1
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
2
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
3
|
Jia J, Cui Y, Tan Z, Ma W, Jiang Y. MicroRNA-579-3p Exerts Neuroprotective Effects Against Ischemic Stroke via Anti-Inflammation and Anti-Apoptosis. Neuropsychiatr Dis Treat 2020; 16:1229-1238. [PMID: 32494142 PMCID: PMC7231765 DOI: 10.2147/ndt.s240698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS Multiple studies have found that microRNAs (miRNAs) are involved in the development of cerebral ischemia. MiR-579-3p can inhibit inflammatory responses and apoptosis, leading to ischemia/reperfusion (I/R) damage. However, the mechanism of how miR-579-3p actions in brain I/R injury remains unclear. This study aimed to investigate the mechanism of the role of miR-579-3p in brain I/R injury. METHODS A rat model of cerebral ischemia-reperfusion injury was established by suture method. The effects of miR-579-3p on cerebral infarction size, brain water content, and neurological symptoms were evaluated. Flow cytometry was used to detect apoptosis. ELISA was used to detect the level of inflammatory factors. Western blot was used to detect the expression of P65, NCOA1, Bcl-2 and Bax. The relationship between miR-579-3p and NCOA1 was analyzed by bioinformatics analysis and luciferase assay. RESULTS Overexpression of miR-579-3p reduced infarct volume, brain water content and neurological deficits. Overexpression of miR-579-3p inhibited the expression level of the inflammatory cytokines, such as TNF-α, IL-6, COX-2 and iNOS, and increased the expression level of IL-10. MiR-579-3p overexpression inhibited NF-кB activity by reducing NRIP1. In addition, miR-579-3p could reduce the apoptotic rate of cortical neurons. Overexpression of miR-579-3p inhibited the activity of caspase-3, increased the expression level of anti-apoptotic gene Bcl-2 in neurons, and decreased the expression level of apoptotic gene Bax. CONCLUSION miR-579-3p can be used to treat brain I/R injury, and its neuroprotective effect may be ascribed to the reduction of inflammation and apoptosis.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| |
Collapse
|
4
|
Rué L, Oeckl P, Timmers M, Lenaerts A, van der Vos J, Smolders S, Poppe L, de Boer A, Van Den Bosch L, Van Damme P, Weishaupt JH, Ludolph AC, Otto M, Robberecht W, Lemmens R. Reduction of ephrin-A5 aggravates disease progression in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2019; 7:114. [PMID: 31300041 PMCID: PMC6626434 DOI: 10.1186/s40478-019-0759-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brainstem, spinal cord and motor cortex. ALS is characterized by genetic and clinical heterogeneity, suggesting the existence of genetic factors that modify the phenotypic expression of the disease. We previously identified the axonal guidance EphA4 receptor, member of the Eph-ephrin system, as an ALS disease-modifying factor. EphA4 genetic inhibition rescued the motor neuron phenotype in zebrafish and a rodent model of ALS. Preventing ligands from binding to the EphA4 receptor also successfully improved disease, suggesting a role for EphA4 ligands in ALS. One particular ligand, ephrin-A5, is upregulated in reactive astrocytes after acute neuronal injury and inhibits axonal regeneration. Moreover, it plays a role during development in the correct pathfinding of motor axons towards their target limb muscles. We hypothesized that a constitutive reduction of ephrin-A5 signalling would benefit disease progression in a rodent model for ALS. We discovered that in the spinal cord of control and symptomatic ALS mice ephrin-A5 was predominantly expressed in neurons. Surprisingly, reduction of ephrin-A5 levels in SOD1G93A mice accelerated disease progression and reduced survival without affecting disease onset, motor neuron numbers or innervated neuromuscular junctions in symptomatic mice. These findings suggest ephrin-A5 as a modifier of disease progression that might play a role in the later stages of the disease. Similarly, we identified a more aggressive disease progression in patients with lower ephrin-A5 protein levels in the cerebrospinal fluid without modifying disease onset. In summary, we identified reduced expression of ephrin-A5 to accelerate disease progression in a mouse model of ALS as well as in humans. Combined with our previous findings on the role of EphA4 in ALS our current data suggests different contribution for various members of the Eph-ephrin system in the pathophysiology of a motor neuron disease.
Collapse
|
5
|
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L, Li Y. The Ephrin-A5/EphA4 Interaction Modulates Neurogenesis and Angiogenesis by the p-Akt and p-ERK Pathways in a Mouse Model of TLE. Mol Neurobiol 2014; 53:561-576. [PMID: 25502292 DOI: 10.1007/s12035-014-9020-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
Studies have shown that neurogenesis and angiogenesis do exist in temporal lobe epilepsy (TLE). The ephrin ligands and Eph receptors are the largest members of receptor tyrosine kinases, and their interaction via cell-cell contact participates in cell proliferation, differentiation, migration, and tissue remodeling. However, there is little information about the function of the ephrin-A5/EphA4 complex in TLE. In the current study, we found that ephrin-A5 was expressed in astrocytes, while EphA4 existed in endothelial cells in the hippocampus in a mouse model of TLE. Furthermore, the messenger RNA (mRNA) and protein levels of both ephrin-A5 and EphA4 and the binding capacity of ephrin-A5/EphA4 showed gradual increase in spatiotemporal course. When ephrin-A5-Fc was injected into the hippocampus at 3 days post-status epilepticus (SE) for 7 days, the spontaneous recurrent seizure (SRS) frequency and intensity of the mice attenuated in the following 2 weeks. Furthermore, doublecortin-positive neuronal progenitor cells were reduced in the subgranular zone, and the density of microvessels decreased in the hilus. The molecular mechanism was attributed to ephrin-A5-Fc-induced inhibition of phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt), and also EphA4 and VEGF reduction. In summary, interaction between ephrin-A5 and EphA4 could mediate the ERK and Akt signaling pathways in pilocarpine-induced epilepsy, and intervention of the ephrin/Eph interaction may play an essential role in the suppression of newborn neuron generation, microvessel remodeling, and SRS in a mouse model of TLE. The ephrin-A5/EphA4 communication may provide a potential therapy for the treatment of TLE.
Collapse
Affiliation(s)
- Yi Shu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China.
| | - Qian Wu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yang Du
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Haiyun Tang
- Department of Radiology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, 410008, China.
