1
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
2
|
Yeh YT, Sona C, Yan X, Li Y, Pathak A, McDermott MI, Xie Z, Liu L, Arunagiri A, Wang Y, Cazenave-Gassiot A, Ghosh A, von Meyenn F, Kumarasamy S, Najjar SM, Jia S, Wenk MR, Traynor-Kaplan A, Arvan P, Barg S, Bankaitis VA, Poy MN. Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction. Nat Commun 2023; 14:4250. [PMID: 37460527 PMCID: PMC10352338 DOI: 10.1038/s41467-023-39978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Chandan Sona
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Yunxiao Li
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
| | - Adrija Pathak
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Zhigang Xie
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Liangwen Liu
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yuting Wang
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- ATK Analytics, Innovation and Discovery, LLC, North Bend, WA, 98045, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew N Poy
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA.
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA.
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany.
| |
Collapse
|
3
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
5
|
Simulations of Cross-Amyloid Aggregation of Amyloid-β and Islet Amyloid Polypeptide Fragments. Biophys J 2022; 121:2002-2013. [PMID: 35538665 DOI: 10.1016/j.bpj.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Amyloid-beta (Aβ) and islet amyloid polypeptide (IAPP) are small peptides, classified as amyloids, that have the potential to self-assemble and form cytotoxic species, such as small soluble oligomers and large insoluble fibrils. The formation of Aβ aggregates facilitates the progression of Alzheimer's disease (AD), while IAPP aggregates induce pancreatic β-cell apoptosis, leading to exacerbation of Type 2 diabetes (T2D). Cross-amyloid interactions between Aβ and IAPP have been described both in vivo and in vitro, implying the role of Aβ or IAPP as modulators of cytotoxic self-aggregation of each species, and suggesting that Aβ-IAPP interactions are a potential molecular link between AD and T2D. Using molecular dynamics simulations, "hot spot" regions of the two peptides were studied to understand the formation of hexamers in a heterogenous and homogenous peptide-containing environment. Systems of only Aβ(16-22) peptides formed antiparallel, β-barrel-like structures, while systems of only IAPP(20-29) peptides formed stacked, parallel beta sheets and had relatively unstable aggregation structures after 2 μs of simulation time. Systems containing both Aβ and IAPP (1:1 ratio) hexamers showed antiparallel, β-barrel-like structures, with an interdigitated arrangement of Aβ(16-22) and IAPP(20-29). These β-barrel structures have features of cytotoxic amyloid species identified in previous literature. Ultimately, this work seeks to provide atomistic insight into both the mechanism behind cross-amyloid interactions and structural morphologies of these toxic amyloid species.
Collapse
|
6
|
Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Physiologically, autophagy is a major protective mechanism of β-cells from apoptosis, through can reserve normal β- cell mass and inhibit the progression of β-cells destruction. Beta-cell mass can be affected by differentiation from progenitors and de-differentiation as well as self-renewal and apoptosis. Shred evidence indicated that hypoglycemic drugs can induce β-cell proliferation capacity and neogenesis via autophagy stimulation. However, prolonged use of selective hypoglycemic drugs has induced pancreatitis besides several other factors that contribute to β-cell destruction and apoptosis initiation. Interestingly, some nonhypoglycemic medications possess the same effects on β-cells but depending on the combination of these drugs and the duration of exposure to β-cells. The paper comprehensively illustrates the role of the hypoglycemic drugs on the insulin-producing cells and the pathogeneses of β-cell destruction in type 2 diabetes mellitus, in addition to the regulation mechanisms of β-cells division in norm and pathology. The grasping of the hypoglycemic drug’s role in beta-cell is clinically crucial to evaluate novel therapeutic targets such as new signaling pathways. The present paper addresses a new strategy for diabetes mellitus management via targeting specific autophagy inducer factors (transcription factors, genes, lipid molecules, etc.).
Collapse
|
7
|
Hu Y, Zhao H, Lu J, Xie D, Wang Q, Huang T, Xin H, Hisatome I, Yamamoto T, Wang W, Cheng J. High uric acid promotes dysfunction in pancreatic β cells by blocking IRS2/AKT signalling. Mol Cell Endocrinol 2021; 520:111070. [PMID: 33127482 DOI: 10.1016/j.mce.2020.111070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Hyperuricaemia is a disorder of purine metabolism. Elevated serum uric acid is strongly associated with many diseases, including gout, abdominal obesity, insulin resistance, and cardiovascular and kidney disease. Our previous studies showed that high uric acid (HUA) induced insulin resistance in several peripheral organs, including the liver, myocardium and adipose tissue. However, whether HUA directly induces insulin resistance of pancreatic β cells, the only source of insulin in the body and also a sensitive insulin target, is unknown. In this study, pancreatic β cells pretreated with HUA showed impaired insulin expression/secretion, glucose uptake and the glycolytic pathway. RNA-seq revealed that HUA affected the biological processes of INS-1 cells broadly, including oxidoreduction coenzyme metabolic process, pyruvate metabolic process, and glycolytic process. In addition, HUA reduced mitochondrial membrane potential and increased the production of reactive oxygen species(ROS) in INS-1 cells. INS-1 cells pretreated with probenecid, an organic anion transporter inhibitor, protected INS-1 cells against HUA-induced insulin secretion decrease, Pretreatment with N-acetyl-L-cysteine(NAC), a globally used antioxidant, recovered HUA-decreased insulin secretion and glucose uptake by pancreatic β cells. Insulin-like growth factor 1 (IGF-1), the phosphatidylinositol 3-kinase (PI3K) activator, rescues HUA-decreased insulin secretion by re-activating AKT phosphorylation. Thus, HUA induce insulin resistance, impaired insulin secretion and glycolytic pathway of pancreatic ꞵ cell through IRS2/AKT pathway.
