1
|
Zhang K, Xue M, Qin F, He Y, Zhou Y. Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2560-2573. [PMID: 37572352 PMCID: PMC10651153 DOI: 10.1111/pbi.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Stomatal density (SD) is closely related to crop drought resistance. Understanding the genetic basis for natural variation in SD may facilitate efforts to improve water-use efficiency. Here, we report a genome-wide association study for SD in maize seedlings, which identified 18 genetic variants that could be resolved to seven candidate genes. A 3-bp insertion variant (InDel1089) in the last exon of Zea mays (Zm) IRX15A (Irregular xylem 15A) had the most significant association with SD and modulated the translation of ZmIRX15A mRNA by affecting its secondary structure. Dysfunction of ZmIRX15A increased SD, leading to an increase in the transpiration rate and CO2 assimilation efficiency. ZmIRX15A encodes a xylan deposition enzyme and its disruption significantly decreased xylan abundance in secondary cell wall composition. Transcriptome analysis revealed a substantial alteration of the expression of genes involved in stomatal complex morphogenesis and drought response in the loss-of-function of ZmIRX15A mutant. Overall, our study provides important genetic insights into the natural variation of leaf SD in maize, and the identified loci or genes can serve as direct targets for enhancing drought resistance in molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ming Xue
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyCo‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Feng Qin
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan He
- National Maize Improvement Center of ChinaCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
2
|
Wei H, Song Z, Xie Y, Cheng H, Yan H, Sun F, Liu H, Shen J, Li L, He X, Wang H, Luo K. High temperature inhibits vascular development via the PIF4-miR166-HB15 module in Arabidopsis. Curr Biol 2023; 33:3203-3214.e4. [PMID: 37442138 DOI: 10.1016/j.cub.2023.06.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The plant vascular system is an elaborate network of conducting and supporting tissues that extends throughout the plant body, and its structure and function must be orchestrated with different environmental conditions. Under high temperature, plants display thin and lodging stems that may lead to decreased yield and quality of crops. However, the molecular mechanism underlying high-temperature-mediated regulation of vascular development is not known. Here, we show that Arabidopsis plants overexpressing the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a central regulator of high-temperature signaling, display fewer vascular bundles (VBs) and decreased secondary cell wall (SCW) thickening, mimicking the lodging inflorescence stems of high-temperature-grown wild-type plants. Rising temperature and elevated PIF4 expression reduced the expression of MIR166 and, concomitantly, elevated the expression of the downstream class III homeodomain leucine-zipper (HD-ZIP III) family gene HB15. Consistently, knockdown of miR166 and overexpression of HB15 led to inhibition of vascular development and SCW formation, whereas the hb15 mutant displayed the opposite phenotype in response to high temperature. Moreover, in vitro and in vivo assays verified that PIF4 binds to the promoters of several MIR166 genes and represses their expression. Our study establishes a direct functional link between PIF4 and the miR166-HB15 module in modulating vascular development and SCW thickening and consequently stem-lodging susceptibility at elevated temperatures.
Collapse
Affiliation(s)
- Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongli Cheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Huiting Yan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Huajie Liu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlong Shen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Xie B, Chen Y, Zhang Y, An X, Li X, Yang A, Kang G, Zhou J, Cheng C. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of apple dwarfing rootstock root morphogenesis under nitrogen and/or phosphorus deficient conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1120777. [PMID: 37404544 PMCID: PMC10315683 DOI: 10.3389/fpls.2023.1120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
Nitrogen (N) and phosphorus (P) are essential phytomacronutrients, and deficiencies in these two elements limit growth and yield in apple (Malus domestica Borkh.). The rootstock plays a key role in the nutrient uptake and environmental adaptation of apple. The objective of this study was to investigate the effects of N and/or P deficiency on hydroponically-grown dwarfing rootstock 'M9-T337' seedlings, particularly the roots, by performing an integrated physiological, transcriptomics-, and metabolomics-based analyses. Compared to N and P sufficiency, N and/or P deficiency inhibited aboveground growth, increased the partitioning of total N and total P in roots, enhanced the total number of tips, length, volume, and surface area of roots, and improved the root-to-shoot ratio. P and/or N deficiency inhibited NO3 - influx into roots, and H+ pumps played a important role in the response to P and/or N deficiency. Conjoint analysis of differentially expressed genes and differentially accumulated metabolites in roots revealed that N and/or P deficiency altered the biosynthesis of cell wall components such as cellulose, hemicellulose, lignin, and pectin. The expression of MdEXPA4 and MdEXLB1, two cell wall expansin genes, were shown to be induced by N and/or P deficiency. Overexpression of MdEXPA4 enhanced root development and improved tolerance to N and/or P deficiency in transgenic Arabidopsis thaliana plants. In addition, overexpression of MdEXLB1 in transgenic Solanum lycopersicum seedlings increased the root surface area and promoted acquisition of N and P, thereby facilitating plant growth and adaptation to N and/or P deficiency. Collectively, these results provided a reference for improving root architecture in dwarfing rootstock and furthering our understanding of integration between N and P signaling pathways.
Collapse
Affiliation(s)
- Bin Xie
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanhui Chen
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanzhen Zhang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Xiuhong An
- Research Center for Agricultural Engineering Technology of Mountain District of Hebei/Mountainous Areas Research Institute, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - An Yang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guodong Kang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jiangtao Zhou
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Cungang Cheng
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
4
|
Lv P, Wan J, Zhang C, Hina A, Al Amin GM, Begum N, Zhao T. Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective. Int J Mol Sci 2023; 24:ijms24044187. [PMID: 36835600 PMCID: PMC9966272 DOI: 10.3390/ijms24044187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Domain of unknown function (DUF) is a general term for many uncharacterized domains with two distinct features: relatively conservative amino acid sequence and unknown function of the domain. In the Pfam 35.0 database, 4795 (24%) gene families belong to the DUF type, yet, their functions remain to be explored. This review summarizes the characteristics of the DUF protein families and their functions in regulating plant growth and development, generating responses to biotic and abiotic stress, and other regulatory roles in plant life. Though very limited information is available about these proteins yet, by taking advantage of emerging omics and bioinformatic tools, functional studies of DUF proteins could be utilized in future molecular studies.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Wan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - G M Al Amin
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
5
|
Li S, Xing K, Qanmber G, Chen G, Liu L, Guo M, Hou Y, Lu L, Qu L, Liu Z, Yang Z. GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum). PLANT MOLECULAR BIOLOGY 2023; 111:89-106. [PMID: 36271986 DOI: 10.1007/s11103-022-01313-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.
Collapse
Affiliation(s)
- Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Biology (Hebei Base), Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
6
|
Ye ZH, Zhong R. Outstanding questions on xylan biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111476. [PMID: 36174800 DOI: 10.1016/j.plantsci.2022.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of β-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Li S, Chang L, Sun R, Dong J, Zhong C, Gao Y, Zhang H, Wei L, Wei Y, Zhang Y, Wang G, Sun J. Combined transcriptomic and metabolomic analysis reveals a role for adenosine triphosphate-binding cassette transporters and cell wall remodeling in response to salt stress in strawberry. FRONTIERS IN PLANT SCIENCE 2022; 13:996765. [PMID: 36147238 PMCID: PMC9486094 DOI: 10.3389/fpls.2022.996765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 05/25/2023]
Abstract
Strawberry (Fragaria × ananassa Duch) are sensitive to salt stress, and breeding salt-tolerant strawberry cultivars is the primary method to develop resistance to increased soil salinization. However, the underlying molecular mechanisms mediating the response of strawberry to salinity stress remain largely unknown. This study evaluated the salinity tolerance of 24 strawberry varieties, and transcriptomic and metabolomic analysis were performed of 'Sweet Charlie' (salt-tolerant) and 'Benihoppe' (salt-sensitive) to explore salt tolerance mechanisms in strawberry. Compared with the control, we identified 3412 differentially expressed genes (DEGs) and 209 differentially accumulated metabolites (DAMs) in 'Benihoppe,' and 5102 DEGs and 230 DAMs in 'Sweet Charlie.' DEGs Gene Ontology (GO) enrichment analyses indicated that the DEGs in 'Benihoppe' were enriched for ion homeostasis related terms, while in 'Sweet Charlie,' terms related to cell wall remodeling were over-represented. DEGs related to ion homeostasis and cell wall remodeling exhibited differential expression patterns in 'Benihoppe' and 'Sweet Charlie.' In 'Benihoppe,' 21 ion homeostasis-related DEGs and 32 cell wall remodeling-related DEGs were upregulated, while 23 ion homeostasis-related DEGs and 138 cell wall remodeling-related DEGs were downregulated. In 'Sweet Charlie,' 72 ion homeostasis-related DEGs and 275 cell wall remodeling-related DEGs were upregulated, while 11 ion homeostasis-related DEGs and 20 cell wall remodeling-related DEGs were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed only four KEGG enriched pathways were shared between 'Benihoppe' and 'Sweet Charlie,' including flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis and ubiquinone, and other terpenoid-quinone biosynthesis. Integrating the results of transcriptomic and metabolomics analyses showed that adenosine triphosphate-binding cassette (ABC) transporters and flavonoid pathway genes might play important roles in the salt stress response in strawberry, and DAMs and DEGs related to ABC transporter and flavonoid pathways were differentially expressed or accumulated. The results of this study reveal that cell wall remodeling and ABC transporters contribute to the response to salt stress in strawberry, and that related genes showed differential expression patterns in varieties with different salt tolerances. These findings provide new insights into the underlying molecular mechanism of strawberry response to salt stress and suggest potential targets for the breeding of salt-tolerant strawberry varieties.