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01604, USA.
| |
Collapse
|
6
|
Fincher J, Whiteneck C, Birgbauer E. G-protein-coupled receptor cell signaling pathways mediating embryonic chick retinal growth cone collapse induced by lysophosphatidic acid and sphingosine-1-phosphate. Dev Neurosci 2014; 36:443-53. [PMID: 25138637 DOI: 10.1159/000364858] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022] Open
Abstract
In the development of the nervous system, one of the critical aspects is the proper navigation of axons to their targets, i.e. the problem of axonal guidance. We used the chick visual system as a model to investigate the role of the lysophospholipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) as potential axon guidance cues. We showed that both LPA and S1P cause a specific, dose-dependent growth cone collapse of retinal neurons in vitro in the chick model system, with slight differences compared to the mouse but very similar to observations in Xenopus. Because LPA and S1P receptors are G-protein-coupled receptors, we analyzed the intracellular signaling pathways using pharmacological inhibitors in chick retinal neurons. Blocking rho kinase (ROCK) prevented growth cone collapse by LPA and S1P, while blocking PLC or chelating calcium had no effect on growth cone collapse. Inhibition of Gi/o with pertussis toxin resulted in a partial reduction of growth cone collapse, both with LPA and with S1P. Inhibition of p38 blocked growth cone collapse mediated by LPA but not S1P. Thus, in addition to the involvement of the G12/13-ROCK pathway, LPA- and S1P-induced collapse of chick retinal growth cones has a partial requirement for Gi/o.
Collapse
Affiliation(s)
- Jarod Fincher
- Department of Biology, Winthrop University, Rock Hill, S.C., USA
| | | | | |
Collapse
|
7
|
|
8
|
Matoso E, Melo JB, Ferreira SI, Jardim A, Castelo TM, Weise A, Carreira IM. Insertional translocation leading to a 4q13 duplication including theEPHA5gene in two siblings with attention-deficit hyperactivity disorder. Am J Med Genet A 2013; 161A:1923-8. [DOI: 10.1002/ajmg.a.36032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 04/15/2013] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Susana I. Ferreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine; University of Coimbra; Coimbra; Portugal
| | - Ana Jardim
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine; University of Coimbra; Coimbra; Portugal
| | | | - Anja Weise
- Jena University Hospital; Institute of Human Genetics; Kollegiengasse; Jena; Germany
| | | |
Collapse
|
9
|
Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol 2013; 33:1442-55. [PMID: 23382070 DOI: 10.1128/mcb.01618-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.
Collapse
|
10
|
Abstract
Growth cone collapse is an easy and efficient test for detecting and characterizing axon guidance activities secreted or expressed by cells. It can also be used to dissect signaling pathways by axon growth inhibitors and to isolate therapeutic compounds that promote axon regeneration. Here, we describe a growth cone collapse assay protocol used to study signal transduction mechanisms of the repulsive axon guidance molecule ephrin-A5 in hippocampal neurons.
Collapse
Affiliation(s)
- Xin Yue
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | | |
Collapse
|
11
|
Mintz CD, Carcea I, McNickle DG, Dickson TC, Ge Y, Salton SRJ, Benson DL. ERM proteins regulate growth cone responses to Sema3A. J Comp Neurol 2008; 510:351-66. [PMID: 18651636 DOI: 10.1002/cne.21799] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Axonal growth cones initiate and sustain directed growth in response to cues in their environment. A variety of events such as receptor internalization, kinase activation, and actin rearrangement can be stimulated by guidance cues and are essential for mediating targeted growth cone behavior. Surprisingly little is known about how such disparate actions are coordinated. Our data suggest that ezrin, radixin, and moesin (ERMs), a family of highly homologous, multifunctional proteins may be able to coordinate growth cone responses to the guidance cue Semaphorin 3A (Sema3A). We show that active ERMs concentrate asymmetrically in neocortical growth cones, are rapidly and transiently inactivated by Sema3A, and are required for Sema3A-mediated growth cone collapse and guidance. The FERM domain of active ERMs regulates internalization of the Sema3A receptor, Npn1, and its coreceptor, L1CAM, while the ERM C-terminal domain binds and caps F-actin. Our data support a model in which ERMs can coordinate membrane and actin dynamics in response to Sema3A.
Collapse
Affiliation(s)
- C David Mintz
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 2008; 27:7260-73. [PMID: 18794797 DOI: 10.1038/onc.2008.328] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ephrinA1 ligand exerts antioncogenic effects in tumor cells through activation and downregulation of the EphA2 receptor and has been described as a membrane-anchored protein requiring clustering for function. However, while investigating the ephrinA1/EphA2 system in the pathobiology of glioblastoma multiforme (GBM), we uncovered that ephrinA1 is released from GBM and breast adenocarcinoma cells as a soluble, monomeric protein and is a functional form of the ligand in this state. Conditioned media containing a soluble monomer of ephrinA1 caused EphA2 internalization and downregulation, dramatic alteration of cell morphology and suppression of the Ras-MAPK pathway. Moreover, soluble monomeric ephrinA1 was functional in a physiological context, eliciting collapse of embryonic neuronal growth cones. We also found that ephrinA1 is cleaved from the plasma membrane of GBM cells, an event which involves the action of a metalloprotease. Thus, the ephrinA1 ligand can, indeed, function as a soluble monomer and may act in a paracrine manner on the EphA2 receptor without the need for juxtacrine interactions. These findings have important implications for further deciphering the function of these proteins in pathology and physiology, as well as for the design of ephrinA1-based EphA2-targeted antitumor therapeutics.
Collapse
|
13
|
Sandoval-Minero T, Varela-Echavarría A. Cross-midline interactions between mouse commissural hindbrain axons contribute to their efficient decussation. Dev Neurobiol 2008; 68:349-64. [PMID: 18085564 DOI: 10.1002/dneu.20586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Information from both sides of the brain is integrated by axons that project across the midline of the central nervous system via numerous commissures present at all axial levels. Despite the accumulated experimental evidence, questions remain regarding the formation of commissures in the presence of strong repulsive signals in the ventral midline. Studies from invertebrates suggest that interaction at the midline between homologous axons of specific decussating neurons contributes to efficient midline crossing, but such evidence is lacking in vertebrate systems. We performed experiments to determine whether commissural axons of the caudal region of the hindbrain interact with their contralateral counterparts at the ventral midline and to evaluate the relevance of this reciprocal interaction. Double anterograde axon labeling with lipophilic tracers revealed close apposition between growth cones of contralateral pioneer decussating axons at the midline. Later, we detected fasciculation between contralateral axons that is maintained even after they have crossed the midline. Blocking axon projections unilaterally with a solid mechanical barrier decreased dramatically the midline crossing of the equivalent population from the contralateral side. Decussation was also blocked by a unilateral barrier permeable to diffusible molecules but not by an axon-permeable barrier. These results suggest that in the caudal region of the hindbrain, midline crossing is facilitated by interactions between decussating contralateral axon partners.
