1
|
Zhang F, Liu YX, Zhu YY, Yu QY, Msigwa SS, Zeng ZH, Zhang X, Wu HM, Zhu JH. Epidemiologic Risk and Prevention and Interventions in Parkinson Disease: From a Nutrition-Based Perspective. J Nutr 2025; 155:1019-1030. [PMID: 39900185 DOI: 10.1016/j.tjnut.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Parkinson disease (PD) is a prevalent neurodegenerative disorder associated with aging. Current treatments for PD primarily focus on alleviating symptoms rather than altering the progression of the disease. The sporadic form of PD, which accounts for most cases, is thought to arise from a complex interaction between genetic predispositions and environmental factors. This review aimed to examine epidemiologic evidence regarding nutrition-related exposure factors and their associations with risk of developing PD. We proposed a tentative conclusion for each factor based on the available evidence. These associations may vary by gender and depend on dietary intake patterns and adherence. We also reviewed clinical trials on nutrition-related interventions for PD symptoms and progression. Future clinical trials may benefit from combining nutrition factors in intervention and testing within single-gender cohorts or subgroups defined by epidemiologic outcomes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Xian Liu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Yue Zhu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiu-Yan Yu
- Department of Epidemiology and Statistics, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Samwel Sylvester Msigwa
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi-Hai Zeng
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhao J, Peng Y, Lin Z, Gong Y. Association between Mediterranean diet adherence and Parkinson's disease: a systematic review and meta-analysis. J Nutr Health Aging 2025; 29:100451. [PMID: 39693849 DOI: 10.1016/j.jnha.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Parkinson's disease (PD) is a chronic neurodegenerative disorder, and past research suggests that adherence to the Mediterranean diet (MD) may influence the risk of PD. However, there are varying conclusions among different studies regarding the correlation between long-term adherence to the MD and the occurrence of PD. This meta-analysis aimed to investigate the association between MD adherence and PD incidence. METHODS This meta-analysis was registered on PROSPERO (CRD42024520410). We searched PubMed, Embase, Web of Science, and Cochrane databases to identify observational studies, including prospective cohorts, case-control, and cross-sectional studies, up to February 2024. Studies reported on MD adherence were included, with MD adherence categorized through a quantifying score or index. The pool odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for the highest versus the lowest categories of MD score in relation to PD risk, using random-effects models. Additionally, bias assessment, heterogeneity assessment, sensitivity analysis, and subgroup analysis were performed. A total of 12 studies were included in the meta-analysis. RESULTS The overall effect size of PD risk was as follows: compared to the lowest adherence to the MD, the highest adherence to MD showed a significant negative correlation with the incidence of PD, with an overall OR of 0.75 (95% CI: 0.66, 0.84). Specifically, in studies diagnosing PD, the overall OR was 0.83 (95% CI: 0.74, 0.94), while in studies diagnosing prodromal Parkinson's disease (pPD), the overall OR was 0.67 (95%CI: 0.59, 0.76). For individuals aged <60 years, the overall OR was 0.70 (95%CI: 0.62, 0.78), whereas, for those aged ≥60 years, the overall OR was 0.86 (95%CI: 0.74, 0.99). CONCLUSIONS The evidence from this meta-analysis demonstrates a significant negative correlation between adherence to MD patterns and the risk of PD, suggesting that the MD may serve as a protective factor for PD. This dietary pattern may be particularly beneficial in reducing the risk of pPD.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue West, Chengdu, Sichuan Province, China
| | - Yuan Peng
- Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, No. 1 Panfu Road, Guangzhou, Guangdong Province, China
| | - Zhenfang Lin
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, No. 81, Bayi Road, Yongning Street, Chengdu, Sichuan Province, China
| | - Yulai Gong
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, No. 81, Bayi Road, Yongning Street, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Su Y, Hao Y, Dong W, Qiu R, Zhang Y. Association between wide-ranging food intake and Parkinson's disease: a comprehensive mendelian randomization study. Sci Rep 2025; 15:2374. [PMID: 39827216 PMCID: PMC11742879 DOI: 10.1038/s41598-025-85668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by both genetic and environmental factors, including dietary habits. Despite considerable research, the relationship between food intake and PD risk remains poorly understood. Here, we conducted a comprehensive Mendelian randomization analysis to investigate the association between a wide spectrum of food intake and PD risk. Utilizing data from large-scale genome-wide association studies (GWAS) and dietary databases, we constructed genetic instruments for various dietary factors, including fruit, vegetable, meat, fish, dairy, and grain intake, among others, totaling 170 different food items. Using multivariable inverse variance weighted methods, we found a causal relationship between Mozzarella intake and Parkinson's disease (odds ratio [OR] = 9.83, 95% confidence interval [CI] = 2.52-38.34, P-value < 0.05). Additionally, a causal relationship was observed between Pancake intake and Parkinson's disease (odds ratio [OR] = 0.20, 95% confidence interval [CI] = 0.07-0.59, P-value < 0.05). Furthermore, our reverse Mendelian randomization analysis and multivariable Mendelian randomization analysis provided further support for these findings. To our knowledge, we are the first to investigate the causal relationship between the broad intake of 170 different food items and Parkinson's disease. Our study reveals the causal relationships between Pancake intake, and Mozzarella intake with Parkinson's disease.
