1
|
Shi X, Feng C, Qin H, Wang J, Zhao Q, Jiao C, Zhang Y. Identification of QTNs and Their Candidate Genes for Boll Number and Boll Weight in Upland Cotton. Genes (Basel) 2024; 15:1032. [PMID: 39202392 PMCID: PMC11353353 DOI: 10.3390/genes15081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Genome-wide association study (GWAS) has identified numerous significant loci for boll number (BN) and boll weight (BW), which play an essential role in cotton (Gossypium spp.) yield. The North Carolina design II (NC II) genetic mating population exhibits a greater number of genetic variations than other populations, which may facilitate the identification of additional genes. Accordingly, the 3VmrMLM method was employed for the analysis of upland cotton (Gossypium hirsutum L.) in an incomplete NC II genetic mating population across three environments. A total of 204 quantitative trait nucleotides (QTNs) were identified, of which 25 (24.75%) BN and 30 (29.13%) BW QTNs were of small effect (<1%) and 24 (23.76%) BN and 20 (19.42%) BW QTNs were rare (<10%). In the vicinity of these QTNs, two BN-related genes and two BW-related genes reported in previous studies were identified, in addition to five BN candidate genes and six BW candidate genes, which were obtained using differential expression analysis, gene function annotation, and haplotype analysis. Among these, six candidate genes were identified as homologs of Arabidopsis genes. The present study addresses the limitation of heritability missing and uncovers several new candidate genes. The findings of this study can provide a basis for further research and marker-assisted selection in upland cotton.
Collapse
Affiliation(s)
- Xiaoshi Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (J.W.); (Q.Z.)
| | - Changhui Feng
- Institute of Industrual Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.F.); (H.Q.)
| | - Hongde Qin
- Institute of Industrual Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.F.); (H.Q.)
| | - Jingtian Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (J.W.); (Q.Z.)
| | - Qiong Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (J.W.); (Q.Z.)
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuanming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (J.W.); (Q.Z.)
| |
Collapse
|
2
|
Gong C, Lu X, Zhu H, Anees M, He N, Liu W. Genome-wide association study provides genetic insights into natural variation in watermelon rind thickness and single fruit weight. FRONTIERS IN PLANT SCIENCE 2022; 13:1074145. [PMID: 36561452 PMCID: PMC9763438 DOI: 10.3389/fpls.2022.1074145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rind thickness and fruit weight are agronomic traits closely related to quality and yield, which have attracted much attention from consumers and breeders. However, the genetic mechanism of these two traits is still not well understood in natural populations. In this study, rind thickness and single fruit weight in 151 watermelon accessions were determined in 2019 and 2020, and genome-wide association analysis was performed by integrating phenotypic and genotype data. Abundant phenotypic variation was found in the test population, and the watermelon with thinner rind thickness tended to have smaller fruit weights. Five significant SNPs were closely associated with rind thickness on chromosome 2 by Genome-wide association study (GWAS), i.e., 32344170, 32321308, 32304738, 32328501, and 32311192. And there were 21 genes were annotated in the candidate interval, most notably, Cla97C02G044160 belonged to the MADS family, and part of the genes in this family played an important role in regulating organ size, further analysis of gene structure, gene expression level, and phylogenetic tree showed that Cla97C02G044160 was a candidate gene for regulating target traits. In conclusion, our study provides molecular insights into the natural variation of watermelon rind thickness and single fruit weight, meanwhile, providing data support for molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Leng YJ, Yao YS, Yang KZ, Wu PX, Xia YX, Zuo CR, Luo JH, Wang P, Liu YY, Zhang XQ, Ye D, Le J, Chen LQ. Arabidopsis ERdj3B coordinates with ERECTA-family receptor kinases to regulate ovule development and the heat stress response. THE PLANT CELL 2022; 34:3665-3684. [PMID: 35897146 PMCID: PMC9516030 DOI: 10.1093/plcell/koac226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The endoplasmic reticulum-localized DnaJ family 3B (ERdj3B), is a component of the stromal cell-derived factor 2 (SDF2)-ERdj3B-binding immunoglobulin protein (BiP) chaperone complex, which functions in protein folding, translocation, and quality control. We found that ERdj3B mutations affected integument development in the Ler ecotype but not in the Col-0 ecotype of Arabidopsis (Arabidopsis thaliana). Map-based cloning identified the ERECTA (ER) gene as a natural modifier of ERdj3B. The double mutation of ERdj3B and ER caused a major defect in the inner integument under heat stress. Additional mutation of the ER paralog ERECTA-LIKE 1 (ERL1) or ERL2 to the erdj3b er double mutant exacerbated the defective integument phenotype. The double mutation of ER and SDF2, the other component of the SDF2-ERdj3B-BiP complex, resulted in similar defects in the inner integument. Furthermore, both the protein abundance and plasma membrane partitioning of ER, ERL1, and ERL2 were markedly reduced in erdj3b plants, indicating that the SDF2-ERdj3B-BiP chaperone complex might control the translocation of ERECTA-family proteins from the endoplasmic reticulum to the plasma membrane. Our results suggest that the SDF2-ERdj3B-BiP complex functions in ovule development and the heat stress response in coordination with ERECTA-family receptor kinases.