Collapse
Affiliation(s)
- Teresa Sandoval-Minero
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., C.P. 76230, México
| | | |
Collapse
|
14
|
Changes in attack behavior and activity in EphA5 knockout mice. Brain Res 2008; 1205:91-9. [PMID: 18353288 DOI: 10.1016/j.brainres.2008.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 11/21/2022]
Abstract
During development, Eph tyrosine kinase receptors and their ephrin ligands function as axon guidance molecules while, in adults, these molecules appear to be involved in the regulation of neural plasticity and emotion. The absence of EphA5 receptor mediated forward signaling may cause alterations in connectivity of neural networks and boundary formation during development, including central monoaminergic systems. In the present studies, we demonstrated altered aggressive responses by animals lacking functional EphA5 receptors. These behavioral changes were accompanied by altered concentrations of serotonin (5-HT) and the metabolite, 5-HIAA, in the hypothalamus. The changes of serotonin activity in hypothalamus also result in increase of body weight in EphA5 knockout mice. Furthermore, EphA5 knockout mice exhibited a significant decrease in activity levels following exposure to naïve intruders in their home cages. We conclude that the EphA5 receptor may be involved in mediation of aggressive behavior regulated, in part, by hypothalamic serotonin.
Collapse
|
15
|
Kowara R, Moraleja KL, Chakravarthy B. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation. Brain Res 2006; 1119:40-9. [PMID: 16987501 DOI: 10.1016/j.brainres.2006.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 01/27/2023]
Abstract
Dihydropyrimidinase-like 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and possibly in neuronal regeneration. Recently, we have shown that in primary cortical neurons (PCN) NMDA and oxidative stress (H(2)O(2)) caused a calpain-dependent cleavage of DPYSL3 (62 kDa) resulting in the appearance of a lower molecular weight form (60 kDa) of DPYSL3. Our preliminary results had shown that antioxidants significantly reduced NMDA-induced DPYSL3 degradation, indicating involvement of ROS in calpain activation. The aim of this study was to investigate the possible involvement of NOS in NMDA-induced DPYSL3 degradation. We found that NOS inhibitor (L-NAME) significantly prevented NMDA-induced ROS formation, as well as intracellular Ca(2+) increase [Ca(2+)](i), DPYSL3 degradation and cell death. Further, exposure of PCN to NO donor (SNP) resulted in significant [Ca(2+)](i) increase, ROS generation and probable calpain-mediated DPYSL3 truncation. The NMDA- and oxidative stress (ROS)-induced DPYSL3 truncation was totally dependent on extracellular [Ca(2+)](i). While NMDA-induced DPYSL3 truncation was blocked by both NMDA receptor antagonist (MK801) [Kowara, R., Chen, Q., Milliken, M., Chakravarthy, B., 2005. Calpain-mediated degradation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H(2)O(2) toxicity. J. Neurochem. 95 (2), 466-474] and L-VGCC (nimodipine) inhibitors, H(2)O(2)-induced increase in [Ca(2+)](i), ROS generation and DPYSL3 truncation was blocked only by nimodipine. These results indicate that changes in Ca(2+) homeostasis resulting from ROS-dependent activation of L-VGCC are sufficient to induce probable calpain-mediated DPYSL3 truncation and demonstrate for the first time the role of ROS in the mechanism leading to glutamate-induced calpain activation and DPYSL3 protein degradation. The probable calpain-mediated DPYSL3 truncation may have significant impact on its interaction with actin and its assembly, and in turn on growth cone integrity.
Collapse
Affiliation(s)
- Renata Kowara
- National Research Council, Institute for Biological Sciences, M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
16
|
Martínez A, Otal R, Sieber BA, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 2006; 135:451-61. [PMID: 16112477 DOI: 10.1016/j.neuroscience.2005.06.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/26/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
Ephrins are guidance cues that modulate axonal growth and the subsequent axonal topographic maps in many regions of the CNS. Here we studied the functional roles of ephrin-A/EphA interactions in the layer-specific pattern of axonal projections in the hippocampus by disrupting the ephrin-A signaling by over-expression of a soluble EphA receptor. Tracing experiments in EphA5-Fc over-expressing mice revealed that reduction of ephrin-A/EphA interactions did not affect the proper distribution of the main hippocampal afferents, i.e. entorhinal and commissural projections. However, further ultrastructural analyses showed a reduction in the density of synaptic terminals in the entorhinal and commissural termination layers in these mice. In addition, using anti-calbindin antibodies, we analyzed the dentate mossy fiber projections following disruption of ephrin-A/EphA interactions throughout developing hippocampus. While the main mossy fiber bundle appeared normal, the infrapyramidal bundle formed longer projections that established ectopic contacts in these transgenic mice. Later, the expected specific pruning of the infrapyramidal bundle was not observed at adult stages. Ultrastructural analyses confirmed a higher number of mossy fiber terminals in the infrapyramidal bundle in adult EphA5-Fc transgenic mice and showed that these terminals were larger and established a greater number of contacts than in controls. Our results demonstrate that ephrin-A/EphA interactions regulate the synaptogenesis of hippocampal afferents and the proper development and refinement of granule cell projections.