Collapse
Affiliation(s)
- Yana Su
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, 1 Xinmin Street, Changchun City, Jilin Province, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, 1 Xinmin Street, Changchun City, Jilin Province, China
| | - Wanhui Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, 1 Xinmin Street, Changchun City, Jilin Province, China
| | - Ruqing Qiu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, 1 Xinmin Street, Changchun City, Jilin Province, China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, 1 Xinmin Street, Changchun City, Jilin Province, China.
| |
Collapse
|
4
|
Pourmotabbed A, Talebi S, Mehrabani S, Babaei A, Khosroshahi RA, Bagheri R, Wong A, Ghoreishy SM, Amirian P, Zarpoosh M, Hojjati Kermani MA, Moradi S. The association of ultra-processed food intake with neurodegenerative disorders: a systematic review and dose-response meta-analysis of large-scale cohorts. Nutr Neurosci 2025; 28:73-86. [PMID: 38753992 DOI: 10.1080/1028415x.2024.2351320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Our systematic review and meta-analysis aimed to uncover the relationship between UPFs intake and neurodegenerative disorders, including multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), cognitive impairment, and dementia. SETTING A systematic search was conducted using the Scopus, PubMed/MEDLINE, and ISI Web of Science databases without any limitation until June 24, 2023. Relative risk (RR) and 95% confidence interval (CI) were pooled by using a random-effects model, while validated methods examined quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests, respectively. RESULTS Analysis from 28 studies indicated that a higher UPFs intake was significantly related to an enhanced risk of MS (RR = 1.15; 95% CI: 1.00, 1.33; I2 = 37.5%; p = 0.050; n = 14), PD (RR = 1.56; 95% CI: 1.21, 2.02; I2 = 64.1%; p = 0.001; n = 15), and cognitive impairment (RR = 1.17; 95% CI: 1.06, 1.30; I2 = 74.1%; p = 0.003; n = 17), although not AD or dementia. We observed that a 25 g increment in UPFs intake was related to a 4% higher risk of MS (RR = 1.04; 95% CI: 1.01, 1.06; I2 = 0.0%; p = 0.013; n = 7), but not PD. The non-linear dose-response relationship indicated a positive non-linear association between UPF intake and the risk of MS (Pnonlinearity = 0.031, Pdose-response = 0.002). This association was not observed for the risk of PD (Pnonlinearity = 0.431, Pdose-response = 0.231). CONCLUSION These findings indicate that persistent overconsumption of UPFs may have an adverse impact on neurodegenerative conditions, potentially leading to a decline in quality of life and reduced independence as individuals age.