Collapse
Affiliation(s)
- Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Hongli Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yongqing Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| |
Collapse
|
8
|
Kang C, Jiang A, Yang H, Zheng G, Wang Y, Cao J, Sun C. Integrated Physiochemical, Hormonal, and Transcriptomic Analysis Revealed the Underlying Mechanisms for Granulation in Huyou ( Citrus changshanensis) Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:923443. [PMID: 35909750 PMCID: PMC9330425 DOI: 10.3389/fpls.2022.923443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Juice sac granulation is a common internal physiological disorder of citrus fruit. In the present study, we compared the physiochemical characteristics and transcriptome profiles of juice sacs in different granulation levels from Huyou fruit (Citrus changshanensis). The accumulation of cell wall components, including the water-soluble pectin, protopectin, cellulose, and lignin, were significantly correlated with the granulation process, resulting in the firmness increase of the juice sac. The in situ labeling of the cell wall components indicated the early accumulation of cellulose and high-methylesterified pectin in the outer layer cells, as well as the late accumulation of lignin in the inner layer cells of the juice sac. Several phytohormones, including auxins, abscisic acids, cytokinins, jasmonic acid, salicylic acid, and/or their metabolites, were positively correlated to the granulation level, indicating an active and complex phytohormones metabolism in the granulation process. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 2940 differentially expressed genes (DEGs) were found to be positively correlated with the granulation level. Gene Ontology (GO) enrichment indicated that the selected DEGs were mainly involved in the cell wall organization and biogenesis, cell wall macromolecule metabolic process, carbohydrate metabolic process, and polysaccharide metabolic process. Among these selected genes, those encoding β-1,4-xylosyltransferase IRX9, cellulose synthase, xyloglucan: xyloglucosyl transferase, xyloglucan galactosyltransferase MUR3, α-1,4-galacturonosyltransferase, expansin, polygalacturonase, pectinesterase, β-glucosidase, β-galactosidase, endo-1,3(4)-β-glucanase, endoglucanase and pectate lyase that required for the biosynthesis or structural modification of cell wall were identified. In addition, NAC, MYB, bHLH, and MADS were the top abundant transcription factors (TFs) families positively correlated with the granulation level, while the LOB was the top abundant TFs family negatively correlated with the granulation level.
Collapse
Affiliation(s)
- Chen Kang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Anze Jiang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Han Yang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Guixia Zheng
- Quzhou Kecheng District Chai Family Citrus Professional Cooperative, Quzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Ruan N, Dang Z, Wang M, Cao L, Wang Y, Liu S, Tang Y, Huang Y, Zhang Q, Xu Q, Chen W, Li F. FRAGILE CULM 18 encodes a UDP-glucuronic acid decarboxylase required for xylan biosynthesis and plant growth in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2320-2335. [PMID: 35104839 DOI: 10.1093/jxb/erac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Although UDP-glucuronic acid decarboxylases (UXSs) have been well studied with regard to catalysing the conversion of UDP-glucuronic acid into UDP-xylose, their biological roles in grasses remain largely unknown. The rice (Oryza sativa) genome contains six UXSs, but none of them has been genetically characterized. Here, we reported on the characterization of a novel rice fragile culm mutant, fc18, which exhibited brittleness with altered cell wall and pleiotropic defects in growth. Map-based cloning and transgenic analyses revealed that the FC18 gene encodes a cytosol-localized OsUXS3 and is widely expressed with higher expression in xylan-rich tissues. Monosaccharide analysis showed that the xylose level was decreased in fc18, and cell wall fraction determinations confirmed that the xylan content in fc18 was lower, suggesting that UDP-xylose from FC18 participates in xylan biosynthesis. Moreover, the fc18 mutant displayed defective cellulose properties, which led to an enhancement in biomass saccharification. Furthermore, expression of genes involved in sugar metabolism and phytohormone signal transduction was largely altered in fc18. Consistent with this, the fc18 mutant exhibited significantly reduced free auxin (indole-3-acetic acid) content and lower expression levels of PIN family genes compared with wild type. Our work reveals the physiological roles of FC18/UXS3 in xylan biosynthesis, cellulose deposition, and plant growth in rice.
Collapse
Affiliation(s)
- Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Sitong Liu
- Jinzhou Academy of Science and Technology, Jinzhou, China
| | - Yijun Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Qun Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Behle E, Raguin A. Stochastic model of lignocellulosic material saccharification. PLoS Comput Biol 2021; 17:e1009262. [PMID: 34516546 PMCID: PMC8460048 DOI: 10.1371/journal.pcbi.1009262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/23/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
The processing of agricultural wastes towards extraction of renewable resources is recently being considered as a promising alternative to conventional biofuel production. The degradation of agricultural residues is a complex chemical process that is currently time intensive and costly. Various pre-treatment methods are being investigated to determine the subsequent modification of the material and the main obstacles in increasing the enzymatic saccharification. In this study, we present a computational model that complements the experimental approaches. We decipher how the three-dimensional structure of the substrate impacts the saccharification dynamics. We model a cell wall microfibril composed of cellulose and surrounded by hemicellulose and lignin, with various relative abundances and arrangements. This substrate is subjected to digestion by different cocktails of well characterized enzymes. The saccharification dynamics is simulated in silico using a stochastic procedure based on a Gillespie algorithm. As we additionally implement a fitting procedure that optimizes the parameters of the simulation runs, we are able to reproduce experimental saccharification time courses for corn stover. Our model highlights the synergistic action of enzymes, and confirms the linear decrease of sugar conversion when either lignin content or crystallinity of the substrate increases. Importantly, we show that considering the crystallinity of cellulose in addition to the substrate composition is essential to interpret experimental saccharification data. Finally, our findings support the hypothesis of xylan being partially crystalline. Leftover wastes generated by agriculture, such as inedible leaves and stalks of plants, represent an abundant and unexploited raw material that contains energy in the form of sugar polymers. Their breakdown and processing into bio-ethanol is recently being considered as a promising candidate for renewable fuel production. However, it is still poorly understood, how the microscopic structure and composition of plant waste materials impact their enzymatic digestion. Various experimental pre-processing methods are currently being tested to determine their effect on the material composition and structure, and the sugar conversion. In this study, we present a computational model to complement such experimental approaches. We simulate a microscopic plant fragment typically found in plant waste materials, whose structure and composition can be tailored. This fragment is then subjected to enzymatic digestion, whose dynamics is tracked in silico. The model reproduces experimentally observed time courses for plant fragments of known composition. It additionally provides new hypotheses for interpreting complex experimental results.
Collapse
Affiliation(s)
- Eric Behle
- Department of Biology, Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf, Germany
| | - Adélaïde Raguin
- Department of Biology, Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
11
|
The composition of Australian Plantago seeds highlights their potential as nutritionally-rich functional food ingredients. Sci Rep 2021; 11:12692. [PMID: 34135417 PMCID: PMC8209032 DOI: 10.1038/s41598-021-92114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
When wetted, Plantago seeds become covered with a polysaccharide-rich gel called mucilage that has value as a food additive and bulking dietary fibre. Industrially, the dry husk layer that becomes mucilage, called psyllium, is milled off Plantago ovata seeds, the only commercial-relevant Plantago species, while the residual inner seed tissues are either used for low value animal feed or discarded. We suggest that this practice is potentially wasting a highly nutritious resource and here describe the use of histological, physicochemical, and chromatographic analyses to compare whole seed composition/characteristics of P. ovata with 11 relatives already adapted to harsh Australian conditions that may represent novel commercial crop options. We show that substantial interspecific differences in mucilage yield and macromolecular properties are mainly a consequence of differences in heteroxylan and pectin composition and probably represent wide differences in hydrocolloid functionality that can be exploited in industry. We also show that non-mucilage producing inner seed tissues contain a substantial mannan-rich endosperm, high in fermentable sugars, protein, and fats. Whole seed Plantago flour, particularly from some species obtained from harsh Australian environments, may provide improved economic and health benefits compared to purified P. ovata psyllium husk, by retaining the functionality of the seed mucilage and providing additional essential nutrients.
