol Sci 2021; 22:ijms22052696. [PMID: 33800043 PMCID: PMC7962114 DOI: 10.3390/ijms22052696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.
Collapse
Affiliation(s)
- Kana Ueda
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Yuichi Nakajima
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Hiroshi Inoue
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Kappei Kobayashi
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Takumi Nishiuchi
- Institution for Gene Research, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan;
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Takashi Yaeno
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
- Correspondence:
| |
Collapse
|
28
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
29
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
30
|
Fernie A, Hashida SN, Yoshimura K, Gakière B, Mou Z, Pétriacq P. Editorial: NAD Metabolism and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:146. [PMID: 32161612 PMCID: PMC7054218 DOI: 10.3389/fpls.2020.00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Alisdair Fernie
- Department of Molecular Physiology, MPI of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shin-nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Abiko-shi, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology Chubu University, Kasugai, Japan
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRAE, Université d’Evry, Université Paris-Diderot, Université Paris-Sud, Sorbonne Paris-Cité, Saclay Plant Sciences, Orsay, France
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR BFP, Plateforme Bordeaux Metabolome, Villenave d’Ornon, France
| |
Collapse
|
31
|
Pietrowska-Borek M, Dobrogojski J, Sobieszczuk-Nowicka E, Borek S. New Insight into Plant Signaling: Extracellular ATP and Uncommon Nucleotides. Cells 2020; 9:E345. [PMID: 32024306 PMCID: PMC7072326 DOI: 10.3390/cells9020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
New players in plant signaling are described in detail in this review: extracellular ATP (eATP) and uncommon nucleotides such as dinucleoside polyphosphates (NpnN's), adenosine 5'-phosphoramidate (NH2-pA), and extracellular NAD+ and NADP+ (eNAD(P)+). Recent molecular, physiological, and biochemical evidence implicating concurrently the signaling role of eATP, NpnN's, and NH2-pA in plant biology and the mechanistic events in which they are involved are discussed. Numerous studies have shown that they are often universal signaling messengers, which trigger a signaling cascade in similar reactions and processes among different kingdoms. We also present here, not described elsewhere, a working model of the NpnN' and NH2-pA signaling network in a plant cell where these nucleotides trigger induction of the phenylpropanoid and the isochorismic acid pathways yielding metabolites protecting the plant against various types of stresses. Through these signals, the plant responds to environmental stimuli by intensifying the production of various compounds, such as anthocyanins, lignin, stilbenes, and salicylic acid. Still, more research needs to be performed to identify signaling networks that involve uncommon nucleotides, followed by omic experiments to define network elements and processes that are controlled by these signals.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| |
Collapse
|
32
|
Lee HJ, Kim HS, Park JM, Cho HS, Jeon JH. PIN-mediated polar auxin transport facilitates root-obstacle avoidance. THE NEW PHYTOLOGIST 2020; 225:1285-1296. [PMID: 31336402 DOI: 10.1111/nph.16076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Plants sense mechanical stimuli to recognise nearby obstacles and change their growth patterns to adapt to the surrounding environment. When roots encounter an obstacle, they rapidly bend away from the impenetrable surface and find the edge of the barrier. However, the molecular mechanisms underlying root-obstacle avoidance are largely unknown. Here, we demonstrate that PIN-FORMED (PIN)-mediated polar auxin transport facilitates root bending during obstacle avoidance. We analysed two types of bending after roots touched barriers. In auxin receptor mutants, the rate of root movement during first bending was largely delayed. Gravity-oriented second bending was also disturbed in these mutants. The reporter assays showed that asymmetrical auxin responses occurred in the roots during obstacle avoidance. Pharmacological analysis suggested that polar auxin transport mediates local auxin accumulation. We found that PINs are required for auxin-assisted root bending during obstacle avoidance. We propose that rapid root movement during obstacle avoidance is not just a passive but an active bending completed through polar auxin transport. Our findings suggest that auxin plays a role in thigmotropism during plant-obstacle interactions.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| |
Collapse
|
33
|
Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat Commun 2019; 10:4810. [PMID: 31641112 PMCID: PMC6805918 DOI: 10.1038/s41467-019-12781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana. Systemic signals allows plants to mount immune responses in sites that are distal from the local infection site. Here, the authors provide evidence that nicotinamide adenine dinucleotide (NAD + ) is a potential systemic signal that induces immunity via the lectin receptor kinase LecRK-VI.2 and BAK1.