Collapse
Affiliation(s)
| | | | | | - Pei-Xiang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu-Xin Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao-Ran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Hong Luo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang-Yang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
4
|
Li F, Jia Y, Zhou S, Chen X, Xie Q, Hu Z, Chen G. SlMBP22 overexpression in tomato affects flower morphology and fruit development. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153687. [PMID: 35378388 DOI: 10.1016/j.jplph.2022.153687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
MADS-domain transcription factors have been identified as key regulators involved in proper flower and fruit development in angiosperms. As members of the MADS-box subfamily, Bsister (Bs) genes have been observed to play an important role during the evolution of the reproductive organs in seed plants. However, their effects on reproductive development in fruit crops, such as tomato (Solanum lycopersicum), remain unclear. Here, we found that SlMBP22 overexpression (SlMBP22-OE) resulted in considerable alterations in floral morphology and affected the expression levels of several floral homeotic genes. Further analysis by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SlMBP22 forms dimers with class A protein MACROCALYX (MC) and SEPALLATA (SEP) floral homeotic proteins TM5 and TM29, respectively. In addition, pollen viability and cross-fertilization assays suggested that the defect in female reproductive development was responsible for the infertility phenotype observed in the strong overexpression transgenic plants. Transgenic fruits with mild overexpression exhibited reduced size as a result of reduced cell expansion, rather than impaired cell division. Additionally, SlMBP22 overexpression in tomato not only affected proanthocyanidin (PA) accumulation but also altered seed dormancy. Taken together, these findings may provide new insights into the knowledge of Bs MADS-box genes in flower and fruit development in tomato.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yanhua Jia
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
5
|
Zumajo-Cardona C, Ambrose BA. Fleshy or dry: transcriptome analyses reveal the genetic mechanisms underlying bract development in Ephedra. EvoDevo 2022; 13:10. [PMID: 35477429 PMCID: PMC9047513 DOI: 10.1186/s13227-022-00195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gnetales have a key phylogenetic position in the evolution of seed plants. Among the Gnetales, there is an extraordinary morphological diversity of seeds, the genus Ephedra, in particular, exhibits fleshy, coriaceous or winged (dry) seeds. Despite this striking diversity, its underlying genetic mechanisms remain poorly understood due to the limited studies in gymnosperms. Expanding the genomic and developmental data from gymnosperms contributes to a better understanding of seed evolution and development. RESULTS We performed transcriptome analyses on different plant tissues of two Ephedra species with different seed morphologies. Anatomical observations in early developing ovules, show that differences in the seed morphologies are established early in their development. The transcriptomic analyses in dry-seeded Ephedra californica and fleshy-seeded Ephedra antisyphilitica, allowed us to identify the major differences between the differentially expressed genes in these species. We detected several genes known to be involved in fruit ripening as upregulated in the fleshy seed of Ephedra antisyphilitica. CONCLUSIONS This study allowed us to determine the differentially expressed genes involved in seed development of two Ephedra species. Furthermore, the results of this study of seeds with the enigmatic morphology in Ephedra californica and Ephedra antisyphilitica, allowed us to corroborate the hypothesis which suggest that the extra envelopes covering the seeds of Gnetales are not genetically similar to integument. Our results highlight the importance of carrying out studies on less explored species such as gymnosperms, to gain a better understanding of the evolutionary history of plants.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- New York Botanical Garden, Bronx, NY, USA. .,The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
6
|
Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose BA, Caporali E, Ezquer I, Mizzotti C. Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes (Basel) 2021; 12:1189. [PMID: 34440362 PMCID: PMC8393894 DOI: 10.3390/genes12081189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Seed development is under the control of complex and coordinated molecular networks required for the formation of its different components. The seed coat development largely determines final seed size and shape, in addition to playing a crucial role in protecting the embryo and promoting germination. In this study, we investigated the role of three transcription factors known to be active during seed development in Arabidopsis thaliana: SEEDSTICK (STK) and GORDITA (GOA), two MADS-domain proteins, and AUXIN RESPONSE FACTOR 2 (ARF2), belonging to the ARF family. Through a reverse genetic approach, we characterized the seed phenotypes of all the single, double and triple loss-of-function mutants in relation to seed size/shape and the effects on metabolic pathways occurring in the seed coat. This approach revealed that dynamic networks involving these TFs are active throughout ovule and seed development, affecting the formation of the seed coat. Notably, while the genetic interaction among these genes results in synergies that control the promotion of cell expansion in the seed coat upon pollination and production of proanthocyanidins, functional antagonists arise in the control of cell proliferation and release of mucilage.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Gregorio Orozco-Arroyo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, Mexico;
| | | | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| |
Collapse
|
7
|
Ye LX, Zhang JX, Hou XJ, Qiu MQ, Wang WF, Zhang JX, Hu CG, Zhang JZ. A MADS-Box Gene CiMADS43 Is Involved in Citrus Flowering and Leaf Development through Interaction with CiAGL9. Int J Mol Sci 2021; 22:ijms22105205. [PMID: 34069068 PMCID: PMC8156179 DOI: 10.3390/ijms22105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein–protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.
Collapse
|
8
|
Shoesmith JR, Solomon CU, Yang X, Wilkinson LG, Sheldrick S, van Eijden E, Couwenberg S, Pugh LM, Eskan M, Stephens J, Barakate A, Drea S, Houston K, Tucker MR, McKim SM. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development 2021; 148:dev.194894. [DOI: 10.1242/dev.194894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly influence grain yield and quality. Despite this, little is known about the underlying genetic control of these processes, especially in key temperate cereals such as barley and wheat. Using a combination of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue differentiation and elimination during grain development. These new roles of HvAP2 correlate with changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the B-sister gene, HvMADS29. Consistent with this, gene editing demonstrates that HvMADS29 shares roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel pleiotropic roles and regulatory interactions for an AP2-like gene controlling floret and grain development in a temperate cereal.
Collapse
Affiliation(s)
- Jennifer R. Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Charles Ugochukwu Solomon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Nigeria
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Laura G. Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott Sheldrick
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Ewan van Eijden
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sanne Couwenberg
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Laura M. Pugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Matthew R. Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Sarah M. McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| |
Collapse
|
9
|
Orchid B sister gene PeMADS28 displays conserved function in ovule integument development. Sci Rep 2021; 11:1205. [PMID: 33441740 PMCID: PMC7806631 DOI: 10.1038/s41598-020-79877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.