Collapse
|
12
|
Fernández-Piñán S, Boher P, Soler M, Figueras M, Serra O. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Sci Rep 2021; 11:12053. [PMID: 34103550 PMCID: PMC8187341 DOI: 10.1038/s41598-021-90938-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
The phellogen or cork cambium stem cells that divide periclinally and outwardly specify phellem or cork. Despite the vital importance of phellem in protecting the radially-growing plant organs and wounded tissues, practically only the suberin biosynthetic process has been studied molecularly so far. Since cork oak (Quercus suber) phellogen is seasonally activated and its proliferation and specification to phellem cells is a continuous developmental process, the differentially expressed genes during the cork seasonal growth served us to identify molecular processes embracing from phellogen to mature differentiated phellem cell. At the beginning of cork growth (April), cell cycle regulation, meristem proliferation and maintenance and processes triggering cell differentiation were upregulated, showing an enrichment of phellogenic cells from which phellem cells are specified. Instead, at maximum (June) and advanced (July) cork growth, metabolic processes paralleling the phellem cell chemical composition, such as the biosynthesis of suberin, lignin, triterpenes and soluble aromatic compounds, were upregulated. Particularly in July, polysaccharides- and lignin-related secondary cell wall processes presented a maximal expression, indicating a cell wall reinforcement in the later stages of cork formation, presumably related with the initiation of latecork development. The putative function of relevant genes identified are discussed in the context of phellem ontogeny.
Collapse
Affiliation(s)
- Sandra Fernández-Piñán
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Pau Boher
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marçal Soler
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Mercè Figueras
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| |
Collapse
|
13
|
Mamat A, Tusong K, Xu J, Yan P, Mei C, Wang J. Integrated transcriptomic and proteomic analysis reveals the complex molecular mechanisms underlying stone cell formation in Korla pear. Sci Rep 2021; 11:7688. [PMID: 33833305 PMCID: PMC8032765 DOI: 10.1038/s41598-021-87262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Korla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.
Collapse
Affiliation(s)
- Aisajan Mamat
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China.
| | - Kuerban Tusong
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Juan Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Peng Yan
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Jixun Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| |
Collapse
|
14
|
Chai S, Yao Q, Zhang X, Xiao X, Fan X, Zeng J, Sha L, Kang H, Zhang H, Li J, Zhou Y, Wang Y. The semi-dwarfing gene Rht-dp from dwarf polish wheat (Triticum polonicum L.) is the "Green Revolution" gene Rht-B1b. BMC Genomics 2021; 22:63. [PMID: 33468043 PMCID: PMC7814455 DOI: 10.1186/s12864-021-07367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The wheat dwarfing gene increases lodging resistance, the grain number per spike and harvest index. Dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, DPW), initially collected from Tulufan, Xinjiang, China, carries a semi-dwarfing gene Rht-dp on chromosome 4BS. However, Rht-dp and its dwarfing mechanism are unknown. Results Homologous cloning and mapping revealed that Rht-dp is the ‘Green Revolution’ gene Rht-B1b. A haplotype analysis in 59 tetraploid wheat accessions showed that Rht-B1b was only present in T. polonicum. Transcriptomic analysis of two pairs of near-isogenic lines (NILs) of DPW × Tall Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, TPW) revealed 41 differentially expressed genes (DEGs) as potential dwarfism-related genes. Among them, 28 functionally annotated DEGs were classed into five sub-groups: hormone-related signalling transduction genes, transcription factor genes, cell wall structure-related genes, reactive oxygen-related genes, and nitrogen regulation-related genes. Conclusions These results indicated that Rht-dp is Rht-B1b, which regulates pathways related to hormones, reactive oxygen species, and nitrogen assimilation to modify the cell wall structure, and then limits cell wall loosening and inhibits cell elongation, thereby causing dwarfism in DPW. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07367-x.
Collapse
Affiliation(s)
- Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. Quantitative Trait Locus Analysis and Identification of Candidate Genes for Micronaire in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2021; 12:763016. [PMID: 34777444 PMCID: PMC8579039 DOI: 10.3389/fpls.2021.763016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Cotton is the most important fiber crop and provides indispensable natural fibers for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity and is an important component of fiber quality. Gossypium barbadense L. possesses long, strong and fine fibers, while upland cotton (Gossypium hirsutum L.) is high yielding with high MIC and widely cultivated worldwide. To identify quantitative trait loci (QTLs) and candidate genes for MIC in G. barbadense, a population of 250 backcross inbred lines (BILs), developed from an interspecific cross of upland cotton CRI36 × Egyptian cotton (G. barbadense) Hai7124, was evaluated in 9 replicated field tests. Based on a high-density genetic map with 7709 genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers, 25 MIC QTLs were identified, including 12 previously described QTLs and 13 new QTLs. Importantly, two stable MIC QTLs (qMIC-D03-2 on D03 and qMIC-D08-1 on D08) were identified. Of a total of 338 genes identified within the two QTL regions, eight candidate genes with differential expression between TM-1 and Hai7124 were identified. Our research provides valuable information for improving MIC in cotton breeding.
Collapse
Affiliation(s)
- Wenfeng Pei
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jikun Song
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Luyao Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qin Qin
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Haiyong Zhu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Chengcheng Hu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hai Lei
- Seed Management Station, Department of Agriculture and Rural Affairs of Xinjiang, Urumqi, China
| | - Xuefei Gao
- Join Hope Seed Co., Ltd., Changji, China
| | - Haijun Hu
- Join Hope Seed Co., Ltd., Changji, China
| | - Yu Zhang
- Join Hope Seed Co., Ltd., Changji, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Jinfa Zhang,
| | - Jiwen Yu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiwen Yu,
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Yanying Qu,
| |
Collapse
|
16
|
Crowe JD, Hao P, Pattathil S, Pan H, Ding SY, Hodge DB, Jensen JK. Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. FRONTIERS IN PLANT SCIENCE 2021; 12:737690. [PMID: 34630488 PMCID: PMC8495263 DOI: 10.3389/fpls.2021.737690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 05/07/2023]
Abstract
Plant biomass represents an abundant and increasingly important natural resource and it mainly consists of a number of cell types that have undergone extensive secondary cell wall (SCW) formation. These cell types are abundant in the stems of Arabidopsis, a well-studied model system for hardwood, the wood of eudicot plants. The main constituents of hardwood include cellulose, lignin, and xylan, the latter in the form of glucuronoxylan (GX). The binding of GX to cellulose in the eudicot SCW represents one of the best-understood molecular interactions within plant cell walls. The evenly spaced acetylation and 4-O-methyl glucuronic acid (MeGlcA) substitutions of the xylan polymer backbone facilitates binding in a linear two-fold screw conformation to the hydrophilic side of cellulose and signifies a high level of molecular specificity. However, the wider implications of GX-cellulose interactions for cellulose network formation and SCW architecture have remained less explored. In this study, we seek to expand our knowledge on this by characterizing the cellulose microfibril organization in three well-characterized GX mutants. The selected mutants display a range of GX deficiency from mild to severe, with findings indicating even the weakest mutant having significant perturbations of the cellulose network, as visualized by both scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show by image analysis that microfibril width is increased by as much as three times in the severe mutants compared to the wild type and that the degree of directional dispersion of the fibrils is approximately doubled in all the three mutants. Further, we find that these changes correlate with both altered nanomechanical properties of the SCW, as observed by AFM, and with increases in enzymatic hydrolysis. Results from this study indicate the critical role that normal GX composition has on cellulose bundle formation and cellulose organization as a whole within the SCWs.
Collapse
Affiliation(s)
- Jacob D. Crowe
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Henry Pan
- Department of Chemical Engineering, University of Texas, Austin, TX, United States
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Jacob Krüger Jensen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jacob Krüger Jensen
| |
Collapse
|
17
|
Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y. Chromosome-level draft genome of a diploid plum (Prunus salicina). Gigascience 2020; 9:giaa130. [PMID: 33300949 PMCID: PMC7727024 DOI: 10.1093/gigascience/giaa130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Plums are one of the most economically important Rosaceae fruit crops and comprise dozens of species distributed across the world. Until now, only limited genomic information has been available for the genetic studies and breeding programs of plums. Prunus salicina, an important diploid plum species, plays a predominant role in modern commercial plum production. Here we selected P. salicina for whole-genome sequencing and present a chromosome-level genome assembly through the combination of Pacific Biosciences sequencing, Illumina sequencing, and Hi-C technology. FINDINGS The assembly had a total size of 284.2 Mb, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb. A total of 96.56% of the assembled sequences were anchored onto 8 pseudochromosomes, and 24,448 protein-coding genes were identified. Phylogenetic analysis showed that P. salicina had a close relationship with Prunus mume and Prunus armeniaca, with P. salicina diverging from their common ancestor ∼9.05 million years ago. During P. salicina evolution 146 gene families were expanded, and some cell wall-related GO terms were significantly enriched. It was noteworthy that members of the DUF579 family, a new class involved in xylan biosynthesis, were significantly expanded in P. salicina, which provided new insight into the xylan metabolism in plums. CONCLUSIONS We constructed the first high-quality chromosome-level plum genome using Pacific Biosciences, Illumina, and Hi-C technologies. This work provides a valuable resource for facilitating plum breeding programs and studying the genetic diversity mechanisms of plums and Prunus species.
