1
|
Hidalgo-Vico S, Prieto D, Alonso-Monge R, Román E, Maufrais C, d'Enfert C, Pla J. Candida albicans strains adapted to the mouse gut are resistant to bile salts via a Flo8-dependent mechanism. Fungal Genet Biol 2024:103939. [PMID: 39486612 DOI: 10.1016/j.fgb.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.albicans through microevolution in the mouse gut for a prolonged period (one year) that display a substantial increase in fitness in this niche. These strains show resistance to bile salts, an increase in their adhesion to the intestinal mucosa, and are unable to filament in response to serum. Genetic analysis revealed some alterations, mainly a triploidy of chr7, a whole chr6 homozygosis, and an SNP in the FLO8 gene (located in the chr6), resulting in a truncated protein version. A wild type FLO8 gene complemented filamentation and bile salt sensitivity, but showed an intermediate fitness phenotype in colonization. Alterations in bile salt sensitivity were also evident in bmt mutants, defective in β-mannosylation, and transcriptional targets of Flo8, suggesting a link between the fungal cell wall and mammalian gut colonization via the Flo8 transcriptional regulator.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Centre de Ressources et Recherche en Informatique (C2RI), 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Li T, Wang Q, Liu Y, Wang J, Zhu H, Cao L, Liu D, Shen Q. Divergent roles of ADP-ribosylation factor GTPase-activating proteins in lignocellulose utilization of Trichoderma guizhouense NJAU4742. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:122. [PMID: 39294712 PMCID: PMC11411985 DOI: 10.1186/s13068-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/15/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND The ability of lignocellulose degradation for filamentous fungi is always attributed to their efficient CAZymes system with broader applications in bioenergy development. ADP-ribosylation factor GTPase-activating proteins (Arf-GAPs), pivotal in fungal morphogenesis, lack comprehensive studies on their regulatory mechanisms in lignocellulose utilization. RESULTS Here, the orthologs (TgGlo3 and TgGcs1) of Arf-GAPs in S. cerevisiae were characterized in Trichoderma guizhouense NJAU4742. The results indicated that overexpression of Tggcs1 (OE-Tggcs1) enhanced the lignocellulose utilization, whereas increased expression of Tgglo3 (OE-Tgglo3) elicited antithetical responses. On the fourth day of fermentation with rice straw as the sole carbon source, the activities of endoglucanase, cellobiohydrolase, xylanase, and filter paper of the wild-type strain (WT) reached 8.20 U mL-1, 4.42 U mL-1, 14.10 U mL-1, and 3.56 U mL-1, respectively. Compared to WT, the four enzymes activities of OE-Tggcs1 increased by 7.93%, 6.11%, 9.08%, and 12.92%, respectively, while those decreased to varying degrees of OE-Tgglo3. During the nutritional growth, OE-Tgglo3 resulted in the hyphal morphology characterized by sparsity and constriction, while OE-Tggcs1 led to a notable increase in vacuole volume. In addition, OE-Tggcs1 exhibited higher transport efficiencies for glucose and cellobiose thereby sustaining robust cellular metabolic rates. Further investigations revealed that Tgglo3 and Tggcs1 differentially regulated the transcription level of a dynamin-like GTPase gene (Tggtp), eliciting distinct redox states and apoptotic reaction, thus orchestrating the cellular response to lignocellulose utilization. CONCLUSIONS Overall, these findings underscored the significance of TgArf-GAPs as pivotal regulators in lignocellulose utilization and provided initial insights into their differential modulation of downstream targets.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qin Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaguo Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
3
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
4
|
Fong JL, Ong Eng Yong V, Yeo C, Adamson C, Li L, Zhang D, Qiao Y. Biochemical Characterization of Recombinant Enterococcus faecalis EntV Peptide to Elucidate Its Antihyphal and Antifungal Mechanisms against Candida albicans. ACS Infect Dis 2024; 10:3408-3418. [PMID: 39137394 DOI: 10.1021/acsinfecdis.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.
Collapse
Affiliation(s)
- Jia Li Fong
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Victor Ong Eng Yong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Claresta Yeo
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
5
|
Vera-González N, Deusenbery C, LaMastro V, Shukla A. Fungal Enzyme-Responsive Hydrogel Drug Delivery Platform for Triggered Antifungal Release. Adv Healthc Mater 2024:e2401157. [PMID: 39210641 DOI: 10.1002/adhm.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Fungal infections can lead to debilitating consequences if they are not treated effectively. Antifungal drugs used to treat these infections can be toxic and overuse contributes to growing antifungal resistance. Candida spp., particularly C. albicans, are implicated in a majority of these infections. Virulent C. albicans produce secreted aspartic proteases (Saps) that aid in pathogen tissue invasion and proliferation at an infected site. Here, fungi-responsive hydrogels are developed that degrade in the presence of Saps to provide a triggered release of encapsulated liposomal antifungals. The hydrogel backbone incorporates a Sap-cleavable peptide sequence enabling Sap-responsive degradation. Hydrogels are found to effectively degrade in the presence of Saps extracted from C. albicans. Encapsulated liposomal antifungals show similar release kinetics as hydrogel degradation products in the presence of Saps, supporting a degradation-dependent release mechanism. Antifungal liposome-loaded responsive hydrogels exhibit successful eradication of C. albicans cultures and remain stable in sterile murine wound fluid. Finally, no significant cytotoxicity is observed for murine fibroblast cells and red blood cells exposed to hydrogel degradation products. These fungi-responsive hydrogels have the potential to be used for local, on-demand delivery of antifungal drugs, for effective treatment of fungal infections while helping to limit unnecessary exposure to these therapeutics.
Collapse
Affiliation(s)
- Noel Vera-González
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Carly Deusenbery
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Veronica LaMastro
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Anita Shukla
- School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| |
Collapse
|
6
|
Kendil W, Dergal F, Tefiani I, Mahdad YM, Benladghem Z, Ziani-Cherif C, Seddiki SML. Improvement of a low-cost protocol for a simultaneous comparative evaluation of hydrolytic activity between sessile and planktonic cells: Candida albicans as a study model. BIOFOULING 2024; 40:431-445. [PMID: 38973173 DOI: 10.1080/08927014.2024.2376637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Candida albicans is often implicated in nosocomial infections with fatal consequences. Its virulence is contributed to hydrolytic enzymes and biofilm formation. Previous research focused on studying these virulence factors individually. Therefore, this study aimed to investigate the impact of biofilm formation on the hydrolytic activity using an adapted low-cost method. Eleven strains of C. albicans were used. The biofilms were formed on pre-treated silicone discs using 24-well plates and then deposited on the appropriate agar to test each enzyme, while the planktonic cells were conventionally seeded. Biofilms were analysed using Raman spectroscopy, fluorescent and scanning electron microscopy. The adapted method provided an evaluation of hydrolytic enzymes activity in C. albicans biofilm and showed that sessile cells had a higher phospholipase and proteinase activities compared with planktonic cells. These findings were supported by spectroscopic and microscopic analyses, which provided valuable insights into the virulence mechanisms of C. albicans during biofilm formation.