Collapse
Affiliation(s)
- A Martínez
- Department of Cell Biology and Barcelona Science Park (IRBB), University of Barcelona, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
17
|
El-Hashash AHK, Kimber SJ. PTHrP induces changes in cell cytoskeleton and E-cadherin and regulates Eph/Ephrin kinases and RhoGTPases in murine secondary trophoblast cells. Dev Biol 2005; 290:13-31. [PMID: 16375886 DOI: 10.1016/j.ydbio.2005.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 10/03/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
The differentiation of murine trophoblast giant cells (TGCs) is well characterised at the molecular level and, to some extent, the cellular level. Currently, there is a rudimentary understanding about factors regulating the cellular differentiation of secondary TGCs. Using day 8.5 p.c.-ectoplacental cone (EPC) explant in serum-free culture, we have found parathyroid hormone-related protein (PTHrP) to regulate cellular changes during TGC differentiation. PTHrP greatly stimulated the formation and organisation of actin stress fibres and actin expression in trophoblast outgrowth. This coincided with changing cell shape into a flattened/fibroblastic morphology, suppression of E-cadherin expression, and increased cell spreading in culture. PTHrP also increased the nuclear staining of beta-catenin and, similar to activator protein-2gamma (AP-2gamma), showed microtubule-dependent nuclear localisation in vitro. These cellular and behavioural changes correlated with changes in the expression of RhoGTPases and in both expression and phosphorylation of Eph/Ephrin kinases. The effects of PTHrP on trophoblast cellular differentiation were abolished after blocking its action. In conclusion, PTHrP provides an excellent example of the extrinsic factors that, through their network of activities, plays an important role in cellular differentiation of secondary TGCs.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Faculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
18
|
Harbott LK, Nobes CD. A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Mol Cell Neurosci 2005; 30:1-11. [PMID: 15996481 DOI: 10.1016/j.mcn.2005.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/05/2005] [Accepted: 05/16/2005] [Indexed: 11/16/2022] Open
Abstract
The ephrin-As, and their EphA receptor tyrosine kinases, guide retinal axons by contact-mediated repulsion to their correct target in the midbrain. We have developed a co-culture assay to observe the dynamic cytoskeletal rearrangements comprising retinal growth cone collapse stimulated by contact with an ephrin-A-expressing fibroblast. We show that EphA-ephrin-A interaction at membrane contact sites triggers rapid loss of growth cone lamellipodia followed by axon retraction and cell-cell separation. Using this assay, in combination with soluble ephrin-A5-induced growth cone collapse, we show that inhibiting the Rho effector, ROCK, prevents only ephrin-A-induced retinal axon retraction, but not loss of growth cone lamellipodia. This suggests that actin/myosin driven cell contraction alone does not mediate ephrin-A-induced repulsive responses. We provide evidence that Abl family kinases are a major effector of ephrin-A-induced retinal ganglion cell repulsion since the Abl inhibitor, STI571, prevents both loss of growth cone lamellipodia and axon retraction. These results comprise the first evidence that Abl family kinases play a role in EphA receptor-mediated axon guidance.
Collapse
Affiliation(s)
- Lene K Harbott
- Centre for Cell and Molecular Dynamics, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
19
|
Torreano PJ, Waterman-Storer CM, Cohan CS. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones. ACTA ACUST UNITED AC 2005; 60:166-79. [PMID: 15700278 DOI: 10.1002/cm.20051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.
Collapse
Affiliation(s)
- Paul J Torreano
- Division of Anatomy and Cell Biology, University at Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
20
|
Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 2005; 46:205-17. [PMID: 15848800 DOI: 10.1016/j.neuron.2005.03.019] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 02/15/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.
Collapse
|
21
|
Wang Y, Ying GX, Liu X, Wang WY, Dong JH, Ni ZM, Zhou CF. Induction of ephrin-B1 and EphB receptors during denervation-induced plasticity in the adult mouse hippocampus. Eur J Neurosci 2005; 21:2336-46. [PMID: 15932593 DOI: 10.1111/j.1460-9568.2005.04093.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract It has been widely demonstrated that Eph receptors and their ephrin ligands play multiple pivotal roles in the development of the nervous system. However, less is known about their roles in the adult brain. Here we reported the expression of ephrin-B1 and its cognate EphB receptors in the adult mouse hippocampus at 3, 7, 15, 30 and 60 days after transections of the entorhinal afferents. In situ hybridization and immunohistochemistry showed the time-dependent up-regulation of ephrin-B1 in the denervated areas of the hippocampus, which initiated at 3 days postlesion (dpl), reached maximal levels at 7-15 dpl, remained slightly elevated at 30 dpl and recovered to normal levels by 60 dpl. Double labeling of ephrin-B1 and glial fibrillary acidic protein revealed that ephrin-B1-expressing cells in the denervated areas were reactive astrocytes. Furthermore, a ligand-binding assay using ephrin-B1/Fc chimera protein also displayed the up-regulation of EphB receptors in the denervated areas of the hippocampus in a similar manner to that of ephrin-B1. Within the first week postlesion, the EphB receptors were expressed by reactive astrocytes. After 7 dpl, however, EphB receptors were expressed not only by reactive astrocytes but also first by sprouting axons and later by regrowing dendrites. These results suggest that the ephrin-B1/EphB system may participate in the lesion-induced plasticity processes in the adult mouse hippocampus.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Martínez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. ACTA ACUST UNITED AC 2005; 49:211-26. [PMID: 16111551 DOI: 10.1016/j.brainresrev.2005.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 12/20/2022]
Abstract
Ephrins and their Eph receptors are membrane-anchored proteins that have key roles in the development of the Central Nervous System. The main characteristics of ephrin/Eph interactions are that their effect is mediated by cell-to-cell contacts and that they can propagate bidirectional signals downstream of the ligand-receptor complex. These characteristics make ephrins and Eph receptors critical cues in the regulation of migrating cells or axons, and in the establishment of tissue patterns and topographic maps in distinct regions of the developing brain. In addition, ephrins and Eph receptors regulate synapse formation and plasticity. These roles would be promoted by complementary gradual expression of receptors and ligands in the neurons involved. Although, historically, ephrins and Eph receptors have been considered as repulsion signals through barriers or gradients, new evidence indicates that they may be both inhibitory and permissive/active cues depending on expression levels. The expression of distinct ligands and receptors in the developing and mature hippocampus suggests that these proteins are involved in distinct processes during the development and maturation of the hippocampal region. In fact, recent studies have shown that ephrin/Eph signaling participates in the formation of the layer-specific patterns of hippocampal afferents, in synaptogenesis and in plasticity. Therefore, ephrin/Eph interactions should be considered a crucial system in the development and maturation of the brain regions, including the hippocampus.