Collapse
Affiliation(s)
- Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 1190 Tianyuan Road, Guangzhou 510650, China
| | - Weizhuo Peng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Jingjing Hao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Juntao Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| | - Jianjun Pan
- Agricultural Technology Extension Center of Conghua District, 468 Tianlu Road, Guangzhou 510900, Guangdong Province, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 5 Youchengliu Road, Maoming 525000, China
| |
Collapse
|
18
|
Fang S, Shang X, Yao Y, Li W, Guo W. NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110657. [PMID: 33218627 DOI: 10.1016/j.plantsci.2020.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Secondary cell wall (SCW) has a strong impact on plant growth and adaptation to the environments. Previous studies have shown that NAC (NAM, ATAF1/2, and CUC2) transcription factors act as key regulators of SCW biosynthesis. However, the regulatory network triggered by NAC proteins is largely unknown, especially in cotton, a model plant for SCW development studies. Here, we show that several cotton NAC transcription factors are clustered in the same group with Arabidopsis secondary wall NACs (SWNs), including secondary wall-associated NAC domain protein1 (SND1) and NAC secondary wall thickening promoting factor1/2 (NST1/2), so we name these cotton orthologs as SND1s and NST1s. We found that simultaneous silencing of SND1s and NST1s led to severe xylem and phloem developmental defect in cotton stems, however silencing either SND1s or NST1s alone had no visible phenotype. Silencing both SND1s and NST1s but not one subgroup caused decreased expression of a set of SCW-associated genes, while over-expression of cotton SWNs in tobacco leaves resulted in SCW deposition. SWNs could bind the promoter of MYB46 and MYB83, which are highly expressed in SCW-rich tissues of cotton. In total, our data provide evidence that cotton SWNs positively and coordinately regulate SCW formation.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Yao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 2020; 117:20316-20324. [PMID: 32737163 PMCID: PMC7443942 DOI: 10.1073/pnas.2007245117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant cells have a polysaccharide-based wall that maintains their structural and functional integrity and determines their shape. Reorganization of wall components is required to allow growth and differentiation. One matrix polysaccharide that is postulated to play an important role in this reorganization is xyloglucan (XyG). While the structure of XyG is well understood, its biosynthesis is not. Through genetic studies with Arabidopsis CSLC genes, we demonstrate that they are responsible for the synthesis of the XyG glucan backbone. A quintuple cslc mutant is able to grow and develop normally but lacks detectable XyG. These results raise important questions regarding cell wall structure and its reorganization during growth. The series of cslc mutants will be valuable tools for investigating these questions. Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.
Collapse
|
20
|
Akiyoshi N, Nakano Y, Sano R, Kunigita Y, Ohtani M, Demura T. Involvement of VNS NAC-domain transcription factors in tracheid formation in Pinus taeda. TREE PHYSIOLOGY 2020; 40:704-716. [PMID: 31821470 DOI: 10.1093/treephys/tpz106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 05/19/2023]
Abstract
Vascular plants have two types of water-conducting cells, xylem vessel cells (in angiosperms) and tracheid cells (in ferns and gymnosperms). These cells are commonly characterized by secondary cell wall (SCW) formation and programmed cell death (PCD), which increase the efficiency of water conduction. The differentiation of xylem vessel cells is regulated by a set of NAC (NAM, ATAF1/2 and CUC2) transcription factors, called the VASCULAR-RELATED NAC-DOMAIN (VND) family, in Arabidopsis thaliana Linne. The VNDs regulate the transcriptional induction of genes required for SCW formation and PCD. However, information on the transcriptional regulation of tracheid cell differentiation is still limited. Here, we performed functional analysis of loblolly pine (Pinus taeda Linne) VND homologs (PtaVNS, for VND, NST/SND, SMB-related protein). We identified five PtaVNS genes in the loblolly pine genome, and four of these PtaVNS genes were highly expressed in tissues with tracheid cells, such as shoot apices and developing xylem. Transient overexpression of PtaVNS genes induced xylem vessel cell-like patterning of SCW deposition in tobacco (Nicotiana benthamiana Domin) leaves, and up-regulated the promoter activities of loblolly pine genes homologous to SCW-related MYB transcription factor genes and cellulose synthase genes, as well as to cysteine protease genes for PCD. Collectively, our data indicated that PtaVNS proteins possess transcriptional activity to induce the molecular programs required for tracheid formation, i.e., SCW formation and PCD. Moreover, these findings suggest that the VNS-MYB-based transcriptional network regulating water-conducting cell differentiation in angiosperm and moss plants is conserved in gymnosperms.
Collapse
Affiliation(s)
- Nobuhiro Akiyoshi
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yoshimi Nakano
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yusuke Kunigita
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
21
|
Ahmed RI, Ren A, Yang D, Ding A, Kong Y. Identification and characterization of pectin related gene NbGAE6 through virus-induced gene silencing in Nicotiana benthamiana. Gene 2020; 741:144522. [PMID: 32145329 DOI: 10.1016/j.gene.2020.144522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dahai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao 266108, China.
| |
Collapse
|
22
|
Smith PJ, O'Neill MA, Backe J, York WS, Peña MJ, Urbanowicz BR. Analytical Techniques for Determining the Role of Domain of Unknown Function 579 Proteins in the Synthesis of O-Methylated Plant Polysaccharides. SLAS Technol 2020; 25:345-355. [PMID: 32204644 DOI: 10.1177/2472630320912692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix polysaccharides are a diverse group of structurally complex carbohydrates and account for a large portion of the biomass consumed as food or used to produce fuels and materials. Glucuronoxylan and arabinogalactan protein are matrix glycans that have sidechains decorated with 4-O-methyl glucuronosyl residues. Methylation is a key determinant of the physical properties of these wall glycopolymers and consequently affects both their biological function and ability to interact with other wall polymers. Indeed, there is increasing interest in determining the distribution and abundance of methyl-etherified polysaccharides in different plant species, tissues, and developmental stages. There is also a need to understand the mechanisms involved in their biosynthesis. Members of the Domain of Unknown Function (DUF) 579 family have been demonstrated to have a role in the biosynthesis of methyl-etherified glycans. Here we describe methods for the analysis of the 4-O-methyl glucuronic acid moieties that are present in sidechains of arabinogalactan proteins. These methods are then applied toward the analysis of loss-of-function mutants of two DUF579 family members that lack this modification in muro. We also present a procedure to assay DUF579 family members for enzymatic activity in vitro using acceptor oligosaccharides prepared from xylan of loss-of-function mutants. Our approach facilitates the characterization of enzymes that modify glycosyl residues during cell wall synthesis and the structures that they generate.
Collapse
Affiliation(s)
- Peter J Smith
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jason Backe
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, OakRidge, TN, USA
| |
Collapse
|
23
|
Cowley JM, Herliana L, Neumann KA, Ciani S, Cerne V, Burton RA. A small-scale fractionation pipeline for rapid analysis of seed mucilage characteristics. PLANT METHODS 2020; 16:20. [PMID: 32123537 PMCID: PMC7038624 DOI: 10.1186/s13007-020-00569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myxospermy is a process by which the external surfaces of seeds of many plant species produce mucilage-a polysaccharide-rich gel with numerous fundamental research and industrial applications. Due to its functional properties the mucilage can be difficult to remove from the seed and established methods for mucilage extraction are often incomplete, time-consuming and unnecessarily wasteful of precious seed stocks. RESULTS Here we tested the efficacy of several established protocols for seed mucilage extraction and then downsized and adapted the most effective elements into a rapid, small-scale extraction and analysis pipeline. Within 4 h, three chemically- and functionally-distinct mucilage fractions were obtained from myxospermous seeds. These fractions were used to study natural variation and demonstrate structure-function links, to screen for known mucilage quality markers in a field trial, and to identify research and industry-relevant lines from a large mutant population. CONCLUSION The use of this pipeline allows rapid analysis of mucilage characteristics from diverse myxospermous germplasm which can contribute to fundamental research into mucilage production and properties, quality testing for industrial manufacturing, and progressing breeding efforts in myxospermous crops.