Collapse
|
10
|
Li F, Chen X, Zhou S, Xie Q, Wang Y, Xiang X, Hu Z, Chen G. Overexpression of SlMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110672. [PMID: 33218637 DOI: 10.1016/j.plantsci.2020.110672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
MADS-box transcription factors play crucial and diverse roles in plant growth and development, and the responses to biotic and abiotic stresses. However, the implementation of MADS-box transcription factors in regulating plant architecture and stress responses has not been fully explored in tomato. Here, we found that a novel MADS-box transcription factor, SlMBP22, participated in the control of agronomical traits, tolerance to abiotic stress, and regulation of auxin and gibberellin signalling. Transgenic plants overexpressing SlMBP22 (SlMBP22-OE) displayed pleiotropic phenotypes, including reduced plant height and leaf size, by affecting auxin and/or gibberellin signalling. SlMBP22 was induced by dehydration treatment, and SlMBP22-OE plants were more tolerant to drought stress than wild-type (WT). Furthermore, SlMBP22 overexpression plants accumulated more chlorophyll, starch and soluble sugar than WT, indicating that the darker green leaves might be attributed to increased chlorophyll levels in the transgenic plants. RNA-Seq results showed that the transcript levels of a series of genes related to chloroplast development, chlorophyll metabolism, starch and sucrose metabolism, hormone signalling, and stress responses were altered. Collectively, our data demonstrate that SlMBP22 plays an important role in both regulating tomato growth and resisting drought stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xiaoxue Xiang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
11
|
Tang Y, Wang J, Bao X, Wu Q, Yang T, Li H, Wang W, Zhang Y, Bai N, Guan Y, Dai J, Xie Y, Li S, Huo R, Cheng W. Genome-wide analysis of Jatropha curcas MADS-box gene family and functional characterization of the JcMADS40 gene in transgenic rice. BMC Genomics 2020; 21:325. [PMID: 32345214 PMCID: PMC7187513 DOI: 10.1186/s12864-020-6741-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Background Physic nut (Jatropha curcas), an inedible oilseed plant, is among the most promising alternative energy sources because of its high oil content, rapid growth and extensive adaptability. Proteins encoded by MADS-box family genes are important transcription factors participated in regulating plant growth, seed development and responses to abiotic stress. However, there has been no in-depth research on the MADS-box genes and their roles in physic nut. Results In our study, 63 MADS-box genes (JcMADSs) were identified in the physic nut genome, and classed into five groups (MIKCC, Mα, Mβ, Mγ, MIKC*) according to phylogenetic comparison with Arabidopsis homologs. Expression profile analysis based on RNA-seq suggested that many JcMADS genes had the strongest expression in seeds, and seven of them responded in leaves to at least one abiotic stressor (drought and/or salinity) at one or more time points. Transient expression analysis and a transactivation assay indicated that JcMADS40 is a nucleus-localized transcriptional activator. Plants overexpressing JcMADS40 did not show altered plant growth, but the overexpressing plants did exhibit reductions in grain size, grain length, grain width, 1000-seed weight and yield per plant. Further data on the reduced grain size in JcMADS40-overexpressing plants supported the putative role of JcMADS genes in seed development. Conclusions This study will be useful in order to further understand the process of MADS-box genes involved in regulating growth and development in addition to their functions in abiotic stress resistance, and will eventually provide a theoretical basis for the functional investigation and the exploitation of candidate genes for the molecular improvement of physic nut.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China. .,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China.
| | - Jian Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Henan, Zhoukou, China
| | - Qian Wu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Tongwen Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Han Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Wenxia Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yizhen Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Nannan Bai
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yaxin Guan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jiaxi Dai
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yanjie Xie
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Shen Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Rui Huo
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| | - Wei Cheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Henan, Zhoukou, China
| |
Collapse
|
12
|
Radial or Bilateral? The Molecular Basis of Floral Symmetry. Genes (Basel) 2020; 11:genes11040395. [PMID: 32268578 PMCID: PMC7230197 DOI: 10.3390/genes11040395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants.
Collapse
|
13
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
14
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
15
|
Dörken VM, Nimsch H, Rudall PJ. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. ANNALS OF BOTANY 2019; 123:133-143. [PMID: 30137225 PMCID: PMC6344100 DOI: 10.1093/aob/mcy150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/20/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Fleshy structures that promote biotic dispersal by ingestion have evolved many times in seed plants. Within the yew family Taxaceae sensu lato (six genera, including Cephalotaxus), it remains controversial whether the characteristic fleshy structure surrounding the seed is interpreted as a novel outgrowth of the base of the ovule (i.e. an aril) or a fleshy seed coat that is entirely derived from the integument (i.e. a sarcotesta). This paper presents a detailed study of both wild-type and teratological seed cones of Pseudotaxus chienii, including morphology, anatomy and ontogeny. METHODS Wild-type and teratological seed cones were investigated with the classical paraffin technique and subsequent astrablue/safranin staining and scanning electron microscopy. KEY RESULTS The wild-type seed cone of Pseudotaxus possesses a fleshy white aril that is cup-like and not entirely fused to the seed. In the teratological seed cones investigated, the aril was bilobed and consisted of two free halves. In both wild-type and teratological cones, the aril was initiated as two lateral primordia in a transverse plane, but in wild-type cones the two primordia became extended into a ring primordium, which grew apically, leading to the cup-like shape. The teratological seed cones lacked a ring primordium and the two lateral aril lobes remained free throughout their entire ontogeny, alternating with the scale-like leaves inserted below them on the same branch; in some cases, these leaves also became fleshy. CONCLUSIONS Based on the ontogeny and arrangement of the two fleshy aril lobes in the teratological seed cones of Pseudotaxus, we suggest that the typical aril of Taxaceae could be readily interpreted as a fused pair of strongly swollen leaves rather than a modified integument. Our investigations of the cup-like aril of Pseudotaxus demonstrate a similarity not only with other Taxaceae but also with relatively distantly related conifers such as Phyllocladus (Podocarpaceae).