Collapse
|
34
|
Decros G, Beauvoit B, Colombié S, Cabasson C, Bernillon S, Arrivault S, Guenther M, Belouah I, Prigent S, Baldet P, Gibon Y, Pétriacq P. Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. FRONTIERS IN PLANT SCIENCE 2019; 10:1201. [PMID: 31681351 PMCID: PMC6798084 DOI: 10.3389/fpls.2019.01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/02/2019] [Indexed: 05/12/2023]
Abstract
Central metabolism is the engine of plant biomass, supplying fruit growth with building blocks, energy, and biochemical cofactors. Among metabolic cornerstones, nicotinamide adenine dinucleotide (NAD) is particularly pivotal for electron transfer through reduction-oxidation (redox) reactions, thus participating in a myriad of biochemical processes. Besides redox functions, NAD is now assumed to act as an integral regulator of signaling cascades involved in growth and environmental responses. However, the regulation of NAD metabolism and signaling during fruit development remains poorly studied and understood. Here, we benefit from RNAseq and proteomic data obtained from nine growth stages of tomato fruit (var. Moneymaker) to dissect mRNA and protein profiles that link to NAD metabolism, including de novo biosynthesis, recycling, utilization, and putative transport. As expected for a cofactor synthesis pathway, protein profiles failed to detect enzymes involved in NAD synthesis or utilization, except for nicotinic acid phosphoribosyltransferase (NaPT) and nicotinamidase (NIC), which suggested that most NAD metabolic enzymes were poorly represented quantitatively. Further investigations on transcript data unveiled differential expression patterns during fruit development. Interestingly, among specific NAD metabolism-related genes, early de novo biosynthetic genes were transcriptionally induced in very young fruits, in association with NAD kinase, while later stages of fruit growth rather showed an accumulation of transcripts involved in later stages of de novo synthesis and in NAD recycling, which agreed with augmented NAD(P) levels. In addition, a more global overview of 119 mRNA and 78 protein significant markers for NAD(P)-dependent enzymes revealed differential patterns during tomato growth that evidenced clear regulations of primary metabolism, notably with respect to mitochondrial functions. Overall, we propose that NAD metabolism and signaling are very dynamic in the developing tomato fruit and that its differential regulation is certainly critical to fuel central metabolism linking to growth mechanisms.
Collapse
Affiliation(s)
| | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Cécile Cabasson
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Stéphane Bernillon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Stéphanie Arrivault
- Department 2, Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Manuela Guenther
- Department 2, Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| |
Collapse
|
35
|
Liu Z, Shi L, Weng Y, Zou H, Li X, Yang S, Qiu S, Huang X, Huang J, Hussain A, Zhang K, Guan D, He S. ChiIV3 Acts as a Novel Target of WRKY40 to Mediate Pepper Immunity Against Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1121-1133. [PMID: 31039081 DOI: 10.1094/mpmi-11-18-0313-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ChiIV3, a chitinase of pepper (Capsicum annuum), stimulates cell death in pepper plants. However, there are only scarce reports on its role in resistance against bacterial wilt disease such as that caused by Ralstonia solanacearum and their transcriptional regulation. In this study, the silencing of ChiIV3 in pepper plants significantly reduced the resistance to R. solanacearum. The transcript of ChiIV3 was induced by R. solanacearum inoculation (RSI) as well as exogenous application of methyl jasmonate and abscisic acid. The bioinformatics analysis revealed that the ChiIV3 promoter consists of multiple stress-related cis elements, including six W-boxes and one MYB1AT. With the 5' deletion assay in the ChiIV3 promoter, the W4-box located from -640 to -635 bp was identified as the cis element that is required for the response to RSI. In addition, the W4-box element was shown to be essential for the binding of the ChiIV3 promoter by the WRKY40 transcription factor, which is known to positively regulate the defense response to R. solanacearum. Site-directed mutagenesis in the W4-box sequence impaired the binding of WRKY40 to the ChiIV3 promoter. Subsequently, the transcription of ChiIV3 decreased in WRKY40-silenced pepper plants. These results demonstrated that the expression of the defense gene ChiIV3 is controlled through multiple modes of regulation, and WRKY40 directly binds to the W4-box element of the ChiIV3 promoter region for its transcriptional regulation.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shanshan Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Xueying Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Jinfeng Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Kan Zhang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| |
Collapse
|
36
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
37
|
Abdelsamad N, Regmi H, Desaeger J, DiGennaro P. Nicotinamide adenine dinucleotide induced resistance against root-knot nematode Meloidogyne hapla is based on increased tomato basal defense. J Nematol 2019; 51:1-10. [PMID: 31088034 PMCID: PMC6930958 DOI: 10.21307/jofnem-2019-022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 11/11/2022] Open
Abstract