Collapse
Affiliation(s)
- Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mehrabani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Ira
| | - Atefeh Babaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student research committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Moradi
- Department of Nutrition and Food Sciences, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
5
|
Ferdous KA, Jansen J, Amjad E, Pray E, Bloch R, Benoit A, Callahan M, Park HA. Mitochondrial protective potential of fucoxanthin in brain disorders. J Nutr Sci 2024; 13:e21. [PMID: 39776519 PMCID: PMC11704942 DOI: 10.1017/jns.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondrial dysfunction is a common feature of brain disorders. Mitochondria play a central role in oxidative phosphorylation; thus changes in energy metabolism in the brain have been reported in conditions such as Alzheimer's disease, Parkinson's disease, and stroke. In addition, mitochondria regulate cellular responses associated with neuronal damage such as the production of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), and apoptosis. Therefore, interventions that aim to protect mitochondria may be effective against brain disorders. Fucoxanthin is a marine carotenoid that has recently gained recognition for its neuroprotective properties. However, the cellular mechanisms of fucoxanthin in brain disorders, particularly its role in mitochondrial function, have not been thoroughly discussed. This review summarises the current literature on the effects of fucoxanthin on oxidative stress, neuroinflammation, and apoptosis using in vitro and in vivo models of brain disorders. We further present the potential mechanisms by which fucoxanthin protects mitochondria, with the objective of developing dietary interventions for a spectrum of brain disorders. Although the studies reviewed are predominantly preclinical studies, they provide important insights into understanding the cellular and molecular functions of fucoxanthin in the brain. Future studies investigating the mechanisms of action and the molecular targets of fucoxanthin are warranted to develop translational approaches to brain disorders.
Collapse
Affiliation(s)
- Khondoker Adeba Ferdous
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Joseph Jansen
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Emma Amjad
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Eliana Pray
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Rebecca Bloch
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Alex Benoit
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meredith Callahan
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
6
|
Rees J, Ryan J, Laws M, Devine A. A comprehensive examination of the evidence for whole of diet patterns in Parkinson's disease: a scoping review. Nutr Neurosci 2024; 27:547-565. [PMID: 37431106 DOI: 10.1080/1028415x.2023.2233727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Both motor and non-motor symptoms of Parkinson's disease (PD), a progressive neurological condition, have broad-ranging impacts on nutritional intake and dietary behaviour. Historically studies focused on individual dietary components, but evidence demonstrating ameliorative outcomes with whole-of-diet patterns such as Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) is emerging. These diets provide plenty of antioxidant rich fruits, vegetables, nuts, wholegrains and healthy fats. Paradoxically, the ketogenic diet, high fat and very low carbohydrate, is also proving to be beneficial. Within the PD community, it is well advertised that nutritional intake is associated with disease progression and symptom severity but understandably, the messaging is inconsistent. With projected prevalence estimated to rise to 1.6 million by 2037, more data regarding the impact of whole-of-diet patterns is needed to develop diet-behaviour change programmes and provide clear advice for PD management. Objectives and Methods: Objectives of this scoping review of both peer-reviewed academic and grey literatures are to determine the current evidence-based consensus for best dietary practice in PD and to ascertain whether the grey literature aligns. Results and Discussion: The consensus from the academic literature was that a MeDi/MIND whole of diet pattern (fresh fruit, vegetables, wholegrains, omega-3 fish and olive oil) is the best practice for improving PD outcomes. Support for the KD is emerging, but further research is needed to determine long-term effects. Encouragingly, the grey literature mostly aligned but nutrition advice was rarely forefront. The importance of nutrition needs greater emphasis in the grey literature, with positive messaging on dietary approaches for management of day-to-day symptoms.
Collapse
Affiliation(s)
- Joanna Rees
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Manja Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Amanda Devine
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
7
|