Collapse
Affiliation(s)
- James M. Cowley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Lina Herliana
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Kylie A. Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Silvano Ciani
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Virna Cerne
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| |
Collapse
|
24
|
Tang X, Wang D, Liu Y, Lu M, Zhuang Y, Xie Z, Wang C, Wang S, Kong Y, Chai G, Zhou G. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus. THE NEW PHYTOLOGIST 2020; 225:1545-1561. [PMID: 31596964 DOI: 10.1111/nph.16244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 05/21/2023]
Abstract
Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants. Transcriptomic, quantitative real-time PCR, chromatin immunoprecipitation PCR, and electrophoretic mobility shift assay analyses were conducted to identify target genes involved in xylem development. Yeast two-hybrid, pull-down, bimolecular fluorescence complementation, and co-immunoprecipitation assays were used to validate protein-protein interactions. PaC3H17 and its target PaMYB199 were found to be predominantly expressed in the vascular cambium and developing secondary xylem in Populus stems and play opposite roles in controlling cambial cell proliferation and secondary cell wall thickening through an overlapping pathway. Further, PaC3H17 interacts with PaMYB199 to form a complex, attenuating PaMYB199-driven suppression of its xylem targets. Exogenous auxin application enhances the dual control of the PaC3H17-PaMYB199 module during cambium division, thereby promoting secondary cell wall deposition. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module represents a novel regulatory mechanism in Populus, increasing our understanding of the regulatory networks involved in wood formation.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yu Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yamei Zhuang
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Xie
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shumin Wang
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
25
|
Wan Y, Zhang M, Hong A, Lan X, Yang H, Liu Y. Transcriptome and weighted correlation network analyses provide insights into inflorescence stem straightness in Paeonia lactiflora. PLANT MOLECULAR BIOLOGY 2020; 102:239-252. [PMID: 31832900 DOI: 10.1007/s11103-019-00945-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Lack of structural components results in inflorescence stem bending. Differentially expressed genes involved in lignin and hemicellulose biosynthesis are vital; genes involved in cellulose and glycan biosynthesis are also relevant. An erect inflorescence stem is essential for high-quality cut herbaceous peony flowers. To explore the factors underlying inflorescence stem bending, major cell walls contents were measured, and stem structure was observed in two herbaceous peony varieties with contrasting stem straightness traits ('Da Fugui', upright; 'Chui Touhong', bending). In addition, Illumina sequencing was performed and weighted correlation network analysis (WGCNA) was used to analyze the results. The results showed significant differences in lignin, hemicellulose and soluble sugar contents, sclerenchyma and xylem areas and thickening in cell walls in pith at stage S3, when bending begins. In addition, 44,182 significantly differentially expressed genes (DEGs) were found, and these DEGs were mainly enriched in 36 pathways. Among the DEGs, hub genes involved in lignin, cellulose, and xylan biosynthesis and transcription factors that regulated these process were identified by WGCNA. These results suggested that the contents of compounds that provided cell wall rigidity were vital factors affecting inflorescence stem straightness in herbaceous peony. Genes involved in or regulating the biosynthesis of these compounds are thus important; lignin and hemicellulose are of great interest, and cellulose and glycan should not be ignored. This paper lays a foundation for developing new herbaceous peony varieties suitable for cut flowers by molecular-assisted breeding.
Collapse
Affiliation(s)
- Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Aiying Hong
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Xinyu Lan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Huiyan Yang
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
26
|
Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. Int J Mol Sci 2020; 21:ijms21020406. [PMID: 31936440 PMCID: PMC7013992 DOI: 10.3390/ijms21020406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.
Collapse
|
27
|
Sun L, Zhang Y, Cui H, Zhang L, Sha T, Wang C, Fan C, Luan F, Wang X. Linkage Mapping and Comparative Transcriptome Analysis of Firmness in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2020; 11:831. [PMID: 32612625 PMCID: PMC7308538 DOI: 10.3389/fpls.2020.00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/25/2020] [Indexed: 05/20/2023]
Abstract
Watermelon fruit texture and quality are determined by flesh firmness. As a quality trait, flesh firmness is controlled by multigenes. Defining the key regulatory factors of watermelon flesh firmness is of great significance for watermelon genetic breeding. In this study, the hard-flesh egusi seed watermelon PI186490 was used as the male parent, the soft-flesh cultivated watermelon W1-1 was used as the female parent, and 175 F2 generations were obtained from selfing F1. Primary mapping of the major genes controlling center flesh firmness was achieved by bulked-segregant analysis (BSA)-Seq analysis and molecular marker technology. Finally, major genes were delimited in the physical interval between 6,210,787 and 7,742,559 bp on chromosome 2 and between 207,553 and 403,137 bp on chromosome 8. The content of each cell wall component and hormone was measured, and comparative transcriptome analysis was performed during fruit development in watermelon. The protopectin, cellulose, hemicellulose, indole-3-acetic acid (IAA) and abscisic acid (ABA) contents were measured, and paraffin sections were made during the three fruit developmental stages. The results revealed that protopectin, celluloses, and hemicelluloses exhibited similar trends for flesh firmness, while the IAA and ABA concentrations continued to decrease with fruit ripening. Paraffin sections showed that PI186490 cells were more numerous, were more tightly packed, had clearer cell wall edges and had thicker cell walls than W1-1 cells at every developmental stage. Comparative transcriptome analysis was conducted on RNA samples of flesh during fruit development and ripening in W1-1 and PI186490. The results from the localization interval transcriptome analysis showed that Cla016033 (DUF579 family member), which may influence the cell wall component contents to adjust the flesh firmness in watermelon fruit, was different in W1-1 and PI186490 and that Cla012507 (MADS-box transcription factor) may be involved in the regulation of fruit ripening and affect the hardness of watermelon fruit.
Collapse
Affiliation(s)
- Lei Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- *Correspondence: Lei Sun,
| | - Yushu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Haonan Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Lupeng Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Tongyun Sha
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Chaonan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Chao Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- Feishi Luan,
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- Xuezheng Wang,
| |
Collapse
|
28
|
Kumar R, Bishop E, Bridges WC, Tharayil N, Sekhon RS. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize. PLANT, CELL & ENVIRONMENT 2019; 42:2597-2611. [PMID: 31158300 DOI: 10.1111/pce.13599] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/09/2023]
Abstract
Source-sink communication is one of the key regulators of senescence; however, the mechanisms underlying such regulation are largely unknown. We analysed senescence induced by the lack of grain sink in maize, termed source-sink regulated senescence (SSRS), and compared the associated physiological and metabolic changes with those accompanying natural senescence. Phenotypic characterization of 31 diverse field-grown inbreds revealed substantial variation for both SSRS and natural senescence. Partitioning of excess carbohydrates to alternative sinks, mainly internodes and husks, emerged as a critical mechanism underlying both SSRS and stay-green. Time-course analyses of SSRS sensitive (B73) and resistant (PHG35) inbreds confirmed the role of sugar partitioning in SSRS and stay-green. Elevated hemicellulose content in PHG35 internodes highlighted the role of the cell wall as a significant alternative sink. Sugar signalling emerged as an important regulator of SSRS as evident from an increased accumulation of trehalose-6-phosphate and decreased transcript levels of snf1-related protein kinase1, two signalling components associated with senescence, in B73. These findings demonstrate a crucial role of sugar partitioning, signalling, and utilization in SSRS. Available genetic variation for SSRS and a better understanding of the underlying mechanisms would help modify sugar partitioning and senescence to enhance the productivity of maize and related grasses.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634
| | - Eugene Bishop
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, 29634
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634
| |
Collapse
|
29
|
Wierzbicki MP, Christie N, Pinard D, Mansfield SD, Mizrachi E, Myburg AA. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues. THE NEW PHYTOLOGIST 2019; 223:1952-1972. [PMID: 31144333 DOI: 10.1111/nph.15972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Acetyl- and methylglucuronic acid decorations of xylan, the dominant hemicellulose in secondary cell walls (SCWs) of woody dicots, affect its interaction with cellulose and lignin to determine SCW structure and extractability. Genes and pathways involved in these modifications may be targets for genetic engineering; however, little is known about the regulation of xylan modifications in woody plants. To address this, we assessed genetic and gene expression variation associated with xylan modification in developing xylem of Eucalyptus grandis × Eucalyptus urophylla interspecific hybrids. Expression quantitative trait locus (eQTL) mapping identified potential regulatory polymorphisms affecting gene expression modules associated with xylan modification. We identified 14 putative xylan modification genes that are members of five expression modules sharing seven trans-eQTL hotspots. The xylan modification genes are prevalent in two expression modules. The first comprises nucleotide sugar interconversion pathways supplying the essential precursors for cellulose and xylan biosynthesis. The second contains genes responsible for phenylalanine biosynthesis and S-adenosylmethionine biosynthesis required for glucuronic acid and monolignol methylation. Co-expression and co-regulation analyses also identified four metabolic sources of acetyl coenxyme A that appear to be transcriptionally coordinated with xylan modification. Our systems genetics analysis may provide new avenues for metabolic engineering to alter wood SCW biology for enhanced biomass processability.