Root-knot nematodes (RKN; Meloidogyne spp.) are among the most damaging pests to tomato production in the USA and worldwide, with yield losses ranging from 25 to 100%. Host resistance conferred by the Mi gene in tomato is effective against some species of RKN (e.g. M. incognita, M. javanica, and M. arenaria); however, there are virulent species and lines including M. hapla and M. eterolobii that break Mi-mediated resistance. Plant innate immunity is another possible form of defense against pathogen attack and is known to be induced by chemical elicitors. Nicotinamide adenine dinucleotide (NAD) is one such chemical elicitor that regulates plant defense responses to multiple biotic stresses. In this study, we investigated the role of NAD in the context of induced tomato innate immunity and RKN pathogenicity in two tomato cultivars; VFN and Rutgers, with and without Mi, respectively. Single soil drench application of NAD 24 hr before nematode inoculation significantly induced defense response pathways, reduced infective-juveniles penetration, number of galls, and increased plant mass in both cultivars. Importantly, we observed no direct toxic effects of NAD on nematode viability and infectivity. The results presented here suggest that NAD induces resistance against RKN pathogenicity likely through the accumulation of tomato basal defense responses rather than the direct effect on the infective-juveniles behavior.
Collapse
Affiliation(s)
- Noor Abdelsamad
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville
| | - H Regmi
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville ; Gulf Coast Research and Education Center, University of Florida , Wimauma
| | - J Desaeger
- Gulf Coast Research and Education Center, University of Florida , Wimauma
| | - P DiGennaro
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville
| |
Collapse
|
38
|
Gouhier-Darimont C, Stahl E, Glauser G, Reymond P. The Arabidopsis Lectin Receptor Kinase LecRK-I.8 Is Involved in Insect Egg Perception. FRONTIERS IN PLANT SCIENCE 2019; 10:623. [PMID: 31134123 PMCID: PMC6524003 DOI: 10.3389/fpls.2019.00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 05/16/2023]
Abstract
Plants induce defense responses after insect egg deposition, but very little is known about the perception mechanisms. In Arabidopsis thaliana, eggs of the specialist insect Pieris brassicae trigger accumulation of reactive oxygen species (ROS) and salicylic acid (SA), followed by induction of defense genes and localized necrosis. Here, the involvement of the clade I L-type lectin receptor kinase LecRK-I.8 in these responses was studied. Expression of LecRK-I.8 was upregulated at the site of P. brassicae oviposition and egg extract (EE) treatment. ROS, SA, cell death, and expression of PR1 were substantially reduced in the Arabidopsis knock-out mutant lecrk-I.8 after EE treatment. In addition, EE-induced systemic resistance against Pseudomonas syringae was abolished in lecrk-I.8. Expression of ten clade I homologs of LecRK-I.8 was also induced by EE treatment, but single mutants displayed only weak alteration of EE-induced PR1 expression. These results demonstrate that LecRK-I.8 is an early component of egg perception.
Collapse
Affiliation(s)
| | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Philippe Reymond,
| |
Collapse
|
39
|
Alferez FM, Gerberich KM, Li JL, Zhang Y, Graham JH, Mou Z. Exogenous Nicotinamide Adenine Dinucleotide Induces Resistance to Citrus Canker in Citrus. FRONTIERS IN PLANT SCIENCE 2018; 9:1472. [PMID: 30356715 PMCID: PMC6189366 DOI: 10.3389/fpls.2018.01472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/20/2018] [Indexed: 05/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a universal electron carrier that participates in important intracellular metabolic reactions and signaling events. Interestingly, emerging evidence in animals indicates that cellular NAD can be actively or passively released into the extracellular space, where it is processed or perceived by ectoenzymes or cell-surface receptors. We have recently shown in Arabidopsis thaliana that exogenous NAD induces defense responses, that pathogen infection leads to release of NAD into the extracellular space at concentrations sufficient for defense activation, and that depletion of extracellular NAD (eNAD) by transgenic expression of the human NAD-hydrolyzing ectoenzyme CD38 inhibits plant immunity. We therefore hypothesize that, during plant-microbe interactions, NAD is released from dead or dying cells into the extracellular space where it interacts with adjacent naïve cells' surface receptors, which in turn activate downstream immune signaling. However, it is currently unknown whether eNAD signaling is unique to Arabidopsis or the Brassicaceae family. In this study, we treated citrus plants with exogenous NAD+ and tested NAD+-induced transcriptional changes and disease resistance. Our results show that NAD+ induces profound transcriptome changes and strong resistance to citrus canker, a serious citrus disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc). Furthermore, NAD+-induced resistance persists in new flushes emerging after removal of the tissues previously treated with NAD+. Finally, NAD+ treatment primes citrus tissues, resulting in a faster and stronger induction of multiple salicylic acid pathway genes upon subsequent Xcc infection. Taken together, these results indicate that exogenous NAD+ is able to induce immune responses in citrus and suggest that eNAD may also be an elicitor in this woody plant species.