Shokri-Mashhadi N, Ghiasvand R, Feizi A, Ebrahimi-Monfared M, Vahid F, Banijamali A. Association between major dietary patterns and Parkinson's disease risk: a case-control study. Neurol Sci 2024; 45:2003-2010. [PMID: 37993683 DOI: 10.1007/s10072-023-07204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND There has been emerging attention to investigate the possible role of some dietary factors in the pathogenesis of Parkinson's disease (PD); however, evidence about the relationship between dietary components and the risk of PD is limited. The aim of this study was to determine the association between major dietary patterns and the risk of PD. METHODS This case-control study was performed on 105 patients with newly diagnosed PD and 215 healthy controls. Diagnosis of Parkinson's disease was made based on the UK Brain Bank criteria. Usual dietary intakes were collected by a validated semi-quantitative food frequency questionnaire. Dietary patterns were detected by principal component analysis. RESULTS Four dietary patterns, including traditional, healthy, western, and light dietary patterns, were identified. After considering all potential confounders, individuals with the highest tertile of traditional dietary pattern scores had a lower risk of PD than those with the lowest tertile (OR: 0.002; 95% CI: 0.000-0.016). A similar inverse association between the healthy pattern (OR: 0.314; 95% CI: 0.131-0.750) and light pattern (OR: 0.282; 95% CI: 0.121-0.654) and risk of PD was revealed. In contrast, adherence to the western dietary pattern was associated with PD incidence (OR: 7.26; 95% CI: 2.76-19.09). CONCLUSIONS The findings of this study suggest that adherence to western dietary pattern could increase the risk of PD by approximately seven times. However, the traditional, healthy, and light dietary patterns had an inverse relationship with PD risk.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farhad Vahid
- Nutrition and Health Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Akram Banijamali
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Wang S, Jiang S, Wu J, Miao Y, Duan Y, Mu Z, Wang J, Tang Y, Su M, Guo Z, Yu X, Zhao Y. Trends in parkinson's disease mortality in China from 2004 to 2021: a joinpoint analysis. BMC Public Health 2024; 24:1091. [PMID: 38641581 PMCID: PMC11031848 DOI: 10.1186/s12889-024-18532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/05/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND This study aimed to analyze the trends of Parkinson's disease (PD) mortality rates among Chinese residents from 2004 to 2021, provide evidence for the formulation of PD prevention and control strategies to improve the quality of life among PD residents. METHODS Demographic and sociological data such as gender, urban or rural residency and age were obtained from the National Cause of Death Surveillance Dataset from 2004 to 2021. We then analyzed the trends of PD mortality rates by Joinpoint regression. RESULTS The PD mortality and standardized mortality rates in China showed an overall increasing trend during 2004-2021 (average annual percentage change [AAPC] = 7.14%, AAPCASMR=3.21%, P < 0.001). The mortality and standardized mortality rate in male (AAPC = 7.65%, AAPCASMR=3.18%, P < 0.001) were higher than that of female (AAPC = 7.03%, AAPCASMR=3.09%, P < 0.001). The PD standardized mortality rates of urban (AAPC = 5.13%, AAPCASMR=1.76%, P < 0.001) and rural (AAPC = 8.40%, AAPCASMR=4.29%, P < 0.001) residents both increased gradually. In the age analysis, the mortality rate increased with age. And the mortality rates of those aged > 85 years was the highest. Considering gender, female aged > 85 years had the fastest mortality trend (annual percentage change [APC] = 5.69%, P < 0.001). Considering urban/rural, rural aged 80-84 years had the fastest mortality trend (APC = 6.68%, P < 0.001). CONCLUSIONS The mortality rate of PD among Chinese residents increased from 2004 to 2021. Male sex, urban residence and age > 85 years were risk factors for PD-related death and should be the primary focus for PD prevention.
Collapse
Affiliation(s)
- Suxian Wang
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Shuai Jiang
- The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Institute for Hospital Management of Henan Province, 450052, Zhengzhou, Henan Province, China
| | - Jian Wu
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Yudong Miao
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Yanran Duan
- The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Zihan Mu
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Jing Wang
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Yanyu Tang
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Mingzhu Su
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Zixu Guo
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Xueqing Yu
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Yaojun Zhao
- School of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China.
- Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, 451460, Zhengzhou, Henan Province, China.
| |
Collapse
|
9
|
Ahern J, Boyle ME, Thompson WK, Fan CC, Loughnan R. Dietary and Lifestyle Factors of Brain Iron Accumulation and Parkinson's Disease Risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304253. [PMID: 38559115 PMCID: PMC10980125 DOI: 10.1101/2024.03.13.24304253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Purpose Iron is an essential nutrient which can only be absorbed through an individual's diet. Excess iron accumulates in organs throughout the body including the brain. Iron dysregulation in the brain is commonly associated with neurodegenerative diseases like Alzheimer's disease and Parkinson's Disease (PD). Our previous research has shown that a pattern of iron accumulation in motor regions of the brain related to a genetic iron-storage disorder called hemochromatosis is associated with an increased risk of PD. To understand how diet and lifestyle factors relate to this brain endophenotype and risk of PD we analyzed the relationship between these measures, estimates of nutrient intake, and diet and lifestyle preference using data from UK Biobank. Methods Using distinct imaging and non-imaging samples (20,477 to 28,388 and 132,023 to 150,603 participants, respectively), we performed linear and logistic regression analyses using estimated dietary nutrient intake and food preferences to predict a) brain iron accumulation score (derived from T2-Weighted Magnetic Resonance Imaging) and b) PD risk. In addition, we performed a factor analysis of diet and lifestyle preferences to investigate if latent lifestyle factors explained