Collapse
Affiliation(s)
- Yaqiu Hu
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiaming Lu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Tianliang Huang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hancheng Xin
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Cinti F, Mezza T, Severi I, Suleiman M, Cefalo CMA, Sorice GP, Moffa S, Impronta F, Quero G, Alfieri S, Mari A, Pontecorvi A, Marselli L, Cinti S, Marchetti P, Giaccari A. Noradrenergic fibers are associated with beta-cell dedifferentiation and impaired beta-cell function in humans. Metabolism 2021; 114:154414. [PMID: 33129839 DOI: 10.1016/j.metabol.2020.154414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes (T2D) is characterized by a progressive loss of beta-cell function, and the "disappearance" of beta-cells in T2D may also be caused by the process of beta -cell dedifferentiation. Since noradrenergic innervation inhibits insulin secretion and density of noradrenergic fibers is increased in type 2 diabetes mouse models, we aimed to study the relation between islet innervation, dedifferentiation and beta-cell function in humans. METHODS Using immunohistochemistry and electron microscopy, we analyzed pancreata from organ donors and from patients undergoing pancreatic surgery. In the latter, a pre-surgical detailed metabolic characterization by oral glucose tolerance test (OGTT) and hyperglycemic clamp was performed before surgery, thus obtaining in vivo functional parameters of beta-cell function and insulin secretion. RESULTS The islets of diabetic subjects were 3 times more innervated than controls (0.91 ± 0.21 vs 0.32 ± 0.10, n.fibers/islet; p = 0.01), and directly correlated with the dedifferentiation score (r = 0.39; p = 0.03). In vivo functional parameters of insulin secretion, assessed by hyperglycemic clamp, negatively correlated with the increase in fibers [beta-cell Glucose Sensitivity (r = -0.84; p = 0.01), incremental second-phase insulin secretion (r = -0.84, p = 0.03) and arginine-stimulated insulin secretion (r = -0.76, p = 0.04)]. Moreover, we observed a progressive increase in fibers, paralleling worsening glucose tolerance (from NGT through IGT to T2D). CONCLUSIONS/INTERPRETATION Noradrenergic fibers are significantly increased in the islets of diabetic subjects and this positively correlates with beta-cell dedifferentiation score. The correlation between in vivo insulin secretion parameters and the density of pancreatic noradrenergic fibers suggests a significant involvement of these fibers in the pathogenesis of the disease, and indirectly, in the islet dedifferentiation process.
Collapse
Affiliation(s)
- F Cinti
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Mezza
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - I Severi
- Department of Clinical and Experimental Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - M Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - C M A Cefalo
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G P Sorice
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S Moffa
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Impronta
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Quero
- Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - S Alfieri
- Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - A Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - S Cinti
- Department of Clinical and Experimental Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - A Giaccari
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
9
|
Direct suppression of human islet dedifferentiation, progenitor genes, but not epithelial to mesenchymal transition by liraglutide. Heliyon 2020; 6:e04951. [PMID: 32995630 PMCID: PMC7501427 DOI: 10.1016/j.heliyon.2020.e04951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/03/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
β-cell dedifferentiation has been accounted as one of the major mechanisms for β-cell failure; thus, is a cause to diabetes. We study direct impacts of liraglutide treatment on ex vivo human dedifferentiated islets, and its effects on genes important in endocrine function, progenitor states, and epithelial mesenchymal transition (EMT). Human islets from non-diabetic donors, were purified and incubated until day 1 and day 4, and were determined insulin contents, numbers of insulin (INS+) and glucagon (GCG+) cells. The islets from day 3 to day 7 were treated with diabetic drugs, the long acting GLP-1 receptor agonist, liraglutide. As observed in pancreatic islets of type 2 diabetic patients, ex vivo dedifferentiated islets showed more than 50% reduced insulin contents while number of glucagon increased from 10% to about 20%. β-cell specific genes: PDX1, MAFA, as well as β-cell functional markers: GLUT1 and SUR1, were significantly depleted more than 40%. Notably, we found increased levels of glucagon regulator, ARX and pre-glucagon transcripts, and remarkably upregulated progenitor expressions: NEUROG3 and ALDH1A identified as β-cell dysfunction markers in diabetic models. Hyperglucagonemia was often observed in type 2 patients that could lead to over production of gluconeogenesis by the liver. Liraglutide treatments resulted in decreased number of GCG+ cells, increased numbers of GLP-1 positive cells but did not alter elevated levels of EMT marker genes: ACTA2, CDH-2, SNAIL2, and VIM. These effects of liraglutide were blunted when FOXO1 transcripts were depleted. This work illustrates that ex vivo human isolated islets can be used as a tool to study different aspects of β-cell dedifferentiation. Our novel finding suggests a role of GLP-1 pathway in beta-cell maintenance in FOXO1-dependent manner. Importantly, dedifferentiated islets ex vivo is a useful model that can be utilized to verify the actions of potential drugs to diabetic β-cell failure.
Collapse
|
10
|
Liu Y, Zeng Y, Miao Y, Cheng X, Deng S, Hao X, Jiang Y, Wan Q. Relationships among pancreatic beta cell function, the Nrf2 pathway, and IRS2: a cross-sectional study. Postgrad Med 2020; 132:720-726. [PMID: 32757691 DOI: 10.1080/00325481.2020.1797311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the relationships among islet function, the Nrf2 pathway, and insulin receptor substrate 2 (IRS2) in type 2 diabetes mellitus (T2DM), prediabetes mellitus (IGR), and normal glucose tolerance (NGT) populations. METHODS Three hundred cases each were selected for the NGT, IGR, and T2DM groups; FBG, 2hPG, HbA1 c, FINS, TG, TC, HDL-C, and LDL-C levels and serum levels of nuclear factor in E2-related factor 2 (Nrf2), insulin receptor substrate 2 (IRS2), tumor necrosis factor alpha (TNF-α), and heme oxygenase 1 (HO-1) were evaluated. RESULTS The T2DM group had lower islet β-cell function index and insulin sensitivity index than the NGT and IGR groups (P < 0.05). The Nrf2, IRS2, and HO-1 levels in the NGT, IGR, and T2DM groups followed a decreasing trend in the order mentioned, whereas the TNF-α levels followed an increasing trend. CONCLUSIONS Upon impairment of glucose regulation, the expression of TNF-α in the human body increased, which indicated the aggravation of oxidative stress (OS) and the inflammatory response. Islet function was maintained in the pre-diabetic population, and concurrently, the TNF-α, Nrf2, and HO-1 levels were moderately elevated, the expression of IRS2 was marginally inhibited, and the Nrf2 pathway was activated under mild OS stimulus to resist OS, inflammation, and injury, which may have been mediated through PI3 K/AKT. In patients with T2DM, islet function was significantly poorer, TNF-α amplification was enhanced significantly, and Nrf2, HO-1, and IRS2 expression reduced significantly; this suggested that, along with the aggravation of OS and the inflammatory response, Nrf2 pathway activation and HO-1 expression were both inhibited, the antioxidant capacity of the body was reduced, IRS2 degradation increased, and islet function was impaired.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Yue Zeng
- Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy.,Department of Endocrinology, Longchang People's Hospital , Neijiang, Sichuan, China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Xiaoling Cheng
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Sijie Deng
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Xinlin Hao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Yuefei Jiang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University , Luzhou, Sichuan, China.,Key Laboratory of Cardiovascular and Metabolism of LuZhou City.,SiChuan Clinical Research Center for Nephropathy
| |
Collapse
|
11
|
Abstract
Background Epigenetic processes control timing and level of gene expression throughout life, during development, differentiation, and aging, and are the link to adapting gene expression profiles to environmental cues. To qualify for the definition of ‘epigenetic’, a change to a gene's activity must be inherited through at least one mitotic division. Epigenetic mechanisms link changes in the environment to adaptions of the genome that do not rely on changes in the DNA sequence. In the past two decades, multiple studies have aimed to identify epigenetic mechanisms, and to define their role in development, differentiation and disease. Scope of review In this review, we will focus on the current knowledge of the epigenetic control of pancreatic beta cell maturation and dysfunction and its relationship to the development of islet cell failure in diabetes. Most of the data currently available have been obtained in mice, but we will summarize studies of human data as well. We will focus here on DNA methylation, as this is the most stable epigenetic mark, and least impacted by the variables inherent in islet procurement, isolation, and culture. Major conclusions DNA methylation patterns of beta cell are dynamic during maturation and during the diabetic process. In both cases, the changes occur at cell specific regulatory regions such as enhancers, where the methylation profile is cell type specific. Frequently, the differentially methylated regulatory elements are associated with key function genes such as PDX1, NKX6-1 and TCF7L2. During maturation, enhancers tend to become demethylated in association with increased activation of beta cell function genes and increased functionality, as indicated by glucose stimulated insulin secretion. Likewise, the changes to the DNA methylome that are present in pancreatic islets from diabetic donors are enriched in regulatory regions as well.
