1
|
Gutierrez A, Creehan KM, Grant Y, Taffe MA. Adult consequences of repeated nicotine and Δ 9-tetrahydrocannabinol (THC) vapor inhalation in adolescent rats. Psychopharmacology (Berl) 2024; 241:585-599. [PMID: 38282127 PMCID: PMC10884208 DOI: 10.1007/s00213-024-06545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
RATIONALE Use of electronic drug delivery systems (EDDS, "e-cigarettes") to ingest nicotine and Δ9-tetrahydrocannabinol (THC) has surged in adolescents in the USA; five times as many high-school seniors vape nicotine daily using tobacco. At the same time, 19.5% of seniors use cannabis at least monthly, with 12% using EDDS to deliver it. OBJECTIVES This study was conducted to examine the impact of repeated adolescent vapor inhalation of nicotine and THC in rats. METHODS Female Sprague-Dawley rats were exposed to 30-min sessions of vapor inhalation, twice daily, from post-natal day (PND) 31 to PND 40. Conditions included vapor from the propylene glycol (PG) vehicle, nicotine (60 mg/mL in the PG), THC (100 mg/mL in the PG), or the combination of nicotine (60 mg/mL) and THC (100 mg/mL). Rats were assessed on wheel activity, heroin anti-nociception and nicotine and heroin vapor volitional exposure during adulthood. RESULTS Nicotine-exposed rats exhibited few differences as adults, but were less sensitive to anti-nociceptive effects of heroin (1 mg/kg, s.c.). THC- and THC + nicotine-exposed rats were less spontaneously active, and obtained fewer nicotine vapor deliveries as adults. In contrast, THC-exposed rats obtained volitional heroin vapor at rates indistinguishable from the non-THC-exposed groups. Repeated THC exposure also caused tolerance to temperature-disrupting effects of THC (5 mg/kg, i.p.). CONCLUSIONS These studies further confirm that the effects of repeated vapor exposure to THC in adolescence last into early to middle adulthood, including decreased volitional consumption of nicotine. Effects of repeated nicotine in adolescence were comparatively minor.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Kevin M Creehan
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Yanabel Grant
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Wang X, Chen Y, Dong J, Ge J, Liu X, Liu J. Neurobiology of Stress-Induced Nicotine Relapse. Int J Mol Sci 2024; 25:1482. [PMID: 38338760 PMCID: PMC10855331 DOI: 10.3390/ijms25031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3β4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China (Y.C.); (J.D.)
| |
Collapse
|
3
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
4
|
Buzzi B, Koseli E, Alkhlaif Y, Parker A, Mustafa MA, Lichtman AH, Buczynski MW, Damaj MI. Differential roles of diacylglycerol lipase (DAGL) enzymes in nicotine withdrawal. Brain Res 2023; 1817:148483. [PMID: 37442250 PMCID: PMC10529956 DOI: 10.1016/j.brainres.2023.148483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nicotine and tobacco-related deaths remains a leading cause of preventable death and disease in the United States. Several studies indicate that modulation of the endocannabinoid system, primarily of the endocannabinoid 2-Arachidonoylglycerol (2-AG), alters nicotinic dependence behaviors in rodents. This study, using transgenic knock-out (KO) mice, evaluated the role of the two 2-AG biosynthesis enzymes, (Diacylglycerol lipase-α) DAGL-α and DAGL-β in spontaneous nicotine withdrawal. DAGL-α deletion prevents somatic and affective signs of nicotine withdrawal, while DAGL-β deletion plays a role in hyperalgesia due to nicotine withdrawal. These results suggest a differential role of these enzymes in the various signs of nicotine withdrawal. Our behavioral findings relate to the distribution of these enzymes with DAGL-β being highly expressed in macrophages and DAGL-α in neurons. This study offers new potential targets for smoking cessation therapies.
Collapse
Affiliation(s)
- Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Eda Koseli
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Abigail Parker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Buzzi B, Koseli E, Moncayo L, Shoaib M, Damaj M. Role of Neuronal Nicotinic Acetylcholine Receptors in Cannabinoid Dependence. Pharmacol Res 2023; 191:106746. [PMID: 37001709 DOI: 10.1016/j.phrs.2023.106746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Cannabis is among the most widely consumed psychoactive drugs around the world and cannabis use disorder (CUD) has no current approved pharmacological treatment. Nicotine and cannabis are commonly co-used which suggests there to be overlapping neurobiological actions supported primarily by the co-distribution of both receptor systems in the brain. There appears to be strong rationale to explore the role that nicotinic receptors play in cannabinoid dependence. Preclinical studies suggest that the ɑ7 nAChR subtype may play a role in modulating the reinforcing and discriminative stimulus effects of cannabinoids, while the ɑ4β2 * nAChR subtype may be involved in modulating the motor and sedative effects of cannabinoids. Preclinical and human genetic studies point towards a potential role of the ɑ5, ɑ3, and β4 nAChR subunits in CUD, while human GWAS studies strongly implicate the ɑ2 subunit as playing a role in CUD susceptibility. Clinical studies suggest that current smoking cessation agents, such as varenicline and bupropion, may also be beneficial in treating CUD, although more controlled studies are necessary. Additional behavioral, molecular, and mechanistic studies investigating the role of nAChR in the modulation of the pharmacological effects of cannabinoids are needed.
Collapse
|
6
|
Fatty Acid-Binding Protein 5 Gene Deletion Enhances Nicotine-Conditioned Place Preference: Illuminating the Putative Gateway Mechanisms. FUTURE PHARMACOLOGY 2023; 3:108-116. [PMID: 36864947 PMCID: PMC9969817 DOI: 10.3390/futurepharmacol3010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Emerging evidence indicates that the endogenous cannabinoid system modulates the behavioral and physiological effects of nicotine. Fatty acid-binding proteins (FABPs) are among the primary intracellular trafficking mechanisms of endogenous cannabinoids, such as anandamide. To this end, changes in FABP expression may similarly impact the behavioral manifestations associated with nicotine, particularly its addictive properties. FABP5 +/+ and FABP5 -/- mice were tested for nicotine-conditioned place preference (CPP) at two different doses (0.1 or 0.5 mg/kg). The nicotine-paired chamber was assigned as their least preferred chamber during preconditioning. Following 8 days of conditioning, the mice were injected with either nicotine or saline. The mice were allowed to access to all the chambers on the test day, and their times spent in the drug chamber on the preconditioning versus the test days were used to examine the drug preference score. The CPP results showed that the FABP5 -/- mice displayed a higher place preference for 0.1 mg/kg nicotine than the FABP5 +/+ mice, while no CPP difference was observed for 0.5 mg/kg nicotine between the genotypes. In conclusion, FABP5 plays an important role in regulating nicotine place preference. Further research is warranted to identify the precise mechanisms. The results suggest that dysregulated cannabinoid signaling may impact nicotine-seeking behavior.