significant associations. Finally, we performed an instrumental variable regression of our results related to iron accumulation and PD risk to identify if there were common dietary and lifestyle factors that were jointly associated with differences in brain iron accumulation and PD risk. Results We found multiple highly significant associations with measures of brain iron accumulation and preferences for alcohol (factor 7: t=4.02, pFDR=0.0003), exercise (factor 11: t=-4.31, pFDR=0.0001), and high-sugar foods (factor 2: t=-3.73, pFDR=0.0007). Preference for alcohol (factor 7: t=-5.83, pFDR<1×10-8), exercise (factor 11: t=-7.66, pFDR<1×10-13), and high sugar foods (factor 2: t=6.03, pFDR<1×10-8) were also associated with PD risk. Instrumental variable regression of individual preferences revealed a significant relationship in which dietary preferences associated with higher brain iron levels also appeared to be linked to a lower risk for PD (p=0.004). A similar relationship was observed for estimates of nutrient intake (p=0.0006). Voxel-wise analysis of i) high-sugar and ii) alcohol factors confirmed T2-weighted signal differences consistent with iron accumulation patterns in motor regions of the brain including the cerebellum and basal ganglia. Conclusion Dietary and lifestyle factors and preferences, especially those related to carbohydrates, alcohol, and exercise, are related to detectable differences in brain iron accumulation and alterations in risk of PD, suggesting a potential avenue for lifestyle interventions that could influence risk.
Collapse
Affiliation(s)
- Jonathan Ahern
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Mary Et Boyle
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Tosefsky KN, Zhu J, Wang YN, Lam JST, Cammalleri A, Appel-Cresswell S. The Role of Diet in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S21-S34. [PMID: 38251061 PMCID: PMC11380239 DOI: 10.3233/jpd-230264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The aim of this review is to examine the intersection of Parkinson's disease (PD) with nutrition, to identify best nutritional practices based on current evidence, and to identify gaps in the evidence and suggest future directions. Epidemiological work has linked various dietary patterns and food groups to changes in PD risk; however, fewer studies have evaluated the role of various diets, dietary components, and supplements in the management of established PD. There is substantial interest in exploring the role of diet-related interventions in both symptomatic management and potential disease modification. In this paper, we evaluate the utility of several dietary patterns, including the Mediterranean (MeDi), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), Alternative Healthy Eating Index (AHEI), vegan/vegetarian, and ketogenic diet in persons with PD. Additionally, we provide an overview of the evidence relating several individual food groups and nutritional supplements to PD risk, symptoms and progression.
Collapse
Affiliation(s)
- Kira N Tosefsky
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Julie Zhu
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Yolanda N Wang
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Joyce S T Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Cammalleri
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Phokaewvarangkul O, Kantachadvanich N, Buranasrikul V, Phoumindr A, Phumphid S, Jagota P, Bhidayasiri R. From Evidence to the Dish: A Viewpoint of Implementing a Thai-Style Mediterranean Diet for Parkinson's Disease. J Mov Disord 2023; 16:279-284. [PMID: 37334427 PMCID: PMC10548080 DOI: 10.14802/jmd.23021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
- Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nitinan Kantachadvanich
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Vijittra Buranasrikul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Appasone Phoumindr
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
12
|
Lee CY, Kim H, Kim HJ, Shin JH, Chang HJ, Woo KA, Jung KY, Kwon O, Jeon B. Diet quality and prodromal Parkinson's disease probability in isolated REM sleep behavior disorder. Parkinsonism Relat Disord 2023; 114:105794. [PMID: 37549588 DOI: 10.1016/j.parkreldis.2023.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION It is reported that a diet that lowers oxidative stress reduces the prodromal Parkinson's disease (pPD) probability as well as the risk of Parkinson's disease (PD). In this study, we evaluated whether the diet quality of patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD) were associated with the pPD probability score, PD risk markers, or prodromal markers. METHODS Polysomnography (PSG)-confirmed iRBD patients from the Neurology Department at Seoul National University Hospital were enrolled. We calculated the pPD probability using the "Web-based Medical Calculator for Prodromal Risk in Parkinsonism" Diet quality was assessed using the Recommended Food Score (RFS). RESULTS We enrolled 101 patients with iRBD. The mean RFS score of patients with iRBD was 28.23 ± 9.29, which did not differ from the general population. Among patients with iRBD, the probability of pPD did not differ between the high and low RFS groups. In patients aged <70 years, although total RFS was not correlated with pPD probability (p = 0.529, Spearman rank correlation), legume consumption was negatively correlated with pPD probability (p = 0.032): furthermore, legume consumption was significantly higher in patients with fewer prodromal markers (p = 0.016). CONCLUSION Diet quality assessed by RFS did not differ between the general population and patients with iRBD in Korea. Further studies are needed to confirm these protective effects of legume consumption on iRBD, which may have strong implications for the prevention and management of PD.
