1
|
Kang HY, Lee BG, Shin JK, Kim C, Park HJ, Kang CK. Monsoonal impacts on the community trophic niches in two temperate headwater tributaries across a land use continuum. Sci Rep 2024; 14:25732. [PMID: 39468143 PMCID: PMC11519938 DOI: 10.1038/s41598-024-76012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Pulsed flows following heavy monsoon rain events alter riverine food webs, but their impact on headwater stream food webs across the continuum from forested canopy to open agricultural land use remains unclear. We investigated carbon and nitrogen stable isotopes in macroinvertebrates and fish in two tributaries of the Suyeung River, Korea, before and after heavy monsoon rains to assess changes in community trophic niches. Basal resources (leaf litter and biofilms) exhibited consistent δ13C and δ15N values across seasons, with biofilms showing higher δ13C values. δ15N values increased from forested to agricultural reaches, indicating varied nutrient inputs. Consumer isotope values remained stable over time but varied longitudinally, reflecting reliance on local resources. Trophic niches differed between watershed locations but overlapped seasonally. Despite a decrease in consumer δ13C ranges after heavy rainfalls, variations in their δ15N ranges and the ellipse centroid (SEAc) of isotopic niches between sites resulted in broadly consistent SEAc across locations and seasons. This indicates limited evidence for directional reshaping of food-web properties across channel reaches following monsoon rains. Downstream isotopic shifts suggest substantial agricultural influences on food webs. Overall, our findings highlight that monsoon rains may have minimal effects on the community trophic niches of stream food webs.
Collapse
Affiliation(s)
- Hee Yoon Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byeong-Gweon Lee
- Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Ki Shin
- Limnoecological Science Research Institute Korea (THE HANGANG), Miryang, 50440, Republic of Korea
| | - Changseong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Je Park
- Department of Marine Ecology and Environment, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Storkey J, Maclaren C, Bullock JM, Norton LR, Redhead JW, Pywell RF. Quantifying farm sustainability through the lens of ecological theory. Biol Rev Camb Philos Soc 2024; 99:1700-1716. [PMID: 38695217 DOI: 10.1111/brv.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 09/03/2024]
Abstract
The achievements of the Green Revolution in meeting the nutritional needs of a growing global population have been won at the expense of unintended consequences for the environment. Some of these negative impacts are now threatening the sustainability of food production through the loss of pollinators and natural enemies of crop pests, the evolution of pesticide resistance, declining soil health and vulnerability to climate change. In the search for farming systems that are sustainable both agronomically and environmentally, alternative approaches have been proposed variously called 'agroecological', 'conservation agriculture', 'regenerative' and 'sustainable intensification'. While the widespread recognition of the need for more sustainable farming is to be welcomed, this has created etymological confusion that has the potential to become a barrier to transformation. There is a need, therefore, for objective criteria to evaluate alternative farming systems and to quantify farm sustainability against multiple outcomes. To help meet this challenge, we reviewed the ecological theories that explain variance in regulating and supporting ecosystem services delivered by biological communities in farmland to identify guiding principles for management change. For each theory, we identified associated system metrics that could be used as proxies for agroecosystem function. We identified five principles derived from ecological theory: (i) provide key habitats for ecosystem service providers; (ii) increase crop and non-crop habitat diversity; (iii) increase edge density: (iv) increase nutrient-use efficiency; and (v) avoid extremes of disturbance. By making published knowledge the foundation of the choice of associated metrics, our aim was to establish a broad consensus for their use in sustainability assessment frameworks. Further analysis of their association with farm-scale data on biological communities and/or ecosystem service delivery would provide additional validation for their selection and support for the underpinning theories.
Collapse
Affiliation(s)
- Jonathan Storkey
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chloe Maclaren
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Almas Alle 8, Uppsala, 750 07, Sweden
| | - James M Bullock
- UK Centre for Ecology & Hydrology (UKCEH), Maclean Building, Benson Lane, Wallingford, OX10 8BB, UK
| | - Lisa R Norton
- UKCEH, Lancaster Environment Centre, Lancaster, LA1 4AP, UK
| | - John W Redhead
- UK Centre for Ecology & Hydrology (UKCEH), Maclean Building, Benson Lane, Wallingford, OX10 8BB, UK
| | - Richard F Pywell
- UK Centre for Ecology & Hydrology (UKCEH), Maclean Building, Benson Lane, Wallingford, OX10 8BB, UK
| |
Collapse
|
3
|
Fort H. Productivity vs. Evenness in the U.S. Financial Market: A Business Ecosystem Perspective. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1029. [PMID: 37509976 PMCID: PMC10378340 DOI: 10.3390/e25071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
This paper starts by presenting an empirical finding in the U.S. stock market: Between 2001 and 2021, high productivity was achieved when the Shannon evenness-measuring the inverse of concentration-dropped. Conversely, when the Shannon evenness soared, productivity plunged. The same inverse relationship between evenness and productivity has been observed in several ecosystems. This suggests explaining this result by adopting the business ecosystem perspective, i.e., regarding the tangle of interactions between companies as an ecological network, in which companies play the role of species. A useful strategy to model such ecological communities is through ensembles of synthetic communities of pairwise interacting species, whose dynamics is described by the Lotka-Volterra generalized equations. Each community is specified by a random interaction matrix whose elements are drawn from a uniform distribution centered around 0. It is shown that the inverse relationship between productivity and evenness can be generated by varying the strength of the interaction between companies. When the strength increases, productivity increases and simultaneously the market evenness decreases. Conversely, when the strength decreases, productivity decreases and evenness increases. This strength can be interpreted as reflecting the looseness of monetary policy, thus providing a link between interest rates and market structure.
Collapse
Affiliation(s)
- Hugo Fort
- Institute of Physics, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
4
|
Jin H, Van de Waal DB, van Leeuwen CHA, Lamers LPM, Declerck SAJ, Amorim AL, Bakker ES. Restoring gradual land-water transitions in a shallow lake improved phytoplankton quantity and quality with cascading effects on zooplankton production. WATER RESEARCH 2023; 235:119915. [PMID: 36996752 DOI: 10.1016/j.watres.2023.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Land-water transition areas play a significant role in the functioning of aquatic ecosystems. However, anthropogenic pressures are posing severe threats on land-water transition areas, which leads to degradation of the ecological integrity of many lakes worldwide. Enhancing habitat complexity and heterogeneity by restoring land-water transition areas in lake systems is deemed a suitable method to restore lakes bottom-up by stimulating lower trophic levels. Stimulating productivity of lower trophic levels (phytoplankton, zooplankton) generates important food sources for declining higher trophic levels (fish, birds). Here, we study ecosystem restoration project Marker Wadden in Lake Markermeer, The Netherlands. This project involved the construction of a 700-ha archipelago of five islands in a degrading shallow lake, aiming to create additional sheltered land-water transition areas to stimulate food web development from its base by improving phytoplankton quantity and quality. We found that phytoplankton quantity (chlorophyll-a concentration) and quality (inversed carbon:nutrient ratio) in the shallow waters inside the Marker Wadden archipelago were significantly improved, likely due to higher nutrient availabilities, while light availability remained sufficient, compared to the surrounding lake. Higher phytoplankton quantity and quality was positively correlated with zooplankton biomass, which was higher inside the archipelago than in the surrounding lake due to improved trophic transfer efficiency between phytoplankton and zooplankton. We conclude that creating new land-water transition areas can be used to increase light and nutrient availabilities and thereby enhancing primary productivity, which in turn can stimulate higher trophic levels in degrading aquatic ecosystems.
Collapse
Affiliation(s)
- Hui Jin
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands.