Collapse
Affiliation(s)
- Veit Martin Dörken
- University of Konstanz, Department of Biology, Konstanz, Germany
- For correspondence. E-mail
| | - Hubertus Nimsch
- Forestry Arboretum Freiburg-Günterstal, Bollschweil, Germany
| | | |
Collapse
|
16
|
Kumar A, Pathak RK, Gayen A, Gupta S, Singh M, Lata C, Sharma H, Roy JK, Gupta SM. Systems biology of seeds: decoding the secret of biochemical seed factories for nutritional security. 3 Biotech 2018; 8:460. [PMID: 30370201 PMCID: PMC6200710 DOI: 10.1007/s13205-018-1483-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
Seeds serve as biochemical factories of nutrition, processing, bio-energy and storage related important bio-molecules and act as a delivery system to transmit the genetic information to the next generation. The research pertaining towards delineating the complex system of regulation of genes and pathways related to seed biology and nutrient partitioning is still under infancy. To understand these, it is important to know the genes and pathway(s) involved in the homeostasis of bio-molecules. In recent past with the advent and advancement of modern tools of genomics and genetic engineering, multi-layered 'omics' approaches and high-throughput platforms are being used to discern the genes and proteins involved in various metabolic, and signaling pathways and their regulations for understanding the molecular genetics of biosynthesis and homeostasis of bio-molecules. This can be possible by exploring systems biology approaches via the integration of omics data for understanding the intricacy of seed development and nutrient partitioning. These information can be exploited for the improvement of biologically important chemicals for large-scale production of nutrients and nutraceuticals through pathway engineering and biotechnology. This review article thus describes different omics tools and other branches that are merged to build the most attractive area of research towards establishing the seeds as biochemical factories for human health and nutrition.
Collapse
Affiliation(s)
- Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Aranyadip Gayen
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Manoj Singh
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Charu Lata
- Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Kumar Roy
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research (DIBER), DRDO, Haldwani, 263139 India
| |
Collapse
|
17
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
18
|
Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.). Genes (Basel) 2018; 9:genes9040193. [PMID: 29617274 PMCID: PMC5924535 DOI: 10.3390/genes9040193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.
Collapse
|
19
|
Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W, Gao Y, Li Z. The MADS-Box Gene SlMBP21 Regulates Sepal Size Mediated by Ethylene and Auxin in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:2241-2256. [PMID: 29069449 DOI: 10.1093/pcp/pcx158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.
Collapse
Affiliation(s)
- Ning Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Baowen Huang
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Ning Tang
- Collaborative Innovation Center of Special Plant Industry in Chongqing; Institute of Special Plants, Chongqing University of Arts and Sciences; Yongchuan 402160, Chongqing, China
| | - Wei Jian
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jian Zou
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jing Chen
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Haohao Cao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Sidra Habib
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Xuekui Dong
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Wen Wei
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Yanqiang Gao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| |
Collapse
|
20
|
Fiume E, Coen O, Xu W, Lepiniec L, Magnani E. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds. PLoS One 2017; 12:e0188148. [PMID: 29141031 PMCID: PMC5687734 DOI: 10.1371/journal.pone.0188148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization.
Collapse
Affiliation(s)
- Elisa Fiume
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, Orsay, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
21
|
Moyroud E, Monniaux M, Thévenon E, Dumas R, Scutt CP, Frohlich MW, Parcy F. A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. THE NEW PHYTOLOGIST 2017; 216:469-481. [PMID: 28233912 DOI: 10.1111/nph.14483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/05/2017] [Indexed: 05/26/2023]
Abstract
Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development. We found that WelLFY, one of two LEAFY-like genes in Welwitschia, could be an upstream regulator of the MADS-box genes APETALA3/PISTILLATA-like (B-genes). We demonstrated that, even though their DNA-binding domains are extremely similar, WelLFY and its paralogue WelNDLY exhibit distinct DNA-binding specificities, and that, unlike WelNDLY, WelLFY shares with its angiosperm orthologue the capacity to bind promoters of Welwitschia B-genes. Finally, we identified several cis-elements mediating these interactions in Welwitschia and obtained evidence that the link between LFY homologues and B-genes is also conserved in two other gymnosperms, Pinus and Picea. Although functional approaches to investigate cone development in gymnosperms are limited, our state-of-the-art biophysical techniques, coupled with expression studies, provide evidence that crucial links, central to the control of floral development, may already have existed before the appearance of flowers.
Collapse
Affiliation(s)
- Edwige Moyroud
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Marie Monniaux
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Emmanuel Thévenon
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Renaud Dumas
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Charles P Scutt
- Laboratoire de Reproduction et Développement des Plantes, UMR5667, CNRS, INRA, Université de Lyon, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Michael W Frohlich
- Laboratoire de Reproduction et Développement des Plantes, UMR5667, CNRS, INRA, Université de Lyon, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - François Parcy
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| |
Collapse
|
22
|
Qin G, Xu C, Ming R, Tang H, Guyot R, Kramer EM, Hu Y, Yi X, Qi Y, Xu X, Gao Z, Pan H, Jian J, Tian Y, Yue Z, Xu Y. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1108-1128. [PMID: 28654223 DOI: 10.1111/tpj.13625] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 05/21/2023]
Abstract
Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound.