Collapse
Affiliation(s)
- Martin P Wierzbicki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
30
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|
31
|
Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. THE NEW PHYTOLOGIST 2019; 221:1703-1723. [PMID: 30312479 DOI: 10.1111/nph.15537] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/28/2018] [Indexed: 05/19/2023]
Abstract
Contents Summary 1703 I. Introduction 1703 II. Cellulose biosynthesis 1705 III. Xylan biosynthesis 1709 IV. Glucomannan biosynthesis 1713 V. Lignin biosynthesis 1714 VI. Concluding remarks 1717 Acknowledgements 1717 References 1717 SUMMARY: Secondary walls are synthesized in specialized cells, such as tracheary elements and fibers, and their remarkable strength and rigidity provide strong mechanical support to the cells and the plant body. The main components of secondary walls are cellulose, xylan, glucomannan and lignin. Biochemical, molecular and genetic studies have led to the discovery of most of the genes involved in the biosynthesis of secondary wall components. Cellulose is synthesized by cellulose synthase complexes in the plasma membrane and the recent success of in vitro synthesis of cellulose microfibrils by a single recombinant cellulose synthase isoform reconstituted into proteoliposomes opens new doors to further investigate the structure and functions of cellulose synthase complexes. Most genes involved in the glycosyl backbone synthesis, glycosyl substitutions and acetylation of xylan and glucomannan have been genetically characterized and the biochemical properties of some of their encoded enzymes have been investigated. The genes and their encoded enzymes participating in monolignol biosynthesis and modification have been extensively studied both genetically and biochemically. A full understanding of how secondary wall components are synthesized will ultimately enable us to produce plants with custom-designed secondary wall composition tailored to diverse applications.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
32
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Temple H, Mortimer JC, Tryfona T, Yu X, Lopez‐Hernandez F, Sorieul M, Anders N, Dupree P. Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. PLANT DIRECT 2019; 3:e00117. [PMID: 31245760 PMCID: PMC6508755 DOI: 10.1002/pld3.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 05/07/2023]
Abstract
All members of the DUF579 family characterized so far have been described to affect the integrity of the hemicellulosic cell wall component xylan: GXMs are glucuronoxylan methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan; IRX15 and IRX15L, although their enzymatic activity is unknown, are required for xylan biosynthesis and/or xylan deposition. Here we show that the DUF579 family members, AGM1 and AGM2, are required for 4-O-methylation of glucuronic acid of a different plant cell wall component, the highly glycosylated arabinogalactan proteins (AGPs).
Collapse
Affiliation(s)
- Henry Temple
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | - Xiaolan Yu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Mathias Sorieul
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Nadine Anders
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
34
|
Li C, Xuan L, He Y, Wang J, Zhang H, Ying Y, Wu A, Bacic A, Zeng W, Song L. Molecular Mechanism of Xylogenesis in Moso Bamboo ( Phyllostachys edulis) Shoots during Cold Storage. Polymers (Basel) 2018; 11:E38. [PMID: 30960022 PMCID: PMC6401726 DOI: 10.3390/polym11010038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/27/2023] Open
Abstract
A bamboo shoot is the immature stem of the woody grass and a nutritious and popular vegetable in East Asia. However, it undergoes a rapid xylogenesis process right after harvest, even being stored in a cold chamber. To investigate the molecular regulation mechanisms of xylogenesis in Moso bamboo (Phyllostachys edulis) shoots (MBSes) during cold storage, the measurement of cell wall polymers (cellulose, hemicellulose, and lignin) and related enzyme activities (phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD), and xylan xylosyltransferase (XylT)) and transcriptomic analysis were performed during cold storage. It was noticed that cellulose and lignin contents increased, while hemicellulose content exhibited a downward trend. PAL, CAD, and POD activity presented an upward trend generally in MBS when stored at 4 °C for 16 days. XylT activity showed a descending trend during the stages of storage, but slightly increased during the 8th to 12th days after harvest at 4 °C. Transcriptomic analysis identified 72, 28, 44, and 31 functional unigenes encoding lignin, cellulose, xylan biosynthesis enzymes, and transcription factors (TFs), respectively. Many of these secondary cell wall (SCW)-related genes showed higher expression levels in the later period of cold storage. Quantitative RT-PCR analysis of the selected genes conformed to the expression pattern. Our study provides a comprehensive analysis of MBS secondary wall biosynthesis at the molecular level during the cold storage process. The results give insight into the xylogenesis process of this economically important vegetable and shed light on solving this problem of the post-harvest industry.
Collapse
Affiliation(s)
- Changtao Li
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Lingling Xuan
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Yuming He
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Jie Wang
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Hui Zhang
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Yeqing Ying
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou 510642, China.
| | - Antony Bacic
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
- ARC Center of Excellence in Plant Cell Walls, School of BioSciences, the University of Melbourne, Parkville VIC 3010, Australia.
- La Trobe Institute of Food and Agriculture, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
- ARC Center of Excellence in Plant Cell Walls, School of BioSciences, the University of Melbourne, Parkville VIC 3010, Australia.
| | - Lili Song
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|
35
|
He JB, Zhao XH, Du PZ, Zeng W, Beahan CT, Wang YQ, Li HL, Bacic A, Wu AM. KNAT7 positively regulates xylan biosynthesis by directly activating IRX9 expression in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:514-528. [PMID: 29393579 DOI: 10.1111/jipb.12638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/28/2018] [Indexed: 06/07/2023]
Abstract
Xylan is the major plant hemicellulosic polysaccharide in the secondary cell wall. The transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (KNAT7) regulates secondary cell wall biosynthesis, but its exact role in regulating xylan biosynthesis remains unclear. Using transactivation analyses, we demonstrate that KNAT7 activates the promoters of the xylan biosynthetic genes, IRREGULAR XYLEM 9 (IRX9), IRX10, IRREGULAR XYLEM 14-LIKE (IRX14L), and FRAGILE FIBER 8 (FRA8). The knat7 T-DNA insertion mutants have thinner vessel element walls and xylary fibers, and thicker interfascicular fiber walls in inflorescence stems, relative to wild-type (WT). KNAT7 overexpression plants exhibited opposite effects. Glycosyl linkage and sugar composition analyses revealed lower xylan levels in knat7 inflorescence stems, relative to WT; a finding supported by labeling of inflorescence walls with xylan-specific antibodies. The knat7 loss-of-function mutants had lower transcript levels of the xylan biosynthetic genes IRX9, IRX10, and FRA8, whereas KNAT7 overexpression plants had higher mRNA levels for IRX9, IRX10, IRX14L, and FRA8. Electrophoretic mobility shift assays indicated that KNAT7 binds to the IRX9 promoter. These results support the hypothesis that KNAT7 positively regulates xylan biosynthesis.
Collapse
Affiliation(s)
- Jun-Bo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xian-Hai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ping-Zhou Du
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Yu-Qi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Hui-Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Jensen JK, Busse‐Wicher M, Poulsen CP, Fangel JU, Smith PJ, Yang J, Peña M, Dinesen MH, Martens HJ, Melkonian M, Wong GK, Moremen KW, Wilkerson CG, Scheller HV, Dupree P, Ulvskov P, Urbanowicz BR, Harholt J. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. THE NEW PHYTOLOGIST 2018; 218:1049-1060. [PMID: 29460505 PMCID: PMC5902652 DOI: 10.1111/nph.15050] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/14/2018] [Indexed: 05/18/2023]
Abstract
Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. These data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.
Collapse
Affiliation(s)
- Jacob Krüger Jensen
- Department of Plant BiologyMichigan State UniversityEast LansingMI48823USA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48823USA
| | | | | | | | - Peter James Smith
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
- BioEnergy Science CenterOak Ridge National Lab LaboratoryOak RidgeTN37831USA
| | - Jeong‐Yeh Yang
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Maria‐Jesus Peña
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
- BioEnergy Science CenterOak Ridge National Lab LaboratoryOak RidgeTN37831USA
| | | | - Helle Juel Martens
- Department of Plant and Environmental SciencesUniversity of Copenhagen1971Frederiksberg CDenmark
| | - Michael Melkonian
- Botanical InstituteDepartment of Biological SciencesUniversität zu KölnKölnD‐50674Germany
| | - Gane Ka‐Shu Wong
- BGI‐ShenzhenBeishan Industrial ZoneYantian DistrictShenzhen518083China
| | - Kelley W. Moremen
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Curtis Gene Wilkerson
- Department of Plant BiologyMichigan State UniversityEast LansingMI48823USA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48823USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Henrik Vibe Scheller
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1QWUK
| | - Peter Ulvskov
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
| | - Breeanna Rae Urbanowicz
- Complex Carbohydrate Research CenterUniversity of Georgia315 Riverbend RoadAthensGA30602USA
- BioEnergy Science CenterOak Ridge National Lab LaboratoryOak RidgeTN37831USA
| | | |
Collapse
|
37
|
Transcriptome analysis provides insights into xylogenesis formation in Moso bamboo (Phyllostachys edulis) shoot. Sci Rep 2018; 8:3951. [PMID: 29500441 PMCID: PMC5834459 DOI: 10.1038/s41598-018-21766-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/07/2018] [Indexed: 01/21/2023] Open
Abstract
Maturation-related changes in cell wall composition and the molecular mechanisms underlying cell wall changes were investigated from the apical, middle and basal segments in moso bamboo shoot (MBS). With maturation extent from apical to basal regions in MBS, lignin and cellulose content increased, whereas heteroxylan exhibited a decreasing trend. Activities of phenylalanine amonnialyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and cinnamate-4-hydroxylase (C4H), which are involved in lignin biosynthesis, increased rapidly from the apex to the base sections. The comparative transcriptomic analysis was carried out to identify some key genes involved in secondary cell walls (SCW) formation underlying the cell wall compositions changes including 63, 8, 18, and 31 functional unigenes encoding biosynthesis of lignin, cellulose, xylan and NAC-MYB-based transcription factors, respectively. Genes related to secondary cell wall formation and lignin biosynthesis had higher expression levels in the middle and basal segments compared to those in the apical segments. Furthermore, the expression profile of PePAL gene showed positive relationships with cellulose-related gene PeCESA4, xylan-related genes PeIRX9 and PeIRX10. Our results indicated that lignification occurred in the more mature middle and basal segments in MBS at harvest while lignification of MBS were correlated with higher expression levels of PeCESA4, PeIRX9 and PeIRX10 genes.