Collapse
|
7
|
Gharbi KA, Bonomo YA, Hallinan CM. Evidence from Human Studies for Utilising Cannabinoids for the Treatment of Substance-Use Disorders: A Scoping Review with a Systematic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4087. [PMID: 36901098 PMCID: PMC10001982 DOI: 10.3390/ijerph20054087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Substance-use disorders are pervasive, comorbid with a plethora of disease and possess limited treatment options. Medicinal cannabinoids have been proposed as a novel potential treatment based on preclinical/animal trials. The objective of this study was to examine the efficacy and safety of potential therapeutics targeting the endocannabinoid system in the treatment of substance-use disorders. We performed a scoping review using a systematic approach of systematic reviews, narrative reviews, and randomised control trials that utilised cannabinoids as treatment for substance-use disorders. For this scoping review we used the PRISMA guidelines, a framework for systematic reviews and meta-analyses, to inform our methodology. We conducted a manual search of Medline, Embase, and Scopus databases in July 2022. Of the 253 results returned by the databases, 25 studies including reviews were identified as relevant, from which 29 randomised controlled trials were derived and analysed via a primary study decomposition. This review captured a small volume of highly heterogenous primary literature investing the therapeutic effect of cannabinoids for substance-use disorders. The most promising findings appeared to be for cannabis-use disorder. Cannabidiol appeared to be the cannabinoid showing the most promise for the treatment of multiple-substance-use disorders.
Collapse
Affiliation(s)
- Kayvan Ali Gharbi
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne Ann Bonomo
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- St Vincent’s Health—Department of Addiction Medicine, Fitzroy, VIC 3065, Australia
| | - Christine Mary Hallinan
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Health & Biomedical Research Information Technology Unit (HaBIC R2), Department of General Practice, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Asth L, Santos AC, Moreira FA. The endocannabinoid system and drug-associated contextual memories. Behav Pharmacol 2022; 33:90-104. [PMID: 33491992 DOI: 10.1097/fbp.0000000000000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drug abuse and addiction can be initiated and reinstated by contextual stimuli previously paired with the drug use. The influence exerted by the context on drug-seeking behaviour can be modelled in experimental animals with place-conditioning protocols. Here, we review the effects of cannabinoids in place conditioning and the therapeutic potential of the endocannabinoid system for interfering with drug-related memories. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) tends to induce conditioned place preference (CPP) at low doses and conditioned place aversion at high doses; cannabidiol is devoid of any effect, yet it inhibits CPP induced by some drugs. Synthetic CB1 receptor agonists tend to recapitulate the biphasic profile observed with THC, whereas selective antagonists/inverse agonists inhibit CPP induced by cocaine, nicotine, alcohol and opioids. However, their therapeutic use is limited by potential psychiatric side effects. The CB2 receptor has also attracted attention, because selective CB2 receptor agonists inhibit cocaine-induced CPP. Inhibitors of endocannabinoid membrane transport and hydrolysis yield mixed results. In targeting the endocannabinoid system for developing new treatments for drug addiction, future research should focus on 'neutral' CB1 receptor antagonists and CB2 receptor agonists. Such compounds may offer a well-tolerated pharmacological profile and curb addiction by preventing drug-seeking triggered by conditioned contextual cues.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
9
|
Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, Jha P, Hall WD. Tobacco and nicotine use. Nat Rev Dis Primers 2022; 8:19. [PMID: 35332148 DOI: 10.1038/s41572-022-00346-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco's effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
- Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Megan E Piper
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Center for Tobacco Research and Intervention, Madison, WI, USA
| | - Christie D Fowler
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
| | - Serena Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Institute on Drug Dependence, Peking University Health Science Center, Beijing, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Wayne D Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
10
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
11
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
12
|
Muldoon PP, Akinola LS, Schlosburg JE, Lichtman AH, Sim-Selley LJ, Mahadevan A, Cravatt BF, Damaj MI. Inhibition of monoacylglycerol lipase reduces nicotine reward in the conditioned place preference test in male mice. Neuropharmacology 2020; 176:108170. [PMID: 32479813 PMCID: PMC7529882 DOI: 10.1016/j.neuropharm.2020.108170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Arachidonic Acids/pharmacology
- Benzodioxoles/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Endocannabinoids/pharmacology
- Enzyme Inhibitors/pharmacology
- Glycerides/pharmacology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Nicotine/administration & dosage
- Piperidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Reward
- Tobacco Use Disorder/drug therapy
- Tobacco Use Disorder/metabolism
- Tobacco Use Disorder/psychology
Collapse
Affiliation(s)
- Pretal P Muldoon
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
14
|
Quarta C, Cota D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes (Lond) 2020; 44:2179-2193. [PMID: 32317751 DOI: 10.1038/s41366-020-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
15
|
Roche DJO, Bujarski S, Green R, Hartwell EE, Leventhal AM, Ray LA. Alcohol, tobacco, and marijuana consumption is associated with increased odds of same-day substance co- and tri-use. Drug Alcohol Depend 2019; 200:40-49. [PMID: 31085377 PMCID: PMC6675401 DOI: 10.1016/j.drugalcdep.2019.02.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Little is known about event-level patterns of marijuana co- or tri-use with alcohol and tobacco. Thus, the study goal was to examine patterns of same-day alcohol, cigarette, and marijuana co- and tri-use at the individual level in non-treatment-seeking alcohol users. METHODS Participants (N = 551) completed an in-person interview for alcohol, cigarette, and marijuana use over the previous 30 days, and the event-level substance use patterns of n = 179 participants who reported using each of these substances at least once per month were analyzed. RESULTS The use of alcohol, marijuana, or cigarettes independently increased the probability of subsequent, simultaneous co-use of one of the two remaining substances. The co-use of alcohol with cigarettes and marijuana with cigarettes produced generally additive effects on the odds of same day tri-use of marijuana and alcohol, respectively. Conversely, the co-use of alcohol and marijuana produced sub-additive effects on likelihood of cigarette use. Sex moderated several of the observed patterns of co- and tri-use: the relationship between alcohol or cigarette use predicting marijuana co-use was stronger in men, whereas the observed additive relationships between drug co-use leading to tri-use was stronger in women. CONCLUSIONS The presented results may aid in the understanding of how simultaneous co-use of marijuana with alcohol and/or tobacco relates to the etiology, maintenance, and treatment of comorbid and trimorbid substance use disorder. Replication and extension of the results in treatment seeking populations using more fine-grained analysis approaches, e.g. ecological momentary assessment, is needed.