Collapse
Affiliation(s)
- Gaihua Qin
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ray Ming
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Haibao Tang
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Romain Guyot
- Institut de Recherche pour le Développement, Diversité, Adaptation et Développement des Plantes, Montpellier, 34394, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yudong Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xingkai Yi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Yongjie Qi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Xiangyang Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhenghui Gao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Haifa Pan
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinping Tian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yiliu Xu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| |
Collapse
|
23
|
Xu W, Bobet S, Le Gourrierec J, Grain D, De Vos D, Berger A, Salsac F, Kelemen Z, Boucherez J, Rolland A, Mouille G, Routaboul JM, Lepiniec L, Dubos C. TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2859-2870. [PMID: 28830101 PMCID: PMC5853933 DOI: 10.1093/jxb/erx151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 05/27/2023]
Abstract
Flavonoids are secondary metabolites that fulfil a multitude of functions during the plant life cycle. In Arabidopsis proanthocyanidins (PAs) are flavonoids that specifically accumulate in the innermost integuments of the seed testa (i.e. endothelium), as well as in the chalaza and micropyle areas, and play a vital role in protecting the embryo against various biotic and abiotic stresses. PAs accumulation in the endothelium requires the activity of the MADS box transcription factor TRANSPARENT TESTA (TT) 16 (ARABIDOPSIS B-SISTER/AGAMOUS-LIKE 32) and the UDP-glycosyltransferase TT15 (UGT80B1). Interestingly tt16 and tt15 mutants display a very similar flavonoid profiles and patterns of PA accumulation. By using a combination of genetic, molecular, biochemical, and histochemical methods, we showed that both TT16 and TT15 act upstream the PA biosynthetic pathway, but through two distinct genetic routes. We also demonstrated that the activity of TT16 in regulating cell fate determination and PA accumulation in the endothelium is required in the chalaza prior to the globular stage of embryo development. Finally this study provides new insight showing that TT16 and TT15 functions extend beyond PA biosynthesis in the inner integuments of the Arabidopsis seed coat.
Collapse
Affiliation(s)
- W Xu
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - S Bobet
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J Le Gourrierec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - D Grain
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - D De Vos
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - A Berger
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - F Salsac
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - Z Kelemen
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J Boucherez
- Biochimie et Physiologie Moleculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier Cedex, France
| | - A Rolland
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - G Mouille
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J M Routaboul
- Genomic and Biotechnology of Fruit, UMR 990 INRA/INP-ENSAT, 24 Chemin de Borderouge-Auzeville, CS, Castanet-Tolosan Cedex, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - C Dubos
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
- Biochimie et Physiologie Moleculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier Cedex, France
| |
Collapse
|
24
|
Dreni L, Zhang D. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1625-1638. [PMID: 26956504 DOI: 10.1093/jxb/erw046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future.
Collapse
Affiliation(s)
- Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia
| |
Collapse
|
25
|
Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:284-98. [PMID: 25917508 DOI: 10.1111/pbi.12383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 05/04/2023]
Abstract
Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Lovisetto A, Masiero S, Rahim MA, Mendes MAM, Casadoro G. Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop. Evol Dev 2015; 17:82-91. [PMID: 25627715 DOI: 10.1111/ede.12106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One successful mechanism of seed dispersal in plants involves production of edible fleshy structures which attract frugivorous animals and transfer this task to them. Not only Angiosperms but also Gymnosperms may use the fleshy fruit habit for seed dispersal, and a similar suite of MADS-box genes may be expressed as these structures form. Magnolia grandiflora produces dry follicles which, at maturity, open to reveal brightly colored fleshy seeds. This species thus also employs endozoochory for seed dispersal, although it produces dry fruits. Molecular analysis reveals that genes involved in softening and color changes are expressed at late stages of seed development, when the fleshy seed sarcotesta softens and accumulates carotenoids. Several MADS-box genes have also been studied and results highlight the existence of a basic genetic toolkit which may be common to all fleshy fruit-like structures, independently of their anatomic origin. According to their expression patterns, one of two AGAMOUS genes and the three SEPALLATA genes known so far in Magnolia are of particular interest. Duplication of AGAMOUS already occurs in both Nymphaeales and Magnoliids, although the lack of functional gene analysis prevents comparisons with known duplications in the AGAMOUS lineage of core Eudicots.
Collapse
Affiliation(s)
- Alessandro Lovisetto
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | | | | | | | | |
Collapse
|
27
|
Orozco-Arroyo G, Paolo D, Ezquer I, Colombo L. Networks controlling seed size in Arabidopsis. PLANT REPRODUCTION 2015; 28:17-32. [PMID: 25656951 DOI: 10.1007/s00497-015-0255-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 05/07/2023]
Abstract
Key message: Overview of seed size control. Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed coat, the endosperm and the embryo, as well as their interplay, have been described in Arabidopsis thaliana. In this review, we provide a comprehensive description of the current knowledge regarding the molecular mechanisms controlling seed size in Arabidopsis.
Collapse
Affiliation(s)
- Gregorio Orozco-Arroyo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
28
|
Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:353-62. [DOI: 10.1002/jez.b.22598] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
|
29
|
Kourmpetli S, Drea S. The fruit, the whole fruit, and everything about the fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4491-503. [PMID: 24723396 DOI: 10.1093/jxb/eru144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fruits come in an impressive array of shapes, sizes, and consistencies, and also display a huge diversity in biochemical/metabolite profiles, wherein lies their value as rich sources of food, nutrition, and pharmaceuticals. This is in addition to their fundamental function in supporting and dispersing the developing and mature seeds for the next generation. Understanding developmental processes such as fruit development and ripening, particularly at the genetic level, was once largely restricted to model and crop systems for practical and commercial reasons, but with the expansion of developmental genetic and evo-devo tools/analyses we can now investigate and compare aspects of fruit development in species spanning the angiosperms. We can superimpose recent genetic discoveries onto the detailed characterization of fruit development and ripening conducted with primary considerations such as yield and harvesting efficiency in mind, as well as on the detailed description of taxonomically relevant characters. Based on our own experience we focus on two very morphologically distinct and evolutionary distant fruits: the capsule of opium poppy, and the grain or caryopsis of cereals. Both are of massive economic value, but because of very different constituents; alkaloids of varied pharmaceutical value derived from secondary metabolism in opium poppy capsules, and calorific energy fuel derived from primary metabolism in cereal grains. Through comparative analyses in these and other fruit types, interesting patterns of regulatory gene function diversification and conservation are beginning to emerge.