Collapse
|
38
|
Zhang J, Xie M, Tuskan GA, Muchero W, Chen JG. Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1535. [PMID: 30405670 PMCID: PMC6206300 DOI: 10.3389/fpls.2018.01535] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/28/2018] [Indexed: 05/19/2023]
Abstract
Plant cell walls provide structural support for growth and serve as a barrier for pathogen attack. Plant cell walls are also a source of renewable biomass for conversion to biofuels and bioproducts. Understanding plant cell wall biosynthesis and its regulation is of critical importance for the genetic modification of plant feedstocks for cost-effective biofuels and bioproducts conversion and production. Great progress has been made in identifying enzymes involved in plant cell wall biosynthesis, and in Arabidopsis it is generally recognized that the regulation of genes encoding these enzymes is under a transcriptional regulatory network with coherent feedforward and feedback loops. However, less is known about the transcriptional regulation of plant secondary cell wall (SCW) biosynthesis in woody species despite of its high relevance to biofuels and bioproducts conversion and production. In this article, we synthesize recent progress on the transcriptional regulation of SCW biosynthesis in Arabidopsis and contrast to what is known in woody species. Furthermore, we evaluate progress in related emerging regulatory machineries targeting transcription factors in this complex regulatory network of SCW biosynthesis.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- *Correspondence: Wellington Muchero, Jin-Gui Chen,
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- *Correspondence: Wellington Muchero, Jin-Gui Chen,
| |
Collapse
|
39
|
Hassan AS, Houston K, Lahnstein J, Shirley N, Schwerdt JG, Gidley MJ, Waugh R, Little A, Burton RA. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS One 2017; 12:e0182537. [PMID: 28771585 PMCID: PMC5542645 DOI: 10.1371/journal.pone.0182537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.
Collapse
Affiliation(s)
- Ali Saleh Hassan
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Jelle Lahnstein
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Invergowrie, Dundee, Scotland
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Rachel A. Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
40
|
Tucker MR, Ma C, Phan J, Neumann K, Shirley NJ, Hahn MG, Cozzolino D, Burton RA. Dissecting the Genetic Basis for Seed Coat Mucilage Heteroxylan Biosynthesis in Plantago ovata Using Gamma Irradiation and Infrared Spectroscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:326. [PMID: 28377777 PMCID: PMC5359251 DOI: 10.3389/fpls.2017.00326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 05/30/2023]
Abstract
Seeds from the myxospermous species Plantago ovata release a polysaccharide-rich mucilage upon contact with water. This seed coat derived mucilage is composed predominantly of heteroxylan (HX) and is utilized as a gluten-free dietary fiber supplement to promote human colorectal health. In this study, a gamma-irradiated P. ovata population was generated and screened using histological stains and Fourier Transform Mid Infrared (FTMIR) spectroscopy to identify putative mutants showing defects in seed coat mucilage HX composition and/or structure. FTMIR analysis of dry seed revealed variation in regions of the IR spectra previously linked to xylan structure in Secale cereale (rye). Subsequent absorbance ratio and PCA multivariate analysis identified 22 putative mutant families with differences in the HX IR fingerprint region. Many of these showed distinct changes in the amount and subtle changes in structure of HX after mucilage extrusion, while 20% of the putative HX mutants identified by FTMIR showed no difference in staining patterns of extruded mucilage compared to wild-type. Transcriptional screening analysis of two putative reduced xylan in mucilage (rxm) mutants, rxm1 and rxm3, revealed that changes in HX levels in rxm1 correlate with reduced transcription of known and novel genes associated with xylan synthesis, possibly indicative of specific co-regulatory units within the xylan biosynthetic pathway. These results confirm that FTMIR is a suitable method for identifying putative mutants with altered mucilage HX composition in P. ovata, and therefore forms a resource to identify novel genes involved in xylan biosynthesis.
Collapse
Affiliation(s)
- Matthew R. Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Chao Ma
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Jana Phan
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Kylie Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Neil J. Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GAUSA
| | - Daniel Cozzolino
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SAAustralia
| |
Collapse
|
41
|
Phan JL, Tucker MR, Khor SF, Shirley N, Lahnstein J, Beahan C, Bacic A, Burton RA. Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6481-6495. [PMID: 27856710 PMCID: PMC5181589 DOI: 10.1093/jxb/erw424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways.
Collapse
Affiliation(s)
- Jana L Phan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Shi Fang Khor
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Neil Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Cherie Beahan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville Campus, VIC 3010, Australia
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville Campus, VIC 3010, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
42
|
Behr M, Legay S, Žižková E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G. Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. FRONTIERS IN PLANT SCIENCE 2016; 7:1733. [PMID: 27917184 PMCID: PMC5114303 DOI: 10.3389/fpls.2016.01733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/24/2023]
Abstract
Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e., elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e., 6-9-15-20 days after sowing) to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases, and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Eva Žižková
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| |
Collapse
|
43
|
Pandey SK, Nookaraju A, Fujino T, Pattathil S, Joshi CP. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation. PLANT CELL REPORTS 2016; 35:2353-2367. [PMID: 27522520 DOI: 10.1007/s00299-016-2039-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Akula Nookaraju
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
- Department of Biological Sciences and School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
- Kaveri Seed Company Ltd., Minerva Complex, Secunderabad, 500003, India
| | - Takeshi Fujino
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 31, Riverbend Road, Athens, GA, 30602, USA
| | - Chandrashekhar P Joshi
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea.
- Department of Biological Sciences and School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
44
|
Hu R, Li J, Yang X, Zhao X, Wang X, Tang Q, He G, Zhou G, Kong Y. Irregular xylem 7 (IRX7) is required for anchoring seed coat mucilage in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 92:25-38. [PMID: 27333892 DOI: 10.1007/s11103-016-0493-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/18/2016] [Indexed: 05/02/2023]
Abstract
Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7 was expressed in the seeds from 4 days post-anthesis (DPA) to 13 DPA, with the peak of expression at 13 DPA. The seed coat epidermis cells of irx7 displayed no aberrant morphology during differentiation, and these cells synthesized and deposited the same amount of mucilage as did wild type (WT) cells. However, the distribution of the water-soluble vs. adherent mucilage layers was significantly altered in irx7 compared to the WT. Both the amount of xylose and the extent of glycosyl linkages of xylan was dramatically decreased in irx7 water-soluble and adherent mucilage compared to the WT. The polymeric structure of water-soluble mucilage was altered in irx7, with a total loss of the higher molecular weight polymer components present in the WT. Correspondingly, whole-seed immunolabeling assays and dot-immunoassays of extracted mucilage indicated dramatic changes in rhamnogalacturonan I (RG I) and xylan epitopes in irx7 mucilage. Furthermore, the crystalline cellulose content was significantly reduced in irx7 mucilage. Taken together, these results indicate that xylan synthesized by IRX7 plays an essential role in maintaining the adhesive property of seed coat mucilage, and its structural role is potentially implemented through its interaction with cellulose.