Collapse
Affiliation(s)
- Albert Martínez
- Neuronal Development and Regeneration Group (S1-A1), Department of Cell Biology, University of Barcelona/Barcelona Science Park, Josep Samitier 1-5, Barcelona E-08028, Spain.
| | | |
Collapse
|
23
|
Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 2004; 18:572-83. [PMID: 15037550 PMCID: PMC374238 DOI: 10.1101/gad.1171704] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eph receptors and ephrin ligands are key players in many developmental processes including embryo patterning, angiogenesis, and axon guidance. Eph/ephrin interactions lead to the generation of a bidirectional signal, in which both the Eph receptors and the ephrins activate downstream signaling cascades simultaneously. To understand the role of ephrin-B1 and the importance of ephrin-B1-induced reverse signaling during embryonic development, we have generated mouse lines carrying mutations in the efnb1 gene. Complete ablation of ephrin-B1 resulted in perinatal lethality associated with a range of phenotypes, including defects in neural crest cell (NCC)-derived tissues, incomplete body wall closure, and abnormal skeletal patterning. Conditional deletion of ephrin-B1 demonstrated that ephrin-B1 acts autonomously in NCCs, and controls their migration. Last, a mutation in the PDZ binding domain indicated that ephrin-B1-induced reverse signaling is required in NCCs. Our results demonstrate that ephrin-B1 acts both as a ligand and as a receptor in a tissue-specific manner during embryogenesis.
Collapse
Affiliation(s)
- Alice Davy
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
24
|
Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ. EphA/ephrin-A interactions regulate epileptogenesis and activity-dependent axonal sprouting in adult rats. Mol Cell Neurosci 2004; 24:984-99. [PMID: 14697663 DOI: 10.1016/j.mcn.2003.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Eph family of tyrosine kinase receptors and their ligands, ephrins, are distributed in gradients and serve as molecular guidance cues for axonal patterning during neuronal development. Most of these molecules are also expressed in mature brain. Thus, we examine here the potential roles of such molecules in plasticity and activity-dependent mossy fiber sprouting of adult CNS. We show that the ligand ephrin-A3 and the receptor EphA5 are expressed in complementary gradients in the adult rat mossy fiber system. Using the kindling model, we demonstrate that exogenous immunoadhesins that affect the interaction of endogenous EphA receptors and ephrin-A ligands modulate the development of kindling, one type of long-term plasticity, in mature rat brain. These immunoadhesins, combined with epileptogenic stimulations, alter both the extent and the pattern of collateral axonal sprouting in the mossy fiber pathway. Our results suggest that EphA receptors and ephrin-A ligands modify neuronal plasticity and may serve as spatial cues that modulate the development and pattern of activation-dependent axonal growth in adult CNS.
Collapse
Affiliation(s)
- B Xu
- Department of Psychology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
25
|
Mann F, Miranda E, Weinl C, Harmer E, Holt CE. B-type Eph receptors and ephrins induce growth cone collapse through distinct intracellular pathways. JOURNAL OF NEUROBIOLOGY 2003; 57:323-36. [PMID: 14608666 PMCID: PMC3683941 DOI: 10.1002/neu.10303] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin-B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor-bearing) and dorsal (ephrin-B-bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5-10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin-B1 ectodomains cause slow (30-60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor-ligand binding, endocytosis occurs in the reverse direction (EphB2-Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B-type Eph/ephrin-mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction.
Collapse
Affiliation(s)
- Fanny Mann
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Cheng Q, Sasaki Y, Shoji M, Sugiyama Y, Tanaka H, Nakayama T, Mizuki N, Nakamura F, Takei K, Goshima Y. Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol Cell Neurosci 2003; 24:632-45. [PMID: 14664814 DOI: 10.1016/s1044-7431(03)00220-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ephrin-As are repulsive axonal guidance cues that regulate retinotectal projection. EphA tyrosine kinases, which are the receptors of ephrin-As, activate signaling cascades leading to cytosckeleton reorganization. Here, we address the role of cyclin-dependent kinase (Cdk) 5 in Eph receptor signaling induced by ephrin-A5. Ephrin-A5 induced a cell morphological response in PC-3M cells that endogenously express Cdk5 and EphA2, a receptor for ephrin-A5. This response was augmented by the transfection of p35, which is a neuronal regulator of Cdk5. While the morphological response of native PC-3M cells was not affected by olomoucine, an inhibitor of Cdk, the response was inhibited in the p35-transfected cells. In retinal ganglion cells, either olomoucine at 20 microM or Y-27632 at 10 microM, an inhibitor of Rho-kinase/ROKalpha/ROCKII, showed maximum inhibitory effect against ephrin-A5 (10 microg/ml)-induced growth cone collapse. Combined application of olomoucine and Y-27632 further suppressed the ephrin-A5-induced response. Ephrin-A5 evoked phosphorylation of Cdk5 at Tyr15 and tau, a substrate of Cdk5 in retinal growth cones. Recombinant herpes simplex virus expressing Cdk5 mutant (kinase-negative or Tyr15 to Ala) showed a dominant-negative effect on the ephrin-A5-induced growth cone collapse. These findings demonstrate that both Cdk5 and the Rho kinase pathway independently contribute to the downstream of ephrin-A-induced signaling in retinal ganglion cells.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The Eph receptors comprise the largest group of receptor tyrosine kinases and are found in a wide variety of cell types in developing and mature tissues. Their ligands are the ephrins, a family of membrane-bound proteins found in lipid rafts. In the past decade, Eph receptors and ephrins have been implicated in a vast array of cellular processes. Unlike other receptor tyrosine kinases, however, the Eph receptors seem to be geared towards regulating cell shape and movement rather than proliferation. Studies have uncovered intricate signaling networks that center around the ligand-receptor complex, and this may account for the broad repertoire of functions of Eph proteins. Deciphering the bi-directional pathways emanating from an Eph receptor-ephrin complex will not only help us to understand basic biological processes, but may also provide important insight into disease.
Collapse
Affiliation(s)
- Keith K Murai
- The Burnham Institute, Neurobiology Program, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Wills Z, Emerson M, Rusch J, Bikoff J, Baum B, Perrimon N, Van Vactor D. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding. Neuron 2002; 36:611-22. [PMID: 12441051 DOI: 10.1016/s0896-6273(02)01022-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.
Collapse
Affiliation(s)
- Zachary Wills
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Batlle E, Henderson JT, Beghtel H, van den Born MMW, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111:251-63. [PMID: 12408869 DOI: 10.1016/s0092-8674(02)01015-2] [Citation(s) in RCA: 842] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the small intestine, the progeny of stem cells migrate in precise patterns. Absorptive, enteroendocrine, and goblet cells migrate toward the villus while Paneth cells occupy the bottom of the crypts. We show here that beta-catenin and TCF inversely control the expression of the EphB2/EphB3 receptors and their ligand ephrin-B1 in colorectal cancer and along the crypt-villus axis. Disruption of EphB2 and EphB3 genes reveals that their gene products restrict cell intermingling and allocate cell populations within the intestinal epithelium. In EphB2/EphB3 null mice, the proliferative and differentiated populations intermingle. In adult EphB3(-/-) mice, Paneth cells do not follow their downward migratory path, but scatter along crypt and villus. We conclude that in the intestinal epithelium beta-catenin and TCF couple proliferation and differentiation to the sorting of cell populations through the EphB/ephrin-B system.