Collapse
Affiliation(s)
- Wafaa Kendil
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
| | - Fayçal Dergal
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Tipaza, Algeria
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Ikram Tefiani
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
| | - Yassine Moustafa Mahdad
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Naâma, Naâma, Algeria
- Laboratory of Applied Genetic in Agriculture, Ecology and Public Health, University of Tlemcen, Tlemcen, Algeria
| | - Zakaria Benladghem
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
- Department of Biology, University of Tamanrasset, Tamanrasset, Algeria
| | - Chewki Ziani-Cherif
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Sidi Mohammed Lahbib Seddiki
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Naâma, Naâma, Algeria
| |
Collapse
|
7
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Alves V, de Andrade IB, Corrêa-Junior D, Avellar-Moura I, Passos K, Soares J, Pontes B, Almeida MA, Almeida-Paes R, Frases S. Revealing the impact of Rapamycin on the virulence factors of the Candida haemulonii complex. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100247. [PMID: 38974670 PMCID: PMC11225706 DOI: 10.1016/j.crmicr.2024.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The incidence of invasive fungal infections caused by Candida species is increasing, particularly in immunocompromised individuals. This increasing incidence poses a dual challenge, comprising escalating antifungal resistance and the necessity for accurate fungal identification. The Candida haemulonii complex further complicates these challenges due to limited identification tools. Like some other Candida species, infections involving this complex show resistance to multiple antifungals, requiring innovative therapeutic approaches. Rapamycin, known for its antifungal properties and immunosuppressive characteristics, was investigated against the C. haemulonii complex species. Results revealed a rapamycin minimal inhibitory concentration (MIC) range of 0.07 to >20 µM, with fungicidal effects in most strains. In vitro analyses using the rapamycin maximum plasma concentration (0.016 µM) showed reduced surface properties and decreased production of extracellular enzymes. Rapamycin also hindered biofilm formation by some strains. Even when treated at the human therapeutic dose, which is lower than the MIC, phenotypic variations in C. haemulonii were detected, hinting at the possible attenuation of some virulence factors when exposed to rapamycin.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Igor Avellar-Moura
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Karini Passos
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Juliana Soares
- Laboratório de Pinças Ópticas, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Ópticas, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
10
|
Chandole PK, Pawar TJ, Olivares-Romero JL, Tivari SR, Garcia Lara B, Patel H, Ahmad I, Delgado-Alvarado E, Kokate SV, Jadeja Y. Exploration of novel cationic amino acid-enriched short peptides: design, SPPS, biological evaluation and in silico study. RSC Adv 2024; 14:17710-17723. [PMID: 38832247 PMCID: PMC11145139 DOI: 10.1039/d3ra08313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a critical challenge worldwide, necessitating the pursuit of novel approaches to counteract bacterial and fungal pathogens. In this context, we explored the potential of cationic amino acid-enriched short peptides, synthesized via solid-phase methods, as innovative antimicrobial candidates. Our comprehensive evaluation assessed the antibacterial and antifungal efficacy of these peptides against a panel of significant pathogens, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, and Aspergillus niger. Utilizing molecular docking techniques, we delved into the molecular interactions underpinning the peptides' action against these microorganisms. The results revealed a spectrum of inhibitory activities, with certain peptide sequences displaying pronounced effectiveness across various pathogens. These findings underscore the peptides' potential as promising antimicrobial agents, with molecular docking offering valuable insights into their mechanisms of action. This study enriches antimicrobial peptide (AMP) research by identifying promising candidates for further refinement and development toward therapeutic application, highlighting their significance in addressing the urgent issue of AMR.
Collapse
Affiliation(s)
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351 Xalapa 91073 Veracruz Mexico
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351 Xalapa 91073 Veracruz Mexico
| | - Sunil R Tivari
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | - Bianney Garcia Lara
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N Guanajuato-36050 Guanajuato Mexico
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule-425405 Maharashtra India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule-425405 Maharashtra India
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
| | - Siddhant V Kokate
- Department of Chemistry, S. S. C. College Junnar Pune-410502 Maharashtra India
| | | |
Collapse
|
11
|
Musinguzi B, Akampurira A, Derick H, Mwesigwa A, Mwebesa E, Mwesigye V, Kabajulizi I, Sekulima T, Ocheng F, Itabangi H, Mboowa G, Sande OJ, Achan B. In Vitro Evaluation of the Virulence Attributes of Oropharyngeal Candida Species Isolated from People Living with Human Immunodeficiency Virus with Oropharyngeal Candidiasis on Antiretroviral Therapy. RESEARCH SQUARE 2024:rs.3.rs-4371952. [PMID: 38766148 PMCID: PMC11100903 DOI: 10.21203/rs.3.rs-4371952/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Oropharyngeal Candida species are part commensal microflora in the the oral cavity of health individuals. Commensal Candida species can become opportunist and transition to pathogenic causes of oropharyngeal candidiasis (OPC) in individuals with impaired immunity through ecological cues and expression of virulence factors. Limited studies have evaluated virulence attributes of oropharyngeal Candida species among people living with human immunodeficiency virus (PLHIV) with OPC on antiretroviral therapy (ART) in Uganda. Objective Evaluation of the Virulence Attributes of Oropharyngeal Candida Species Isolated from People Living with Human Immunodeficiency Virus with Oropharyngeal Candidiasis on Antiretroviral Therapy. Methods Thirty-five (35) Candida isolates from PLHIV with OPC on ART were retrieved from sample repository and evaluated for phospholipase activity using the egg yolk agar method, proteinase activity using the bovine serum albumin agar method, hemolysin activity using the blood agar plate method, esterase activity using the Tween 80 opacity test medium method, coagulase activity using the classical tube method and biofilm formation using the microtiter plate assay method in vitro. Results Phospholipase and proteinase activities were detected in 33/35 (94.3%) and 31/35 (88.6%) of the strains, respectively. Up to 25/35 (71.4%) of the strains exhibited biofilm formation while esterase activity was demonstrated in 23/35 (65.7%) of the strains. Fewer isolates 21/35 (60%) of the strains produced hemolysin and coagulase production was the least virulence activity detected in 18/35 (51.4%). Conclusion Phospholipase and proteinase activities were the strongest virulence attributes of oropharyngeal Candida species.
Collapse
Affiliation(s)
- Benson Musinguzi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Muni University, P. O. Box 725, Arua, Uganda
| | - Andrew Akampurira
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, P.O. Box 7072, Makerere University, Kampala, Uganda
| | - Hope Derick
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Muni University, P. O. Box 725, Arua, Uganda
| | - Alex Mwesigwa
- Department of Microbiology and Immunology, School of Medicine, P.O Box 317, Kabale University Kabale, Uganda
| | - Edson Mwebesa
- Department of Mathematics, Faculty of Science, Muni University, P. O. Box 725, Arua, Uganda
| | - Vicent Mwesigye
- Department of Medical Laboratory Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Immaculate Kabajulizi
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Tahalu Sekulima
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Francis Ocheng
- Department of Dentistry, School of Health Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Herbert Itabangi
- Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, P.O Box 1460, Mbale, Uganda
| | - Gerald Mboowa
- African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Beatrice Achan
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, P.O. Box 7072, Makerere University, Kampala, Uganda
| |
Collapse
|
12
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
13
|
Tripathi D, Kapoor A, Bulbul, Pankaj, Kant R, Saluja D, Sharma M. Functional annotation of Candida albicans hypothetical proteins: a bioinformatics approach. Arch Microbiol 2024; 206:118. [PMID: 38393407 DOI: 10.1007/s00203-024-03840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 02/25/2024]
Abstract
Candida albicans is a member of the ascomycetes class of fungi and it is an opportunistic pathogen species responsible for a wide range of fungal infections in humans. Bioinformatics and sequencing analysis of Candida proteomics has disclosed that around 69% proteome is still uncharacterized which needs to be annotated with functions. The NCBI-Genome has termed them as hypothetical proteins (HPs) in the whole proteome of Candida. Interpretation of this substantial portion of the proteome can reveal novel pharmacological targets for markers, drug development, and other therapeutics and so on. In this article, we have assigned functional annotation to these hypothetical proteins using bioinformatics methodologies. The advanced and robust computational models have been used to assign the preliminary functions to these putative HPs with high level of confidence. The findings of this study unveil some novel pharmacological targets for drug therapy and vaccines and it would help to identify novel molecular mechanisms underlying the fungal pathogenesis.
Collapse
Affiliation(s)
- Deepika Tripathi
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Arushi Kapoor
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Bulbul
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Pankaj
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Ravi Kant
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Meenakshi Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India.
| |
Collapse
|
14
|
Gómez-Gaviria M, García-Carnero LC, Baruch-Martínez DA, Mora-Montes HM. The Emerging Pathogen Candida metapsilosis: Biological Aspects, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2024; 17:171-185. [PMID: 38268929 PMCID: PMC10807450 DOI: 10.2147/idr.s448213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| |
Collapse
|
15
|
Chua W, Marsh CO, Poh SE, Koh WL, Lee MLY, Koh LF, Tang XZE, See P, Ser Z, Wang SM, Sobota RM, Dawson TL, Yew YW, Thng S, O'Donoghue AJ, Oon HH, Common JE, Li H. A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin. Biochimie 2024; 216:181-193. [PMID: 37748748 DOI: 10.1016/j.biochi.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.