Collapse
Affiliation(s)
- Chan Young Lee
- Department of Neurology, School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hyesook Kim
- Department of Food and Nutrition, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeonbuk, 54538, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, South Korea.
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Jin Chang
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Kyung Ah Woo
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, South Korea
| | - Oran Kwon
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea.
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital & Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
14
|
The Polyunsaturated Fatty Acid EPA, but Not DHA, Enhances Neurotrophic Factor Expression through Epigenetic Mechanisms and Protects against Parkinsonian Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232416176. [PMID: 36555817 PMCID: PMC9788369 DOI: 10.3390/ijms232416176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
ω-3 Polyunsaturated fatty acids (PUFAs) have been found to exert many actions, including neuroprotective effects. In this regard, the exact molecular mechanisms are not well understood. Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Emerging evidence supports the hypothesis that PD is the result of complex interactions between genetic abnormalities, environmental toxins, mitochondrial dysfunction, and other cellular processes, such as DNA methylation. In this context, BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) have a pivotal role because they are both involved in neuron differentiation, survival, and synaptogenesis. In this study, we aimed to elucidate the potential role of two PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and their effects on BDNF and GDNF expression in the SH-SY5Y cell line. Cell viability was determined using the MTT assay, and flow cytometry analysis was used to verify the level of apoptosis. Transmission electron microscopy was performed to observe the cell ultrastructure and mitochondria morphology. BDNF and GDNF protein levels and mRNA were assayed by Western blotting and RT-PCR, respectively. Finally, methylated and hydroxymethylated DNA immunoprecipitation were performed in the BDNF and GDNF promoter regions. EPA, but not DHA, is able (i) to reduce the neurotoxic effect of neurotoxin 6-hydroxydopamine (6-OHDA) in vitro, (ii) to re-establish mitochondrial function, and (iii) to increase BNDF and GDNF expression via epigenetic mechanisms.
Collapse
|
15
|
Knight E, Geetha T, Burnett D, Babu JR. The Role of Diet and Dietary Patterns in Parkinson's Disease. Nutrients 2022; 14:4472. [PMID: 36364733 PMCID: PMC9654624 DOI: 10.3390/nu14214472] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder associated with diminished nutrition status and decreased quality of life. While the prevalence of PD is expected to increase, no preventative or curative therapy for PD exists at this time. Although nutrition and diet represent modifiable risk factors for reducing chronic disease risk, research on the impact of single nutrients on PD has yielded mixed results. As a result, this single-nutrient approach may be the driving force behind the inconsistency, and a holistic dietary approach may overcome this inconsistency by accounting for the interactions between nutrients. The following review aims to examine the impact of a generally healthy dietary pattern, the protein-restricted diet (PRD), the ketogenic diet (KD), the Mediterranean diet (MD), and the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet on PD risk, progression, and severity. While most of the included studies support the role of diet and dietary patterns in reducing the risk of PD or alleviating PD severity, the inconsistent results and need for further evidence necessitate more research being conducted before making dietary recommendations. Research on the potential beneficial effects of dietary patterns on PD should also investigate potential risks.