Collapse
Affiliation(s)
- D J O Roche
- Department of Psychiatry, University of Maryland, Baltimore, MD, USA
| | - S Bujarski
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Green
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - E E Hartwell
- Mental Illness Research, Education and Clinical Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - A M Leventhal
- Departments of Preventive Medicine and Psychpology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - L A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Porcu A, Melis M, Turecek R, Ullrich C, Mocci I, Bettler B, Gessa GL, Castelli MP. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gα i/o protein inhibitor. Neuropharmacology 2018; 133:107-120. [PMID: 29407764 DOI: 10.1016/j.neuropharm.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Rostislav Turecek
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Celine Ullrich
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council of Italy (CNR) U.O.S. of Cagliari, 09010, Pula, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
17
|
Pacek LR, Copeland J, Dierker L, Cunningham CO, Martins SS, Goodwin RD. Among whom is cigarette smoking declining in the United States? The impact of cannabis use status, 2002-2015. Drug Alcohol Depend 2018; 191:355-360. [PMID: 30179761 PMCID: PMC6432910 DOI: 10.1016/j.drugalcdep.2018.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To 1) estimate changes in the prevalence of daily and non-daily cigarette smoking among current (past 30-day) daily, non-daily, and non-cannabis users in the United States (U.S.) population; 2) examine time trends in current (past 30-day) cigarette smoking in daily, non-daily, and non-cannabis users ages 12+ from 2002 to 2015. METHODS Data collected annually from the 2002 to 2015 National Survey on Drug Use and Health (NSDUH) were employed. Linear time trends of daily and non-daily cigarette smoking were assessed using logistic regression with year as the predictor. RESULTS In 2015, the prevalence of current (past 30-day) cigarette smoking was highest among daily (54.57%), followed by non-daily (40.17%) and non-cannabis users (15.06%). The prevalence of non-daily cigarette smoking increased among daily cannabis users from 2002 to 2015, whereas non-daily cigarette smoking declined among non-daily cannabis users and non-cannabis users from 2002 to 2015. Daily cigarette smoking declined among both cannabis users and non-users; the most rapid decline was observed among daily cannabis users, followed by non-daily and then by non-cannabis users. However, the relative magnitude of the change in prevalence of daily cigarette smoking was similar across the three cannabis groups. CONCLUSIONS Despite ongoing declines in cigarette smoking in the U.S., non-daily cigarette smoking is increasing among current cannabis users, a growing proportion of the U.S. POPULATION Daily and non-daily cigarette smoking continue to decline among those who do not use cannabis. Efforts to further tobacco control should consider novel co-use-oriented intervention strategies and outreach for the increasing population of cannabis users.
Collapse
Affiliation(s)
- Lauren R Pacek
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Jan Copeland
- National Cannabis Prevention and Information Centre, UNSW Sydney, Sydney, Australia
| | - Lisa Dierker
- Department of Psychology, Wesleyan University, Middletown, CT, 06459, USA
| | - Chinazo O Cunningham
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Family and Social Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Psychiatry and Behavioral Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Silvia S Martins
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Renee D Goodwin
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA; Institute for Implementation Science in Population Health, The City University of New York, New York, NY, 10027, USA; Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, NY, 10027, USA.
| |
Collapse
|
18
|
Kardash EV, Ertuzun IA, Khakimova GR, Kolyadin AN, Tarasov SA, Wagner S, Andriambeloson E, Ivashkin VT, Epstein OI. Dose-Response Effect of Antibodies to S100 Protein and Cannabinoid Receptor Type 1 in Released-Active Form in the Light-Dark Test in Mice. Dose Response 2018; 16:1559325818779752. [PMID: 30013455 PMCID: PMC6043939 DOI: 10.1177/1559325818779752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Earlier studies have shown that combination of antibodies to S100 protein and to cannabinoid receptor type 1 in released-active form (Brizantin) may possess anxiolytic properties and decrease nicotine dependence. Released-active form of antibodies is a novel approach that permits to modify natural functions of the target molecule (antigen) under investigation. The aim of the present study was to evaluate the anxiolytic-like effect of Brizantin in the light-dark test in mice, according to its ability to influence the number of entries into the lit compartment and the total time spent there. Three doses of Brizantin (2.5, 5, and 10 mL/kg) were compared with diazepam (1 mg/kg), placebo, and vehicle control. Anxiolytic-like effect of the tested drug was shown to be dose dependent, with an increasing trend from 2.5 to 10 mL/kg. Brizantin in its highest dose significantly increased studied behavioral parameters, although its effect was less pronounced than that of the reference drug diazepam (1 mg/kg).
Collapse
Affiliation(s)
- Elena V Kardash
- Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Irina A Ertuzun
- OOO "NPF "Materia Medica Holding", Moscow, Russian Federation
| | | | | | - Sergey A Tarasov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | | | | | - Vladimir T Ivashkin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Oleg I Epstein
- Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
19
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
20
|
Panlilio LV, Justinova Z. Preclinical Studies of Cannabinoid Reward, Treatments for Cannabis Use Disorder, and Addiction-Related Effects of Cannabinoid Exposure. Neuropsychopharmacology 2018; 43:116-141. [PMID: 28845848 PMCID: PMC5719102 DOI: 10.1038/npp.2017.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Cannabis use has become increasingly accepted socially and legally, for both recreational and medicinal purposes. Without reliable information about the effects of cannabis, people cannot make informed decisions regarding its use. Like alcohol and tobacco, cannabis can have serious adverse effects on health, and some people have difficulty discontinuing their use of the drug. Many cannabis users progress to using and becoming addicted to other drugs, but the reasons for this progression are unclear. The natural cannabinoid system of the brain is complex and involved in many functions, including brain development, reward, emotion, and cognition. Animal research provides an objective and controlled means of obtaining information about: (1) how cannabis affects the brain and behavior, (2) whether medications can be developed to treat cannabis use disorder, and (3) whether cannabis might produce lasting changes in the brain that increase the likelihood of becoming addicted to other drugs. This review explains the tactics used to address these issues, evaluates the progress that has been made, and offers some directions for future research.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| |
Collapse
|
21
|
McLaughlin PJ, Jagielo-Miller JE, Plyler ES, Schutte KK, Vemuri VK, Makriyannis A. Differential effects of cannabinoid CB1 inverse agonists and antagonists on impulsivity in male Sprague Dawley rats: identification of a possibly clinically relevant vulnerability involving the serotonin 5HT 1A receptor. Psychopharmacology (Berl) 2017; 234:1029-1043. [PMID: 28144708 DOI: 10.1007/s00213-017-4548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cannabinoid CB1 inverse agonists hold therapeutic promise as appetite suppressants but have produced suicidal behaviors among a small subpopulation in clinical trials. Anatomical and pharmacological evidence implicate the 5HT1A serotonin receptor in suicide in humans and impulsivity in humans and animals. OBJECTIVE The objective of the study is to assess whether 5HT1A blockade is necessary for CB1 ligands to produce impulsivity. METHODS Sprague Dawley rats were administered the CB1 inverse agonist AM 251, the CB1 antagonist AM 6527, or the peripherally restricted antagonist AM 6545, with or without pretreatment with the 5HT1A antagonist WAY 100,635 (WAY) on the paced fixed consecutive number (FCN) task, which measures choice to terminate a chain of responses prematurely. As FCN is sensitive to changes in time perception, which have been demonstrated with CB1 blockade, a novel variable consecutive number task with discriminative stimulus (VCN-S D ) was also performed and proposed to be less sensitive to changes in timing. RESULTS Pretreatment with WAY enabled mild but significant reductions in FCN accuracy for AM 251 and AM 6527. No effects were found for AM 6545. On the VCN-S D task, substantial impairments were found for the combination of WAY and AM 251. CONCLUSIONS AM 251, but not the antagonists AM 6527 or AM 6545, produced impulsivity only following systemic 5HT1A blockade. Although preliminary, the results may indicate that disrupted serotonin signaling produces a vulnerability to undesirable effects of CB1 inverse agonists, which is not evident in the general population. Furthermore, neutral CB1 antagonists do not produce this effect and therefore may have greater safety.