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, The Netherlands
| | - Casper H A van Leeuwen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands
| | - Leon P M Lamers
- Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, GL Nijmegen 6500, The Netherlands
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands
| | - Ana Luisa Amorim
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; AQUON- Wateronderzoek en Advies. Voorschoterweg 18h, AB Leiden 2324, The Netherlands
| | - Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, the Netherlands; Wildlife Ecology and Conservation Group, Wageningen University (WUR), Droevendaalsesteeg 2, Wageningen 6708PB, The Netherlands
| |
Collapse
|
5
|
Zhang M, Li G, Wang Y, Pan D, Sun J, Wang L. Land use intensification alters the relative contributions of plant functional diversity and soil properties on grassland productivity. Oecologia 2023; 201:119-127. [PMID: 36396838 DOI: 10.1007/s00442-022-05288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Understanding the mechanisms of grassland productivity variation is critical for global carbon cycling and climate change mitigation. Heretofore, it is unknown how different environmental factors drive small-scale spatial variation in productivity, and whether land use intensification, one of the most important global changes, can regulate the processes that drive productivity change. Here we performed an 18-year exclosure experiment across six sites with high-intensity mowing/grazing history in northern China to examine the effects of land use intensification on plant functional diversity, soil properties, and their relative contributions to above-ground net primary productivity (ANPP). We found that plant functional diversity and soil properties contributed to the variation in ANPP both independently and equally in enclosed grasslands (plant diversity: 20.6%; soil properties: 19.5%). Intensive land use significantly decreased the Rao's quadratic entropy (RaoQ) and community-weighted mean value (CWM) of plant height, and further suppressed the contributions of plant functional diversity to ANPP. In contrast, intensive land use increased soil available N, P, pH, electrical conductivity, and homogeneity of soil available P, and strengthened their contributions to ANPP (31.5%). Our results indicate that high-intensity land use practices in grasslands decrease the role of plant functional diversity, but strengthen the effects of soil properties on productivity. We, therefore, suggest that plant functional diversity can be used effectively to boost productivity in undisturbed grasslands, while soil properties might be a more critical consideration for grassland management in an areas with increased land use.
Collapse
Affiliation(s)
- Minna Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Guangyin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Yue Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jinyan Sun
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ling Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
6
|
Rodríguez A, de Vries FT, Manning P, Sebastià MT, Bardgett RD. Soil Abiotic Properties Shape Plant Functional Diversity Across Temperate Grassland Plant Communities. Ecosystems 2022. [DOI: 10.1007/s10021-022-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Xu Y, Wang L, Tang Q, Naselli-Flores L, Jeppesen E, Han BP. The Relationship Between Phytoplankton Diversity and Ecosystem Functioning Changes with Disturbance Regimes in Tropical Reservoirs. Ecosystems 2022. [DOI: 10.1007/s10021-022-00791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Scherber C. Agroecology – reconciling biodiversity and production in farming systems. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dueñas JF, Hempel S, Homeier J, Suárez JP, Rillig MC, Camenzind T. Root associated fungal lineages of a tropical montane forest show contrasting sensitivities to the long-term addition of nitrogen and phosphorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:775-784. [PMID: 36085412 DOI: 10.1111/1758-2229.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root associated fungal (RAF) communities can exert strong effects on plant communities and are potentially sensitive to shifts in soil fertility. As increased atmospheric nitrogen (N) and phosphorus (P) deposition can alter the nutrient balance in natural ecosystems, we assessed the response of RAF communities to a fertilization experiment deployed on a highly diverse Andean forest. The stand level fine root fraction was sampled after 7 years of systematic N and P additions and RAF communities were characterized by a deep sequencing approach. We expected that fertilization will enhance competition of fungal taxa for limiting nutrients, thus eliciting diversity reductions and alterations in the structure of RAF communities. Fertilization treatments did not reduce RAF richness but affected community composition. At the phylum level fertilization reduced richness exclusively among Glomeromycota. In contrast, N and P additions (alone or in combination) altered the composition of several fungal phyla. The lack of a generalized response to long-term fertilization among RAF lineages suggests that most of these lineages will not be directly and immediately affected by the increasing rates of atmospheric N and P deposition expected for this region by 2050.
Collapse
Affiliation(s)
- Juan F Dueñas
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
Land Use Land/Cover Change Reduces Woody Plant Diversity and Carbon Stocks in a Lowland Coastal Forest Ecosystem, Tanzania. SUSTAINABILITY 2022. [DOI: 10.3390/su14148551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The East-African lowland coastal forest (LCF) is one of Africa’s centres of species endemism, representing an important biodiversity hotspot. However, deforestation and forest degradation due to the high demand for fuelwood has reduced forest cover and diversity, with unknown consequences for associated terrestrial carbon stocks in this LCF system. Our study assessed spatio-temporal land use and land cover changes (LULC) in 1998, 2008, 2018 in the LCF ecosystem, Tanzania. In addition, we conducted a forest inventory survey and calculated associated carbon storage for this LCF ecosystem. Using methods of land use change evaluation plug-in in QGIS based on historical land use data, we modelled carbon stock trends post-2018 in associated LULC for the future 30 years. We found that agriculture and grassland combined increased substantially by 21.5% between the year 1998 and 2018 while forest cover declined by 29%. Furthermore, forest above-ground live biomass carbon (AGC) was 2.4 times higher in forest than in the bushland, 5.8 times in the agriculture with scattered settlement and 14.8 times higher than in the grassland. The estimated average soil organic carbon (SOC) was 76.03 ± 6.26 t/ha across the entire study area. Our study helps to identify land use impacts on ecosystem services, supporting decision-makers in future land-use planning.
Collapse
|
11
|
Biodiversity and Ecosystem Function under Simulated Gradient Warming and Grazing. PLANTS 2022; 11:plants11111428. [PMID: 35684201 PMCID: PMC9182780 DOI: 10.3390/plants11111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Biodiversity and ecosystem functions and their relationship with environmental response constitute a major topic of ecological research. However, the changes in and impact mechanisms of multi-dimensional biodiversity and ecosystem functions in continuously changing environmental gradients and anthropogenic activities remain poorly understood. Here, we analyze the effects of multi-gradient warming and grazing on relationships between the biodiversity of plant and soil microbial with productivity/community stability through a field experiment simulating multi-gradient warming and grazing in alpine grasslands on the Tibetan Plateau. We show the following results: (i) Plant biodiversity, soil microbial diversity and community productivity in alpine grasslands show fluctuating trends with temperature gradients, and a temperature increase below approximately 1 °C is beneficial to alpine grasslands; moderate grazing only increases the fungal diversity of the soil surface layer. (ii) The warming shifted plant biomass underground in alpine grasslands to obtain more water in response to the decrease in soil moisture caused by the temperature rise. Community stability was not affected by warming or grazing. (iii) Community stability was not significantly correlated with productivity, and environmental factors, rather than biodiversity, influenced community stability and productivity.
Collapse
|
12
|
Memtsas G, Lazarina M, Sgardelis S, Petanidou T, Kallimanis A. What plant–pollinator network structure tells us about the mechanisms underlying the bidirectional biodiversity productivity relationship? Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Sun H, Pan B, He H, Zhao G, Jiang X, Han X, Wang H. Characterization of the bacterioplankton community and the influencing factors in the upper reaches of the Han River basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61748-61759. [PMID: 34189692 DOI: 10.1007/s11356-021-14906-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The upper reaches of the Han River are the source region of water for the Middle Route of China's South-to-North Water Diversion Project, mainly for household, industrial, and irrigation purposes. Planktonic bacteria are more sensitive than macroorganisms to water physical and chemical properties and play a critical role in biogeochemical processes in river ecosystems. In November 2017 and April 2018, a systematic and methodical survey was carried out to evaluate the water quality and bacterial communities, on the mainstem of the Han River and its five main tributaries. In this study, high-throughput sequencing technology has been employed to investigate the bacterioplankton community composition. The results indicated the following: (1) diversity increased downstream, especially in the upper reaches of the Han River. (2) The relative abundance of Actinobacteria increased with the increase of river length, while that of Bacteroidetes decreased slightly. (3) Five tributaries were found to be importance sources of taxa to the Han River; however, in both months, a large proportion of operational taxonomic units (37.84% and 36.34%, respectively) had unknown sources. (4) Finally, redundancy analysis (RDA) and Bioenv analysis showed that environmental parameters (pH, TN, Cond, NH4+-N, DO, NO2--N, Chl-a, and T) had a great influence (p ≤ 0.05) on the bacterioplankton community. These research results are beneficial for the managing the ecological system, protecting the tributary biodiversity, and conserving the mainstem and tributaries of the Han River basin.