Collapse
Affiliation(s)
- Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Carl O Marsh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Si En Poh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Winston Lc Koh
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Melody Li Ying Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Li Fang Koh
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Xin-Zi Emily Tang
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Peter See
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Thomas L Dawson
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; College of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, USA
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Steven Thng
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Hazel H Oon
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - John E Common
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Hao Li
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
16
|
Al Mousa AA, Abouelela ME, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo-Dahab NF, Hassane AMA. Anti-Staphylococcal, Anti-Candida, and Free-Radical Scavenging Potential of Soil Fungal Metabolites: A Study Supported by Phenolic Characterization and Molecular Docking Analysis. Curr Issues Mol Biol 2023; 46:221-243. [PMID: 38248318 PMCID: PMC10814734 DOI: 10.3390/cimb46010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus and Candida are recognized as causative agents in numerous diseases, and the rise of multidrug-resistant strains emphasizes the need to explore natural sources, such as fungi, for effective antimicrobial agents. This study aims to assess the in vitro anti-staphylococcal and anti-candidal potential of ethyl acetate extracts from various soil-derived fungal isolates. The investigation includes isolating and identifying fungal strains as well as determining their antioxidative activities, characterizing their phenolic substances through HPLC analysis, and conducting in silico molecular docking assessments of the phenolics' binding affinities to the target proteins, Staphylococcus aureus tyrosyl-tRNA synthetase and Candida albicans secreted aspartic protease 2. Out of nine fungal species tested, two highly potent isolates were identified through ITS ribosomal gene sequencing: Aspergillus terreus AUMC 15447 and A. nidulans AUMC 15444. Results indicated that A. terreus AUMC 15447 and A. nidulans AUMC 15444 extracts effectively inhibited S. aureus (concentration range: 25-0.39 mg/mL), with the A. nidulans AUMC 15444 extract demonstrating significant suppression of Candida spp. (concentration range: 3.125-0.39 mg/mL). The A. terreus AUMC 15447 extract exhibited an IC50 of 0.47 mg/mL toward DPPH radical-scavenging activity. HPLC analysis of the fungal extracts, employing 18 standards, revealed varying degrees of detected phenolics in terms of their presence and quantities. Docking investigations highlighted rutin as a potent inhibitor, showing high affinity (-16.43 kcal/mol and -12.35 kcal/mol) for S. aureus tyrosyl-tRNA synthetase and C. albicans secreted aspartic protease 2, respectively. The findings suggest that fungal metabolites, particularly phenolics, hold significant promise for the development of safe medications to combat pathogenic infections.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt;
| | - Nadaa S. Al Ghamidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | | | - Hassan Mohamed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| |
Collapse
|
17
|
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel) 2023; 16:40. [PMID: 38201705 PMCID: PMC10780608 DOI: 10.3390/polym16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15-70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium-as well as on the reciprocal, fragile, and constantly dynamic conditions-between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Yves Amouriq
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - François Bodic
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Pauline Blery
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Octave Nadile Bandiaky
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| |
Collapse
|
18
|
Román E, Prieto D, Hidalgo-Vico S, Alonso-Monge R, Pla J. The defective gut colonization of Candida albicans hog1 MAPK mutants is restored by overexpressing the transcriptional regulator of the white opaque transition WOR1. Virulence 2023; 14:2174294. [PMID: 36760104 PMCID: PMC9928469 DOI: 10.1080/21505594.2023.2174294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The transcriptional master regulator of the white opaque transition of Candida albicans WOR1 is important for the adaptation to the commensal lifestyle in the mammalian gut, a major source of invasive candidiasis. We have generated cells that overproduce Wor1 in mutants defective in the Hog1 MAP kinase, defective in several stress responses and unable to colonize the mice gut. WOR1 overexpression allows hog1 to be established as a commensal in the murine gut in a commensalism model and even compete with wild-type C. albicans cells for establishment. This increased fitness correlates with an enhanced ability to adhere to biotic surfaces as well as increased proteinase and phospholipase production and a decrease in filamentation in vitro. We also show that hog1 WOR1OE are avirulent in a systemic candidiasis model in mice.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain,CONTACT Elvira Román
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain,Jesús Pla Parasitología Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Wu M, Xu X, Hu R, Chen Q, Chen L, Yuan Y, Li J, Zhou L, Feng S, Wang L, Chen S, Gu M. A Membrane-Targeted Photosensitizer Prevents Drug Resistance and Induces Immune Response in Treating Candidiasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207736. [PMID: 37875397 PMCID: PMC10724446 DOI: 10.1002/advs.202207736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Candida albicans (C. albicans), a ubiquitous polymorphic fungus in humans, causes different types of candidiasis, including oral candidiasis (OC) and vulvovaginal candidiasis (VVC), which are physically and mentally concerning and financially costly. Thus, developing alternative antifungals that prevent drug resistance and induce immunity to eliminate Candida biofilms is crucial. Herein, a novel membrane-targeted aggregation-induced emission (AIE) photosensitizer (PS), TBTCP-QY, is developed for highly efficient photodynamic therapy (PDT) of candidiasis. TBTCP-QY has a high molar absorption coefficient and an excellent ability to generate 1 O2 and •OH, entering the interior of biofilms due to its high permeability. Furthermore, TBTCP-QY can efficiently inhibit biofilm formation by suppressing the expression of genes related to the adhesion (ALS3, EAP1, and HWP1), invasion (SAP1 and SAP2), and drug resistance (MDR1) of C. albicans, which is also advantageous for eliminating potential fungal resistance to treat clinical infectious diseases. TBTCP-QY-mediated PDT efficiently targets OC and VVC in vivo in a mouse model, induces immune response, relieves inflammation, and accelerates the healing of mucosal defects to combat infections caused by clinically isolated fluconazole-resistant strains. Moreover, TBTCP-QY demonstrates excellent biocompatibility, suggesting its potential applications in the clinical treatment of OC and VVC.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Xiaoyu Xu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Rui Hu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Qingrong Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Luojia Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuncong Yuan
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Jie Li
- Department of Medical Intensive Care UnitMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430070China
| | - Li Zhou
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Lianrong Wang
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Shi Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Meijia Gu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| |
Collapse
|
20
|
Miramón P, Pountain AW, Lorenz MC. Candida auris-macrophage cellular interactions and transcriptional response. Infect Immun 2023; 91:e0027423. [PMID: 37815367 PMCID: PMC10652981 DOI: 10.1128/iai.00274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023] Open
Abstract
The pathogenic yeast Candida auris represents a global threat of the utmost clinical relevance. This emerging fungal species is remarkable in its resistance to commonly used antifungal agents and its persistence in the nosocomial settings. The innate immune system is one the first lines of defense preventing the dissemination of pathogens in the host. C. auris is susceptible to circulating phagocytes, and understanding the molecular details of these interactions may suggest routes to improved therapies. In this work, we examined the interactions of this yeast with macrophages. We found that macrophages avidly phagocytose C. auris; however, intracellular replication is not inhibited, indicating that C. auris resists the killing mechanisms imposed by the phagocyte. Unlike Candida albicans, phagocytosis of C. auris does not induce macrophage lysis. The transcriptional response of C. auris to macrophage phagocytosis is very similar to other members of the CUG clade (C. albicans, C. tropicalis, C. parapsilosis, C. lusitaniae), i.e., downregulation of transcription/translation and upregulation of alternative carbon metabolism pathways, transporters, and induction of oxidative stress response and proteolysis. Gene family expansions are common in this yeast, and we found that many of these genes are induced in response to macrophage co-incubation. Among these, amino acid and oligopeptide transporters, as well as lipases and proteases, are upregulated. Thus, C. auris shares key transcriptional signatures shared with other fungal pathogens and capitalizes on the expansion of gene families coding for potential virulence attributes that allow its survival, persistence, and evasion of the innate immune system.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
21
|