Collapse
Affiliation(s)
- Peter J McLaughlin
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.
| | - Julia E Jagielo-Miller
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Emily S Plyler
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Kerry K Schutte
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Counseling, Psychology, and Special Education, Duquesne University, 600 Forbes Avenue, G8B Canevin Hall, Pittsburgh, PA, 15282, USA
| | - V Kiran Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Wang JB, Ramo DE, Lisha NE, Cataldo JK. Medical marijuana legalization and cigarette and marijuana co-use in adolescents and adults. Drug Alcohol Depend 2016; 166:32-8. [PMID: 27460859 PMCID: PMC4983542 DOI: 10.1016/j.drugalcdep.2016.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Medical marijuana legalization is associated with a higher prevalence of marijuana use which may affect cigarette use and nicotine dependence in co-users. In the present study, we examined relationships between statewide legalization of medical marijuana and prevalence of cigarette and marijuana co-use and nicotine dependence in co-using adolescents and adults. METHODS Data were analyzed from the 2013 National Survey on Drug Use and Health. We compared cigarette and marijuana co-use in the past 30days across age categories (12-64 years) by statewide medical marijuana legalization. Logistic regression models were used to estimate the odds of having nicotine dependence among current cigarette smokers who also reported past 30-day marijuana use and "ever but not current" marijuana use (vs. "never" use) adjusting for covariates including statewide legalization of medical marijuana. RESULTS Overall, 5.1% of the sample reported past 30-day cigarette and marijuana co-use and a higher proportion of co-users resided in states where medical marijuana was legal compared to illegal (5.8% vs. 4.8%; p=0.0011). Co-use was associated with greater odds of having nicotine dependence compared to cigarette-only use across age categories. Odds were highest and up to 3-times higher in adolescents aged 12-17 years (OR=3.54; 95%CI: 1.81-6.92) and adults aged 50-64 years (OR=3.08; CI: 1.45-6.55). CONCLUSION Marijuana policy could inadvertently affect cigarette and marijuana co-use and pose challenges to tobacco cessation.
Collapse
Affiliation(s)
- Julie B Wang
- Center for Tobacco Control Research and Education, Cardiovascular Research Institute, University of California, San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Danielle E Ramo
- Center for Tobacco Control Research and Education, Cardiovascular Research Institute, University of California, San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Avenue, Box RAM 0984, San Francisco, CA 94143, USA
| | - Nadra E Lisha
- Center for Tobacco Control Research and Education, Cardiovascular Research Institute, University of California, San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Janine K Cataldo
- Center for Tobacco Control Research and Education, Cardiovascular Research Institute, University of California, San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Physiological Nursing, University of San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Scherma M, Muntoni AL, Melis M, Fattore L, Fadda P, Fratta W, Pistis M. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology (Berl) 2016; 233:1765-77. [PMID: 26728894 DOI: 10.1007/s00213-015-4196-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures. OBJECTIVE We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence. RESULTS Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids. CONCLUSIONS Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Liana Fattore
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy.
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy.
| |
Collapse
|
24
|
Forget B, Guranda M, Gamaleddin I, Goldberg SR, Le Foll B. Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats. Psychopharmacology (Berl) 2016; 233:1823-8. [PMID: 26864774 DOI: 10.1007/s00213-016-4232-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/31/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE The endocannabinoid system is composed of endocannabinoids (such as anandamide), their target receptors (CB1 and CB2 receptors, CB1Rs and CB2Rs), the enzymes that degrade them (fatty-acid-amide-hydrolase (FAAH) for anandamide), and an endocannabinoid transporter. FAAH inhibition has been recently identified as having a critical involvement in behaviors related to nicotine addiction and has been shown to reduce the effect of nicotine on the mesolimbic dopaminergic system via CB1R and peroxisome proliferator-activated receptor alpha (PPARα). Thus, inhibition of FAAH may represent a novel strategy for smoking cessation, but its mechanism of action on relapse to nicotine seeking is still unknown. OBJECTIVE The study aims to explore the mechanism of action of the inhibitor of FAAH activity, URB597, on relapse to nicotine seeking by evaluating the effect of the CB1R, CB2R, and PPARα antagonists on the attenuating effect of URB597 on cue-induced reinstatement of nicotine seeking in rats. RESULTS URB597 reduced cue-induced reinstatement of nicotine seeking, an effect that was reversed by the CB1R antagonist rimonabant, but not by the CB2R or PPARα antagonists AM630 and MK886, respectively. CONCLUSIONS These results indicate that URB597 reduces cue-induced reinstatement in rats through a CB1 receptor-dependent mechanism, and not via CB2R or PPARα. Since FAAH inhibition represent a novel and promising strategy for tobacco smoking cessation, dissecting how it produces its action may lead to a better understanding of the neurobiological mechanisms underlying nicotine addiction.
Collapse
Affiliation(s)
- Benoit Forget
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1.,Institut Pasteur, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, 75724, Paris Cedex 15, France
| | - Mihail Guranda
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1
| | - Islam Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1.,Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neurosciences Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, 33 Russell Street, Toronto, ON, Canada, M5S 2S1. .,Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, CAMH, Toronto, ON, Canada. .,Departments of Family and Community Medicine, Pharmacology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Buczynski MW, Herman MA, Hsu KL, Natividad LA, Irimia C, Polis IY, Pugh H, Chang JW, Niphakis MJ, Cravatt BF, Roberto M, Parsons LH. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci U S A 2016; 113:1086-91. [PMID: 26755579 PMCID: PMC4743781 DOI: 10.1073/pnas.1522672113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Ku-Lung Hsu
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Luis A Natividad
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Ilham Y Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Holly Pugh
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jae Won Chang
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
26
|
Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry 2015; 6:41. [PMID: 25859226 PMCID: PMC4373509 DOI: 10.3389/fpsyt.2015.00041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine's effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.
Collapse
Affiliation(s)
- Islam Hany Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Directorate of Poison Control and Forensic Chemistry, Ministry of Health , Riyadh , Saudi Arabia
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Aliou B Gueye
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Alexander Zvonok
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services , Baltimore, MD , USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Department of Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
27
|
Janero DR, Makriyannis A. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems. ACS Chem Neurosci 2014; 5:1097-106. [PMID: 24866555 DOI: 10.1021/cn5000875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry
and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115-5000, United States
- King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
28
|
Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells. J Mol Neurosci 2014; 55:778-87. [PMID: 25262246 DOI: 10.1007/s12031-014-0422-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.