Collapse
Affiliation(s)
- Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Sabahi MM, Ahmadi SA, Mahjub R, Ranjbar A. Oxidative Toxicity in Diabetes Mellitus: The Role of Nanoparticles and Future Therapeutic Strategies. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4)190809.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the most common chronic medical conditions in the world. Increasing evidence suggests that chronic hyperglycemia can cause excessive production of free radicals, particularly reactive oxygen species (ROS). Free radicals play important roles in tissue damage in diabetes. The relationship between exposure to nanoparticles (NPs) and diabetes has been reported in many previous studies. Evaluation of the potential benefits and toxic effects of NPs on diabetic disorders is of importance. This review highlights studies on the relationship between NPs and oxidative stress (OS) as well as the possible mechanisms in diabetic animal models and humans.
Collapse
Affiliation(s)
| | | | - Reza Mahjub
- 3Department of Pharmaceutics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- 4Department of Toxicology and Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Chen X, Zhang J, Zhou Z. Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obes Surg 2019; 29:3001-3009. [DOI: 10.1007/s11695-019-03979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A, Armandala R, Spraggins JM, Lowe CL, Boyd KL, Stein RW, Wright CV, Norris JL, Powers AC, Brissova M, Caprioli RM. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 2019; 62:1036-1047. [PMID: 30955045 PMCID: PMC6553460 DOI: 10.1007/s00125-019-4855-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.
Collapse
Affiliation(s)
- Boone M Prentice
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Judd
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Radhika Armandala
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Spraggins
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Cindy L Lowe
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli L Boyd
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Christopher V Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy L Norris
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Caprioli
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Kanzawa T, Hirai T, Fukuda H, Katsumata H, Ishii R, Ikemiyagi M, Ishii Y, Saiga K, Okumi M, Tanabe K. Combination therapy of an iNKT cell ligand and CD40-CD154 blockade establishes islet allograft acceptance in nonmyeloablative bone marrow transplant recipients. Acta Diabetol 2019; 56:541-550. [PMID: 30758788 DOI: 10.1007/s00592-019-01289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023]
Abstract
AIMS Islet transplantation is an effective therapeutic option for type 1 diabetes. Although maintenance immunosuppression therapy is required to prevent allogeneic rejection and recurrence of autoimmunity, long-term allograft survival has not yet been achieved partly because of its adverse effects. The induction of donor-specific immunotolerance is a promising approach for long-term allograft survival without maintenance immunosuppression therapy. We previously reported that combination therapy using a liposomal ligand for invariant natural killer T cells, RGI-2001, and anti-CD154 antibody established mixed hematopoietic chimerism for the induction of donor-specific immunotolerance. This study investigated whether the protocol could promote islet allograft acceptance in experimental diabetes. METHODS Streptozotocin-induced diabetic BALB/c mice were transplanted with bone marrow cells from C57BL/6 donors and received combination therapy of RGI-2001 and anti-CD154 antibody after 3-Gy total body irradiation. 3 Weeks after bone marrow transplantation, islets isolated from C57BL/6 donors were transplanted under the kidney capsule. RESULTS Mixed chimerism was established in diabetic mice receiving the tolerance induction protocol. After islet transplantation, blood glucose levels improved and normoglycemia persisted for over 100 days. Hyperglycemia recurred after islet grafts were removed. Histopathological examinations showed insulin-positive staining and absence of cellular infiltration in the islet grafts. T cells of recipients showed donor-specific hyporesponsiveness, and anti-donor antibodies were not detected. CONCLUSIONS The tolerance induction protocol with combination therapy of RGI-2001 and anti-CD154 antibody promoted islet allograft acceptance in a mouse diabetic model. This protocol may be clinically applied to islet transplantation for type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Taichi Kanzawa
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Haruki Katsumata
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masako Ikemiyagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Vaccine Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), Yokohama, Japan
- REGiMMUNE Corporation, Tokyo, Japan
| | - Kan Saiga
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
- Department of Urology, Jyoban Hospital of Tokiwa Foundation, Fukushima, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Ying W, Lee YS, Dong Y, Seidman JS, Yang M, Isaac R, Seo JB, Yang BH, Wollam J, Riopel M, McNelis J, Glass CK, Olefsky JM, Fu W. Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting β Cell Proliferation and Function in Obesity. Cell Metab 2019; 29:457-474.e5. [PMID: 30595478 PMCID: PMC6701710 DOI: 10.1016/j.cmet.2018.12.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The nature of obesity-associated islet inflammation and its impact on β cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating β cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages. We identify two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties. Obesity induces the local expansion of resident intra-islet macrophages, independent of recruitment from circulating monocytes. Functionally, intra-islet macrophages impair β cell function in a cell-cell contact-dependent manner. Increased engulfment of β cell insulin secretory granules by intra-islet macrophages in obese mice may contribute to restricting insulin secretion. In contrast, both intra- and peri-islet macrophage populations from obese mice promote β cell proliferation in a PDGFR signaling-dependent manner. Together, these data define distinct roles and mechanisms for islet macrophages in the regulation of islet β cells.