de Andrade IB, Alves V, Pereira L, Miranda B, Corrêa-Junior D, Galdino Figueiredo-Carvalho MH, Santos MV, Almeida-Paes R, Frases S. Effect of rapamycin on Cryptococcus neoformans: cellular organization, biophysics and virulence factors. Future Microbiol 2023; 18:1061-1075. [PMID: 37721517 DOI: 10.2217/fmb-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background: Cryptococcus neoformans is an opportunistic fungal pathogen that causes infections mainly in immunosuppressed individuals, such as transplant recipients. Aims: This study investigated the effects of rapamycin, an immunosuppressant drug, on the cellular organization, biophysical characteristics, and main virulence factors of C. neoformans. Methods: Morphological, structural, physicochemical and biophysical analyses of cells and secreted polysaccharides of the reference H99 C. neoformans strain were investigated under the effect of subinhibitory concentrations of rapamycin. Results: Rapamycin at a minimum inhibitory concentration of 2.5 μM reduced C. neoformans cell viability by 53%, decreased capsule, increased cell size, chitin and lipid body formation, and changed peptidase and urease activity. Conclusion: Further studies are needed to assess how rapamycin affects the virulence factors and pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Pereira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Miranda
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcos Vinicius Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Araujo HC, Pessan JP, Caldeirão ACM, Sampaio C, Oliveira MJDS, Sales DH, Teixeira SR, Constantino CJL, Delbem ACB, Oliveira SHP, Ramage G, Monteiro DR. Dual nanocarrier of chlorhexidine and fluconazole: Physicochemical characterization and effects on microcosm biofilms and oral keratinocytes. J Dent 2023; 138:104699. [PMID: 37716636 DOI: 10.1016/j.jdent.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study assembled and characterized a dual nanocarrier of chlorhexidine (CHX) and fluconazole (FLZ), and evaluated its antibiofilm and cytotoxic effects. METHODS CHX and FLZ were added to iron oxide nanoparticles (IONPs) previously coated by chitosan (CS) and characterized by physical-chemical analyses. Biofilms from human saliva supplemented with Candida species were grown (72 h) on glass discs and treated (24 h) with IONPs-CS carrying CHX (at 39, 78, or 156 µg/mL) and FLZ (at 156, 312, or 624 µg/mL) in three growing associations. IONPs and CS alone, and 156 µg/mL CHX + 624 µg/mL FLZ (CHX156-FLZ624) were tested as controls. Next, microbiological analyses were performed. The viability of human oral keratinocytes (NOKsi lineage) was also determined (MTT reduction assay). Data were submitted to ANOVA or Kruskal-Wallis, followed by Fisher's LSD or Tukey's tests (α=0.05). RESULTS Nanocarriers with spherical-like shape and diameter around 6 nm were assembled, without compromising the crystalline property and stability of IONPs. Nanocarrier at the highest concentrations was the most effective in reducing colony-forming units of Streptococcus mutans, Lactobacillus spp., Candida albicans, and Candida glabrata. The other carriers and CHX156-FLZ624 showed similar antibiofilm effects, and significantly reduced lactic acid production (p<0.001). Also, a dose-dependent cytotoxic effect against oral keratinocytes was observed for the dual nanocarrier. IONPs-CS-CHX-FLZ and CHX-FLZ significantly reduced keratinocyte viability at CHX and FLZ concentrations ≥7.8 and 31.25 µg/mL, respectively (p<0.05). CONCLUSION The nanotherapy developed outperformed the effect of the combination CHX-FLZ on microcosm biofilms, without increasing the cytotoxic effect of the antimicrobials administered. CLINICAL SIGNIFICANCE The dual nanocarrier is a promising topically-applied therapy for the management of oral candidiasis considering that its higher antibiofilm effects allow the use of lower concentrations of antimicrobials than those found in commercial products.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Anne Caroline Morais Caldeirão
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Marcelo José Dos Santos Oliveira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Douglas Henrique Sales
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Silvio Rainho Teixeira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Carlos José Leopoldo Constantino
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Basic Sciences, 16015-050 Araçatuba/São Paulo, Brazil
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, Glasgow Caledonian University, Glasgow UK
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil; School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil; Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
23
|
Hansali K, Zhang ZR, Liu GL, Chi Z, Chi ZM. The Pathogenic Yeast Metschnikowia bicuspidata var. bicuspidata in the Aquacultured Ecosystem and Its Biocontrol. J Fungi (Basel) 2023; 9:1024. [PMID: 37888280 PMCID: PMC10607588 DOI: 10.3390/jof9101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
M. bicuspidata var. bicuspidata is a pathogenic yeast which can affect aquacultured and marine-cultured animals such as brine shrimp, ridgetail white prawn, chinook salmon, giant freshwater prawn, the Chinese mitten crab, marine crab, the mud crab, the mangrove land crab, the Chinese grass shrimp, sea urchins, sea urchins, Daphnia dentifera and even snails, causing a milky disease, and it has caused big economic losses in aquacultural and marine-cultural industries in the past. However, the detailed mechanisms and the reasons for the milky disease in the diseased aquatic animals are still completely unknown. So far, only some antimycotics, killer toxins and Massoia lactone haven been found to be able to actively control and kill its growth. The ecofriendly, green and renewable killer toxins and Massoia lactone have high potential for application in controlling the milky disease.
Collapse
Affiliation(s)
- Khalef Hansali
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Zhao-Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
24
|
Montoya C, Kurylec J, Ossa A, Orrego S. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans. Acta Biomater 2023; 170:415-426. [PMID: 37625677 PMCID: PMC10705016 DOI: 10.1016/j.actbio.2023.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Candida albicans is an opportunistic yeast and the primary etiological factor in oral candidiasis and denture stomatitis. The pathogenesis of C. albicans could be triggered by several variables, including environmental, nutritional, and biomaterial surface cues. Specifically, biomaterial interactions are driven by different surface properties, including wettability, stiffness, and roughness. Dental biomaterials experience repetitive (cyclic) stresses from chewing and biomechanical movements. Pathogenic biofilms are formed over these biomaterial surfaces under cyclic strain. This study investigated the effect of the cyclic strain (deformation) of biomaterial surfaces on the virulence of Candida albicans. Candida biofilms were grown over Poly (methyl methacrylate) (PMMA) surfaces subjected to static (no strain) and cyclic strain with different levels (ε˜x=0.1 and 0.2%). To evaluate the biomaterial-biofilm interactions, the biofilm characteristics, yeast-to-hyphae transition, and the expression of virulent genes were measured. Results showed the biofilm biomass and metabolic activity to be significantly higher when Candida adhered to surfaces subjected to cyclic strain compared to static surfaces. Examination of the yeast-to-hyphae transition showed pseudo-hyphae cells (pathogenic) in cyclically strained biomaterial surfaces, whereas static surfaces showed spherical yeast cells (commensal). RNA sequencing was used to determine and compare the transcriptome profiles of cyclically strained and static surfaces. Genes and transcription factors associated with cell adhesion (CSH1, PGA10, and RBT5), biofilm formation (EFG1), and secretion of extracellular matrix (ECM) (CRH1, ADH5, GCA1, and GCA2) were significantly upregulated in the cyclically strained biomaterial surfaces compared to static ones. Genes and transcription factors associated with virulence (UME6 and HGC1) and the secretion of extracellular enzymes (LIP, PLB, and SAP families) were also significantly upregulated in the cyclically strained biomaterial surfaces compared to static. For the first time, this study reveals a biomaterial surface factor triggering the pathogenesis of Candida albicans, which is essential for understanding, controlling, and preventing oral infections. STATEMENT OF SIGNIFICANCE: Fungal infections produced by Candida albicans are a significant contributor to various health conditions. Candida becomes pathogenic when certain environmental conditions change, including temperature, pH, nutrients, and CO2 levels. In addition, surface properties, including wettability, stiffness, and roughness, drive the interactions between Candida and biomaterials. Clinically, Candida adheres to biomaterials that are under repetitive deformation due to body movements. In this work, we revealed that when Candida adhered to biomaterial surfaces subjected to repetitive deformation, the microorganism becomes pathogenic by increasing the formation of biofilms and the expression of virulent factors related to hyphae formation and secretion of enzymes. Findings from this work could aid the development of new strategies for treating fungal infections in medical devices or implanted biomaterials.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Alex Ossa
- Production Engineering Department, School of Engineering, Universidad EAFIT, Medellín, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
25
|