Collapse
|
29
|
Melis M, Pistis M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: Therapeutic perspectives. Pharmacol Res 2014; 86:42-9. [DOI: 10.1016/j.phrs.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
|
30
|
Le Foll B, Pushparaj A, Pryslawsky Y, Forget B, Vemuri K, Makriyannis A, Trigo JM. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:86-93. [PMID: 24140878 PMCID: PMC4002666 DOI: 10.1016/j.pnpbp.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/16/2022]
Abstract
Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Yaroslaw Pryslawsky
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Benoit Forget
- Integrative Neurobiology of Cholinergic Systems, Department of Neuroscience, Pasteur Institute, 25 rue du Dr. Roux, Paris 75724, France
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| |
Collapse
|
31
|
Palmitoylethanolamide in CNS health and disease. Pharmacol Res 2014; 86:32-41. [PMID: 24844438 DOI: 10.1016/j.phrs.2014.05.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023]
Abstract
The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.
Collapse
|
32
|
Reisiger AR, Kaufling J, Manzoni O, Cador M, Georges F, Caillé S. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis. J Neurosci 2014; 34:4285-92. [PMID: 24647948 PMCID: PMC6608094 DOI: 10.1523/jneurosci.3149-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 11/21/2022] Open
Abstract
Nicotine addiction is characterized by repetitive drug taking and drug seeking, both tightly controlled by cannabinoid CB1 receptors. The responsiveness of neurons of the bed nucleus of the stria terminalis (BNST) to infralimbic cortex (ILCx) excitatory inputs is increased in rats with active, but not passive, nicotine taking. Therefore, we hypothesize that acquisition of the learned association between nicotine infusion and a paired cue light permits the strengthening of the ILCx-BNST synapses after ILCx tetanic stimulation. We exposed rats to intravenous nicotine self-administration for 2 months. Using a combination of in vivo protocols (electrical stimulations, extracellular recordings, and pharmacological manipulations), we characterized the effects of 10 Hz stimulation of the ILCx on BNST excitatory responses, under different conditions of exposure to nicotine. In addition, we tested whether the effects of the stimulation were CB1 receptor-dependent. The results show that nicotine self-administration supports the induction of evoked spike potentiation in the BNST in response to 10 Hz stimulation of ILCx afferents. Although not altered by nicotine abstinence, this cellular adaptation was blocked by CB1 receptor antagonism. Moreover, blockade of BNST CB1 receptors prevented increases in time-out responding subsequent to ILCx stimulation and decreased cue-induced reinstatement. Thus, the synaptic potentiation within the BNST in response to ILCx stimulation seems to contribute to the cue-elicited responding associated with nicotine self-administration and is tightly controlled by CB1 receptors.
Collapse
Affiliation(s)
- Anne-Ruth Reisiger
- Université de Bordeaux, INCIA, BP31, F-33076 Bordeaux, France
- Centre National de la Recherche Scientifique, UMR5287 INCIA, F-33076 Bordeaux, France
| | - Jennifer Kaufling
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, F-33000 Bordeaux, France, and
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR5297, F-33000 Bordeaux, France
| | - Olivier Manzoni
- INSERM U901, F-13009 Marseille, France
- Université de la Méditerranée UMR S901, Aix-Marseille 2, France
- INMED, F-13009 Marseille, France
| | - Martine Cador
- Université de Bordeaux, INCIA, BP31, F-33076 Bordeaux, France
- Centre National de la Recherche Scientifique, UMR5287 INCIA, F-33076 Bordeaux, France
| | - François Georges
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, F-33000 Bordeaux, France, and
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR5297, F-33000 Bordeaux, France
| | - Stephanie Caillé
- Université de Bordeaux, INCIA, BP31, F-33076 Bordeaux, France
- Centre National de la Recherche Scientifique, UMR5287 INCIA, F-33076 Bordeaux, France
| |
Collapse
|
33
|
Psychiatric, psychosocial, and physical health correlates of co-occurring cannabis use disorders and nicotine dependence. Drug Alcohol Depend 2014; 134:228-234. [PMID: 24183498 PMCID: PMC3865597 DOI: 10.1016/j.drugalcdep.2013.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/17/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several gaps in the literature on individuals with co-occurring cannabis and tobacco use exist, including the extent of psychiatric, psychosocial, and physical health problems. We examine these gaps in an epidemiological study, the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), of a large, nationally representative sample. METHODS The sample was drawn from Wave 2 NESARC respondents (N=34,653). Adults with current cannabis use disorders and nicotine dependence (CUD+ND) (n=74), CUD only (n=100), and ND only (n=3424) were compared on psychiatric disorders, psychosocial correlates (e.g., binge drinking; partner violence), and physical health correlates (e.g., medical conditions). RESULTS Relative to those with CUD only, respondents with CUD+ND were significantly more likely to meet criteria for bipolar disorder, Clusters A and B personality disorders, and narcissistic personality disorder, and reported engaging in a significantly higher number of antisocial behaviors. Relative to those with ND only, respondents with CUD+ND were significantly more likely to meet criteria for bipolar disorder, anxiety disorders, and paranoid, schizotypal, narcissistic, and borderline personality disorders; were significantly more likely to report driving under the influence of alcohol and being involved in partner violence; and reported engaging in a significantly higher number of antisocial behaviors. CUD+ND was not associated with physical health correlates. CONCLUSIONS Poor treatment outcomes for adults with co-occurring cannabis use disorders and nicotine dependence may be explained in part by differences in psychiatric and psychosocial problems.
Collapse
|
34
|
Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, Damaj MI. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology (Berl) 2013; 229:591-601. [PMID: 23652588 PMCID: PMC4042856 DOI: 10.1007/s00213-013-3117-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors. OBJECTIVE Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice. METHODS Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia. RESULTS Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (-/-) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (-/-) mice showed unaltered cocaine CPP. CB2 (+/+) and (-/-) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine. CONCLUSIONS Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.