Collapse
Affiliation(s)
- Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yi Dong
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jason S Seidman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Meixiang Yang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joshua Wollam
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joanne McNelis
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Desmoulins L, Chrétien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, Liénard F, Quinault A, Grall S, Allard C, Fenech C, Carneiro L, Mouillot T, Fournel A, Knauf C, Magnan C, Fioramonti X, Pénicaud L, Leloup C. Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab 2019; 20:166-177. [PMID: 30553770 PMCID: PMC6358535 DOI: 10.1016/j.molmet.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
Collapse
Affiliation(s)
- Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Stephan Collins
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Céline Cruciani-Guglielmacci
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France.
| | - Anne Galinier
- STROMALab, UMR CNRS 5273, EFS Pyrénées-Méditerranée, Université Paul Sabatier, Toulouse, France.
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Aurore Quinault
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service d'Hépato-Gastroentérologie, hôpital du Bocage, Dijon, France.
| | - Audren Fournel
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, INSERM U1220, Université Paul Sabatier, Toulouse, France.
| | - Christophe Magnan
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France.
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; UMR 1286, NutriNeuro, INRA, Université de Bordeaux, Bordeaux INP, Bordeaux, France.
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS 6265, INRA 1324, AgroSup, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
18
|
Lee HA, Lee E, Do GY, Moon EK, Quan FS, Kim I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed Pharmacother 2018; 109:921-929. [PMID: 30551546 DOI: 10.1016/j.biopha.2018.10.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition of histone deacetylase (HDAC) suppresses inflammation of pancreatic islets and apoptosis of β-cells. However, the underlying molecular mechanism is unclear. In the present study, we demonstrate that MGCD0103 (MGCD), an HDAC inhibitor, protects the pancreas from streptozotocin (STZ)-induced oxidative stress and cell death. Sprague-Dawley rats were intraperitoneally injected with STZ (40 mg/kg) to induce type I diabetes. MGCD (10 μg/day) was infused with osmotic mini-pump for 4 weeks. Pancreatic insulin and macrophage infiltration were analyzed by immunohistochemistry. Cellular level of reactive oxygen species (ROS) was evaluated with fluorescence-activated cell sorting. Tetramethylrhodamine ethyl ester was used to analyze mitochondrial membrane potential. Activation of caspase-3 was analyzed by western blotting. Chromatin immunoprecipitation was performed to investigate the binding affinity of specificity protein 1 (SP1) on the promoters of target genes. mRNA expression was analyzed by quantitative real-time polymerase chain reaction. As a result, we found that MGCD infusion ameliorated STZ-induced hyperglycemia, islet deformation, decreased insulin level, and macrophage infiltration. STZ injection promoted the production of ROS, which induced caspase activity and β-cell death. 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL), a mimetic of superoxide dismutase (SOD), reduced STZ-induced caspase activity and β-cell death. MGCD treatment increased SOD expression and histone acetylation level on promoters. Infusion of MGCD promoted acetylation of SP1 and its enrichment on SOD promoters. Thus, MGCD protects pancreatic β-cells from STZ-induced oxidative stress and cell death through the induction of antioxidant enzymes such as SODs.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunjo Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ga Young Do
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
19
|
Al Jobori H, Daniele G, Adams J, Cersosimo E, Solis-Herrera C, Triplitt C, DeFronzo RA, Abdul-Ghani M. Empagliflozin Treatment Is Associated With Improved β-Cell Function in Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2018; 103:1402-1407. [PMID: 29342295 PMCID: PMC7328850 DOI: 10.1210/jc.2017-01838] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine whether lowering plasma glucose concentration with the sodium-glucose transporter-2 inhibitor empagliflozin improves β-cell function in patients with type 2 diabetes mellitus (T2DM). METHODS Patients with T2DM (N = 15) received empagliflozin (25 mg/d) for 2 weeks. β-Cell function was measured with a nine-step hyperglycemic clamp (each step, 40 mg/dL) before and at 48 hours and at 14 days after initiating empagliflozin. RESULTS Glucosuria was recorded on days 1 and 14 [mean ± standard error of the mean (SEM), 101 ± 10 g and 117 ± 11 g, respectively] after initiating empagliflozin, as were reductions in fasting plasma glucose levels (25 ± 6 mg/dL and 38 ± 8 mg/dL, respectively; both P < 0.05). After initiating empagliflozin and during the stepped hyperglycemic clamp, the incremental area under the plasma C-peptide concentration curve increased by 48% ± 12% at 48 hours and 61% ± 10% at 14 days (both P < 0.01); glucose infusion rate increased by 15% on day 3 and 16% on day 14, compared with baseline (both P < 0.05); and β-cell function, measured with the insulin secretion/insulin resistance index, increased by 73% ± 21% at 48 hours and 112% ± 20% at 14 days (both P < 0.01). β-cell glucose sensitivity during the hyperglycemic clamp was enhanced by 42% at 14 hours and 54% at 14 days after initiating empagliflozin (both P < 0.01). CONCLUSION Lowering the plasma glucose concentration with empagliflozin in patients with T2DM augmented β-cell glucose sensitivity and improved β-cell function.
Collapse
Affiliation(s)
- Hussein Al Jobori
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Giuseppe Daniele
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - John Adams
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eugenio Cersosimo
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Carolina Solis-Herrera
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Curtis Triplitt
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ralph A DeFronzo
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Correspondence and Reprint Requests: Ralph A. DeFronzo, MD, Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229. E-mail:
| | - Muhammad Abdul-Ghani
- Texas Diabetes Institute and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
20
|
Kim SY, Lee JH, Merrins MJ, Gavrilova O, Bisteau X, Kaldis P, Satin LS, Rane SG. Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes. J Biol Chem 2017; 292:3841-3853. [PMID: 28100774 DOI: 10.1074/jbc.m116.754077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
The failure of pancreatic islet β-cells is a major contributor to the etiology of type 2 diabetes. β-Cell dysfunction and declining β-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary β-cell dysfunction to the progressive deterioration of β-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in β-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in β-cell proliferation, reduced β-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in β-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary β-cell dysfunction to progressive β-cell mass deterioration in diabetes.