Kabir AR, Chaudhary AA, Aladwani MO, Podder S. Decoding the host-pathogen interspecies molecular crosstalk during oral candidiasis in humans: an in silico analysis. Front Genet 2023; 14:1245445. [PMID: 37900175 PMCID: PMC10603195 DOI: 10.3389/fgene.2023.1245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: The objective of this study is to investigate the interaction between Candida albicans and human proteins during oral candidiasis, with the aim of identifying pathways through which the pathogen subverts host cells. Methods: A comprehensive list of interactions between human proteins and C. albicans was obtained from the Human Protein Interaction Database using specific screening criteria. Then, the genes that exhibit differential expression during oral candidiasis in C. albicans were mapped with the list of human-Candida interactions to identify the corresponding host proteins. The identified host proteins were further compared with proteins specific to the tongue, resulting in a final list of 99 host proteins implicated in oral candidiasis. The interactions between host proteins and C. albicans proteins were analyzed using the STRING database, enabling the construction of protein-protein interaction networks. Similarly, the gene regulatory network of Candida proteins was reconstructed using data from the PathoYeastract and STRING databases. Core module proteins within the targeted host protein-protein interaction network were identified using ModuLand, a Cytoscape plugin. The expression levels of the core module proteins under diseased conditions were assessed using data from the GSE169278 dataset. To gain insights into the functional characteristics of both host and pathogen proteins, ontology analysis was conducted using Enrichr and YeastEnrichr, respectively. Result: The analysis revealed that three Candida proteins, HHT21, CYP5, and KAR2, interact with three core host proteins, namely, ING4 (in the DNMT1 module), SGTA, and TOR1A. These interactions potentially impair the immediate immune response of the host against the pathogen. Additionally, differential expression analysis of fungal proteins and their transcription factors in Candida-infected oral cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate transcription factors involved in instigating the pathogenesis of oral candidiasis during host infection. Conclusion: Our study provides a molecular map of the host-pathogen interaction during oral candidiasis, along with potential targets for designing regimens to overcome oral candidiasis, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Ali Rejwan Kabir
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Malak O Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Soumita Podder
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
26
|
Kim JS, Lee KT, Bahn YS. Secreted aspartyl protease 3 regulated by the Ras/cAMP/PKA pathway promotes the virulence of Candida auris. Front Cell Infect Microbiol 2023; 13:1257897. [PMID: 37780854 PMCID: PMC10540861 DOI: 10.3389/fcimb.2023.1257897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Hamoda AM, Hamdy R, Fayed B, Abouleish M, Sulaiman A, Hamad M, Soliman SSM. Evolutionary relevance of metabolite production in relation to marine sponge bacteria symbiont. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12649-3. [PMID: 37358811 DOI: 10.1007/s00253-023-12649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Sponges are habitats for a diverse community of microorganisms. Sponges provide shelter, whereas microbes provide a complementary defensive mechanism. Here, a symbiotic bacterium, identified as Bacillus spp., was isolated from a marine sponge following culture enrichment. Fermentation-assisted metabolomics using thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) indicated that marine simulated nutrition and temperature was the optimum in metabolite production represented by the highest number of metabolites and the diverse chemical classes when compared to other culture media. Following large-scale culture in potato dextrose broth (PDB) and dereplication, compound M1 was isolated and identified as octadecyl-1-(2',6'-di-tert-butyl-1'-hydroxyphenyl) propionate. M1, at screening concentrations up to 10 mg/ml, showed no activity against prokaryotic bacteria including Staphylococcus aureus and Escherichia coli, while 1 mg/ml of M1 was sufficient to cause a significant killing effect on eukaryotic cells including Candida albicans, Candida auris, and Rhizopus delemar fungi and different mammalian cells. M1 exhibited MIC50 0.97 ± 0.006 and 7.667 ± 0.079 mg/ml against C. albicans and C. auris, respectively. Like fatty acid esters, we hypothesize that M1 is stored in a less harmful form and upon pathogenic attack is hydrolyzed to a more active form as a defensive metabolite. Subsequently, [3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid] (DTBPA), the hydrolysis product of M1, exhibited ~ 8-fold and 18-fold more antifungal activity than M1 against C. albicans and C. auris, respectively. These findings indicated the selectivity of that compound as a defensive metabolite towards the eukaryotic cells particularly the fungi, a major infectious agent to sponges. Metabolomic-assisted fermentation can provide a significant understanding of a triple marine-evolved interaction. KEY POINTS: • Bacillus species, closely related to uncultured Bacillus, is isolated from Gulf marine sponge • Metabolomic-assisted fermentations showed diverse metabolites • An ester with a killing effect against eukaryotes but not prokaryotes is isolated.
Collapse
Affiliation(s)
- Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut-71526, Egypt
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ashna Sulaiman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Mohamad Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
28
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
29
|
Lin L, Wang M, Zeng J, Mao Y, Qin R, Deng J, Ouyang X, Hou X, Sun C, Wang Y, Cai Y, Li M, Tian C, Zhou X, Zhang M, Fan H, Mei H, Sarapultsev A, Wang H, Zhang G, Zipfel PF, Hu Y, Hu D, Luo S. Sequence Variation of Candida albicans Sap2 Enhances Fungal Pathogenicity via Complement Evasion and Macrophage M2-Like Phenotype Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206713. [PMID: 37211685 PMCID: PMC10369283 DOI: 10.1002/advs.202206713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen increasingly causing candidiasis worldwide. This study aims to investigate the pattern of systemic immune responses triggered by C. albicans with disease associated variation of Sap2, identifying the novel evasion strategies utilized by clinical isolates. Specifically, a variation in clinical isolates is identified at nucleotide position 817 (G to T). This homozygous variation causes the 273rd amino acid exchange from valine to leucine, close to the proteolytic activation center of Sap2. The mutant (Sap2-273L) generated from SC5314 (Sap2-273V) background carrying the V273L variation within Sap2 displays higher pathogenicity. In comparison to mice infected with Sap2-273V strain, mice infected with Sap2-273L exhibit less complement activation indicated by less serum C3a generation and weaker C3b deposition in the kidney. This inhibitory effect is mainly achieved by Sap2273L -mediated stronger degradation of C3 and C3b. Furthermore, mice infected with Sap2-273L strain exhibit more macrophage phenotype switching from M0 to M2-like and more TGF-β release which further influences T cell responses, generating an immunosuppressed cellular microenvironment characterized by more Tregs and exhausted T cell formation. In summary, the disease-associated sequence variation of Sap2 enhances pathogenicity by complement evasion and M2-like phenotype switching, promoting a more efficient immunosuppressed microenvironment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jingsi Zeng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yehong Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renjie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yadan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xi Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Min Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76, Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
30
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
31
|
Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2023; 9:jof9030353. [PMID: 36983521 PMCID: PMC10059995 DOI: 10.3390/jof9030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.
Collapse
|
32
|
Sulistyowaty MI, Putra GS, Budiati T, Indrianingsih AW, Anwari F, Kesuma D, Matsunami K, Yamauchi T. Synthesis, In Silico Study, Antibacterial and Antifungal Activities of N-phenylbenzamides. Int J Mol Sci 2023; 24:ijms24032745. [PMID: 36769066 PMCID: PMC9917131 DOI: 10.3390/ijms24032745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Antibiotic and antifungal resistance problems have been prevalent in recent decades. One of the efforts to solve the problems is to develop new medicines with more potent antibacterial and antifungal activity. N-phenylbenzamides have the potential to be developed as antibacterial and antifungal medicine. This study aimed to synthesize N-phenylbenzamides and evaluate their in silico and in vitro antibacterial and antifungal activities. The in silico studies conducted absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions along with molecular docking studies. ADMET predictions used pkCSM software online, while the docking studies used MVD software (Molegro ® Virtual Docker version 5.5) on Aminoglycosid-2 ″-phosphotransferase-IIa (APH2 ″-IIa) enzyme with protein data bank (PDB) ID code 3HAV as antibacterial and aspartic proteinases enzyme (Saps) with PDB ID code 2QZX as an antifungal. In vitro, antibacterial and antifungal tests were carried out using the zone of inhibition (ZOI) method. The five N-phenylbenzamides (3a-e) were successfully synthesized with a high yield. Based on in silico and in vitro studies, compounds 3a-e have antibacterial and antifungal activities, where they can inhibit the growth of Gram-positive bacteria (Staphylococcus aureus), Gram-negative (Escherichia coli), and Candida albicans. Therefore, compounds 3a-e can be developed as a topical antibacterial and antifungal agent.
Collapse
Affiliation(s)
- Melanny Ika Sulistyowaty
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: (M.I.S.); (D.K.)
| | - Galih Satrio Putra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang 65151, Indonesia
| | - Tutuk Budiati
- Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya 60265, Indonesia
| | - Anastasia Wheni Indrianingsih
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Farida Anwari
- Medical Laboratory Science, University of Anwar Medika, Sidoarjo 61262, Indonesia
| | - Dini Kesuma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia
- Correspondence: (M.I.S.); (D.K.)