Collapse
Affiliation(s)
- He Sun
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China.
| | - Haoran He
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Xiaoming Jiang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Hao Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| |
Collapse
|
14
|
Aarnio S, Soininen J. Taxonomic and functional diversity covary in rock pool microalgal communities despite their different drivers. Ecol Evol 2021; 11:11852-11873. [PMID: 34522346 PMCID: PMC8427593 DOI: 10.1002/ece3.7953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait-based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon's diversity, and Pielou's evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature-sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.
Collapse
Affiliation(s)
- Sonja Aarnio
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Janne Soininen
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
15
|
Chen X, Chen HYH. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat Commun 2021; 12:4562. [PMID: 34315908 PMCID: PMC8316448 DOI: 10.1038/s41467-021-24889-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
Plant and soil C:N:P ratios are of critical importance to productivity, food-web dynamics, and nutrient cycling in terrestrial ecosystems worldwide. Plant diversity continues to decline globally; however, its influence on terrestrial C:N:P ratios remains uncertain. By conducting a global meta-analysis of 2049 paired observations in plant species mixtures and monocultures from 169 sites, we show that, on average across all observations, the C:N:P ratios of plants, soils, soil microbial biomass and enzymes did not respond to species mixture nor to the species richness in mixtures. However, the mixture effect on soil microbial biomass C:N changed from positive to negative, and those on soil enzyme C:N and C:P shifted from negative to positive with increasing functional diversity in mixtures. Importantly, species mixture increased the C:N, C:P, N:P ratios of plants and soils when background soil C:N, C:P, and N:P were low, but decreased them when the respective background ratios were high. Our results demonstrate that plant mixtures can balance terrestrial plant and soil C:N:P ratios dependent on background soil C:N:P. Our findings highlight that plant diversity conservation does not only increase plant productivity, but also optimizes ecosystem stoichiometry for the diversity and productivity of today's and future vegetation.
Collapse
Affiliation(s)
- Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.
| |
Collapse
|
16
|
Lisner A, Ottaviani G, Klimešová J, Mudrák O, Martínková J, Lepš J. The species richness–productivity relationship varies among regions and productivity estimates, but not with spatial resolution. OIKOS 2021. [DOI: 10.1111/oik.08306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Aleš Lisner
- Dept of Botany, Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | | | - Jitka Klimešová
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
- Dept of Botany, Faculty of Sciences, Charles Univ. Prague Czech Republic
| | - Ondřej Mudrák
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Jana Martínková
- Inst. of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Jan Lepš
- Dept of Botany, Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
- Inst. Entomology, Biol. Res. Center of the Czech Academy of Sciences České Budějovice Czech Republic
| |
Collapse
|
17
|
Parreño MA, Schmid B, Petchey OL. Comparative study of the most tested hypotheses on relationships between biodiversity, productivity, light and nutrients. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Junker JR, Cross WF, Benstead JP, Huryn AD, Hood JM, Nelson D, Gíslason GM, Ólafsson JS. Flow is more Important than Temperature in Driving Patterns of Organic Matter Storage and Stoichiometry in Stream Ecosystems. Ecosystems 2020. [DOI: 10.1007/s10021-020-00585-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Mahaut L, Cheptou PO, Fried G, Munoz F, Storkey J, Vasseur F, Violle C, Bretagnolle F. Weeds: Against the Rules? TRENDS IN PLANT SCIENCE 2020; 25:1107-1116. [PMID: 32600939 DOI: 10.1016/j.tplants.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Establishing laws of plant and ecosystems functioning has been an overarching objective of functional and evolutionary ecology. However, most theories neglect the role of human activities in creating novel ecosystems characterized by species assemblages and environmental factors that are not observed in natural systems. We argue that agricultural weeds, as an emblematic case of such an 'ecological novelty', constitute an original and underutilized model for challenging current concepts in ecology and evolution. We highlight key aspects of weed ecology and evolutionary biology that can help to test and recast ecological and evolutionary laws in a changing world. We invite ecologists to seize upon weeds as a model system to improve our understanding of the short-term and long-term dynamics of ecological systems in the Anthropocene.
Collapse
Affiliation(s)
- Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, UnivPaul Valéry Montpellier 3, Montpellier, France.
| | - Pierre-Olivier Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, UnivPaul Valéry Montpellier 3, Montpellier, France
| | - Guillaume Fried
- Anses, Laboratoire de la Santé des Végétaux, Unité Entomologie et Plantes invasives, 755 avenue du Campus Agropolis, 34988 Montferrier-sur-Lez, France
| | - François Munoz
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université de Grenoble-Alpes, Grenoble, France
| | | | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, UnivPaul Valéry Montpellier 3, Montpellier, France; Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRAE), Montpellier SupAgro, UMR 759, 34000 Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, UnivPaul Valéry Montpellier 3, Montpellier, France
| | - François Bretagnolle
- Université Bourgogne Franche Comte, Biogeosciences, UMR 6282, Centre National de la Recherche Scientifique (CNRS), Dijon, France
| |
Collapse
|
20
|
Oono R, Black D, Slessarev E, Sickler B, Strom A, Apigo A. Species diversity of fungal endophytes across a stress gradient for plants. THE NEW PHYTOLOGIST 2020; 228:210-225. [PMID: 32472573 DOI: 10.1111/nph.16709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity. We explored correlations between leaf nutrient availability and endophyte diversity among Pinus muricata and Vaccinium ovatum plants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California. Endophyte richness decreased in plants with higher leaf nitrogen-to-phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species. We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.
Collapse
Affiliation(s)
- Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Danielle Black
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Eric Slessarev
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Burton Sickler
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Amanda Strom
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Austen Apigo
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
21
|
Do constrained immigration rates and high β diversity explain contrasting productivity-diversity patterns measured at different scales? Oecologia 2020; 194:481-490. [PMID: 32989572 DOI: 10.1007/s00442-020-04766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
The relationship between productivity and diversity is controversial because of disparity between unimodal and monotonic patterns, especially when occurring simultaneously at different scales. We used stream-side artificial channels to investigate how the availability of a major resource (leaf litter) affected stream invertebrate abundance and diversity at leaf-pack and whole-channel scales. At the larger scale, invertebrate diversity increased monotonically with increasing litter resource density, whereas at the smaller scale the relationship was hump-shaped, in keeping with reports in the literature. This divergence at higher resource levels suggests that multiple mechanisms may be operating. Our results indicate that consistently high species turnover (β diversity) caused the monotonic pattern because of a species-area or "sampling effect" in which new species accumulate with increasing number of samples. The hump-shaped pattern was due to constrained immigration because of a "dilution effect" in which a limited number of immigrants is spread out among the increasing number of available patches. We propose that the relationship between productivity or resource availability and α diversity is generally hump-shaped and the scale-dependent contrast in the relationship only arises where the species pool is large and β diversity is high. Differences in β diversity may, therefore, explain some of the contrasting patterns in the productivity-diversity relationship previously reported.We suggest that continuing immigration by rare taxa is important in sustaining species diversity when productivity is high. The hump-shaped pattern has implications for the impact of anthropogenic ecosystem enrichment on species diversity.