Collapse
Affiliation(s)
- Fernando M. Alferez
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Kayla M. Gerberich
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Gakière B, Fernie AR, Pétriacq P. More to NAD + than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radic Biol Med 2018; 122:86-95. [PMID: 29309893 DOI: 10.1016/j.freeradbiomed.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity.
Collapse
Affiliation(s)
- Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France; Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. ParisSaclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam-Golm, Germany
| | - Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN Sheffield, United Kingdom; UMR 1332 Biologie du Fruit et Pathologie, INRA Bordeaux & Université de Bordeaux, F-33883 Villenave d'Ornon, France.
| |
Collapse
|
41
|
Poltronieri P, Čerekovic N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. CHALLENGES 2018; 9:3. [DOI: 10.3390/challe9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.
Collapse
|
42
|
Mou Z. Extracellular pyridine nucleotides as immune elicitors in arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1388977. [PMID: 29035673 PMCID: PMC5703255 DOI: 10.1080/15592324.2017.1388977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/25/2023]
Abstract
The pyridine nucleotides nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are coenzymes that function in both metabolic reactions and intracellular signaling. Emerging evidence from animal research indicates that NAD(P) also acts in the extracellular space (ECS). We have shown in the model plant Arabidopsis that (1) exogenous NAD(P) induces immune responses, (2) pathogen infection causes leakage of intracellular NAD(P) into the extracellular fluid at concentrations sufficient to induce immune responses, and (3) removal of extracellular NAD(P) [eNAD(P)] by expressing the human NAD(P)-metabolizing ectoenzyme CD38 partially compromises systemic acquired resistance. Based on these results, we hypothesize that eNAD(P) is a novel damage-associated molecular pattern (DAMP) in plants; during plant-microbe interaction, intracellular NAD(P) is released from dead or dying cells into the ECS where it interacts with the adjacent healthy cells' surface receptors/targets, which in turn activate downstream specific immune signaling pathways. Our recent identification of LecRK-I.8, a lectin receptor kinase, as the first cell surface NAD+-binding receptor has provided compelling evidence for this hypothesis. Further identification of cell surface eNAD(P) receptors/targets and their downstream signaling components in Arabidopsis as well as determination of the generality of eNAD(P) signaling in crops will help establish eNAD(P) as a conserved DAMP in plants.
Collapse
Affiliation(s)
- Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
43
|
Palmer IA, Shang Z, Fu ZQ. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. TRENDS IN PLANT SCIENCE 2017; 22:779-791. [PMID: 28779900 DOI: 10.1016/j.tplants.2017.07.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| | - Rory Pruitt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Yu X, Feng B, He P, Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:109-137. [PMID: 28525309 PMCID: PMC6240913 DOI: 10.1146/annurev-phyto-080516-035649] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| | - Baomin Feng
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
46
|
Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep 2017; 7:6389. [PMID: 28743869 PMCID: PMC5526872 DOI: 10.1038/s41598-017-06048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), is known to act as a functional molecule in animals, whereas its function in plants is largely unknown. In this study, we found that NMN accumulated in barley cultivars resistant to phytopathogenic fungal Fusarium species. Although NMN does not possess antifungal activity, pretreatment with NMN and related metabolites enhanced disease resistance to Fusarium graminearum in Arabidopsis leaves and flowers and in barley spikes. The NMN-induced Fusarium resistance was accompanied by activation of the salicylic acid-mediated signalling pathway and repression of the jasmonic acid/ethylene-dependent signalling pathways in Arabidopsis. Since NMN-induced disease resistance was also observed in the SA-deficient sid2 mutant, an SA-independent signalling pathway also regulated the enhanced resistance induced by NMN. Compared with NMN, NAD and NADP, nicotinamide pretreatment had minor effects on resistance to F. graminearum. Constitutive expression of the NMNAT gene, which encodes a rate-limiting enzyme for NAD biosynthesis, resulted in enhanced disease resistance in Arabidopsis. Thus, modifying the content of NAD-related metabolites can be used to optimize the defence signalling pathways activated in response to F. graminearum and facilitates the control of disease injury and mycotoxin accumulation in plants.