Collapse
Affiliation(s)
- Eduard Batlle
- Department of Immunology and Center for Biomedical Genetics, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Luo H, Yu G, Wu Y, Wu J. EphB6 crosslinking results in costimulation of T cells. J Clin Invest 2002. [DOI: 10.1172/jci0215883] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Luo H, Yu G, Wu Y, Wu J. EphB6 crosslinking results in costimulation of T cells. J Clin Invest 2002; 110:1141-50. [PMID: 12393850 PMCID: PMC150798 DOI: 10.1172/jci15883] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Erythropoietin-producing hepatocyte (Eph) kinases represent the largest receptor tyrosine kinase family. Some of them are expressed in the T cell compartment, but their function in T cells is unknown. In peripheral blood, EphB6 was predominantly expressed on T cells, and was upregulated after culture. EphB6 crosslinking by anti-EphB6 mAb or ephrinB2 in the presence of suboptimal T cell receptor (TCR) stimulation led to drastic T cell proliferation, suggesting that EphB6 can co-stimulate T cells. The proliferation was accompanied by enhanced production of several lymphokines, such as IFN-gamma, IL-6, IL-10, TGF-beta, TNF-alpha, and GM-CSF, but not IL-2 and IL-4. Sorted EphB6(+) T cells had significantly stronger response to anti-CD3 and anti-CD28 stimulation than EphB6(-) T cells had. Taken together, these data suggest an important role of EphB6 in normal T cell activation. Within two minutes of anti-CD3 and anti-CD28 stimulation, EphB6 aggregated and colocalized with TCR, and this provides a morphological basis for EphB6 to enhance TCR signaling. The capping was followed by p38 MAPK activation, showing that EphB6 is capable of signaling, in spite of its lack of intrinsic kinase activity. This study demonstrates that interaction between EphB6 and its ligands facilitates T cell responses to antigen.
Collapse
Affiliation(s)
- Hongyu Luo
- Laboratory of Transplantation Immunology, Centre Hospitalier de l'Universite de Montreal, University of Montreal, Pavilion DeSève, 1560 Sherbrooke Street East, Montreal, Quebec H2L 4M1, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
The Eph family of receptors and ligands has been implicated in a variety of developmental processes, including the provision of inhibitory guidance cues to developing nerve fibers. A unique property of the B class of receptors is that they are able to phosphorylate ephrin-B ligands, allowing for bi-directional, or reverse signalling. While most of the studies to date have focused on central nerve fibers, little is known about the role of Eph molecules in guiding nerve fibers of the peripheral nervous system. In the present study, ephrin-B1 was found to be highly expressed on developing peripheral nerve fibers including auditory and vestibular (statoacoustic) and dorsal root ganglion nerve fibers. In vitro assays revealed that EphB-Fc receptors inhibited further growth of statoacoustic nerve fibers. In contrast, EphA7-Fc and ephrin-B2-Fc did not prevent further growth of SAG. Together, these results suggest a role for EphB receptors in providing guidance signals to ephrin-B1-positive SAG nerve fibers.
Collapse
Affiliation(s)
- Lynne M Bianchi
- Neuroscience Program, Science Center A245, Woodland Ave, Oberlin, OH 44074, USA.
| | | |
Collapse
|
33
|
Santiago A, Erickson CA. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 2002; 129:3621-32. [PMID: 12117812 DOI: 10.1242/dev.129.15.3621] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.
Collapse
Affiliation(s)
- Alicia Santiago
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616, USA.
| | | |
Collapse
|
34
|
Abstract
The ephrins and their Eph receptors have emerged as repulsive cues for growing axons during the past decade. Since then, great effort has been made to understand the significance and mechanisms of Eph-mediated repulsion. More recently, it has become clear that ephrins perform in many more developmental processes than the repulsion-dependent establishment of topography in the nervous system. As numerous studies suggest functions more akin to adhesion or attraction than to repulsion, increasing attention is now being paid to the intracellular mechanisms that might explain this duality.
Collapse
Affiliation(s)
- Johan Holmberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
35
|
Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 2001; 32:1041-56. [PMID: 11754836 DOI: 10.1016/s0896-6273(01)00553-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function.
Collapse
Affiliation(s)
- J T Henderson
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, M5G 1X5, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhou X, Suh J, Cerretti DP, Zhou R, DiCicco-Bloom E. Ephrins stimulate neurite outgrowth during early cortical neurogenesis. J Neurosci Res 2001; 66:1054-63. [PMID: 11746437 DOI: 10.1002/jnr.10029] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Eph receptor ligands, the ephrins, are membrane-bound molecules that play important roles in establishing intercellular communication after neurogenesis by regulating cell migration, axon pathfinding, and topographic mapping. In diverse systems, such as embryonic day 17.5 (E17.5) hippocampal and cortical neurons, repulsive/inhibitory mechanisms underlie these cellular effects. However, although ligand/receptor expression occurs far earlier, during brain neurogenesis, little is known about potential ephrin functions in initial process outgrowth. We have examined ligand/receptor expression in E13.5 cortex in vivo and in culture, using alkaline phosphatase (AP)-conjugated reagents and RNase protection assay. B ephrins are highly expressed, including B1, B2, and B3, whereas A ephrins exhibit low expression levels. In contrast, the Eph receptors demonstrate an opposite pattern, exhibiting high levels of Eph A3, A4, and A5 mRNA transcripts and low levels of the B-class receptors. To examine effects on neurite outgrowth, soluble ephrins were incubated with antihuman IgG antibody, producing oligomeric agonist complexes, and dried onto culture dishes. Unexpectedly, both ephrin A and B complexes increased process outgrowth: Seventy to eighty percent of neuronal precursors exhibited long neurites on ephrins, whereas only 5-10% of cells had neurites on IgG control substrates, indicating that ephrins stimulated neuritogenesis by early cortical neurons. These observations suggest that ephrin ligand/receptor systems play ontogenetic roles not previously considered, activating mechanisms other than cellular repulsion. Ephrin systems may induce initial process elaboration by early cortical neurons that is restricted at later stages by well-characterized repulsive signaling mechanisms.