Collapse
|
22
|
Hakkenberg CR, Peet RK, Wentworth TR, Zhu K, Schafale MP. Tree canopy cover constrains the fertility-diversity relationship in plant communities of the southeastern United States. Ecology 2020; 101:e03119. [PMID: 32535899 DOI: 10.1002/ecy.3119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022]
Abstract
The goal of elucidating the primary mechanisms constraining the assembly and distribution of biodiversity remains among the central unresolved challenges facing the field of ecology. Simulation studies and experimental manipulations have focused on how patterns in community assembly result from bivariate relationships along productivity or environmental gradients. However, the joint influence of multiple resource gradients on the distribution of species richness in natural communities remains understudied. Using data from a large network of multiscale vegetation plots across forests and woodlands of the southeastern United States, we find significant evidence for the scale-dependent, joint constraints of forest structure and soil resources on the distribution of vascular plant species richness. In addition to their significant partial effects on species richness, understory light levels and soil fertility positively interact, suggesting a trade-off between the two limiting resources with species richness peaking both in high-light, low-fertility conditions as well as low-light, high-fertility settings. This finding provides a novel perspective on the biodiversity-productivity relationship that suggests a transition in limiting resources from soil nutrients to light availability when enhanced productivity results in reduced light resources for subordinate individuals. Results likewise have meaningful implications for our understanding of scale-dependent community assembly processes as size-asymmetric competition replaces environmental filtering as the primary assembly mechanism structuring temperate forest communities along an increasing soil fertility gradient.
Collapse
Affiliation(s)
- Christopher R Hakkenberg
- School of Informatics, Computing & Cyber Systems, Northern Arizona University, Flagstaff, Arizona, 86001-6372, USA.,Department of Statistics, Rice University, Houston, Texas, 77251, USA
| | - Robert K Peet
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280, USA
| | - Thomas R Wentworth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695-7612, USA
| | - Kai Zhu
- Department of Environmental Studies, University of California at Santa Cruz, Santa Cruz, California, 95064-1077, USA
| | - Michael P Schafale
- North Carolina Natural Heritage Program, 1651 Mail Service Center, Raleigh, North Carolina, 27699-1651, USA
| |
Collapse
|
23
|
Linscott TM, Weaver K, Morales V, Parent CE. Assessing species number and genetic diversity of the Mountainsnails (Oreohelicidae). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01302-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Dormann CF, Bagnara M, Boch S, Hinderling J, Janeiro-Otero A, Schäfer D, Schall P, Hartig F. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol 2020; 20:43. [PMID: 32727542 PMCID: PMC7392730 DOI: 10.1186/s12898-020-00311-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background Temperate forest understorey vegetation poses an excellent study system to investigate whether increases in resource availability lead to an increase in plant species richness. Most sunlight is absorbed by the species-poor tree canopy, making the much more species-rich understorey species inhabit a severely resource-limited habitat. Additionally, the heterogeneity of light availability, resulting from management-moderated tree composition and age structure, may contribute to species coexistence. One would therefore expect that the diversity in the herb layer correlates positively with either the overall light availability, or the light heterogeneity, depending on whether resource availability or heterogeneity are more important drivers of diversity. To test this idea, we assessed variability of light conditions in 75 forest plots across three ecoregions with four different methods. Results We correlated these data with vegetation relevés and found light availability to be strongly positively correlated with understorey plant species richness, as well as with understorey cover. Light variability (assessed with two approaches) within plots was positively correlated with transmittance, but did not improve the relationship further, suggesting that the main driver of species richness in this system is the overall resource availability. Two of the three beech-dominated regions exhibited near-identical effects of light transmittance, while the third, featuring pine alongside beech and thus with the longest gradient of transmittance and lowest species richness, displayed a weaker light response. Conclusions While site conditions are certainly responsible for the trees selected by foresters, for the resulting forest structure, and for the differences in plant species pools, our results suggest that light transmittance is a strong mediating factor of understorey plant species richness.
Collapse
Affiliation(s)
- Carsten F Dormann
- Biometry & Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79104, Freiburg, Germany.
| | - Maurizio Bagnara
- Biometry & Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79104, Freiburg, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Steffen Boch
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Judith Hinderling
- Institut of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Andrea Janeiro-Otero
- Biometry & Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79104, Freiburg, Germany
| | - Deborah Schäfer
- Institut of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Florian Hartig
- Biometry & Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79104, Freiburg, Germany.,Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
25
|
Brown NEM, Bernhardt JR, Harley CDG. Energetic context determines species and community responses to ocean acidification. Ecology 2020; 101:e03073. [DOI: 10.1002/ecy.3073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Norah E. M. Brown
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Joey R. Bernhardt
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Christopher D. G. Harley
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| |
Collapse
|
26
|
Juottonen H, Fontaine L, Wurzbacher C, Drakare S, Peura S, Eiler A. Archaea in boreal Swedish lakes are diverse, dominated by Woesearchaeota and follow deterministic community assembly. Environ Microbiol 2020; 22:3158-3171. [PMID: 32372550 DOI: 10.1111/1462-2920.15058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 01/04/2023]
Abstract
Despite their key role in biogeochemical processes, particularly the methane cycle, archaea are widely underrepresented in molecular surveys because of their lower abundance compared with bacteria and eukaryotes. Here, we use parallel high-resolution small subunit rRNA gene sequencing to explore archaeal diversity in 109 Swedish lakes and correlate archaeal community assembly mechanisms to large-scale latitudinal, climatic (nemoral to arctic) and nutrient (oligotrophic to eutrophic) gradients. Sequencing with universal primers showed the contribution of archaea was on average 0.8% but increased up to 1.5% of the three domains in forest lakes. Archaea-specific sequencing revealed that freshwater archaeal diversity could be partly explained by lake variables associated with nutrient status. Combined with deterministic co-occurrence patterns this finding suggests that ecological drift is overridden by environmental sorting, as well as other deterministic processes such as biogeographic and evolutionary history, leading to lake-specific archaeal biodiversity. Acetoclastic, hydrogenotrophic and methylotrophic methanogens as well as ammonia-oxidizing archaea were frequently detected across the lakes. Archaea-specific sequencing also revealed representatives of Woesearchaeota and other phyla of the DPANN superphylum. This study adds to our understanding of the ecological range of key archaea in freshwaters and links these taxa to hypotheses about processes governing biogeochemical cycles in lakes.
Collapse
Affiliation(s)
- Heli Juottonen
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Laurent Fontaine
- Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernv. 31, Oslo, 0371, Norway
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, Göteborg, 405 30, Sweden.,Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching, 85748, Germany
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SLU, Box 7050, Uppsala, 750 07, Sweden
| | - Sari Peura
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 75007, Sweden
| | - Alexander Eiler
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernv. 31, Oslo, 0371, Norway.,eDNA solutions AB, Björkåsgatan 16, Mölndal, 43131, Sweden
| |
Collapse
|
27
|
Souza SMADR, Matthews-Cascon H, Couto EDCG. Taxonomic and functional diversity of mollusk assemblages in a tropical rocky intertidal zone. IHERINGIA. SERIE ZOOLOGIA 2020. [DOI: 10.1590/1678-4766e2020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT We investigated the spatial variation of molluscan assemblages with different habitat-forming species and bare rock habitat in a rocky intertidal zone in northeastern Brazil. The high intertidal zone substrate was covered predominantly of barnacles [Chthamalus bisinuatus (Pilsbry, 1916)], the mid-intertidal of mussels [Brachidontes exustus (Linnaeus, 1758)] and the low intertidal of macroalgae chlorophytes [Gayralia oxysperma (Kützing) K. L. Vinogradova ex Scagel et al., 1989 and Ulva lactuca Linnaeus, 1753], phaeophytes [Sargassum vulgare C. Agardh] and rhodophytes [Palisada flagellifera (J.Agardh) K. W. Nam, 2007]. A total of 3,861 mollusks were recorded, belonging to the classes Gastropoda (9 species; 3,800 individuals), Bivalvia (3 spp.; 54 ind.), and Polyplacophora (1 sp.; 7 ind.). Functional diversity was accessed through the trophic structure, in which we identified food guilds: suspension feeders, grazers, herbivores, and carnivores. The analysis revealed significant differences in mollusk abundance, species richness, diversity indices, and trophic diversity among barnacle belts, mussel beds, algae habitat, and bare rock habitats. The highest species richness and trophic diversity were detected in algae habitat and mussel beds, which showed low abundance. In contrast, barnacle belts registered low species richness and trophic diversity and a high number of individuals. Bare rock recorded low values in all surveyed indices. This result points to the effect of environmental modification caused by habitat-forming species in this system. These species increase environmental complexity and enable the establishment of organisms through facilitation processes. The various food guilds found in this study reaffirm the role of habitat-forming species in providing niches that support different occupation patterns.