Collapse
Affiliation(s)
- Sofia Kourmpetli
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Sinéad Drea
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
30
|
Venglat P, Xiang D, Wang E, Datla R. Genomics of seed development: Challenges and opportunities for genetic improvement of seed traits in crop plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Ballerini ES, Mockaitis K, Arnold ML. Transcriptome sequencing and phylogenetic analysis of floral and leaf MIKC(C) MADS-box and R2R3 MYB transcription factors from the monocot Iris fulva. Gene 2013; 531:337-46. [PMID: 23994293 DOI: 10.1016/j.gene.2013.08.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 02/03/2023]
Abstract
The Louisiana Irises serve as an important system for the study of the evolutionary processes of speciation, including reproductive isolation, hybridization, and adaptation. Sequencing methods today allow for the generation of resources key to elucidating the genetic basis of these phenomena. Here we describe the transcriptomes of floral and young leaf tissue from Iris fulva generated by massively parallel pyrosequencing. In order to identify potential candidates for the study of reproductive isolation and adaptation in the Louisiana Irises we phylogenetically analyzed the type II MIKC(C) MADS-box and R2R3 MYB transcription factors expressed in these tissues. A total of 25 Iris MIKC(C) MADS-box genes in 9 clades and 42 Iris R2R3 MYB genes in 19 clades were identified. Through the identification of eudicot and monocot specific clades, these analyses contribute to our understanding of the evolution of these prominent transcription factor families in the angiosperms.
Collapse
|
32
|
Nayar S, Sharma R, Tyagi AK, Kapoor S. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4239-53. [PMID: 23929654 PMCID: PMC3808311 DOI: 10.1093/jxb/ert231] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis.
Collapse
Affiliation(s)
- Saraswati Nayar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- *Present address: Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Akhilesh Kumar Tyagi
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
33
|
Zhang Y, Liang W, Shi J, Xu J, Zhang D. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1166-78. [PMID: 23911125 DOI: 10.1111/jipb.12094] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/30/2013] [Indexed: 05/23/2023]
Abstract
Plant seed size is tightly regulated by the development of seed coat, embryo, and endosperm; however, currently, its underlying mechanism remains unclear. In this study, we revealed a regulatory role of an R2R3 MYB transcription factor MYB56 in controlling seed size specifically in Arabidopsis thaliana L. Loss-of-function or knock-down of MYB56 yielded smaller seeds as compared with the wild type. Conversely, overexpression of MYB56 produced larger seeds. Further observation using semi-thin sections showed that myb56 developed smaller contracted endothelial cells and reduced cell number in the outer integument layer of the seed coat during the seed development; by contrast, MYB56 overexpressing lines had expanded endothelial cells and increased cell number in the outer integument layer of the seed coat, suggesting the essential role of MYB56 in regulating seed development. In addition, reciprocal cross-analysis showed that MYB56 affected the seed development maternally. MYB56 was shown to be dominantly expressed in developing seeds, consistently with its function in seed development. Moreover, quantitative reverse transcription polymerase chain reaction analysis revealed that MYB56 regulates the expression of genes involved in cell wall metabolism such as cell division and expansion. Altogether, our results demonstrated that MYB56 represents an unknown pathway for positively controlling the seed size.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
34
|
Lovisetto A, Guzzo F, Busatto N, Casadoro G. Gymnosperm B-sister genes may be involved in ovule/seed development and, in some species, in the growth of fleshy fruit-like structures. ANNALS OF BOTANY 2013; 112:535-44. [PMID: 23761686 PMCID: PMC3718214 DOI: 10.1093/aob/mct124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/17/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a functional point of view. The aim of this work is to increase our knowledge of possible mechanisms common to the development of both gymnosperm and angiosperm fruits. METHODS B-sister genes from two gymnosperms (Ginkgo biloba and Taxus baccata) were isolated and studied. The Ginkgo gene was also functionally characterized by ectopically expressing it in tobacco. KEY RESULTS In Ginkgo the fleshy structure derives from the outer seed integument and the B-sister gene is involved in its growth. In Taxus the fleshy structure is formed de novo as an outgrowth of the ovule peduncle, and the B-sister gene is not involved in this growth. In transgenic tobacco the Ginkgo gene has a positive role in tissue growth and confirms its importance in ovule/seed development. CONCLUSIONS This study suggests that B-sister genes have a main function in ovule/seed development and a subsidiary role in the formation of fleshy fruit-like structures when the latter have an ovular origin, as occurs in Ginkgo. Thus, the 'fruit function' of B-sister genes is quite old, already being present in Gymnosperms as ancient as Ginkgoales, and is also present in Angiosperms where a B-sister gene has been shown to be involved in the formation of the Arabidopsis fruit.