Collapse
Affiliation(s)
- So Yoon Kim
- From the Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity Branch and
| | - Ji-Hyeon Lee
- From the Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity Branch and
| | - Matthew J Merrins
- the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin, Madison, Wisconsin 53705
| | - Oksana Gavrilova
- the Mouse Metabolism Core Laboratory, NIDDK, National Institutes of Health, Clinical Research Center, Bethesda, Maryland 20892
| | - Xavier Bisteau
- the Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Singapore
| | - Philipp Kaldis
- the Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Singapore.,the Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore, and
| | - Leslie S Satin
- the Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Sushil G Rane
- From the Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity Branch and
| |
Collapse
|
21
|
Erickson RI, Schutt LK, Tarrant JM, McDowell M, Liu L, Johnson AR, Lewin-Koh SC, Hedehus M, Ross J, Carano RAD, Staflin K, Zhong F, Crawford JJ, Zhong S, Reif K, Katewa A, Wong H, Young WB, Dambach DM, Misner DL. Bruton’s Tyrosine Kinase Small Molecule Inhibitors Induce a Distinct Pancreatic Toxicity in Rats. J Pharmacol Exp Ther 2016; 360:226-238. [DOI: 10.1124/jpet.116.236224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
|
22
|
Phanse MA, Patil MJ, Abbulu K. Synthesis, characterization and evaluation of the suppression of insulin resistance in Type-II diabetes mellitus animals by treatment with metal complex. Saudi J Biol Sci 2016; 23:420-5. [PMID: 27081369 PMCID: PMC4818326 DOI: 10.1016/j.sjbs.2015.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/05/2022] Open
Abstract
The present study is characterized toward thespesone isolation from Thespesia populnea (Malvaceae). Subsequently it was modified and characterized to study its effect on diabetes related symptoms. The complex is administered to diabetes induced mice with the doses of 5, 10 and 20 mg/kg, p.o. and the effect of complex on the level of body weight, lipid profile and blood glucose was studied after 22 days. The results have indicated that diabetic mice show a significant (p < 0.01) decrease in the level of serum triglyceride, plasma glucose and increase in body weight. Hence the present investigation reveals that newly synthesized complex is useful in the management of Type-II diabetes mellitus because of its ability to reduce insulin resistance.
Collapse
Affiliation(s)
- Mohini A. Phanse
- Modern College of Pharmacy, Nigdi, Pune, India
- Jawaharlal Nehru Technological University, Hyderabad, A.P., India
| | | | - Konde Abbulu
- Mallareddy Institute of Pharmaceutical Sciences, Hyderabad, India
| |
Collapse
|
23
|
Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, Marselli L, Suleiman M, Ratner LE, Marchetti P, Accili D. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101:1044-54. [PMID: 26713822 PMCID: PMC4803182 DOI: 10.1210/jc.2015-2860] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. OBJECTIVE To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. DESIGN We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. RESULTS By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. CONCLUSIONS The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Collapse
Affiliation(s)
- Francesca Cinti
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Ryotaro Bouchi
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Ja Young Kim-Muller
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Yoshiaki Ohmura
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - P R Sandoval
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Matilde Masini
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Lorella Marselli
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Mara Suleiman
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Lloyd E Ratner
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Piero Marchetti
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Domenico Accili
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
24
|
3-D imaging of islets in obesity: formation of the islet-duct complex and neurovascular remodeling in young hyperphagic mice. Int J Obes (Lond) 2015; 40:685-97. [PMID: 26499436 DOI: 10.1038/ijo.2015.224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 10/10/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Obesity and insulin resistance lead to islet hyperplasia. However, how the islet remodeling influences the pancreatic environment and the associated neurovascular networks is largely unknown. The lack of information is primarily due to the difficulty of global visualization of the hyperplasic islet (>200 μm) and the neurovascular environment with high definition. METHODS We modulated the pancreatic optical property to achieve 3-dimensional (3-D) whole-islet histology and to integrate transmitted light microscopy (which provides the ground-truth tissue information) with confocal fluorescence imaging. The new optical and imaging conditions were used to globally examine the hyperplastic islets of the young (2 months) obese db/db and ob/ob mice, which otherwise cannot be easily portrayed by the standard microtome-based histology. The voxel-based islet micrographs were digitally processed for stereo projection and qualitative and quantitative analyses of the islet tissue networks. RESULTS Paired staining and imaging of the pancreatic islets, ducts and neurovascular networks reveal the unexpected formation of the 'neuro-insular-ductal complex' in the young obese mice. The complex consists of the peri- and/or intra-islet ducts and prominent peri-ductal sympathetic nerves; the latter contributes to a marked increase in islet sympathetic innervation. In vascular characterization, we identify a decreased perivascular density of the ob/ob islet pericytes, which adapt to ensheathing the dilated microvessels with hypertrophic processes. CONCLUSIONS Modulation of pancreatic optical property enables 3-D panoramic examination of islets in the young hyperphagic mice to reveal the formation of the islet-duct complex and neurovascular remodeling. On the basis of the morphological proximity of the remodeled tissue networks, we propose a reactive islet microenvironment consisting of the endocrine cells, ductal epithelium and neurovascular tissues in response to the metabolic challenge that is experienced early in life.
Collapse
|
25
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Fatmawati S, Ersam T, Shimizu K. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:49-51. [PMID: 25636870 DOI: 10.1016/j.phymed.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/24/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM.
Collapse
Affiliation(s)
- Sri Fatmawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Kampus ITS-Sukolilo, Surabaya 60111, Indonesia.
| | - Taslim Ersam
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Kampus ITS-Sukolilo, Surabaya 60111, Indonesia
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
27
|
Kim-Muller JY, Zhao S, Srivastava S, Mugabo Y, Noh HL, Kim YR, Madiraju SRM, Ferrante AW, Skolnik EY, Prentki M, Accili D. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metab 2014; 20:593-602. [PMID: 25264246 PMCID: PMC4192072 DOI: 10.1016/j.cmet.2014.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/25/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022]
Abstract
Pancreatic β cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of β cell mass. It's unclear how one begets the other. We have shown that loss of β cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature β cells results in early-onset, maturity-onset diabetes of the young (MODY)-like diabetes, with abnormalities of the MODY networks Hnf4α, Hnf1α, and Pdx1. FoxO-deficient β cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as an energy source. This results in impaired ATP generation and reduced Ca(2+)-dependent insulin secretion. The present findings demonstrate a secretory defect caused by impaired FoxO activity that antedates dedifferentiation. We propose that defects in both pancreatic β cell function and mass arise through FoxO-dependent mechanisms during diabetes progression.
Collapse
Affiliation(s)
- Ja Young Kim-Muller
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Shangang Zhao
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Shekhar Srivastava
- Division of Nephrology, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Yves Mugabo
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hye-Lim Noh
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - YoungJung R Kim
- Department of Genetics and Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - S R Murthy Madiraju
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Anthony W Ferrante
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Edward Y Skolnik
- Division of Nephrology, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
28
|
Tang N, Matsuzaka T, Suzuki M, Nakano Y, Zao H, Yokoo T, Suzuki-Kemuriyama N, Kuba M, Okajima Y, Takeuchi Y, Kobayashi K, Iwasaki H, Yatoh S, Takahashi A, Suzuki H, Sone H, Shimada M, Nakagawa Y, Yahagi N, Yamada N, Shimano H. Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion. Biochem Biophys Res Commun 2014; 450:318-23. [PMID: 24938128 DOI: 10.1016/j.bbrc.2014.05.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6(-/-) mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6(-/-) mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6(-/-) islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.