Collapse
|
28
|
Voisin J, Cournoyer B, Marjolet L, Vienney A, Mermillod-Blondin F. Ecological assessment of groundwater ecosystems disturbed by recharge systems using organic matter quality, biofilm characteristics, and bacterial diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3295-3308. [PMID: 31838704 DOI: 10.1007/s11356-019-06971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Recharge of aquifers by urban stormwater may trigger significant ecological changes that can be detrimental to the biodiversity and functioning of groundwater ecosystems. Here, the effects of aquifer recharge (AR) on three levels of parameters were investigated: dissolved organic carbon (DOC) quantity and quality, global biofilm characteristics, and diversity changes of bacterial communities. As DOC enrichment by AR can be mitigated by vadose zone (VZ) thickness, three AR sites with thin VZ (< 3 m) and three sites with thick VZ (> 10 m) were selected. For each AR site, clay beads were incubated over a 10-day-long rainy period through wells in recharged and non-recharged groundwaters. Total proteins, dehydrogenase, and hydrolytic activities were monitored from clay beads to assess biofilm development. Bacterial richness on beads was estimated by 16S rRNA-based metabarcoding. AR was found to significantly increase DOC and biodegradable DOC (BDOC) concentrations, biofilm development, and bacterial richness especially in sites with thin VZ. VZ thickness was inversely related to microbial growth indicators and bacterial richness in groundwater, through a control of DOC availability. The proportion of Bacteroidetes 16S rRNA gene reads was higher in recharged groundwater than in non-recharged groundwater, suggesting that this phylum could be used as an indicator of DOC enrichment associated with AR. Quantitative PCR assays for Bacteroides DNA confirmed these trends and showed an enrichment of this bacterial group in DOC-rich aquifer waters. The positive linear relationships between BDOC concentrations and biofilm variables highlighted a strong C-limitation of groundwater impacting bacterial species sorting and activity.
Collapse
Affiliation(s)
- Jérémy Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Benoit Cournoyer
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Antonin Vienney
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France.
| |
Collapse
|
29
|
Clark AT, Barry KE, Roscher C, Buchmann T, Loreau M, Harpole WS. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol Evol 2019; 10:2141-2152. [PMID: 31844508 PMCID: PMC6914370 DOI: 10.1111/2041-210x.13285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022]
Abstract
Declines in global biodiversity have inspired a generation of studies that seek to characterize relationships between biodiversity and ecosystem functioning. The metrics for complementarity and selection effects derived by Loreau and Hector in 2001 remain some of the most influential and widely used statistics for studying these relationships. These metrics quantify the degree to which the effect of biodiversity on a given ecosystem function depends on only a few species that perform well in monoculture and in mixture (the selection effect) or if the effect of biodiversity on a given ecosystem function is independent of monoculture performance (the complementarity effect). This distinction may be useful in determining the consequences of the loss of rare versus common or dominant species in natural systems. However, because these metrics require observations of all species in a community in monoculture, applications in natural systems have been limited.Here, we derive a statistical augmentation of the original partition, which can be applied to incomplete random samples of species drawn from a larger pool. This augmentation controls for the bias introduced by using only a subsample of species in monocultures rather than having monocultures of all species.Using simulated and empirical examples, we demonstrate the robustness of these metrics, and provide source code for calculating them. We find that these augmentations provide a reliable estimate of complementarity and selection effects as long as approximately 50% of the species present in mixture are present in monoculture and these species represent a random subset of the mixture.We foresee two primary applications for this method: (a) estimating complementarity and selection effects for experimentally assembled communities where monoculture data are lacking for some species, and (b) extrapolating results from biodiversity experiments to diverse natural systems.
Collapse
Affiliation(s)
- Adam Thomas Clark
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Synthesis Centre for Biodiversity Sciences (sDiv), Leipzig, Germany
| | - Kathryn E. Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tina Buchmann
- Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - W. Stanley Harpole
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Yeh CF, Soininen J, Teittinen A, Wang J. Elevational patterns and hierarchical determinants of biodiversity across microbial taxonomic scales. Mol Ecol 2019; 28:86-99. [PMID: 30427089 DOI: 10.1111/mec.14935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross-phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U-shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.
Collapse
Affiliation(s)
- Chih-Fu Yeh
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Anette Teittinen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Jianjun Wang
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Filstrup CT, King KBS, McCullough IM. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes. Ecol Lett 2019; 22:2120-2129. [PMID: 31621180 DOI: 10.1111/ele.13407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 11/26/2022]
Abstract
Biodiversity-ecosystem functioning (BEF) theory has largely focused on species richness, although studies have demonstrated that evenness may have stronger effects. While theory and numerous small-scale studies support positive BEF relationships, regional studies have documented negative effects of evenness on ecosystem functioning. We analysed a lake dataset spanning the continental US to evaluate whether strong evenness effects are common at broad spatial scales and if BEF relationships are similar across diverse regions and trophic levels. At the continental scale, phytoplankton evenness explained more variance in phytoplankton and zooplankton resource use efficiency (RUE; ratio of biomass to resources) than richness. For individual regions, slopes of phytoplankton evenness-RUE relationships were consistently negative and positive for phytoplankton and zooplankton RUE, respectively, and most slopes did not significantly differ among regions. Findings suggest that negative evenness effects may be more common than previously documented and are not exceptions restricted to highly disturbed systems.
Collapse
Affiliation(s)
| | - Katelyn B S King
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Ian M McCullough
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Wang Z, Chiarucci A, Arratia JF. Integrative models explain the relationships between species richness and productivity in plant communities. Sci Rep 2019; 9:13730. [PMID: 31551462 PMCID: PMC6760178 DOI: 10.1038/s41598-019-50016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
The relationship between plant productivity and species richness is one of the most debated and important issues in ecology. Ecologists have found numerous forms of this relationship and its underlying processes. However, theories and proposed drivers have been insufficient to completely explain the observed variation in the forms of this relationship. Here, we developed and validated integration models capable of combining twenty positive or negative processes affecting the relationship. The integration models generated the classic humped, asymptotic, positive, negative and irregular forms and other intermediate forms of the relationship between plant richness and productivity. These forms were linked to one another and varied according to which was considered the dependent variable. The total strengths of the different positive and negative processes are the determinants of the forms of the relationship. Positive processes, such as resource availability and species pool effects, can offset the negative effects of disturbance and competition and change the relationship. This combination method clarifies the reasons for the diverse forms of the relationship and deepens our understanding of the interactions among processes.
Collapse
Affiliation(s)
- Zhenhong Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Chang'an University, Xi'an, China.