Collapse
Affiliation(s)
- X Zhou
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
37
|
Elowe S, Holland SJ, Kulkarni S, Pawson T. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 2001; 21:7429-41. [PMID: 11585923 PMCID: PMC99915 DOI: 10.1128/mcb.21.21.7429-7441.2001] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.
Collapse
Affiliation(s)
- S Elowe
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
38
|
Symonds AC, Rodger J, Tan MM, Dunlop SA, Beazley LD, Harvey AR. Reinnervation of the superior colliculus delays down-regulation of ephrin A2 in neonatal rat. Exp Neurol 2001; 170:364-70. [PMID: 11476602 DOI: 10.1006/exnr.2001.7722] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the adult mammalian optic nerve does not regenerate following lesion, in the neonatal rat, retinal ganglion cell (RGC) axons retain the capacity to grow across lesion sites in the brain. Following a brachial lesion at postnatal day 2 (P2), some RGC axons, together with ingrowing cortico-tectal axons, cross the lesion to reinnervate the superior colliculus (SC). Here we use immunohistochemistry to examine expression of the guidance cue ephrin A2 following a brachial lesion. Normal animals show a steady decrease in ephrin A2 immunoreactivity between P5 and P31, with a low rostral to high caudal gradient being evident only at P5. By contrast, after brachial lesion, values are significantly elevated rostrally at P5 and caudally at P12; moreover, a steep rostro-caudal gradient is present at both ages. By P31 values fall to normal levels. Following unilateral enucleation at P2, levels are not significantly different from normal. Our results show that innervation but not denervation triggers increased ephrin A2 expression after a brachial lesion.
Collapse
Affiliation(s)
- A C Symonds
- Department of Zoology, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Yu HH, Zisch AH, Dodelet VC, Pasquale EB. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 2001; 20:3995-4006. [PMID: 11494128 DOI: 10.1038/sj.onc.1204524] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Revised: 04/02/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
The Eph family of receptor tyrosine kinases and the Abl family of non-receptor tyrosine kinases have both been implicated in tissue morphogenesis. They regulate the organization of the actin cytoskeleton in the developing nervous system and participate in signaling pathways involved in axon growth. Both Eph receptors and Abl are localized in the neuronal growth cone, suggesting that they play a role in axon pathfinding. Two-hybrid screens identified regions of Abl and Arg that bind to the EphB2 and EphA4 receptors, suggesting a novel signaling connection involving the two kinase families. The association of full-length Abl and Arg with EphB2 was confirmed by co-immunoprecipitation and found to involve several distinct protein interactions. The SH2 domains of Abl and Arg bind to tyrosine-phosphorylated motifs in the juxtamembrane region of EphB2. A second, phosphorylation-independent interaction with EphB2 involves non-conserved sequences in the C-terminal tails of Abl and Arg. A third interaction between Abl and EphB2 is probably mediated by an intermediary protein because it requires tyrosine phosphorylation of EphB2, but not the binding sites for the Abl SH2 domain. The connection between EphB2 and Abl/Arg appears to be reciprocal. Activated EphB2 causes tyrosine phosphorylation of Abl and Arg, and vice versa. Interestingly, treatment of COS cells and B35 neuronal-like cells with ephrin-B1 to activate endogenous EphB2 decreased the kinase activity of endogenous Abl. These data are consistent with the opposite effects that Eph receptors and Abl have on neurite ougrowth and suggest that Eph receptors and Abl family kinases have shared signaling activities.
Collapse
Affiliation(s)
- H H Yu
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
40
|
Lai KO, Ip FC, Cheung J, Fu AK, Ip NY. Expression of Eph receptors in skeletal muscle and their localization at the neuromuscular junction. Mol Cell Neurosci 2001; 17:1034-47. [PMID: 11414792 DOI: 10.1006/mcne.2001.0997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of ephrins and Eph receptors in guiding motor axons during muscle innervation has been well documented, but little is known about their expression and functional significance in muscle at later developmental stages. Our present study investigates the expression and localization of Eph receptors and ephrins in skeletal muscle. Prominent expression of EphA4, EphA7, and ephrin-A ligands was detected in muscle during embryonic development. More importantly, both EphA4 and EphA7, as well as ephrin-A2, were localized at the neuromuscular junction (NMJ) of adult muscle. Despite their relative abundance, they were not localized at the synapses during embryonic stages. The concentration of EphA4, EphA7, and ephrin-A2 at the NMJ was observed at postnatal stages and the synaptic localization became prominent at later developmental stages. In addition, expression of Eph receptors was increased by neuregulin and after nerve injury. Furthermore, we demonstrated that overexpression of EphA4 led to tyrosine phosphorylation of the actin-binding protein cortactin and that EphA4 was coimmunoprecipitated with cortactin in muscle. Taken together, our findings indicate that EphA4 is associated with the actin cytoskeleton. Since actin cytoskeleton is critical to the formation and stability of NMJ, the present findings raise the intriguing possibility that Eph receptors may have a novel role in NMJ formation and/or maintenance.
Collapse
MESH Headings
- Aging/genetics
- Animals
- COS Cells
- Cortactin
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry
- Membrane Glycoproteins/metabolism
- Microfilament Proteins/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Nerve Tissue Proteins/metabolism
- Neuregulins/pharmacology
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, EphA2
- Receptor, EphA4
- Receptor, EphA7
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Signal Transduction/genetics
- Synaptic Membranes/metabolism
- Synaptic Membranes/ultrastructure
- Synaptic Transmission/genetics
- Transfection
Collapse
Affiliation(s)
- K O Lai
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
41
|
Zhou FQ, Cohan CS. Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization. J Cell Biol 2001; 153:1071-84. [PMID: 11381091 PMCID: PMC2174321 DOI: 10.1083/jcb.153.5.1071] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repulsive guidance cues can either collapse the whole growth cone to arrest neurite outgrowth or cause asymmetric collapse leading to growth cone turning. How signals from repulsive cues are translated by growth cones into this morphological change through rearranging the cytoskeleton is unclear. We examined three factors that are able to induce the collapse of extending Helisoma growth cones in conditioned medium, including serotonin, myosin light chain kinase inhibitor, and phorbol ester. To study the cytoskeletal events contributing to collapse, we cultured Helisoma growth cones on polylysine in which lamellipodial collapse was prevented by substrate adhesion. We found that all three factors that induced collapse of extending growth cones also caused actin bundle loss in polylysine-attached growth cones without loss of actin meshwork. In addition, actin bundle loss correlated with specific filamentous actin redistribution away from the leading edge that is characteristic of repulsive factors. Finally, we provide direct evidence using time-lapse studies of extending growth cones that actin bundle loss paralleled collapse. Taken together, these results suggest that actin bundles could be a common cytoskeletal target of various collapsing factors, which may use different signaling pathways that converge to induce growth cone collapse.