| | - Katsuyoshi Matsunami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Takayasu Yamauchi
- Faculty of Pharmaceutical Science, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
33
|
Satala D, Bras G, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. More than Just Protein Degradation: The Regulatory Roles and Moonlighting Functions of Extracellular Proteases Produced by Fungi Pathogenic for Humans. J Fungi (Basel) 2023; 9:jof9010121. [PMID: 36675942 PMCID: PMC9865821 DOI: 10.3390/jof9010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Extracellular proteases belong to the main virulence factors of pathogenic fungi. Their proteolytic activities plays a crucial role in the acquisition of nutrients from the external environment, destroying host barriers and defenses, and disrupting homeostasis in the human body, e.g., by affecting the functions of plasma proteolytic cascades, and playing sophisticated regulatory roles in various processes. Interestingly, some proteases belong to the group of moonlighting proteins, i.e., they have additional functions that contribute to successful host colonization and infection development, but they are not directly related to proteolysis. In this review, we describe examples of such multitasking of extracellular proteases that have been reported for medically important pathogenic fungi of the Candida, Aspergillus, Penicillium, Cryptococcus, Rhizopus, and Pneumocystis genera, as well as dermatophytes and selected endemic species. Additional functions of proteinases include supporting binding to host proteins, and adhesion to host cells. They also mediate self-aggregation and biofilm formation. In addition, fungal proteases affect the host immune cells and allergenicity, understood as the ability to stimulate a non-standard immune response. Finally, they play a role in the proper maintenance of cellular homeostasis. Knowledge about the multifunctionality of proteases, in addition to their canonical roles, greatly contributes to an understanding of the mechanisms of fungal pathogenicity.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Correspondence:
| |
Collapse
|
34
|
Cao C, Bing J, Liao G, Nobile CJ, Huang G. Candida haemulonii species complex: emerging fungal pathogens of the Metschnikowiaceae clade. ZOONOSES (BURLINGTON, MASS.) 2023; 3:43. [PMID: 39238892 PMCID: PMC11376483 DOI: 10.15212/zoonoses-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Candida species represent the most common fungal pathogens of humans, causing not only superficial infections but also life-threatening invasive infections, especially in immunocompromised individuals. While Candida albicans remains the most frequent cause of candidiasis, infections caused by non-albicans Candida species have been increasingly reported in clinical settings over the past two decades. Recently, species of the Metschnikowiaceae clade including the "superbug" Candida auris and other members of the Candida haemulonii species complex have attracted significant attention due to their multidrug resistance and high rates of transmission in clinical settings. In this review, we summarize the epidemiology, biology, virulence, and drug resistance of the C. haemulonii species complex and discuss potential reasons for the recent increase in prevalence of infections caused by non-albicans species in clinical settings.
Collapse
Affiliation(s)
- Chengjun Cao
- The Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guojian Liao
- The Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Guanghua Huang
- The Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
35
|
El-Sakhawy MA, M Donia AER, Kobisi ANA, Abdelbasset WK, Saleh AM, Ibrahim AM, Negm RM. Oral Candidiasis of Tobacco Smokers: A Literature Review. Pak J Biol Sci 2023; 26:1-14. [PMID: 37129200 DOI: 10.3923/pjbs.2023.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mouth is a vital point of entry into the human body, the health of the mouth entails mental, physical as well as social well-being. Studying diseases, microbiota and environmental conditions of the mouth is important to maintain oral health and all body. The smoke of tobacco cigarettes is one of the worst habits that affect the health of the mouth and the body. Therefore, this review has been conducted to study the effect of smoking on the balance of the oral microbiota and the opportunistic organisms, one of the most important of them <i>Candida</i>. Although a few studies have found that cigarette smoking does not influence carriage by <i>Candida</i> significantly. However, most of the studies had results completely contrary to that, smoking cigarettes affect <i>Candida</i> pathogenic characteristics such as a transition from yeast to hyphal form, biofilm formation and, virulence-related gene expressions. Tobacco is not only an inducer of the transition process but it considers an excellent medium for this process. Furthermore, smoking was significantly associated with <i>Candida</i> pathogenicity in patients with clinically suspected oral leukoplakia and smoking worsens oral candidiasis and dampens epithelial cell defense response. Nicotine significantly altered the composition and proportion of yeast cells, as well as the extracellular polysaccharide amounts which increase biofilm matrix and thickness which could promote oral candidiasis. Smoking has the potential to alter the oral condition and cause severe oxidative stress, thereby damaging the epithelial barrier of the mouth. These oxidative molecules during smoking activate epithelial cells proteins called oxidative stress-sensing proteins. If some of these proteins induced, widely thought to have anti-inflammatory properties, inhibit the secretion of pro-inflammatory cytokines and are linked to inflammation and oxidative stress is thought to be a possible therapeutic objective and a crucial regulator for smoking-related oral diseases and mouth candidiasis for instance leukoplakia. Also, it is transported into the cell nucleus in the existence of additional electrophilic chemicals to activate antioxidant enzyme gene expression. Therefore, smoking cigarettes destroys oral health and consequently destroys the health of the whole body.
Collapse
|
36
|
Comparative Penicillium spp. Transcriptomics: Conserved Pathways and Processes Revealed in Ungerminated Conidia and during Postharvest Apple Fruit Decay. Microorganisms 2022; 10:microorganisms10122414. [PMID: 36557667 PMCID: PMC9788453 DOI: 10.3390/microorganisms10122414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Blue mold, caused by Penicillium spp., is an impactful postharvest disease resulting in significant economic losses due to reduced pome fruit quality and mycotoxin contamination. Using two Penicillium species with different levels of aggressiveness, transcriptomics were implemented in order to identify genes expressed during apple fruit decay and loci expressed in ungerminated conidia. Total RNA was isolated from ungerminated conidia and decayed apple fruit infected with P. expansum R19 or P. polonicum RS1. There were 2442 differentially expressed genes (DEGs) between the R19 and RS1 in apple. Comparisons within species between apple and conidia revealed 4404 DEGs for R19 and 2935 for RS1, respectively. Gene ontology (GO) analysis revealed differential regulation in fungal transport and metabolism genes during decay, suggesting a flux in nutrient acquisition and detoxification strategies. In R19, the oxidoreductase GO category comprised 20% of all DEG groups in apple verses conidia. Ungerminated conidia from both species showed DEGs encoding the glyoxylate shunt and beta-oxidation, specifying the earliest metabolic requirements for germination. This is the first study to identify pre-loaded transcripts in conidia from blue mold fungi, reveal unique genes between species expressed during apple decay, and show the expression dynamics of known fungal virulence factors. These findings will enable development of targeted approaches for blue mold abatement strategies.
Collapse
|
37
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
38
|
Talapko J, Meštrović T, Škrlec I. Growing importance of urogenital candidiasis in individuals with diabetes: A narrative review. World J Diabetes 2022; 13:809-821. [PMID: 36311997 PMCID: PMC9606786 DOI: 10.4239/wjd.v13.i10.809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Both diabetes and fungal infections contribute significantly to the global disease burden, with increasing trends seen in most developed and developing countries during recent decades. This is reflected in urogenital infections caused by Candida species that are becoming ever more pervasive in diabetic patients, particularly those that present with unsatisfactory glycemic control. In addition, a relatively new group of anti-hyperglycemic drugs, known as sodium glucose cotransporter 2 inhibitors, has been linked with an increased risk for colonization of the urogenital region with Candida spp., which can subsequently lead to an infectious process. In this review paper, we have highlighted notable virulence factors of Candida species (with an emphasis on Candida albicans) and shown how the interplay of many pathophysiological factors can give rise to vulvovaginal candidiasis, potentially complicated with recurrences and dire pregnancy outcomes. We have also addressed an increased risk of candiduria and urinary tract infections caused by species of Candida in females and males with diabetes, further highlighting possible complications such as emphysematous cystitis as well as the risk for the development of balanitis and balanoposthitis in (primarily uncircumcised) males. With a steadily increasing global burden of diabetes, urogenital mycotic infections will undoubtedly become more prevalent in the future; hence, there is a need for an evidence-based approach from both clinical and public health perspectives.
Collapse
Affiliation(s)
- Jasminka Talapko
- Laboratory for Microbiology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Tomislav Meštrović
- University North, University Centre Varaždin, Varaždin 42000, Croatia
- Institute for Health Metrics and Evaluation, Department for Health Metrics Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Ivana Škrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| |
Collapse
|
39
|
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 2022; 8:78. [PMID: 36224215 PMCID: PMC9556537 DOI: 10.1038/s41522-022-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.