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China.
| | - Alessandro Chiarucci
- Department of Biological, Geological and Environmental Science, University of Bologna, Via Irnerio, 42-40126, Bologna, Italy
| | - Juan F Arratia
- AGMUS Institute of Mathematics, Caribbean Computing Center for Excellence, 21150, San Juan, Puerto Rico, USA
| |
Collapse
|
33
|
Fung T, Xiao S, Chisholm RA. Spatial scaling of species richness–productivity relationships for local communities: analytical results from a neutral model. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-0431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Nhu Y DT, Hoang NT, Lieu PK, Harada H, Brion N, Hieu DV, Hop NV, Olde Venterink H. Effects of nutrient supply and nutrient ratio on diversity-productivity relationships of phytoplankton in the Cau Hai lagoon, Vietnam. Ecol Evol 2019; 9:5950-5962. [PMID: 31161011 PMCID: PMC6540837 DOI: 10.1002/ece3.5178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 11/29/2022] Open
Abstract
Diversity and productivity of primary producers are known to be influenced simultaneously by resource availability and resource ratio, but the relative importance of these two factors differed among studies and so far only entire phytoplankton communities were investigated which might ignore specific nutrient requirements and stoichiometric plasticity of different functional groups. We measured nutrient availability (DIN, total N [TN], total P [TP]), nutrient imbalance (TN:TP, DIN:TP, N:Pseston), species richness, and abundance of the whole phytoplankton community, as well as those specific for cyanobacteria, diatoms, and dinoflagellates in Cau Hai lagoon in Vietnam. We determined the correlation among these variables, using structural equation modeling. The models applied to the whole phytoplankton community indicated that the nutrient availability (particularly TP and DIN) drove variation in phytoplankton abundance and richness, and that abundance also depended on species richness. The models applied to different functional groups differed considerably from the entire community and among each other, and only a part of the models was significant. The relationship between nutrient availability (mainly TP) and abundance was driven by cyanobacteria, and the relationship between nutrient imbalance (only with N:Pseston) and species richness was driven by diatoms. Remarkably, the positive relationship between species richness and abundance, as consistently observed for the whole phytoplankton community, was only observed for one of the three functional groups (diatoms), indicating that resource complementarity occurs particularly among species of different functional groups. Our results emphasized that nutrient availability (TP and to a lesser extent DIN) as well as nutrient imbalance (albeit only with N:Pseston as proxy) were driving factors for the phytoplankton community in the Cau Hai lagoon and hence alterations in both of these factors leading to a shift in phytoplankton species composition and productivity.
Collapse
Affiliation(s)
- Dang Thi Nhu Y
- Department of BiologyVrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of Environmental Science, Hue College of SciencesHue UniversityHueVietnam
| | - Nguyen Tien Hoang
- Department of Environmental Science, Hue College of SciencesHue UniversityHueVietnam
- Laboratory of Environmental Geosphere Engineering, Department of Urban Management, Graduate School of EngineeringKyoto UniversityKyotoJapan
| | - Pham Khac Lieu
- Department of Environmental Science, Hue College of SciencesHue UniversityHueVietnam
- Department of Science, Technology and EnvironmentHue UniversityHueVietnam
| | - Hidenori Harada
- Graduate School of Global Environmental StudiesKyoto UniversityKyotoJapan
| | - Natacha Brion
- Analytical, Environmental and GeochemistryVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Duong Van Hieu
- Department of Environmental Science, Hue College of SciencesHue UniversityHueVietnam
| | - Nguyen Van Hop
- Department of Chemistry, Hue College of SciencesHue UniversityHueVietnam
| | | |
Collapse
|
35
|
Valdés-Correcher E, Sitters J, Wassen M, Brion N, Olde Venterink H. Herbivore dung quality affects plant community diversity. Sci Rep 2019; 9:5675. [PMID: 30952928 PMCID: PMC6450897 DOI: 10.1038/s41598-019-42249-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Nutrient availability is important for plant community composition and diversity, but most studies focus on inorganic nutrients. Far less is known about the impact of nutrients in organic forms such as herbivore dung. Here we show that dung of 11 European herbivore species varies widely in nitrogen (N) and phosphorus (P) concentrations, as well as in C:N:P ratios. We demonstrate that variation in dung quality of five herbivore species influences the diversity and composition of a mesocosm plant community. The impact of dung quality was at least as strong as, or stronger than, the effect of manipulating the quantity of dung by a factor six. Our study supports the hypothesis that both nutrient quantity and nutrient imbalances are important controlling factors for plant species diversity, and stresses the important role of herbivores on plant communities, not only via selective foraging, but also via stoichiometric variation of nutrients in their dung.
Collapse
Affiliation(s)
- Elena Valdés-Correcher
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Biogeco, INRA, University of Bordeaux, F-33610, Cestas, France
| | - Judith Sitters
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Departments of Aquatic and Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Martin Wassen
- Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Natacha Brion
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
36
|
Daam MA, Teixeira H, Lillebø AI, Nogueira AJA. Establishing causal links between aquatic biodiversity and ecosystem functioning: Status and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1145-1156. [PMID: 30625646 DOI: 10.1016/j.scitotenv.2018.11.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Understanding how changes in biodiversity affects ecosystem functioning is imperative in allowing Ecosystem-Based Management (EBM), especially when addressing global change and environmental degradation. Research into the link between biodiversity and ecosystem functioning (BEF) has indeed increased considerably over the past decades. BEF research has focussed on terrestrial ecosystems and aquatic ecosystems have received considerably less attention. Due to differences in phylogenetic diversity, ecological processes and reported BEF relationships, however, it may at least be questionable whether BEF relationships are exchangeable between these ecosystems (i.e. terrestrial and aquatic). The aim of the present paper was therefore to pinpoint key areas and bottlenecks in establishing BEF relationships for aquatic ecosystems (freshwater, transitional, and marine). To this end, the available literature with special emphasis on the last 10 years was assessed to evaluate: i) reported mechanisms and shapes of aquatic BEF relationships; ii) to what extent BEF relations are interchangeable or ecosystem-specific; and iii) contemporary gaps and needs in aquatic BEF research. Based on our analysis, it may be concluded that despite considerable progress in BEF research over the past decades, several bottlenecks still need to be tackled, namely incorporating the multitude of functions supported by ecosystems, functional distinctiveness of rare species, multitrophic interactions and spatial-temporal scales, before BEF relationships can be used in ecosystem-based management.
Collapse
Affiliation(s)
- Michiel A Daam
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - Heliana Teixeira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - Ana I Lillebø
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - António J A Nogueira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal.
| |
Collapse
|
37
|
van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev Camb Philos Soc 2019; 94:1220-1245. [PMID: 30724447 DOI: 10.1111/brv.12499] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non-manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real-world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well-being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Hodapp D, Hillebrand H, Striebel M. “Unifying” the Concept of Resource Use Efficiency in Ecology. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2018.00233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Yang T, Han G, Yang Q, Friman VP, Gu S, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Resource stoichiometry shapes community invasion resistance via productivity-mediated species identity effects. Proc Biol Sci 2018; 285:20182035. [PMID: 30963908 PMCID: PMC6304049 DOI: 10.1098/rspb.2018.2035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/17/2018] [Indexed: 11/12/2022] Open
Abstract
Diversity-invasion resistance relationships are often variable and sensitive to environmental conditions such as resource availability. Resource stoichiometry, the relative concentration of different elements in the environment, has been shown to have strong effects on the physiology and interactions between different species. Yet, its role for diversity-invasion resistance relationships is still poorly understood. Here, we explored how the ratio of nitrogen (N) and phosphorus affects the productivity and invasion resistance of constructed microbial communities by a plant pathogenic bacterium, Ralstonia solanacearum. We found that resource stoichiometry and species identity effects affected the invasion resistance of communities. Both high N concentration and resident community diversity constrained invasions, and two resident species, in particular, had strong negative effects on the relative density of the invader and the resident community productivity. While resource stoichiometry did not affect the mean productivity of the resident community, it favoured the growth of two species that strongly constrained invasions turning the slope of productivity-invasion resistance relationship more negative. Together our findings suggest that alterations in resource stoichiometry can change the community resistance to invasions by having disproportionate effects on species growth, potentially explaining changes in microbial community composition under eutrophication.