Collapse
Affiliation(s)
- Nie Tang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Marii Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Nakano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hui Zao
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomotaka Yokoo
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama 350-1241, Japan
| | - Noriko Suzuki-Kemuriyama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Motoko Kuba
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuka Okajima
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akimitsu Takahashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata, Niigata 951-8510, Japan
| | - Masako Shimada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
29
|
Kikawa K, Sakano D, Shiraki N, Tsuyama T, Kume K, Endo F, Kume S. Beneficial effect of insulin treatment on islet transplantation outcomes in Akita mice. PLoS One 2014; 9:e95451. [PMID: 24743240 PMCID: PMC3990632 DOI: 10.1371/journal.pone.0095451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/27/2014] [Indexed: 12/18/2022] Open
Abstract
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.
Collapse
Affiliation(s)
- Kazuhide Kikawa
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Daisuke Sakano
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tomonori Tsuyama
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science; Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Chuo-ku, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov 2014; 13:278-89. [PMID: 24525781 DOI: 10.1038/nrd4231] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes is a leading cause of morbidity and mortality worldwide, and predicted to affect over 500 million people by 2030. However, this growing burden of disease has not been met with a comparable expansion in therapeutic options. The appreciation of the pancreatic β-cell as a central player in the pathogenesis of both type 1 and type 2 diabetes has renewed focus on ways to improve glucose homeostasis by preserving, expanding and improving the function of this key cell type. Here, we provide an overview of the latest developments in this field, with an emphasis on the most promising strategies identified to date for treating diabetes by targeting the β-cell.
Collapse
Affiliation(s)
- Amedeo Vetere
- Chemical Biology Program, Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Amit Choudhary
- 1] Chemical Biology Program, Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. [2] Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sean M Burns
- Medical & Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Bridget K Wagner
- Chemical Biology Program, Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
31
|
Dai C, Brissova M, Reinert RB, Nyman L, Liu EH, Thompson C, Shostak A, Shiota M, Takahashi T, Powers AC. Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes 2013; 62:4144-53. [PMID: 23630302 PMCID: PMC3837044 DOI: 10.2337/db12-1657] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic islets adapt to insulin resistance through a complex set of changes, including β-cell hyperplasia and hypertrophy. To determine if islet vascularization changes in response to insulin resistance, we investigated three independent models of insulin resistance: ob/ob, GLUT4(+/-), and mice with high-fat diet-induced obesity. Intravital blood vessel labeling and immunocytochemistry revealed a vascular plasticity in which islet vessel area was significantly increased, but intraislet vessel density was decreased as the result of insulin resistance. These vascular changes were independent of islet size and were only observed within the β-cell core but not in the islet periphery. Intraislet endothelial cell fenestration, proliferation, and islet angiogenic factor/receptor expression were unchanged in insulin-resistant compared with control mice, indicating that islet capillary expansion is mediated by dilation of preexisting vessels and not by angiogenesis. We propose that the islet capillary dilation is modulated by endothelial nitric oxide synthase via complementary signals derived from β-cells, parasympathetic nerves, and increased islet blood flow. These compensatory changes in islet vascularization may influence whether β-cells can adequately respond to insulin resistance and prevent the development of diabetes.
Collapse
Affiliation(s)
- Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel B. Reinert
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lara Nyman
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric H. Liu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Courtney Thompson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Corresponding author: Alvin C. Powers,
| |
Collapse
|
32
|
Ruz M, Carrasco F, Rojas P, Codoceo J, Inostroza J, Basfi-fer K, Valencia A, Vásquez K, Galgani J, Pérez A, López G, Arredondo M, Perez-Bravo F. Zinc as a potential coadjuvant in therapy for type 2 diabetes. Food Nutr Bull 2013; 34:215-21. [PMID: 23964394 DOI: 10.1177/156482651303400210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Type 2 diabetes is highly prevalent in populations having high rates of overweight and obesity. It is a chronic condition responsible for long-term severe dysfunction of several organs, including the kidneys, heart, blood vessels, and eyes. Although there are a number of pharmacologic products in the market to treat insulin resistance and impaired insulin secretion--the most prominent features of this disease--interventions directed at preserving the integrity and function of beta-cells in the long term are less available. The use of some nutrients with important cellular protective roles that may lead to a preservation of beta-cells has not been fully tested; among these, zinc may be an interesting candidate. OBJECTIVE To assess the potential of zinc supplementation as coadjuvant to diabetes therapy. METHODS This article reviews the available information on the use of zinc as part of diabetes therapy. RESULTS Cellular and animal models provide information on the insulin mimetic action of zinc, as well as its role as a regulator of oxidative stress, inflammation, apoptosis, and insulin secretion. Zinc supplementation studies in humans are limited, although some positive effects have been reported; mainly, a modest but significant reduction in fasting glucose and a trend to decreased glycated hemoglobin (HbA1c). CONCLUSIONS Zinc supplementation may have beneficial effects on glycemic control. Nevertheless, among the studies considered, the vast majority lasted for 6 months or less, suggesting the importance of conducting long-duration studies given the characteristics of type 2 diabetes as a chronic disease.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Correo 7, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kaiser G, Gerst F, Michael D, Berchtold S, Friedrich B, Strutz-Seebohm N, Lang F, Häring HU, Ullrich S. Regulation of forkhead box O1 (FOXO1) by protein kinase B and glucocorticoids: different mechanisms of induction of beta cell death in vitro. Diabetologia 2013; 56:1587-95. [PMID: 23435785 DOI: 10.1007/s00125-013-2863-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS In steroid diabetes insulin secretion does not adequately compensate for enhanced hepatic gluconeogenesis and peripheral insulin resistance. Previous studies suggest that activation of the transcription factor forkhead box O1 (FOXO1) contributes to glucocorticoid-induced beta cell death. This study examines the role and regulation of FOXO1 in insulin-secreting cells. METHODS INS-1E cells and mouse islet cells were cultured in the presence of dexamethasone. Signalling pathways were modified pharmacologically or by small interfering (si)RNA-mediated inhibition of protein synthesis. Changes in protein abundance and phosphorylation were analysed by western blotting, and subcellular localisation was assessed using confocal microscopy. Transcript levels were examined by RT-PCR. RESULTS Surprisingly, downregulation of FOXO1 by siRNA did not affect dexamethasone-induced apoptosis or Bim expression, but it prevented the effects of the pan protein kinase B (AKT) inhibitor (Akti-1/2). Indeed, dexamethasone and Akti-1/2 synergistically increased beta cell death and Bim expression. Akti-1/2 triggered dephosphorylation and nuclear translocation of FOXO1. Glucocorticoid-receptor activation stimulated Foxo1 transcription, but FOXO1 phosphorylation was unchanged and the cytosolic concentration of FOXO1 remained high in relation to its nuclear concentration. However, subcellular fractionation revealed a significant increase in both cytosolic and nuclear FOXO1 compared with untreated cells. Dexamethasone diminished Pdx1 mRNA level, an effect which was not reversed by siRNA against Foxo1. Downregulation of AKT isoforms and serum/glucocorticoid-regulated kinase 1 (SGK1) suggests that only sustained suppression of all three AKT isoforms caused dephosphorylation and nuclear accumulation of FOXO1. CONCLUSIONS/INTERPRETATION This study reveals that FOXO1 is not the main mediator of glucocorticoid-receptor-induced beta cell apoptosis, but rather that it escalates beta cell death when AKT activity is inhibited by distinct pathways.