Collapse
Affiliation(s)
- Bogna M Ignatowska-Jankowska
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | |
Collapse
|
35
|
Akhtar MT, Ali S, Rashidi H, van der Kooy F, Verpoorte R, Richardson MK. Developmental effects of cannabinoids on zebrafish larvae. Zebrafish 2013; 10:283-93. [PMID: 23789728 DOI: 10.1089/zeb.2012.0785] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cannabinoids are natural or synthetic compounds related chemically to (-)-(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (Δ(9)-THC), the principle psychotropic constituent of the hemp plant, Cannabis sativa L. Here we examine the effects of the cannabinoids Δ(9)-THC, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone and 2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol, and the cannabinoid antagonist (AM 251). Exposures were either acute (1-12-h exposure at 108 hours of postfertilization [hpf]) or chronic (96-h exposure starting at 24 hpf). Geometric range finding was used to determine the experimental concentrations. The concentration of the chemical that kills 50% of the test animals in a given time (LC50) was determined based on cumulative mortality at 5 days of postfertilization. At day 5, behavioral analysis (visual motor response test) was carried out in which movement of individual larvae was analysed using automated video-tracking. With acute exposure, embryos showed a biphasic response to the dark challenge with all three cannabinoids tested. This response consisted of stimulation of the locomotor activity at low concentrations, suppression at high doses. With chronic exposure, embryos habituated to the effects of all three cannabinoids when assayed with the dark challenge phase. Further, the excitation was ameliorated when the antagonist AM 251 was coadministered with the cannabinoid. When AM 251 was administered on its own (chronically or acutely), the locomotor activity was suppressed at high concentrations. We examined the embryos for a range of malformations after chronic exposure to cannabinoid. Only Δ(9)-THC was associated with a significant increase in malformations at 5d (yolk sac and pericardial edema, bent tail/body axis). We conclude that cannabinoids have behavioral effects in zebrafish that are comparable to some of those reported in the literature for mammals. In particular, the acute exposure response resembles behavioral effects reported for adult rodents. Our data are consistent with these behavioral effects being mediated, at least in part, by the CB1 receptor.
Collapse
|
36
|
Panlilio LV, Zanettini C, Barnes C, Solinas M, Goldberg SR. Prior exposure to THC increases the addictive effects of nicotine in rats. Neuropsychopharmacology 2013; 38:1198-208. [PMID: 23314220 PMCID: PMC3656362 DOI: 10.1038/npp.2013.16] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although it is more common for drug abuse to progress from tobacco to cannabis, in many cases cannabis use develops before tobacco use. Epidemiological evidence indicates that prior cannabis use increases the likelihood of becoming dependent on tobacco. To determine whether this effect might be due to cannabis exposure per se, in addition to any genetic, social, or environmental factors that might contribute, we extended our series of studies on 'gateway drug' effects in animal models of drug abuse. Rats were exposed to THC, the main psychoactive constituent of cannabis, for 3 days (two intraperitoneal injections/day). Then, starting 1 week later, they were allowed to self-administer nicotine intravenously. THC exposure increased the likelihood of acquiring the nicotine self-administration response from 65% in vehicle-exposed rats to 94% in THC-exposed rats. When the price of nicotine was manipulated by increasing the response requirement, THC-exposed rats maintained higher levels of intake than vehicle-exposed rats, indicating that THC exposure increased the value of nicotine reward. These results contrast sharply with our earlier findings that prior THC exposure did not increase the likelihood of rats acquiring either heroin or cocaine self-administration, nor did it increase the reward value of these drugs. The findings obtained here suggest that a history of cannabis exposure might have lasting effects that increase the risk of becoming addicted to nicotine.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Claudio Zanettini
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA,Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Chanel Barnes
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marcelo Solinas
- Experimental and Clinical Neurosciences Laboratory, INSERM U-1084, Poitiers, France,University of Poitiers, Poitiers, France
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA,Preclinical Pharmacology Section, Biomedical Research Center, National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224, USA, Tel: +1 443 740 2519, Fax: +1 443 740 2733, E-mail:
| |
Collapse
|
37
|
Gamaleddin I, Guranda M, Scherma M, Fratta W, Makriyannis A, Vadivel SK, Goldberg SR, Le Foll B. AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J Psychopharmacol 2013; 27:564-71. [PMID: 23427192 PMCID: PMC4058760 DOI: 10.1177/0269881113477710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple studies suggest a pivotal role of the endocannabinoid system in the regulation of the reinforcing effects of various substances of abuse. Different approaches have been used to modulate endocannabinoid neurotransmission including the use of endogenous cannabinoid anandamide reuptake inhibitors. Previously, the effects of one of them, N-(4-hydroxyphenyl)-arachidonamide (AM404), have been explored in rodents trained to self-administer ethanol and heroin, producing some promising results. Moreover, AM404 attenuated the development and reinstatement of nicotine-induced conditioned place preference (CPP). In this study, we used the nicotine intravenous self-administration procedure to assess the effects of intraperitoneal administration of 0, 1, 3 and 10 mg/kg AM404 on nicotine-taking and food-taking behaviors under fixed-ratio and progressive-ratio schedules of reinforcement, as well as on reinstatement of nicotine-seeking induced by nicotine priming and by presentation of nicotine-associated cues. The ability of AM404 to produce place preference was also evaluated. AM404 did not produce CPP and did not modify nicotine-taking and food-taking behaviors. In contrast, AM404 dose-dependently attenuated reinstatement of nicotine-seeking behavior induced by both nicotine-associated cues and nicotine priming. Our results indicate that AM404 could be a potential promising therapeutic option for the prevention of relapse to nicotine-seeking in abstinent smokers.
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Mihail Guranda
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Maria Scherma
- Preclinical Pharmacology Section, National Institute of Drug Abuse (NIDA), Baltimore, USA,Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | | | | | - Steven R. Goldberg
- Preclinical Pharmacology Section, National Institute of Drug Abuse (NIDA), Baltimore, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada,Addiction Program, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Canada,Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Carson KV, Brinn MP, Robertson TA, To-A-Nan R, Esterman AJ, Peters M, Smith BJ. Current and emerging pharmacotherapeutic options for smoking cessation. Subst Abuse 2013; 7:85-105. [PMID: 23772176 PMCID: PMC3668891 DOI: 10.4137/sart.s8108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tobacco smoking remains the single most preventable cause of morbidity and mortality in developed countries and poses a significant threat across developing countries where tobacco use prevalence is increasing. Nicotine dependence is a chronic disease often requiring multiple attempts to quit; repeated interventions with pharmacotherapeutic aids have become more popular as part of cessation therapies. First-line medications of known efficacy in the general population include varenicline tartrate, bupropion hydrochloride, nicotine replacement therapy products, or a combination thereof. However, less is known about the use of these products in marginalized groups such as the indigenous, those with mental illnesses, youth, and pregnant or breastfeeding women. Despite the efficacy and safety of these first line pharmacotherapies, many smokers continue to relapse and alternative pharmacotherapies and cessation options are required. Thus, the aim of this review is to summarize the existing and developing pharmacotherapeutic and other options for smoking cessation, to identify gaps in current clinical practice, and to provide recommendations for future evaluations and research.