Collapse
Affiliation(s)
- Emily Knight
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
D'Amico R, Impellizzeri D, Genovese T, Fusco R, Peritore AF, Crupi R, Interdonato L, Franco G, Marino Y, Arangia A, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Açai Berry Mitigates Parkinson's Disease Progression Showing Dopaminergic Neuroprotection via Nrf2-HO1 Pathways. Mol Neurobiol 2022; 59:6519-6533. [PMID: 35970975 PMCID: PMC9463222 DOI: 10.1007/s12035-022-02982-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
The current pharmacological treatment for Parkinson's disease (PD) is focused on symptom alleviation rather than disease prevention. In this study, we look at a new strategy to neuroprotection that focuses on nutrition, by a supplementation with Açai berry in an experimental models of PD. Daily orally supplementation with Açai berry dissolved in saline at the dose of 500 mg/kg considerably reduced motor and non-motor symptom and neuronal cell death of the dopaminergic tract induced by 4 injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, Açai berry administration reduced α-synuclein aggregation in neurons, enhanced tyrosine hydroxylase and dopamine transporter activities, and avoided dopamine depletion. Moreover, Açai berry administration was able to reduce astrogliosis and microgliosis as well as neuronal death. Its beneficial effects could be due to its bioactive phytochemical components that are able to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) by counteracting the oxidative stress and neuroinflammation that are the basis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| |
Collapse
|
17
|
Abstract
The global burden of Parkinson's disease (PD) has increased from 2.5 to 6.1 million since the 1990s. This is expected to rise as the world population ages and lives longer. With the current consensus on the existence of a prediagnostic phase of PD, which can be divided into a preclinical stage and a prodromal stage, we can better define the risk markers and prodromal markers of PD in the broader context of PD pathogenesis. Here, we review this pathogenetic process, and discuss the evidence behind various heritability factors, exposure to pesticides and farming, high dairy consumption, and traumatic brain injuries that have been known to raise PD risk. Physical activity, early active lifestyle, high serum uric acid, caffeine consumption, exposure to tobacco, nonsteroidal anti-inflammatory drugs, and calcium channel blockers, as well as the Mediterranean and the MIND diets are observed to lower PD risk. This knowledge, when combined with ways to identify at-risk populations and early prodromal PD patients, can help the clinician make practical recommendations. Most importantly, it helps us set the parameters for epidemiological studies and create the paradigms for clinical trials.
Collapse
Affiliation(s)
- Suraj Rajan
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bonnie Kaas
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 2022; 26:605-628. [PMID: 35730414 DOI: 10.1080/1028415x.2022.2073107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) in elderly patients is the second most prevalent neurodegenerative disease. The pathogenesis of PD is associated with dopaminergic neuron degeneration of the substantia nigra in the basal ganglia, causing classic motor symptoms. Oxidative stress, mitochondrial dysfunction, and neuroinflammation have been identified as possible pathways in laboratory investigations. Nutrition, a potentially versatile factor from all environmental factors affecting PD, has received intense research scrutiny. METHODS A systematic search was conducted in the MEDLINE, EMBASE, and WEB OF SCIENCE databases from 2000 until the present. Only randomized clinical trials (RCTs), observational case-control studies, and follow-up studies were included. RESULTS We retrieved fifty-two studies that met the inclusion criteria. Most selected studies investigated the effects of malnutrition and the Mediterranean diet (MeDiet) on PD incidence and progression. Other investigations contributed evidence on the critical role of microbiota, vitamins, polyphenols, dairy products, coffee, and alcohol intake. CONCLUSIONS There are still many concerns regarding the association between PD and nutrition, possibly due to underlying genetic and environmental factors. However, there is a body of evidence revealing that correcting malnutrition, gut microbiota, and following the MeDiet reduced the onset of PD and reduced clinical progression. Other factors, such as polyphenols, polyunsaturated fatty acids, and coffee intake, can have a potential protective effect. Conversely, milk and its accessory products can increase PD risk. Nutritional intervention is essential for neurologists to improve clinical outcomes and reduce the disease progression of PD.
Collapse
Affiliation(s)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fahad Somaa
- King Abdulaziz University, Department of occupational therapy. Jeddah, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and affects about 1% of the population over the age of 60 years in industrialised countries. The aim of this review is to examine nutrition in PD across three domains: dietary intake and the development of PD; whole body metabolism in PD and the effects of PD symptoms and treatment on nutritional status. In most cases, PD is believed to be caused by a combination of genetic and environmental factors and although there has been much research in the area, evidence suggests that poor dietary intake is not a risk factor for the development of PD. The evidence about body weight changes in both the prodromal and symptomatic phases of PD is inconclusive and is confounded by many factors. Malnutrition in PD has been documented as has sarcopaenia, although the prevalence of the latter remains uncertain due to a lack of consensus in the definition of sarcopaenia. PD symptoms, including those which are gastrointestinal and non-gastrointestinal, are known to adversely affect nutritional status. Similarly, PD treatments can cause nausea, vomiting and constipation, all of which can adversely affect nutritional status. Given that the prevalence of PD will increase as the population ages, it is important to understand the interplay between PD, comorbidities and nutritional status. Further research may contribute to the development of interventional strategies to improve symptoms, augment care and importantly, enhance the quality of life for patients living with this complex neurodegenerative disease.