Collapse
Affiliation(s)
- G Kaiser
- Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University of Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cui J, Li YW, Jia N, Song XM, Duan JL, Weng Y, Guan Y, Zhou D, Wang L, Xi MM, Wen AD. Insulin-secretagogue activity of eleven plant extracts and twelve pure compounds isolated from Aralia taibaiensis. Life Sci 2013. [DOI: 10.1016/j.lfs.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Abstract
Sirtuin 1 (SIRT1) is the most conserved mammalian NAD(+)-dependent protein deacetylase that has emerged as a key metabolic sensor in various metabolic tissues. In response to different environmental stimuli, SIRT1 directly links the cellular metabolic status to the chromatin structure and the regulation of gene expression, thereby modulating a variety of cellular processes such as energy metabolism and stress response. Recent studies have shown that SIRT1 controls both glucose and lipid metabolism in the liver, promotes fat mobilization and stimulates brown remodeling of the white fat in white adipose tissue, controls insulin secretion in the pancreas, senses nutrient availability in the hypothalamus, influences obesity-induced inflammation in macrophages, and modulates the activity of circadian clock in metabolic tissues. This review focuses on the role of SIRT1 in regulating energy metabolism at different metabolic tissues.
Collapse
Affiliation(s)
- Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
36
|
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012; 150:1223-34. [PMID: 22980982 DOI: 10.1016/j.cell.2012.07.029] [Citation(s) in RCA: 1065] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 03/20/2012] [Accepted: 07/06/2012] [Indexed: 12/12/2022]
Abstract
Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication.
Collapse
Affiliation(s)
- Chutima Talchai
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
37
|
Banasik JL, Walker MK, Randall JM, Netjes RB, Foutz MS. Low-calorie diet induced weight loss may alter regulatory hormones and contribute to rebound visceral adiposity in obese persons with a family history of type-2 diabetes. J Am Assoc Nurse Pract 2012; 25:440-448. [PMID: 24170641 DOI: 10.1111/j.1745-7599.2012.00808.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To examine potential detrimental long-term effects of acute diet-induced weight loss on visceral adiposity, insulin resistance, cortisol, and adipokines in obese individuals at risk for type-2 diabetes. DATA SOURCES Anthropometric measures (height, weight, waist circumference), self-report instruments, abdominal computed tomography (CT) scan, and blood samples (glucose, insulin, interleukin-6, leptin, adiponectin) were obtained from a convenience sample of 20 participants at baseline, after a 28-day low-calorie diet (800 kcal/day) intervention, and again 6 months later. CONCLUSIONS Fifteen of 20 participants completed the 28-day diet intervention and had a mean weight loss of 15 pounds. Comparison between baseline, postdiet, and 6-month data, demonstrated that although participants had significant improvements after the diet, they regained fat mass, particularly in the visceral area. IMPLICATIONS FOR PRACTICE Clinicians may need to revise recommendations for using low-calorie diets to achieve weight loss. Diet-induced weight cycling may contribute to dysregulation of metabolism and have long-term detrimental consequences for accumulation of visceral adipose tissue. The likelihood of success is low, with high dropout rates, and those patients who achieve weight loss are very likely to regain it. Thus, the perceived short-term benefits of calorie-restricted diets in this population likely do not outweigh the potential long-term detrimental effects.
Collapse
Affiliation(s)
- Jacquelyn L Banasik
- (Associate Professor), (Family Nurse Practitioner), College of Nursing, Washington State University, Spokane, Washington (Family Nurse Practitioner), Inland Imaging, Spokane, Washington (Family Nurse Practitioner), Veteran's Administration, Spokane, Washington (Family Nurse Practitioner), Cancer Care Northwest, Spokane, Washington
| | | | | | | | | |
Collapse
|
38
|
Omar B, Pacini G, Ahrén B. Differential development of glucose intolerance and pancreatic islet adaptation in multiple diet induced obesity models. Nutrients 2012. [PMID: 23201760 PMCID: PMC3497000 DOI: 10.3390/nu4101367] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: The C57BL/6 mouse fed a high fat diet is a common and valuable model in experimental studies of obesity and type 2 diabetes (T2D). Different high fat diets are used and in order to determine which diet produces a model most accurately resembling human T2D, they need to be compared head-to-head. Methods: Four different diets, the 60% high fat diet (HFD) and the 58% high fat-high sucrose Surwit diet (HFHS) and their respective controls, were compared in C57BL/6J mice using glucose tolerance tests (IVGTT) and the euglycemic clamp. Results: Mice fed a HFD gained more weight than HFHS fed mice despite having similar energy intake. Both high fat diet models were glucose intolerant after eight weeks. Mice fed the HFD had elevated basal insulin, which was not seen in the HFHS group. The acute insulin response (AIR) was unchanged in the HFD group, but slightly increased in the HFHS diet group. The HFHS diet group had a threefold greater total insulin secretion during the IVGTT compared to its control, while no differences were seen in the HFD group. Insulin sensitivity was decreased fourfold in the HFD group, but not in the HFHS diet group. Conclusion: The HFD and HFHS diet models show differential effects on the development of insulin resistance and beta cell adaptation. These discrepancies are important to acknowledge in order to select the appropriate diet for specific studies.
Collapse
Affiliation(s)
- Bilal Omar
- Department of Clinical Sciences, Medicine, Lund University, SE221 84, Lund, Sweden; .