Collapse
Affiliation(s)
- Kristin V. Carson
- The Clinical Practice Unit, The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Malcolm P. Brinn
- The Clinical Practice Unit, The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
- Respiratory Medicine, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Thomas A. Robertson
- Therapeutics Research Centre, School of Pharmacy and Medical Sciences, University of South Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Rachada To-A-Nan
- Therapeutics Research Centre, School of Pharmacy and Medical Sciences, University of South Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Adrian J. Esterman
- School of Nursing and Midwifery, The University of South Australia, Adelaide, Australia
| | - Matthew Peters
- Thoracic Medicine, The Concord Hospital, Sydney, Australia
| | - Brian J. Smith
- The Clinical Practice Unit, The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
- Respiratory Medicine, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
39
|
Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas SP, Subramanian KV, Shukla VG, Makriyannis A, Bergman J. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists. J Pharmacol Exp Ther 2013; 344:561-7. [PMID: 23287700 PMCID: PMC3583508 DOI: 10.1124/jpet.112.201962] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023] Open
Abstract
Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.
Collapse
Affiliation(s)
- Brian D Kangas
- Preclinical Pharmacology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area. Neuropsychopharmacology 2013; 38:574-84. [PMID: 23169348 PMCID: PMC3572454 DOI: 10.1038/npp.2012.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cannabinoid-1 receptors (CB(1)) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB(1) (by AEA and 2-AG) and non-CB(1) (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine.
Collapse
|
41
|
Jansma JM, van Hell HH, Vanderschuren LJMJ, Bossong MG, Jager G, Kahn RS, Ramsey NF. THC reduces the anticipatory nucleus accumbens response to reward in subjects with a nicotine addiction. Transl Psychiatry 2013; 3:e234. [PMID: 23443360 PMCID: PMC3590996 DOI: 10.1038/tp.2013.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/01/2012] [Accepted: 01/03/2013] [Indexed: 01/05/2023] Open
Abstract
Recent evidence has implicated the endocannabinoid (eCB) system in nicotine addiction. The eCB system also has an important role in reward mechanisms, and nicotine addiction has been associated with aberrant reward processing. Motivated by this evidence, we tested the hypothesis that eCB modulation of reward processing is altered in subjects with a nicotine addiction (NAD). For this purpose, we compared reward-related activity in NAD with healthy controls (HC) in a pharmacological magnetic resonance imaging (MRI) study using Δ(9)-tetrahydrocannabinol (THC) administration to challenge the eCB system. Eleven HC and 10 NAD participated in a 3-T functional MRI (fMRI) study with a double-blind, cross-over, placebo-controlled design, using a Monetary Incentive Delay (MID) paradigm with three reward levels. Reward activity in the nucleus accumbens (NAcc) and caudate putamen during anticipation and feedback of reward was compared after THC and placebo. fMRI results indicated a significant reduction of reward anticipation activity in the NAcc in NAD after THC administration, which was not present in HC. This is indicated by a significant group by drug by reward interaction. Our data show that THC significantly reduces the NAcc response to monetary reward anticipation in NAD. These results suggest that nicotine addiction is associated with altered eCB modulation of reward processing in the NAcc. This study adds important human data to existing evidence implicating the eCB system in nicotine addiction.
Collapse
Affiliation(s)
- J M Jansma
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H H van Hell
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L J M J Vanderschuren
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht,The Netherlands
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M G Bossong
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychosis Studies, King's College, Institute of Psychiatry, London, UK
| | - G Jager
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - R S Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N F Ramsey
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Aydin C, Oztan O, Isgor C. Nicotine-induced anxiety-like behavior in a rat model of the novelty-seeking phenotype is associated with long-lasting neuropeptidergic and neuroplastic adaptations in the amygdala: effects of the cannabinoid receptor 1 antagonist AM251. Neuropharmacology 2012; 63:1335-45. [PMID: 22959963 DOI: 10.1016/j.neuropharm.2012.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
Abstract
A rat model of the novelty-seeking phenotype predicts vulnerability to the expression of behavioral sensitization to nicotine, where locomotor reactivity to novelty is used to screen experimentally-naïve rats for high (HR) versus low (LR) responders. The present study examines the long-term neuropeptidergic and neuroplastic adaptations associated with the expression of locomotor sensitization to a low dose nicotine challenge and social anxiety-like behavior following chronic intermittent nicotine exposure during adolescence in the LRHR phenotype. Our data show that the expression of behavioral sensitization to nicotine and abstinence-related anxiety are detected in nicotine pre-exposed HRs even across a long (3 wks) abstinence. Moreover, these behavioral effects of nicotine are accompanied by a persistent imbalance between neuropeptide Y and corticotrophin releasing factor systems, and a persistent increase in brain-derived neurotrophic factor (BDNF) and spinophilin mRNA levels in the amygdala. Furthermore, treatment with the cannabinoid receptor 1 antagonist, AM251 (5 mg/kg) during a short (1 wk) abstinence is ineffective in reversing nicotine-induced anxiety, fluctuations in BDNF and spinophilin mRNAs, and the neuropeptidergic dysregulations in the amygdala; although this treatment is effective in reversing the expression of locomotor sensitization to challenge nicotine even after a long abstinence. Interestingly, the identical AM251 treatment administered during the late phase of a long abstinence further augments anxiety and associated changes in BDNF and spinophilin mRNA in the basolateral nucleus of the amygdala in nicotine pre-exposed HRs. These findings implicate long-lasting neuropeptidergic and neuroplastic changes in the amygdala in vulnerability to the behavioral effects of nicotine in the novelty-seeking phenotype.
Collapse
Affiliation(s)
- Cigdem Aydin
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|
43
|
Abstract
AIMS A growing literature has documented the substantial prevalence of and putative mechanisms underlying co-occurring (i.e. concurrent or simultaneous) cannabis and tobacco use. Greater understanding of the clinical correlates of co-occurring cannabis and tobacco use may suggest how intervention strategies may be refined to improve cessation outcomes and decrease the public health burden associated with cannabis and tobacco use. METHODS A systematic review of the literature on clinical diagnoses, psychosocial problems and outcomes associated with co-occurring cannabis and tobacco use. Twenty-eight studies compared clinical correlates in co-occurring cannabis and tobacco users versus cannabis- or tobacco-only users. These included studies of treatment-seekers in clinical trials and non-treatment-seekers in cross-sectional or longitudinal epidemiological or non-population-based surveys. RESULTS Sixteen studies examined clinical diagnoses, four studies examined psychosocial problems and 11 studies examined cessation outcomes in co-occurring cannabis and tobacco users (several studies examined multiple clinical correlates). Relative to cannabis use only, co-occurring cannabis and tobacco use was associated with a greater likelihood of cannabis use disorders, more psychosocial problems and poorer cannabis cessation outcomes. Relative to tobacco use only, co-occurring use did not appear to be associated consistently with a greater likelihood of tobacco use disorders, more psychosocial problems or poorer tobacco cessation outcomes. CONCLUSIONS Cannabis users who also smoke tobacco are more dependent on cannabis, have more psychosocial problems and have poorer cessation outcomes than those who use cannabis but not tobacco. The converse does not appear to be the case.