Collapse
Affiliation(s)
- Feng-quan Zhou
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, Buffalo, New York 14214
| | - Christopher S. Cohan
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
42
|
Abstract
The control of cell movement during development is essential for forming and stabilizing the spatial organization of tissues and cell types. During initial steps of tissue patterning, distinct regional domains or cell types arise at appropriate locations, and the movement of cells is constrained in order to maintain spatial relationships during growth. In other situations, the guidance of migrating cells or neuronal growth cones to specific destinations underlies the establishment or remodeling of a pattern. Eph receptor tyrosine kinases and their ephrin ligands are key players in controlling these cell movements in many tissues and at multiple stages of patterning.
Collapse
Affiliation(s)
- D G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
43
|
Abstract
Eph receptor tyrosine kinases are largely known for their involvement in brain development but, as some of these receptor tyrosine kinases are also expressed in adults, their possible role in the mature nervous system has begun to be explored. Evidence for the involvement of Eph receptors in synaptic plasticity, learning and memory is only emerging and needs corroboration. However, it is likely that the actions of Eph kinases in the adult brain will attract significant attention and become a fertile research area, as occurred in the case of the neurotrophins.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Department, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| |
Collapse
|
44
|
Abstract
First described in the developing nervous system, Semaphorin III/Neuropilin, Ephrin/Eph, and Delta/Notch signaling relays have now been implicated in the elaboration of the blood vessel network during embryogenesis.
Collapse
Affiliation(s)
- D T Shima
- Endothelial Cell Biology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | |
Collapse
|
45
|
Holder N, Durbin L, Cooke J. Eph receptors and ephrins are key regulators of morphogenesis. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:123-47. [PMID: 10943308 DOI: 10.1007/978-3-662-04264-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N Holder
- Department of Anatomy and Developmental Biology, University College, London, UK
| | | | | |
Collapse
|
46
|
Abstract
Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.
Collapse
Affiliation(s)
- M Hattori
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
47
|
Xu Q, Mellitzer G, Wilkinson DG. Roles of Eph receptors and ephrins in segmental patterning. Philos Trans R Soc Lond B Biol Sci 2000; 355:993-1002. [PMID: 11128993 PMCID: PMC1692797 DOI: 10.1098/rstb.2000.0635] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.
Collapse
Affiliation(s)
- Q Xu
- Division of Developmental Neurobiology, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
48
|
Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol 2000; 20:4791-805. [PMID: 10848605 PMCID: PMC85918 DOI: 10.1128/mcb.20.13.4791-4805.2000] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Eph family of receptor tyrosine kinases exhibit a striking degree of amino acid homology, particularly notable in the kinase and membrane-proximal regions. A mutagenesis approach was taken to address the functions of specific conserved tyrosine residues within these catalytic and juxtamembrane domains. Ligand stimulation of wild-type EphB2 in neuronal NG108-15 cells resulted in an upregulation of catalytic activity and an increase in cellular tyrosine phosphorylation, accompanied by a retraction of neuritic processes. Tyrosine-to-phenylalanine substitutions within the conserved juxtamembrane motif abolished these responses. The mechanistic basis for these observations was examined using the highly related EphA4 receptor in a continuous coupled kinase assay. Tandem mass spectrometry experiments confirmed autophosphorylation of the two juxtamembrane tyrosine residues and also identified a tyrosine within the kinase domain activation segment as a phosphorylation site. Kinetic analysis revealed a decreased affinity for peptide substrate upon substitution of activation segment or juxtamembrane tyrosines. Together, our data suggest that the catalytic and therefore biological activities of Eph receptors are controlled by a two-component inhibitory mechanism, which is released by phosphorylation of the juxtamembrane and activation segment tyrosine residues.
Collapse
Affiliation(s)
- K L Binns
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Abstract
Gene targeting has proved to be one of the most powerful techniques with which one can investigate molecular mechanisms that underlie complex phenomena such as learning and memory. Despite its popularity, however, concerns have been raised about this technique and alternative approaches have been sought. One such approach is protein targeting, which is based on the application of immunoadhesins, genetically engineered fusion proteins that exhibit functionally relevant target specificity. These immunoadhesins modulate the activity of not only a single receptor but of all receptors with homologous binding sites, which thereby eliminates the possibility of compensation by sister receptors. Furthermore, immunoadhesins can be used not only to impair but also to improve receptor function in the brain. Initial studies using immunoadhesins suggest that protein targeting might be a useful approach for analyzing the molecular mechanisms of brain function and behavior.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Research Department, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| |
Collapse
|
50
|
Orsulic S, Kemler R. Expression of Eph receptors and ephrins is differentially regulated by E-cadherin. J Cell Sci 2000; 113 ( Pt 10):1793-802. [PMID: 10769210 DOI: 10.1242/jcs.113.10.1793] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E-cadherin is the main cell adhesion molecule of early embryonic and adult epithelial cells. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic mesoderm formation and tumor progression. To identify genes whose expression is affected by the loss of E-cadherin, we compared mRNA expression patterns between wild-type and E-cadherin null mutant embryonic stem (ES) cells. We found that expression of several Eph receptors and ephrins is dependent on E-cadherin. Rescue of E-cadherin null ES cells with E-cadherin cDNA restores the wild-type expression pattern of Eph family members. Rescue of E-cadherin null ES cells with N-cadherin cDNA does not restore the wild-type expression pattern, indicating that the regulation of differential expression of Eph family members is specific to E-cadherin. Constitutive ectopic expression of E-cadherin in non-epithelial NIH3T3 cells results in the production of the EphA2 receptor. In epithelial cells, E-cadherin is required for EphA2 receptor localization at cell-cell contacts; in the absence of functional E-cadherin, EphA2 localizes to the perinuclear region. Our results indicate that E-cadherin may be directly or indirectly required for the membrane localization of Eph receptors and their membrane-bound ligands.
Collapse
Affiliation(s)
- S Orsulic
- Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany.
| | | |
Collapse
|