- Author to whom correspondence should be addressed; ; Tel.: +46-46222-0760; Fax: +46-46222-4022
| | - Giovanni Pacini
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, 35127, Padova, Italy;
| | - Bo Ahrén
- Department of Clinical Sciences, Medicine, Lund University, SE221 84, Lund, Sweden; .
| |
Collapse
|
39
|
Importance of β-Catenin in glucose and energy homeostasis. Sci Rep 2012; 2:693. [PMID: 23012647 PMCID: PMC3457035 DOI: 10.1038/srep00693] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/24/2012] [Indexed: 01/28/2023] Open
Abstract
In settings of increased insulin demand, failure to expand pancreatic β-cells mass leads to diabetes. Genome-wide scans of diabetic populations have uncovered several genes associated with susceptibility to type 2 diabetes and a number of them are part of the Wnt signaling. β-Catenin, a Wnt downstream effector participates in pancreatic development, however, little is known about its action in mature β-cells. Deletion of β-Catenin in Pdx1 pancreatic progenitors leads to a decreased β-cell mass and impaired glucose tolerance. Surprisingly, loss of β-catenin made these mice resistant to high fat diet because of their increased energy expenditure and insulin sensitivity due to hyperactivity. The complexity of this phenotype was also explained in part by ectopic expression of Cre recombinase in the hypothalamus. Our data implicates β-Catenin in the regulation of metabolism and energy homeostasis and suggest that Wnt signaling modulates the susceptibility to diabetes by acting on different tissues.
Collapse
|
40
|
Tan C, Voss U, Svensson S, Erlinge D, Olde B. High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y(13) receptor. Purinergic Signal 2012; 9:67-79. [PMID: 22941026 DOI: 10.1007/s11302-012-9331-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022] Open
Abstract
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y(13)-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y(13) receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y(13) plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y(13) receptors, contribute to glucolipotoxicity.
Collapse
Affiliation(s)
- Chanyuan Tan
- Department of Cardiology, Lund University, 22185, Lund, Sweden
| | | | | | | | | |
Collapse
|
41
|
Pound LD, Sarkar SA, Ustione A, Dadi PK, Shadoan MK, Lee CE, Walters JA, Shiota M, McGuinness OP, Jacobson DA, Piston DW, Hutton JC, Powell DR, O’Brien RM. The physiological effects of deleting the mouse SLC30A8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 2012; 7:e40972. [PMID: 22829903 PMCID: PMC3400647 DOI: 10.1371/journal.pone.0040972] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Objective The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes. Methods The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background. Results Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance. Conclusions Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology.
Collapse
Affiliation(s)
- Lynley D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Suparna A. Sarkar
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Melanie K. Shadoan
- Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, United States of America
| | - Catherine E. Lee
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Jay A. Walters
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - David W. Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - John C. Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - David R. Powell
- Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, United States of America
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
42
|
George LA, Zhang L, Tuersunjiang N, Ma Y, Long NM, Uthlaut AB, Smith DT, Nathanielsz PW, Ford SP. Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am J Physiol Regul Integr Comp Physiol 2012; 302:R795-804. [PMID: 22277936 DOI: 10.1152/ajpregu.00241.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin resistance and obesity are components of the metabolic syndrome that includes development of cardiovascular disease and diabetes with advancing age. The thrifty phenotype hypothesis suggests that offspring of poorly nourished mothers are predisposed to the various components of the metabolic syndrome due to adaptations made during fetal development. We assessed the effects of maternal nutrient restriction in early gestation on feeding behavior, insulin and glucose dynamics, body composition, and liver function in aged female offspring of ewes fed either a nutrient-restricted [NR 50% National Research Council (NRC) recommendations] or control (C: 100% NRC) diet from 28 to 78 days of gestation, after which both groups were fed at 100% of NRC from day 79 to lambing and through lactation. Female lambs born to NR and C dams were reared as a single group from weaning, and thereafter, they were fed 100% NRC recommendations until assigned to this study at 6 yr of age. These female offspring were evaluated by a frequently sampled intravenous glucose tolerance test, followed by dual-energy X-ray absorptiometry for body composition analysis prior to and after ad libitum feeding of a highly palatable pelleted diet for 11 wk with automated monitoring of feed intake (GrowSafe Systems). Aged female offspring born to NR ewes demonstrated greater and more rapid feed intake, greater body weight gain, and efficiency of gain, lower insulin sensitivity, higher insulin secretion, and greater hepatic lipid and glycogen content than offspring from C ewes. These data confirm an increased metabolic "thriftiness" of offspring born to NR mothers, which continues into advanced age, possibly predisposing these offspring to metabolic disease.
Collapse
Affiliation(s)
- Lindsey A George
- Center for the Study of Fetal Programming, Dept. of Animal Science, Univ. of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Keller AC, Ma J, Kavalier A, He K, Brillantes AMB, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 19:32-7. [PMID: 22133295 PMCID: PMC3389550 DOI: 10.1016/j.phymed.2011.06.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 05/01/2011] [Accepted: 06/22/2011] [Indexed: 05/12/2023]
Abstract
The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p=0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay.
Collapse
Affiliation(s)
- Amy C. Keller
- Lehman College and The Graduate Center, City University of New York, Bronx, NY 10468
| | - Jun Ma
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | - Adam Kavalier
- Lehman College and The Graduate Center, City University of New York, Bronx, NY 10468
| | - Kan He
- Naturex, Inc., South Hackensack, NJ 07606
| | | | - Edward J. Kennelly
- Corresponding author: Edward J. Kennelly, phone: 718-960-1105, fax: 718-960-8236,
| |
Collapse
|
44
|
Morgan NG, Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids 2010; 82:231-6. [PMID: 20206490 DOI: 10.1016/j.plefa.2010.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is widely accepted that, in type 2 diabetes, elevated levels of free fatty acids and glucose contribute to a state of glucolipotoxicity in which beta-cell function declines and, ultimately, cell viability is compromised. This suggests that beta-cells do not readily tolerate chronic elevations in fatty acid levels. In vitro studies suggest, however, that beta-cells respond differentially to long chain fatty acids, such that saturated species are lipotoxic whereas long chain mono-unsaturated fatty acids can provide cytoprotection. This difference does not appear to be mediated by a mutual metabolic antagonism between saturated and unsaturated species (although differential alterations in neutral lipid disposition may occur in response to these fatty acids) and the mechanisms remain unclear. This review summaries the current understanding of the actions of mono-unsaturated fatty acids in beta-cells and highlights areas of controversy as well as key unresolved issues which require to be addressed.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical & Clinical Science, Peninsula Medical School (University of Exeter), Plymouth, UK.
| | | |
Collapse
|