Collapse
Affiliation(s)
- Ruibo Hu
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Junling Li
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xuanwen Yang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xun Zhao
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xiaoyu Wang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Qi Tang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Guo He
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| | - Yingzhen Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
45
|
Haghighat M, Teng Q, Zhong R, Ye ZH. Evolutionary Conservation of Xylan Biosynthetic Genes in Selaginella moellendorffii and Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2016; 57:1707-19. [PMID: 27345025 DOI: 10.1093/pcp/pcw096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/01/2016] [Indexed: 05/10/2023]
Abstract
Xylan is a major cross-linking hemicellulose in secondary walls of vascular tissues, and the recruitment of xylan as a secondary wall component was suggested to be a pivotal event for the evolution of vascular tissues. To decipher the evolution of xylan structure and xylan biosynthetic genes, we analyzed xylan substitution patterns and characterized genes mediating methylation of glucuronic acid (GlcA) side chains in xylan of the model seedless vascular plant, Selaginella moellendorffii, and investigated GT43 genes from S. moellendorffii and the model non-vascular plant, Physcomitrella patens, for their roles in xylan biosynthesis. Using nuclear magentic resonance spectroscopy, we have demonstrated that S. moellendorffii xylan consists of β-1,4-linked xylosyl residues subsituted solely with methylated GlcA residues and that xylans from both S. moellendorffii and P. patens are acetylated at O-2 and O-3. To investigate genes responsible for GlcA methylation of xylan, we identified two DUF579 genes in the S. moellendorffii genome and showed that one of them, SmGXM, encodes a glucuronoxylan methyltransferase capable of adding the methyl group onto the GlcA side chain of xylooligomers. Furthermore, we revealed that the two GT43 genes in S. moellendorffii, SmGT43A and SmGT43B, are functional orthologs of the Arabidopsis xylan backbone biosynthetic genes IRX9 and IRX14, respectively, indicating the evolutionary conservation of the involvement of two functionally non-redundant groups of GT43 genes in xylan backbone biosynthesis between seedless and seed vascular plants. Among the five GT43 genes in P. patens, PpGT43A was found to be a functional ortholog of Arabidopsis IRX9, suggesting that the recruitment of GT43 genes in xylan backbone biosynthesis occurred when non-vascular plants appeared on land.
Collapse
Affiliation(s)
- Marziyeh Haghighat
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
46
|
Sorieul M, Dickson A, Hill SJ, Pearson H. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. MATERIALS 2016; 9:ma9080618. [PMID: 28773739 PMCID: PMC5509024 DOI: 10.3390/ma9080618] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023]
Abstract
Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.
Collapse
Affiliation(s)
| | - Alan Dickson
- Scion, Private Bag 3020, Rotorua 3046, New Zealand.
| | | | | |
Collapse
|
47
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
48
|
Wang X, Tang Q, Zhao X, Jia C, Yang X, He G, Wu A, Kong Y, Hu R, Zhou G. Functional conservation and divergence of Miscanthus lutarioriparius GT43 gene family in xylan biosynthesis. BMC PLANT BIOLOGY 2016; 16:102. [PMID: 27114083 PMCID: PMC4845329 DOI: 10.1186/s12870-016-0793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/21/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Xylan is the most abundant un-cellulosic polysaccharides of plant cell walls. Much progress in xylan biosynthesis has been gained in the model plant species Arabidopsis. Two homologous pairs Irregular Xylem 9 (IRX9)/9L and IRX14/14L from glycosyltransferase (GT) family 43 have been proved to play crucial roles in xylan backbone biosynthesis. However, xylan biosynthesis in grass such as Miscanthus remains poorly understood. RESULTS We characterized seven GT43 members in M. lutarioriparius, a promising bioenergy crop. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the expression of MlGT43 genes was ubiquitously detected in the tissues examined. In-situ hybridization demonstrated that MlGT43A-B and MlGT43F-G were specifically expressed in sclerenchyma, while MlGT43C-E were expressed in both sclerenchyma and parenchyma. All seven MlGT43 proteins were localized to Golgi apparatus. Overexpression of MlGT43A-E but not MlGT43F and MlGT43G in Arabidopsis irx9 fully or partially rescued the mutant defects, including morphological changes, collapsed xylem and increased xylan contents, whereas overexpression of MlGT43F and MlGT43G but not MlGT43A-E complemented the defects of irx14, indicating that MlGT43A-E are functional orthologues of IRX9, while MlGT43F and MlGT43G are functional orthologues of IRX14. However, overexpression of all seven MlGT43 genes could not rescue the mucilage defects of irx14 seeds. Furthermore, transient transactivation analyses of MlGT43A-E reporters demonstrated that MlGT43A and MlGT43B but not MlGT43C-E were differentially activated by MlSND1, MlMYB46 or MlVND7. CONCLUSION The results demonstrated that all seven MlGT43s are functionally conserved in xylan biosynthesis during secondary cell wall formation but diversify in seed coat mucilage xylan biosynthesis. The results obtained provide deeper insight into xylan biosynthesis in grass, which lay the foundation for genetic modification of grass cell wall components and structure to better suit for next-generation biofuel production.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Tang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Xun Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, PR China
| | - Xuanwen Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Guo He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yingzhen Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key laboratory of Tobacco Genetic Improvement and Biotechnology, Qingdao, 266101, PR China
| | - Ruibo Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| | - Gongke Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
49
|
Pirrò S, Zanella L, Kenzo M, Montesano C, Minutolo A, Potestà M, Sobze MS, Canini A, Cirilli M, Muleo R, Colizzi V, Galgani A. MicroRNA from Moringa oleifera: Identification by High Throughput Sequencing and Their Potential Contribution to Plant Medicinal Value. PLoS One 2016; 11:e0149495. [PMID: 26930203 PMCID: PMC4773123 DOI: 10.1371/journal.pone.0149495] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Moringa oleifera is a widespread plant with substantial nutritional and medicinal value. We postulated that microRNAs (miRNAs), which are endogenous, noncoding small RNAs regulating gene expression at the post-transcriptional level, might contribute to the medicinal properties of plants of this species after ingestion into human body, regulating human gene expression. However, the knowledge is scarce about miRNA in Moringa. Furthermore, in order to test the hypothesis on the pharmacological potential properties of miRNA, we conducted a high-throughput sequencing analysis using the Illumina platform. A total of 31,290,964 raw reads were produced from a library of small RNA isolated from M. oleifera seeds. We identified 94 conserved and two novel miRNAs that were validated by qRT-PCR assays. Results from qRT-PCR trials conducted on the expression of 20 Moringa miRNA showed that are conserved across multiple plant species as determined by their detection in tissue of other common crop plants. In silico analyses predicted target genes for the conserved miRNA that in turn allowed to relate the miRNAs to the regulation of physiological processes. Some of the predicted plant miRNAs have functional homology to their mammalian counterparts and regulated human genes when they were transfected into cell lines. To our knowledge, this is the first report of discovering M. oleifera miRNAs based on high-throughput sequencing and bioinformatics analysis and we provided new insight into a potential cross-species control of human gene expression. The widespread cultivation and consumption of M. oleifera, for nutritional and medicinal purposes, brings humans into close contact with products and extracts of this plant species. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Stefano Pirrò
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Mir-Nat s.r.l., Rome, Italy
| | - Letizia Zanella
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Carla Montesano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Marina Potestà
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Marco Cirilli
- Department of Agricultural and Forest Science, University of Tuscia, Viterbo, Italy
| | - Rosario Muleo
- Department of Agricultural and Forest Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Mir-Nat s.r.l., Rome, Italy
| | - Andrea Galgani
- Centro di Servizi Interdipartimentale, Stazione per la Tecnologia Animale, University of Rome‘‘Tor Vergata”, Rome, Italy
- Mir-Nat s.r.l., Rome, Italy
- * E-mail:
| |
Collapse
|
50
|
Tong SM, Chen Y, Ying SH, Feng MG. Three DUF1996 Proteins Localize in Vacuoles and Function in Fungal Responses to Multiple Stresses and Metal Ions. Sci Rep 2016; 6:20566. [PMID: 26839279 PMCID: PMC4738358 DOI: 10.1038/srep20566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Many annotated fungal genomes harbour high proportions of hypothetical proteins with or without domains of unknown function (DUF). Here, three novel proteins (342−497 amino acids), each containing only a single large DUF1996 (231−250 residues) region with highly conserved head (DPIXXP) and tail (HXDXXXGW) signatures, were expressed as eGFP-tagged fusion proteins and shown to specifically localize in the vacuoles of Beauveria bassiana, a filamentous fungal entomopathogen; therefore, these proteins were named vacuole-localized proteins (VLPs). The VLPs have one to three homologues in other entomopathogenic or non-entomopathogenic filamentous fungi but no homologues in yeasts. The large DUF1996 regions can be formulated as D-X4-P-X5–6-H-X-H-X3-G-X25–26-D-X-S-X-YW-X-P-X123–203-CP-X39–48-H-X-D-X3-GW; the identical residues likely involve in a proton antiport system for intracellular homeostasis. Single deletions of three VLP-coding genes (vlp1–3) increased fungal sensitivities to cell wall perturbation, high osmolarity, oxidation, and several metal ions. Conidial thermotolerance decreased by ~11% in two Δvlp mutants, and UV-B resistance decreased by 41−57% in three Δvlp mutants. All the changes were restored by targeted gene complementation. However, the deletions did not influence fungal growth, conidiation, virulence or Cu2+ sensitivity. Our findings unveiled a role for the DUF1996 regions of three B. bassiana VLPs in the regulation of multiple stress responses and environmental adaptation.
Collapse
Affiliation(s)
- Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ying Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| |
Collapse
|