Collapse
|
40
|
Higa B, Cintra BS, Álvarez CM, Ribeiro AB, Ferreira JC, Tavares DC, Enriquez V, Martinez LR, Pires RH. Ozonated oil is effective at killing Candida species and Streptococcus mutans biofilm-derived cells under aerobic and microaerobic conditions. Med Mycol 2022; 60:myac055. [PMID: 35869980 PMCID: PMC9359064 DOI: 10.1093/mmy/myac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 07/25/2023] Open
Abstract
This study explores the growth of bacterial, fungal, and interkingdom biofilms under aerobiosis or microaerobic conditions and the effect of ozonated sunflower oil on these biofilms. Candida species and Streptococcus mutans were used to study this interaction due to their importance in oral health and disease as these microorganisms display a synergistic relationship that manifests in the onset of caries and tooth decay. Biofilms were developed in a 96-well microtiter plate at 37ºC for 24 h, under aerobiosis or microaerobic conditions, and treated with ozonated oil for 5 to 120 min. All the microorganisms formed biofilms in both oxygenation conditions. Scanning electron microscopy was used to visualize biofilm morphology. Rodent experiments were performed to verify the oil-related toxicity and its efficacy in oral candidiasis. The growth of all Candida species was increased when co-cultured with S. mutans, whilst the growth of bacterium was greater only when co-cultured with C. krusei and C. orthopsilosis under aerobiosis and microaerobic conditions, respectively. Regardless of the oxygenation condition, ozonated oil significantly reduced the viability of all the tested biofilms and infected mice, showing remarkable microbicidal activity as corroborated with confocal microscopy and minimal toxicity. Thus, ozonated oil therapy can be explored as a strategy to control diseases associated with these biofilms especially in the oral cavity. LAY SUMMARY We demonstrated that ozonated sunflower oil is effective at killing the biofilms formed by Candida species, by the bacterium Streptococcus mutans, or by both micoorganisms that can interact in the oral cavity, making it a potential therapeutic option for the treatment of these infections.
Collapse
Affiliation(s)
- Barbara Higa
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | - Bianca Souza Cintra
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
- Postgraduate Program in Animal Science, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | - Carmen Magaly Álvarez
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
- Faculty of Veterinary Medicine and Zootechnics, Universidad Agraria del Ecuador, Guayaquil 090101, Ecuador
| | | | - Jair Camargo Ferreira
- Postgraduate Program in Animal Science, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | | | - Vanessa Enriquez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
- Emerging Pathogens Institute, Center for Immunology and Transplantation, and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610, USA
| | - Regina Helena Pires
- To whom correspondence should be addressed. Dr. Regina Helena Pires, Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, 201 Dr. Armando Salles Oliveira Ave, Franca, SP, 14.404-600, Brazil. Tel.: +55-16-3711-8945; E-mail:
| |
Collapse
|
41
|
Mendoza-Reyes DF, Gómez-Gaviria M, Mora-Montes HM. Candida lusitaniae: Biology, Pathogenicity, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2022; 15:5121-5135. [PMID: 36068831 PMCID: PMC9441179 DOI: 10.2147/idr.s383785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
The incidence of fungal infections is increasing at an alarming rate and has posed a great challenge for science in recent years. The rise in these infections has been related to the increase in immunocompromised patients and the resistance of different species to antifungal drugs. Infections caused by the different Candida species, especially Candida albicans, are one of the most common mycoses in humans, and the etiological agents are considered opportunistic pathogens associated with high mortality rates when disseminated infections occur. Candida lusitaniae is considered an emerging opportunistic pathogen that most frequently affects immunocompromised patients with some comorbidity. Although it is a low-frequency pathogen, and the mortality rate of C. lusitaniae-caused candidemia does not exceed 5%, some isolates are known to be resistant to antifungals such as amphotericin B, 5-fluorocytosine, and fluconazole. In this paper, a detailed review of the current literature on this organism and its different aspects, such as its biology, possible virulence factors, pathogen-host interaction, diagnosis, and treatment of infection, is provided. Of particular interest, through Blastp analysis we predicted possible virulence factors in this species.
Collapse
Affiliation(s)
- Diana F Mendoza-Reyes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
- Correspondence: Manuela Gómez-Gaviria; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto, C.P. 36050, México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
| |
Collapse
|
42
|
A computer vision chemometric-assisted approach to access pH and glucose influence on susceptibility of Candida pathogenic strains. Arch Microbiol 2022; 204:530. [PMID: 35900475 DOI: 10.1007/s00203-022-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms adapt to environmental conditions as a survival strategy for different interactions with the environment. The adaptive capacity of fungi allows them to cause disease at various sites of infection in humans. In this study, we propose digital images as responses of a complete factorial 23. Furthermore, we compared two experimental approaches: the experimental design (3D) and the checkerboard assay (2D) to know the influence of pH, glucose, and fluconazole concentration on different strains of the genus Candida. The digital images obtained from the factorial 23 were used as input in the PCA-ANOVA to analyze the results of this experimental design. pH modification in the culture medium modifies the susceptibility in some species less adapted to this type of modification. For the first time, to the best of our knowledge, digital images were used as input to PCA-ANOVA to obtain information on Candida spp.. Therefore, a higher concentration of antifungals is needed to inhibit the same strain at a lower pH. In short, we present an alternative with less use of reagents and time. In addition, the use of digital images allows obtaining information about fungal susceptibility with three or more factors.
Collapse
|
43
|
Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J Fungi (Basel) 2022; 8:jof8080784. [PMID: 36012773 PMCID: PMC9409899 DOI: 10.3390/jof8080784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increased incidence of fungal infections and the emergence of antifungal resistance mainly by Candida species, the need for safe and effective novel therapies is imperative. Consequently, plants and herbs are a powerful source to combat infections. Here, we evaluated the anti-Candida potential of an ethanolic extract from Piper nigrum. The phytochemical analysis of P. nigrum revealed bioactive compounds such as alkaloids, terpenoids, and tannis. Our results showed that P. nigrum extract suppressed the virulence factors of C. albicans strains, including hyphae formation in both liquid and solid media, reduced secretion of phospholipases/proteinases, and affected biofilm formation. Furthermore, the P. nigrum extract showed no hemolytic effect in vitro and exhibited reduced cytotoxicity on Vero cells and G. mellonella larvae at concentrations that inhibited hyphae and biofilm in C. albicans. Moreover, the extract demonstrated antifungal activity against C. auris strains. In conclusion, the P. nigrum extract affected the growth and morphogenesis of Candida (even in resistant strains), demonstrating that this plant has an anti-candida activity and represents a promising resource for discovering novel antifungal compounds.
Collapse
|
44
|
Jiang H, Bao J, Xing Y, Li X, Chen Q. Comparative Genomic Analyses Provide Insight Into the Pathogenicity of Metschnikowia bicuspidata LNES0119. Front Microbiol 2022; 13:939141. [PMID: 35770163 PMCID: PMC9234493 DOI: 10.3389/fmicb.2022.939141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023] Open
Abstract
Metschnikowia bicuspidata is a globally distributed pathogenic yeast with a wide range of aquatic hosts. A new strain, M. bicuspidata LNES0119, isolated from the Chinese mitten crab Eriocheir sinensis, has caused a serious reduction in production and marked economic loss for the aquaculture industry in China. Therefore, the whole-genome sequence of M. bicuspidata LNES0119 was sequenced using Illumina and Oxford Nanopore technology; whole-genome annotation and comparative genomic analyses of this pathogen were performed as well. A high-quality genome of M. bicuspidata LNES0119 was 16.13 Mb in size, with six scaffolds and six contigs, and encoded 5,567 putative predicted genes. Of these, 1,467 genes shared substantial homology with genes in the pathogen–host interactions database. Comparative genomic analyses of three M. bicuspidata strains and one non-pathogenic yeast, M. aff. pulcherrima, showed 331 unique genes in M. bicuspidata LNES0119, 30 of which were putatively related to pathogenicity. Overall, we identified several meaningful characteristics related to pathogenicity and virulence that may play essential roles in the infection and pathogenicity of M. bicuspidata LNES0119. Our study will aid in identifying potential targets for further exploration of the molecular basis of the pathogenicity of M. bicuspidata as well as the therapeutic intervention of M. bicuspidata infection.