Collapse
Affiliation(s)
- Erica N Peters
- Department of Psychiatry, Yale University School of Medicine, One Long Wharf Drive, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
44
|
Tonstad S, Aubin HJ. Efficacy of a dose range of surinabant, a cannabinoid receptor blocker, for smoking cessation: a randomized controlled clinical trial. J Psychopharmacol 2012; 26:1003-9. [PMID: 22219220 DOI: 10.1177/0269881111431623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hyperactive endocannabinoid signalling system may contribute to addictions. We tested the efficacy and safety of surinabant, a novel selective CB₁ cannabinoid receptor antagonist, for smoking cessation. In a randomized, double-blind, placebo-controlled, parallel-group clinical trial, participants were assigned to brief counselling and one of three doses of surinabant, 2.5 mg/day (n = 199), 5 mg/day (n = 204), or 10 mg/day (n = 205) or placebo (n = 202) orally for 8 weeks with 6 weeks of non-drug follow-up. For weeks 5 through 8, the 4-week continuous abstinence rates were 25.2% for placebo vs. 22.6%, 22.1% and 21.5% for 2.5 mg/day, 5 mg/day and 10 mg/day doses of surinabant (p for trend, 0.4). The gain in body weight from baseline was reduced with surinabant 2.5 mg/day, 5 mg/day and 10 mg/day (0.75 kg [SE, 0.13], 0.53 kg [SE, 0.13], and 0.24 kg [SE, 0.13], respectively, versus 1.19 kg [SE, 0.13] for placebo; p for trend, < 0.001). The most common adverse events for participants receiving active drug with a greater incidence than placebo were headache, nausea, insomnia, anxiety, nasopharyngitis, diarrhoea and hyperhidrosis. Surinabant did not improve smoking cessation rates compared with placebo, but had a small effect on reducing post-cessation weight gain.
Collapse
Affiliation(s)
- Serena Tonstad
- Oslo University Hospital, Department of Preventive Cardiology Ullevål, Oslo, Norway.
| | | |
Collapse
|
45
|
Higuchi S, Irie K, Yamaguchi R, Katsuki M, Araki M, Ohji M, Hayakawa K, Mishima S, Akitake Y, Matsuyama K, Mishima K, Mishima K, Iwasaki K, Fujiwara M. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 2012; 7:e38609. [PMID: 22737214 PMCID: PMC3380864 DOI: 10.1371/journal.pone.0038609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Background In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system. Methods The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting. Results Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption. Conclusions High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Ryuji Yamaguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mai Katsuki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Maiko Araki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makiko Ohji
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shohei Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Kiyoshi Matsuyama
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
- * E-mail:
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
46
|
Gamaleddin I, Guranda M, Goldberg SR, Le Foll B. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br J Pharmacol 2012; 164:1652-60. [PMID: 21501143 DOI: 10.1111/j.1476-5381.2011.01440.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system appears to play a pivotal role in mediating the rewarding and reinforcing effects of nicotine. Recent studies have shown that the inhibition of fatty acid amide hydrolase (FAAH) attenuates reinstatement of nicotine-seeking induced by nicotine priming and nicotine-associated cues. FAAH hydrolyses the endogenous endocannabinoid anandamide, as well as other non-cannabinoid ligands such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). As OEA and PEA can attenuate both nicotine-taking and nicotine-seeking behaviour, the specific role of anandamide remains unclear. In this study, we have tested the selective anadamide uptake inhibitor, VDM11, which elevates anandamide levels without affecting levels of OEA/PEA, on nicotine-taking and nicotine-seeking behaviour. EXPERIMENTAL APPROACH We used a nicotine intravenous self-administration model in rats to assess the effect of VDM11, given i.p., on nicotine taking using fixed and progressive ratio schedules of reinforcement as well as on reinstatement of nicotine-seeking induced by nicotine priming and nicotine-associated cues. KEY RESULTS VDM11 did not affect levels of responding for nicotine under fixed-ratio and progressive-ratio schedules of reinforcement. In contrast, VDM11 dose-dependently attenuated reinstatement of nicotine-seeking behaviour induced by nicotine-associated cues and nicotine priming. CONCLUSIONS AND IMPLICATIONS These results indicate that ligands elevating anandamide levels could have therapeutic value for preventing relapse into nicotine-seeking behaviour and should be tested in humans trying to quit smoking.
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | | |
Collapse
|
47
|
Kirilly E, Gonda X, Bagdy G. CB1 receptor antagonists: new discoveries leading to new perspectives. Acta Physiol (Oxf) 2012. [DOI: 10.1111/j.1748-1716.2011.02402.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- E. Kirilly
- Department of Pharmacodynamics; Semmelweis University; Budapest; Hungary
| | - X. Gonda
- Department of Clinical and Theoretical Mental Health; Kútvölgyi Clinical Center; Semmelweis University; Budapest; Hungary
| | | |
Collapse
|
48
|
Gamaleddin I, Wertheim C, Zhu AZX, Coen KM, Vemuri K, Makryannis A, Goldberg SR, Le Foll B. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 2012; 17:47-61. [PMID: 21521420 DOI: 10.1111/j.1369-1600.2011.00314.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Addictive/chemically induced
- Behavior, Animal
- Benzoxazines/pharmacology
- Conditioning, Operant/drug effects
- Cues
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Extinction, Psychological/drug effects
- Feeding Behavior/drug effects
- Male
- Morpholines/pharmacology
- Motivation/drug effects
- Motor Activity/drug effects
- Naphthalenes/pharmacology
- Nicotine/administration & dosage
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Reinforcement, Psychology
- Rimonabant
- Self Administration/statistics & numerical data
- Tobacco Use Disorder
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gorelick DA, Goodwin RS, Schwilke E, Schwope DM, Darwin WD, Kelly DL, McMahon RP, Liu F, Ortemann-Renon C, Bonnet D, Huestis MA. Antagonist-elicited cannabis withdrawal in humans. J Clin Psychopharmacol 2011; 31:603-12. [PMID: 21869692 PMCID: PMC3717344 DOI: 10.1097/jcp.0b013e31822befc1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kapeller DC, Bräse S. Versatile solid-phase synthesis of chromenes resembling classical cannabinoids. ACS COMBINATORIAL SCIENCE 2011; 13:554-61. [PMID: 21815661 DOI: 10.1021/co200107s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel solid-phase approach toward classical cannabinoids is described. The desired tricyclic natural product analogues are assembled in only four atom economic steps: domino oxa-Michael-aldol condensation, Wittig reaction/enol-ether formation, Diels-Alder cycloaddition and cleavage. The synthesis is designed to allow combinatorial chemistry at several stages of the sequence. The variation of commercially available reagents at three of the reactions (enals/enones, Wittig salts, and dienophiles) allows the introduction of various diversity points. As proof of concept, a small library of 20 members has been synthesized with overall yields ranging from 10% to 60%.
Collapse
Affiliation(s)
- Dagmar C. Kapeller
- Karlsruhe Institute of Technology, Campus North, ComPlat, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology, Campus North, ComPlat, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Campus South, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|