Collapse
Affiliation(s)
- Akihiro Miwa
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Tamaoki
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan.
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan.
| |
Collapse
|
47
|
Wang C, Zhou M, Zhang X, Yao J, Zhang Y, Mou Z. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. eLife 2017; 6:e25474. [PMID: 28722654 PMCID: PMC5560858 DOI: 10.7554/elife.25474] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Mingqi Zhou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Jin Yao
- Target Sciences, GlaxoSmithKline, King of Prussia, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| |
Collapse
|
48
|
Versluys M, Tarkowski ŁP, Van den Ende W. Fructans As DAMPs or MAMPs: Evolutionary Prospects, Cross-Tolerance, and Multistress Resistance Potential. FRONTIERS IN PLANT SCIENCE 2017; 7:2061. [PMID: 28123393 PMCID: PMC5225100 DOI: 10.3389/fpls.2016.02061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/26/2016] [Indexed: 05/19/2023]
Abstract
This perspective paper proposes that endogenous apoplastic fructans in fructan accumulating plants, released after stress-mediated cellular leakage, or increased by exogenous application, can act as damage-associated molecular patterns (DAMPs), priming plant innate immunity through ancient receptors and defense pathways that most probably evolved to react on microbial fructans acting as microbe-associated molecular patterns (MAMPs). The proposed model is placed in an evolutionary perspective. How this type of DAMP signaling may contribute to cross-tolerance and multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be considered potential players in DAMP-mediated stress signaling. It is proposed that mixtures of DAMP priming formulations hold great promise as natural and sustainable alternatives for toxic agrochemicals.
Collapse
|
49
|
Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K, Shigeoka S. Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Sci Rep 2016; 6:37432. [PMID: 27874073 PMCID: PMC5118724 DOI: 10.1038/srep37432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The levels and redox states of pyridine nucleotides, such as NADP(H), regulate the cellular redox homeostasis, which is crucial for photooxidative stress response in plants. However, how they are controlled is poorly understood. An Arabidopsis Nudix hydrolase, AtNUDX19, was previously identified to have NADPH hydrolytic activity in vitro, suggesting this enzyme to be a regulator of the NADPH status. We herein examined the physiological role of AtNUDX19 using its loss-of-function mutants. NADPH levels were increased in nudx19 mutants under both normal and high light conditions, while NADP+ and NAD+ levels were decreased. Despite the high redox states of NADP(H), nudx19 mutants exhibited high tolerance to moderate light- or methylviologen-induced photooxidative stresses. This tolerance might be partially attributed to the activation of either or both photosynthesis and the antioxidant system. Furthermore, a microarray analysis suggested the role of ANUDX19 in regulation of the salicylic acid (SA) response in a negative manner. Indeed, nudx19 mutants accumulated SA and showed high sensitivity to the hormone. Our findings demonstrate that ANUDX19 acts as an NADPH pyrophosphohydrolase to modulate cellular levels and redox states of pyridine nucleotides and fine-tunes photooxidative stress response through the regulation of photosynthesis, antioxidant system, and possibly hormonal signaling.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Keisuke Ikemoto
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomofumi Yoshida
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan (K.Y.)
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
50
|
Pétriacq P, Tcherkez G, Gakière B. Pyridine nucleotides induce changes in cytosolic pools of calcium in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1249082. [PMID: 27767383 PMCID: PMC5157894 DOI: 10.1080/15592324.2016.1249082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/20/2023]
Abstract
NAD is a pyridine nucleotide that is involved in cell metabolism and signaling of plant growth and stress. Recently, we reported on the multifaceted nature of NAD-inducible immunity in Arabidopsis. We identified NAD as an integral regulator of multiple defense layers such as production of ROS, deposition of callose, stimulation of cell death and modulation of defense metabolism including the defense hormones SA, JA and ABA, and other defense-associated metabolites. Altogether, NAD-induced immune effects confer resistance to diverse pathogenic microbes. Our addendum to this work further demonstrates an impact of NAD on the cytosolic calcium pool, a well-known component of early plant defense response.
Collapse
Affiliation(s)
- Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra ACT, Australia
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Université Paris-Saclay, Orsay, France
| |
Collapse
|