Collapse
Affiliation(s)
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Nicola Busatto
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Giorgio Casadoro
- Department of Biology, University of Padua, 35131 Padua, Italy
- Botanic Garden of Padua, 35123 Padua, Italy
| |
Collapse
|
35
|
Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL, Mietkiewska E, Weselake RJ. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:663-77. [PMID: 23425240 DOI: 10.1111/tpj.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 05/14/2023]
Abstract
The transcription factor TRANSPARENT TESTA 16 (TT16) plays an important role in endothelial cell specification and proanthocyanidin (PA) accumulation. However, its precise regulatory function with regard to the expression of endothelial-associated genes in developing seeds, and especially in the PA-producing inner integument, remains largely unknown. Therefore, we endeavored to characterize four TT16 homologs from the allotetraploid oil crop species Brassica napus, and systematically explore their regulatory function in endothelial development. Our results indicated that all four BnTT16 genes were predominantly expressed in the early stages of seed development, but at distinct levels, and encoded functional proteins. Bntt16 RNA interference lines exhibited abnormal endothelial development and decreased PA content, while PA polymerization was not affected. In addition to the previously reported function of TT16 in the transcriptional regulation of anthocyanidin reductase (ANR) and dihydroflavonol reductase (TT3), we also determined that BnTT16 proteins played a significant role in the transcriptional regulation of five other genes involved in the PA biosynthetic pathway (P < 0.01). Moreover, we identified two genes involved in inner integument development that were strongly regulated by the BnTT16 proteins (TT2 and δ-vacuolar processing enzyme). These results will better our understanding of the precise role of TT16 in endothelial development in Brassicaceae species, and could potentially be used for the future improvement of oilseed crops.
Collapse
Affiliation(s)
- Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee DS, Chen LJ, Li CY, Liu Y, Tan XL, Lu BR, Li J, Gan SX, Kang SG, Suh HS, Zhu Y. The Bsister MADS gene FST determines ovule patterning and development of the zygotic embryo and endosperm. PLoS One 2013; 8:e58748. [PMID: 23527017 PMCID: PMC3602522 DOI: 10.1371/journal.pone.0058748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Many homeotic MADS-box genes have been identified as controllers of the floral transition and floral development. However, information regarding Bsister (Bs)-function genes in monocots is still limited. Here, we describe the functional characterization of a Bs-group MADS-box gene FEMALE-STERILE (FST), whose frame-shift mutation (fst) results in abnormal ovules and the complete abortion of zygotic embryos and endosperms in rice. Anatomical analysis showed that the defective development in the fst mutant exclusively occurred in sporophytic tissues including integuments, fertilized proembryos and endosperms. Analyses of the spatio-temporal expression pattern revealed that the prominent FST gene products accumulated in the inner integument, nucellar cell of the micropylar side, apical and base of the proembryos and free endosperm nuclei. Microarray and gene ontology analysis unraveled substantial changes in the expression level of many genes in the fst mutant ovules and seeds, with a subset of genes involved in several developmental and hormonal pathways appearing to be down-regulated. Using both forward and reverse genetics approaches, we demonstrated that rice FST plays indispensable roles and multiple functions during ovule and early seed development. These findings support a novel function for the Bs-group MADS-box genes in plants.
Collapse
Affiliation(s)
- Dong Sun Lee
- Key Lab of Agro-Biodiversity and Pest Management of Education Ministry, Yunnan Agricultural University, Kunming, China
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Li Juan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- Key Lab of Molecular Breeding for Dian-Type Japonica Hybrid Rice of Yunnan Education Department, Yunnan Agricultural University, Kunming, China
| | - Cheng Yun Li
- Key Lab of Agro-Biodiversity and Pest Management of Education Ministry, Yunnan Agricultural University, Kunming, China
| | - Yongsheng Liu
- Ministry of Education Key Lab for Bio-resource and Eco-environment, College of Life Science, State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xue Lin Tan
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- Key Lab of Molecular Breeding for Dian-Type Japonica Hybrid Rice of Yunnan Education Department, Yunnan Agricultural University, Kunming, China
| | - Bao-Rong Lu
- Ministry of Education Key Lab for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- Key Lab of Molecular Breeding for Dian-Type Japonica Hybrid Rice of Yunnan Education Department, Yunnan Agricultural University, Kunming, China
| | - Shu Xian Gan
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- Key Lab of Molecular Breeding for Dian-Type Japonica Hybrid Rice of Yunnan Education Department, Yunnan Agricultural University, Kunming, China
| | - Sang Gu Kang
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Hak Soo Suh
- School of Biological Resources, Yeungnam University, Gyeongsan, Korea
| | - Youyong Zhu
- Key Lab of Agro-Biodiversity and Pest Management of Education Ministry, Yunnan Agricultural University, Kunming, China
- * E-mail:
| |
Collapse
|
37
|
Yang X, Wu F, Lin X, Du X, Chong K, Gramzow L, Schilling S, Becker A, Theißen G, Meng Z. Live and let die - the B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One 2012; 7:e51435. [PMID: 23251532 PMCID: PMC3520895 DOI: 10.1371/journal.pone.0051435] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Bsister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that Bsister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of Bsister genes in eudicots is masked by redundancy with other genes and little is known about the function of Bsister genes in monocots, and about the evolution of Bsister gene functions. Here we characterize OsMADS29, one of three MADS-box Bsister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi) results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP) indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of Bsister genes.
Collapse
Affiliation(s)
- Xuelian Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Susanne Schilling
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Annette Becker
- Plant Evo-Devo Group, The Institute of Botany, Justus-Liebig-University Gießen, Gießen, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (GT); (ZM)
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (GT); (ZM)
| |
Collapse
|
38
|
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012; 139:3081-98. [PMID: 22872082 DOI: 10.1242/dev.074674] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators.
Collapse
Affiliation(s)
- Cezary Smaczniak
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Deng W, Chen G, Peng F, Truksa M, Snyder CL, Weselake RJ. Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. PLANT PHYSIOLOGY 2012; 160:978-89. [PMID: 22846192 PMCID: PMC3461570 DOI: 10.1104/pp.112.198713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transparent Testa16 (TT16), a transcript regulator belonging to the B(sister) MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.