Collapse
Affiliation(s)
- Tianjie Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gang Han
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qingjun Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Shaohua Gu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - George A. Kowalchuk
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
40
|
De Laender F. Community- and ecosystem-level effects of multiple environmental change drivers: Beyond null model testing. GLOBAL CHANGE BIOLOGY 2018; 24:5021-5030. [PMID: 29959825 DOI: 10.1111/gcb.14382] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Understanding the joint effect of multiple drivers of environmental change is a key scientific challenge. The dominant approach today is to compare observed joint effects with predictions from various types of null models. Drivers are said to combine synergistically (antagonistically) when their observed joint effect is larger (smaller) than that predicted by the null model. Here, I argue that this approach does not promote understanding of effects on important community- and ecosystem-level variables such as biodiversity and ecosystem function. I use ecological theory to show that different mechanisms can lead to the same deviation from a null model's prediction. Inversely, I show that the same mechanism can lead to different deviations from a null model's prediction. These examples illustrate that it is not possible to make strong mechanistic inferences from null models. Next, I present an alternative framework to study such effects. This framework makes a clear distinction between two different kinds of drivers (resource ratio shifts and multiple stressors) and integrates both by incorporating stressor effects into resource uptake theory. I show that this framework can advance understanding because of three reasons. First, it forces formalization of "multiple stressors," using factors that describe the number and kind of stressors, their selectivity and dynamic behaviour, and the initial trait diversity and tolerance among species. Second, it produces testable predictions on how these factors affect biodiversity and ecosystem function, alone and in combination with resource ratio shifts. Third, it can fail in informative ways. That is, its assumptions are clear, so that different kinds of deviations between predictions and observed effects can guide new experiments and theory improvement. I conclude that this framework will more effectively progress understanding of global change effects on communities and ecosystems than does the current practice of null model testing.
Collapse
Affiliation(s)
- Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
41
|
Arnan X, Andersen AN, Gibb H, Parr CL, Sanders NJ, Dunn RR, Angulo E, Baccaro FB, Bishop TR, Boulay R, Castracani C, Cerdá X, Toro ID, Delsinne T, Donoso DA, Elten EK, Fayle TM, Fitzpatrick MC, Gómez C, Grasso DA, Grossman BF, Guénard B, Gunawardene N, Heterick B, Hoffmann BD, Janda M, Jenkins CN, Klimes P, Lach L, Laeger T, Leponce M, Lucky A, Majer J, Menke S, Mezger D, Mori A, Moses J, Munyai TC, Paknia O, Pfeiffer M, Philpott SM, Souza JLP, Tista M, Vasconcelos HL, Retana J. Dominance-diversity relationships in ant communities differ with invasion. GLOBAL CHANGE BIOLOGY 2018; 24:4614-4625. [PMID: 29851235 DOI: 10.1111/gcb.14331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 02/27/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.
Collapse
Affiliation(s)
| | - Alan N Andersen
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Heloise Gibb
- Department of Ecology, Evolution and the Environment, La Trobe University, Melbourne, Vic., Australia
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nathan J Sanders
- Environmental Program, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina
| | - Elena Angulo
- Estación Biológica de Doñana CSIC, Sevilla, Spain
| | - Fabricio B Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Brazil
| | - Tom R Bishop
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Raphaël Boulay
- Institute of Insect Biology, University François Rabelais of Tours, Tours, France
| | - Cristina Castracani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Xim Cerdá
- Estación Biológica de Doñana CSIC, Sevilla, Spain
| | - Israel Del Toro
- Biology Department, Lawrence University, Appleton, Wisconsin
| | | | - David A Donoso
- Instituto de Ciencias Biológicas, Escuela Politécnicamenk Nacional, Quito, Ecuador
| | - Emilie K Elten
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Tom M Fayle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Matthew C Fitzpatrick
- Appalachian Lab, University of Maryland Center for Environmental Science, Frostburg, Maryland
| | - Crisanto Gómez
- Department of Environmental Science, University of Girona, Girona, Spain
| | - Donato A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Blair F Grossman
- Department of Ecology, Evolution and the Environment, La Trobe University, Melbourne, Vic., Australia
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Nihara Gunawardene
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Brian Heterick
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | | | - Milan Janda
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- National Laboratory for Ecological Analysis and Synthesis (LANASE), ENES, UNAM, Michoacan, Mexico
| | - Clinton N Jenkins
- IPÊ - Instituto de Pesquisas Ecológicas, Nazaré Paulista, SP, Brasil
| | - Petr Klimes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Lori Lach
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Thomas Laeger
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Maurice Leponce
- Biodiversity Monitoring & Assessment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Andrea Lucky
- University of Florida Entomology & Nematology Department,, Gainesville, Florida
| | - Jonathan Majer
- School of Biological Sciences, University of WA, Perth, WA, Australia
| | - Sean Menke
- Department of Biology, Lake Forest College, Lake Forest, Illinois
| | - Dirk Mezger
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
| | - Alessandra Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jimmy Moses
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | | | - Omid Paknia
- ITZ, Ecology and Evolution, TiHo Hannover, Hannover, Germany
| | - Martin Pfeiffer
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
| | - Stacy M Philpott
- Environmental Studies Department, University of California, Santa Cruz, California
| | - Jorge L P Souza
- Science and Technology for Amazonian Resources Graduate Program, Institute of Exact Sciences and Technology (ICET), Itacoatiara, AM, Brazil
- Biodiversity Coordination, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Melanie Tista
- Division of Tropical Ecology and Animal Biodiversity, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Javier Retana
- CREAF, Cerdanyola del Vallès, Catalunya, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallès, Catalunya, Spain
| |
Collapse
|
42
|
Xun W, Yan R, Ren Y, Jin D, Xiong W, Zhang G, Cui Z, Xin X, Zhang R. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. MICROBIOME 2018; 6:170. [PMID: 30236158 PMCID: PMC6149009 DOI: 10.1186/s40168-018-0544-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. RESULTS The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. CONCLUSIONS Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruirui Yan
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongyan Jin
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongli Cui
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoping Xin
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Tsakalakis I, Pahlow M, Oschlies A, Blasius B, Ryabov AB. Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Storkey J, Neve P, Liebman M. What good is weed diversity? WEED RESEARCH 2018; 58:239-243. [PMID: 30174354 PMCID: PMC6109960 DOI: 10.1111/wre.12310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 05/15/2023]
Abstract
Should the declining diversity of weed communities in conventionally managed arable fields be regarded as a problem? The answer to this question has tended to divide researchers into those whose primary focus is on conserving farmland biodiversity and those whose goals are dictated by weed control and maximising yield. Here, we argue that, regardless of how weeds are perceived, there are common ecological principles that should underpin any approach to managing weed communities, and, based on these principles, increasing in-field weed diversity could be advantageous agronomically as well as environmentally. We hypothesise that a more diverse weed community will be less competitive, less prone to dominance by highly adapted, herbicide-resistant species and that the diversity of the weed seedbank will be indicative of the overall sustainability of the cropping system. Common to these hypotheses is the idea that the intensification of agriculture has been accompanied by a homogenisation of cropping systems and landscapes, accounting for both declines in weed diversity and the reduced resilience of cropping systems (including the build-up of herbicide resistance). As such, weed communities represent a useful indicator of the success of rediversifying systems at multiple scales, which will be a central component of making agriculture and weed control more sustainable.