Collapse
|
45
|
The Threat Called Candida haemulonii Species Complex in Rio de Janeiro State, Brazil: Focus on Antifungal Resistance and Virulence Attributes. J Fungi (Basel) 2022; 8:jof8060574. [PMID: 35736057 PMCID: PMC9225368 DOI: 10.3390/jof8060574] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Although considered rare, the emergent Candida haemulonii species complex, formed by C. haemulonii sensu stricto (Ch), C. duobushaemulonii (Cd) and C. haemulonii var. vulnera (Chv), is highlighted due to its profile of increased resistance to the available antifungal drugs. In the present work, 25 clinical isolates, recovered from human infections during 2011–2020 and biochemically identified by automated system as C. haemulonii, were initially assessed by molecular methods (amplification and sequencing of ITS1-5.8S-ITS2 gene) for precise species identification. Subsequently, the antifungal susceptibility of planktonic cells, biofilm formation and susceptibility of biofilms to antifungal drugs and the secretion of key molecules, such as hydrolytic enzymes, hemolysins and siderophores, were evaluated by classical methodologies. Our results revealed that 7 (28%) isolates were molecularly identified as Ch, 7 (28%) as Chv and 11 (44%) as Cd. Sixteen (64%) fungal isolates were recovered from blood. Regarding the antifungal susceptibility test, the planktonic cells were resistant to (i) fluconazole (100% of Ch and Chv, and 72.7% of Cd isolates), itraconazole and voriconazole (85.7% of Ch and Chv, and 72.7% of Cd isolates); (ii) no breakpoints were defined for posaconazole, but high MICs were observed for 85.7% of Ch and Chv, and 72.7% of Cd isolates; (iii) all isolates were resistant to amphotericin B; and (iv) all isolates were susceptible to echinocandins (except for one isolate of Cd) and to flucytosine (except for two isolates of Cd). Biofilm is a well-known virulence and resistant structure in Candida species, including the C. haemulonii complex. Herein, we showed that all isolates were able to form viable biofilms over a polystyrene surface. Moreover, the mature biofilms formed by the C. haemulonii species complex presented a higher antifungal-resistant profile than their planktonic counterparts. Secreted molecules associated with virulence were also detected in our fungal collection: 100% of the isolates yielded aspartic proteases, hemolysins and siderophores as well as phospholipase (92%), esterase (80%), phytase (80%), and caseinase (76%) activities. Our results reinforce the multidrug resistance profile of the C. haemulonii species complex, including Brazilian clinical isolates, as well as their ability to produce important virulence attributes such as biofilms and different classes of hydrolytic enzymes, hemolysins and siderophores, which typically present a strain-dependent profile.
Collapse
|
46
|
Naz F, Khan I, Islam A, Khan LA. Interaction of fungal lipase with potential phytotherapeutics. PLoS One 2022; 17:e0264460. [PMID: 35617167 PMCID: PMC9135303 DOI: 10.1371/journal.pone.0264460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Interaction of thymol, carvacrol and linalool with fungal lipase and Human Serum Albumin (HSA) have been investigated employing UV-Vis spectroscopy Fluorescence and Circular dichroism spectroscopy (CD) along with docking studies. Thymol, carvacrol and linalool displayed approximately 50% inhibition at 1.5 mmol/litre concentrations using para-nitrophenyl palmitate (pNPP). UV-Vis spectroscopy give evidence of the formation of lipase-linalool, lipase-carvacrol and lipase—thymol complex at the ground state. Three molecules also showed complex formation with HSA at the ground state. Fluorescence spectroscopy shows strong binding of lipase to thymol (Ka of 2.6 x 109 M-1) as compared to carvacrol (4.66 x 107 M-1) and linalool (5.3 x 103 M-1). Number of binding sites showing stoichiometry of association process on lipase is found to be 2.52 (thymol) compared to 2.04 (carvacrol) and 1.12 (linalool). Secondary structure analysis by CD spectroscopy results, following 24 hours incubation at 25°C, with thymol, carvacrol and linalool revealed decrease in negative ellipticity for lipase indicating loss in helical structure as compared with the native protein. The lowering in negative ellipticity was in the order of thymol > carvacrol > linalool. Fluorescence spectra following binding of all three molecules with HSA caused blue shift which suggests the compaction of the HSA structure. Association constant of thymol and HSA is 9.6 x 108 M-1 which along with ‘n’ value of 2.41 suggests strong association and stable complex formation, association constant for carvacrol and linalool was in range of 107 and 103 respectively. Docking results give further insight into strong binding of thymol, carvacrol and linalool with lipase having free energy of binding as -7.1 kcal/mol, -5.0 kcal/mol and -5.2 kcal/mol respectively. To conclude, fungal lipases can be attractive target for controlling their growth and pathogenicity. Employing UV-Vis, Fluorescence and Circular dichroism spectroscopy we have shown that thymol, carvacrol and linalool strongly bind and disrupt structure of fungal lipase, these three phytochemicals also bind well with HSA. Based on disruption of lipase structure and its binding nature with HSA, we concluded thymol as a best anti-lipase molecule among three molecules tested. Results of Fluorescence and CD spectroscopy taken together suggests that thymol and carvacrol are profound disrupter of lipase structure.
Collapse
Affiliation(s)
- Farheen Naz
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Imran Khan
- Department of Computer Science, Deanship of Educational Services, Qassim University, Buraidah, Al Qassim, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
47
|
Ferreira EGC, Gomes DF, Delai CV, Barreiros MAB, Grange L, Rodrigues EP, Henning LMM, Barcellos FG, Hungria M. Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiol 2022; 22:122. [PMID: 35513812 PMCID: PMC9069715 DOI: 10.1186/s12866-022-02527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.
Collapse
Affiliation(s)
- Everton Geraldo Capote Ferreira
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| | | | - Caroline Vanzzo Delai
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | | | - Luciana Grange
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | - Elisete Pains Rodrigues
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | | | - Fernando Gomes Barcellos
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | - Mariangela Hungria
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| |
Collapse
|
48
|
Haghighi F, Andriasian L, Tran NC, Lux R. Effect of Cigarette and E-Cigarette Smoke Condensates on Candida albicans Biofilm Formation and Gene Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4626. [PMID: 35457494 PMCID: PMC9029603 DOI: 10.3390/ijerph19084626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Smoking triggers environmental changes in the oral cavity and increases the risk of mucosal infections caused by Candida albicans such as oral candidiasis. While cigarette smoke has a significant impact on C. albicans, how e-cigarettes affect this oral pathogen is less clear. Here, we investigated the effect of cigarette and e-cigarette smoke condensates (CSC and ECSC) on C. albicans growth, biofilm formation, and gene expression. Whereas pure nicotine (N) at the minimum inhibitory concentration (MIC, 4 mg/mL) prevented C. albicans growth, enhanced biofilm formation was observed at 0.1 mg/mL. In contrast, at this nicotine sub-MIC (0.1 mg/mL) concentration, CSC and ECSC had no significant effect on C. albicans biofilm formation. Additionally, N, CSC, and ECSC increased the expression of HWP1 and SAP2 genes. The ECSC group exhibited elevated expression levels of the EAP1 and ALS3 genes, compared to the nicotine-free ECSC (-) control. Moreover, our in vitro study illustrated that the antifungal drugs, fluconazole and amphotericin B, alleviated the effect of nicotine on C. albicans gene expression. Overall, the results of the study indicated nicotine from different sources may affect the pathogenic characteristics of C. albicans, including hyphal growth, biofilm formation, and particularly the expression of virulence-related genes.
Collapse
Affiliation(s)
- Farnoosh Haghighi
- Section of Biosystems and Function, Division of Oral and Systematic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095-1668, USA;
| | - Leah Andriasian
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095-1668, USA;
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, University of California Los Angeles, Los Angeles, CA 90095-1668, USA;
| | - Renate Lux
- Section of Biosystems and Function, Division of Oral and Systematic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095-1668, USA;
| |
Collapse
|
49
|
Mashaly GES, Zeid MS. Candida albicans Genotyping and Relationship of Virulence Factors with Fluconazole Tolerance in Infected Pediatric Patients. Infect Drug Resist 2022; 15:2035-2043. [PMID: 35480061 PMCID: PMC9037425 DOI: 10.2147/idr.s344998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ghada El-Saeed Mashaly
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Correspondence: Ghada El-Saeed Mashaly, Faculty of Medicine, Mansoura University, Box 50, Al- Mansoura, 35516, Egypt, Tel +201003062542, Email
| | - Mayada Sabry Zeid
- Infectious Diseases and Malnutrition, Pediatrics Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
50
|
Handayani S, Nurdiana N, Winarsih S, Endharti AT. Holothurin Compound from Sea Cucumber (Holothuria sp.) as Antifungal Alternative against Candida Infections. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The previous studies have identified chemical compounds in sea cucumbers that have antifungal properties. However, further information on the underlying antifungal needed to be updated.
AIM: This study aimed to discover efficient antifungal treatments against candidiasis disease.
MATERIALS AND METHODS: This study analyzed the antifungal activity from Holothurin against Candida albicans in silico using molecular docking and minimum inhibitory concentration (MIC).
RESULTS: The results revealed that holothurin has a binding affinity of −7.9 kcal/mol and MIC value of 1.5 mg/ml.
CONCLUSION: Holothurin may inhibit the infection of C. albicans. Furthermore, additional research is required to validate the activity of this compound.
Collapse
|