Collapse
|
40
|
Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. THE PLANT CELL 2012; 24:3489-505. [PMID: 22948079 PMCID: PMC3480284 DOI: 10.1105/tpc.112.100230] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 05/18/2023]
Abstract
We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.
Collapse
Affiliation(s)
- Marianna Fasoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Silvia Dal Santo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Sara Zenoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | | | - Lorenzo Farina
- Dipartimento di Informatica e Sistemistica Antonio Ruberti, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy
| | - Anita Zamboni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Andrea Porceddu
- Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Luca Venturini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Manuele Bicego
- Dipartimento di Informatica, Università degli Studi di Verona, 37134 Verona, Italy
| | | | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
- Address correspondence to
| |
Collapse
|
41
|
Chen G, Deng W, Truksa M, Peng FY, Weselake RJ. The Bsister MADS-box proteins have multiple regulatory functions in plant development. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3097-108. [PMID: 22345638 PMCID: PMC3350922 DOI: 10.1093/jxb/ers026] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) plays important roles during tomato fruit ripening. To study the regulation of carotenoid biosynthesis by ABA, the SlNCED1 gene encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the ABA biosynthesis, was suppressed in tomato plants by transformation with an RNA interference (RNAi) construct driven by a fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20-50% of that in control fruit. This significant reduction in NCED activity led to the carbon that normally channels to free ABA as well as the ABA metabolite accumulation during ripening to be partially blocked. Therefore, this 'backlogged' carbon transformed into the carotenoid pathway in the RNAi lines resulted in increased assimilation and accumulation of upstream compounds in the pathway, chiefly lycopene and β-carotene. Fruit of all RNAi lines displayed deep red coloration compared with the pink colour of control fruit. The decrease in endogenous ABA in these transgenics resulted in an increase in ethylene, by increasing the transcription of genes related to the synthesis of ethylene during ripening. In conclusion, ABA potentially regulated the degree of pigmentation and carotenoid composition during ripening and could control, at least in part, ethylene production and action in climacteric tomato fruit.
Collapse
Affiliation(s)
- Liang Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Bing Yuan
- Department of Chemistry, FUDAN University, Shanghai 200433, PR China
| | - Mei Zhang
- School of life sciences, Peking University, Beijing, 100871, PR China
| | - Ling Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Mengmeng Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Ping Leng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
- To whom correspondence should be addressed. E-mail address:
| |
Collapse
|
43
|
Wang YQ, Melzer R, Theissen G. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:177-90. [PMID: 21070403 DOI: 10.1111/j.1365-313x.2010.04325.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, Germany
| | | | | |
Collapse
|
44
|
Erdmann R, Gramzow L, Melzer R, Theissen G, Becker A. GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B(sister) MADS box gene ABS (TT16) that has undergone neofunctionalization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:914-924. [PMID: 20598091 DOI: 10.1111/j.1365-313x.2010.04290.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
MIKC-type MADS domain proteins are key regulators of flower development in angiosperms. B(sister) genes constitute a clade with a close relationship to class B floral homeotic genes, and have been conserved for more than 300 million years. The loss-of-function phenotype of the A. thaliana B(sister) gene ABS is mild: mutants show reduced seed coloration and defects in endothelium development. This study focuses on GORDITA (GOA, formerly known as AGL63), the most closely related paralog of ABS in A. thaliana, which is thought to act redundantly with ABS. Phylogenetic trees reveal that the duplication leading to ABS and GOA occurred during diversification of the Brassicaceae, and further analyses show that GOA has evolved under relaxed selection pressure. The knockdown phenotype of GOA suggests a role for this gene in fruit longitudinal growth, while over-expression of GOA results in disorganized floral structure and addition of carpel-like features to sepals. Given the phylogeny and function of other B(sister) genes, our data suggest that GOA has evolved a new function as compared to ABS. Protein analysis reveals that the GOA-specific 'deviant' domain is required for protein dimerization, in contrast to other MIKC-type proteins that require the K domain for dimerization. Moreover, no shared protein interaction partners for ABS and GOA could be identified. Our experiments indicate that modification of a protein domain and a shift in expression pattern can lead to a novel gene function in a relatively short time, and highlight the molecular mechanism by which neofunctionalization following gene duplication can be achieved.
Collapse
Affiliation(s)
- Robert Erdmann
- University of Bremen, Department of Biology and Chemistry, Plant Evo-Devo Group, Leobener Straße, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
45
|
Prasad K, Ambrose BA. Shaping up the fruit: control of fruit size by an Arabidopsis B-sister MADS-box gene. PLANT SIGNALING & BEHAVIOR 2010; 5:899-902. [PMID: 20484990 PMCID: PMC3115041 DOI: 10.4161/psb.5.7.12095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 05/25/2023]
Abstract
The final size and shape of fruits is determined by organogenesis. Organogenesis is the coordination of cell growth, cell differentiation and pattern formation. Individual genes have been identified that affect lateral organ growth. A majority of these characterized growth genes in Arabidopsis affect all lateral plant organs and few of these have been placed into a regulatory network controlling organ growth. We have recently characterized GORDITA (GOA), a MADS-box transcription factor, which represses cell expansion specifically in fruits and affects overall fruit size.1 Here we provide insights into a possible regulatory network in which GOA can function to regulate fruit growth. We further suggest how duplicated B-sister genes; GOA and TRANSPARENT TESTA 16 (TT16) could have acquired distinct regulatory roles.
Collapse
|
46
|
Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E, Trehin C, Vialette-Guiraud AC. Carpel Development. ADVANCES IN BOTANICAL RESEARCH 2010. [PMID: 0 DOI: 10.1016/b978-0-12-380868-4.00001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|