Collapse
Affiliation(s)
- J Storkey
- Rothamsted ResearchHarpendenHertfordshireUK
| | - P Neve
- Rothamsted ResearchHarpendenHertfordshireUK
| | | |
Collapse
|
45
|
Li D, Wu N, Tang S, Su G, Li X, Zhang Y, Wang G, Zhang J, Liu H, Hecker M, Giesy JP, Yu H. Factors associated with blooms of cyanobacteria in a large shallow lake, China. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:27. [PMID: 30148024 PMCID: PMC6096964 DOI: 10.1186/s12302-018-0152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Eutrophication of freshwater systems can result in blooms of phytoplankton, in many cases cyanobacteria. This can lead to shifts in structure and functions of phytoplankton communities adversely affecting the quality of drinking water sources, which in turn impairs public health. Relationships between structures of phytoplankton communities and concentrations of the toxicant, microcystin-leucine-arginine (MC-LR), have not been well examined in large shallow lakes. The present study investigated phytoplankton communities at seven locations from January to December of 2015 in Tai Lake, and relationships between structures and diversities of phytoplankton communities and water quality parameters, including concentrations of MC-LR and metals, were analyzed. RESULTS A total of 124 taxa of phytoplankton were observed, and the predominant taxa were Microcystis sp. and Dolichospermum flos-aquae of Cyanophyta and Planctonema sp. of Chlorophyta. The greatest diversities of phytoplankton communities, as indicated by species richness, Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices, were observed in spring. Furthermore, productivity of phytoplankton was significantly and negatively correlated with diversities. These results demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices of phytoplankton communities were significantly related to trophic status and overall primary productivity in Tai Lake. In addition, temperature of surface water, pH, permanganate index, biochemical oxygen demand, total phosphorus, arsenic, total nitrogen/total phosphorous ratio, and MC-LR were the main factors associated with structures of phytoplankton communities in Tai Lake. CONCLUSION The present study provided helpful information on phytoplankton community structure and diversity in Tai Lake from January to December of 2015. Our findings demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices could be used to assess and monitor for status and trends in water quality of Tai Lake. In addition, MC-LR was one of the main factors associated with structures of phytoplankton communities in Tai Lake. The findings may help to address important ecological questions about the impact of a changing environment on biodiversity of lake ecosystems and the control of algae bloom. Further studies are needed to explore the relationship between MC-LR and phytoplankton communities in the laboratory.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Naicheng Wu
- Department of Hydrology and Water Resources Management, Kiel University, Kiel, 24118 Germany
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021 China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Xuwen Li
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Yong Zhang
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Guoxiang Wang
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023 China
| | - Junyi Zhang
- Wuxi Environmental Monitoring Center, Wuxi, Jiangsu 214000 China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3 Canada
| | - John P. Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3 Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| |
Collapse
|
46
|
Grace JB, Johnson DJ, Lefcheck JS, Byrnes JEK. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 2018. [DOI: 10.1002/ecs2.2283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- James B. Grace
- Wetland and Aquatic Research Center; U.S. Geological Survey; Lafayette Louisiana 70506 USA
| | - Darren J. Johnson
- Cherokee Nations Technical Solutions, Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | | | - Jarrett E. K. Byrnes
- Department of Biology; University of Massachusetts; Boston Massachusetts 02125 USA
| |
Collapse
|
47
|
Zhang M, Straile D, Chen F, Shi X, Yang Z, Cai Y, Yu J, Kong F. Dynamics and drivers of phytoplankton richness and composition along productivity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:275-284. [PMID: 29289776 DOI: 10.1016/j.scitotenv.2017.12.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 05/25/2023]
Abstract
The shape of the productivity-richness relationship (PRR) for phytoplankton has been suggested to be unimodal, that is, the richness peaks at intermediate productivity levels. However, the mechanistic understanding for this pattern is still widely debated. In this study, we observed a unimodal PRR within 71 lakes along the Yangtze River encompassing an altitude range of 0-2700m, and an over 2200km distance from the upper reaches to the lower reaches. At low productivity, the competition for resources and regulatory processes jointly affected phytoplankton richness and composition, and their explanatory power depend on the gradient scale of driving factors. The variation of temperature attributing to altitudinal difference explained the majority of the variations of phytoplankton. If the altitude variation in temperature was eliminated, the explanatory power of temperature decreased from 31.7 to 7.6, and the independent effect of each resource and regulatory variable were limited and not decisive. At high productivity, the negative feedback of increased productivity (light limitation) affected the phytoplankton species richness and composition. The light-sensitive species disappeared, low-light-adapted species was retained and the phytoplankton composition gradually became similar with an increase in productivity. The findings contribute to an increased understanding of the mechanisms resulting in a hump-shaped PRR for phytoplankton.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China.
| | - Dietmar Straile
- Limnological Institute, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| | - Yongjiu Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| | - Fanxiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
| |
Collapse
|
48
|
Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia 2018; 187:719-730. [DOI: 10.1007/s00442-018-4130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|
49
|
Roeling IS, Ozinga WA, van Dijk J, Eppinga MB, Wassen MJ. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios. Oecologia 2018; 186:1055-1067. [PMID: 29450649 PMCID: PMC5859057 DOI: 10.1007/s00442-018-4086-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/03/2018] [Indexed: 11/05/2022]
Abstract
Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients remains to be tested. We analysed plant community composition and nutrient status of 644 Eurasian wet grassland plots. The importance of nutrient ratios driving variation in species composition was analysed using ordination methods (DCA and CCA). Subsequently, we assessed the niche position and width along the most important nutrient ratio gradient [N:P] for each species. We found that the N:P ratio explained part of the variation in species composition independent from conventional explanatory variables. The N:P ratio explained less variation than soil moisture or pH, but more than productivity or the availability of N and P separately, highlighting its importance for grassland species composition. Species occupied distinct niches along the N:P gradient, and species' niche widths decreased toward extreme nutrient limitation. After correcting for niche position, there was no overall difference in niche width between endangered and non-endangered species. Surprisingly, endangered species with niche optima at the extreme P-limited end of the gradient had broader niches than their non-endangered counterparts. As species occupied distinct niches along a nutrient ratio gradient, future grassland conservation efforts may benefit from targeting changes in nutrient ratios, i.e. the balance between N and P, rather than only focussing on a general reduction in nutrient availability. However, what management interventions can be used for this purpose remains unclear.
Collapse
Affiliation(s)
- Ineke S Roeling
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, PO Box 80115, 3508 TC, Utrecht, The Netherlands.
| | - Wim A Ozinga
- Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research (Alterra), Wageningen UR, PO Box 47, 6700 AA, Wageningen, The Netherlands
- Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL, Nijmegen, The Netherlands
| | - Jerry van Dijk
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, PO Box 80115, 3508 TC, Utrecht, The Netherlands
| | - Maarten B Eppinga
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, PO Box 80115, 3508 TC, Utrecht, The Netherlands
| | - Martin J Wassen
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, PO Box 80115, 3508 TC, Utrecht, The Netherlands.
| |
Collapse
|
50
|
LeBrun ES, King RS, Back JA, Kang S. Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams. MICROBIAL ECOLOGY 2018; 75:64-73. [PMID: 28721504 DOI: 10.1007/s00248-017-1039-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is a key biological element with important and unique biogeochemical cycling in natural ecosystems. Anthropogenic phosphorus inputs have been shown to greatly affect natural ecosystems, and this has been shown to be especially true of freshwater systems. While the importance of microbial communities in the P cycle is widely accepted, the role, composition, and relationship to P of these communities in freshwater systems still hold many secrets. Here, we investigated combined bacterial and archaeal communities utilizing 16S ribosomal RNA (rRNA) gene sequencing and computationally predicted functional metagenomes (PFMs) in 25 streams representing a strong P gradient. We discovered that 16S rRNA community structure and PFMs demonstrate a degree of decoupling between structure and function in the system. While we found that total phosphorus (TP) was correlated to the structure and functional capability of bacterial and archaeal communities in the system, turbidity had a stronger, but largely independent, correlation. At TP levels of approximately 55 μg/L, we see sharp differences in the abundance of numerous ecologically important taxa related to vegetation, agriculture, sediment, and other ecosystem inhabitants.
Collapse
Affiliation(s)
- Erick S LeBrun
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, TX, 76798-7388, USA
| | - Ryan S King
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, TX, 76798-7388, USA
| | - Jeffrey A Back
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, TX, 76798-7388, USA
| | - Sanghoon Kang
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97388, Waco, TX, 76798-7388, USA.
| |
Collapse
|