Collapse
|
20
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
21
|
Lin KJ, Wang TJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Chuang JH, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Two Birds One Stone: The Neuroprotective Effect of Antidiabetic Agents on Parkinson Disease-Focus on Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors. Antioxidants (Basel) 2021; 10:antiox10121935. [PMID: 34943038 PMCID: PMC8750793 DOI: 10.3390/antiox10121935] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease affecting more than 1% of the population over 65 years old. The etiology of the disease is unknown and there are only symptomatic managements available with no known disease-modifying treatment. Aging, genes, and environmental factors contribute to PD development and key players involved in the pathophysiology of the disease include oxidative stress, mitochondrial dysfunction, autophagic-lysosomal imbalance, and neuroinflammation. Recent epidemiology studies have shown that type-2 diabetes (T2DM) not only increased the risk for PD, but also is associated with PD clinical severity. A higher rate of insulin resistance has been reported in PD patients and is suggested to be a pathologic driver in this disease. Oral diabetic drugs including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to provide neuroprotective effects in both PD patients and experimental models; additionally, antidiabetic drugs have been demonstrated to lower incidence rates of PD in DM patients. Among these, the most recently developed drugs, SGLT2 inhibitors may provide neuroprotective effects through improving mitochondrial function and antioxidative effects. In this article, we will discuss the involvement of mitochondrial-related oxidative stress in the development of PD and potential benefits provided by antidiabetic agents especially focusing on sglt2 inhibitors.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
22
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
23
|
Vojdani A, Lerner A, Vojdani E. Cross-Reactivity and Sequence Homology Between Alpha-Synuclein and Food Products: A Step Further for Parkinson's Disease Synucleinopathy. Cells 2021; 10:1111. [PMID: 34063062 PMCID: PMC8147930 DOI: 10.3390/cells10051111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA;
- Cyrex Laboratories, Phoenix, AZ 85034, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer 52621, Israel
| | - Elroy Vojdani
- Regenera Medical,11620 Wilshire Blvd., Ste. 470, Los Angeles, CA 90025, USA;
| |
Collapse
|
24
|
Liu YH, Jensen GL, Na M, Mitchell DC, Wood GC, Still CD, Gao X. Diet Quality and Risk of Parkinson's Disease: A Prospective Study and Meta-Analysis. JOURNAL OF PARKINSONS DISEASE 2020; 11:337-347. [PMID: 33104042 DOI: 10.3233/jpd-202290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several dietary components have been shown to be neuroprotective against risk of neurodegeneration. However, limited observational studies have examined the role of overall diet quality on risk of Parkinson's disease. OBJECTIVES We examined the associations between diet quality and risk of Parkinson's disease in a prospective cohort study and meta-analysis. METHODS Included in the cohort study were 3,653 participants (1,519 men and 2,134 women; mean age: 81.5 years) in the Geisinger Rural Aging Study longitudinal cohort in Pennsylvania. Diet quality was assessed using a validated dietary screening tool containing 25 food- and behavior-specific questions in 2009. Potential Parkinson's cases were identified using electronic health records based on ICD9 (332.*), ICD10 (G20), and Parkinson-related treatments. Hazard ratios (HRs) and 95% confidence intervals (CIs) across diet quality tertiles were calculated using Cox proportional hazards models after adjusting for potential confounders. We further performed a meta-analysis by pooling our study with four published papers on this topic. Random-effects model was utilized to calculate the pooled risk ratios and 95% CIs. RESULTS During a mean of 6.94 years of follow-up, 47 incident Parkinson's cases were documented. Having high diet quality at baseline was associated with lower Parkinson's disease risk (adjusted HR for the highest vs the lowest diet quality tertile = 0.39; 95% CI: 0.17, 0.89; p-trend = 0.02). The meta-analysis including 140,617 individuals also showed that adherence to high diet quality or a healthy dietary pattern was associated with lower risk of Parkinson's disease (pooled risk ratio = 0.64; 95% CI: 0.49, 0.83). CONCLUSION Having high diet quality or a healthy dietary pattern was associated with lower future risk of Parkinson's disease.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gordon L Jensen
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diane C Mitchell
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - G Craig Wood
- Obesity Institute, Geisinger Health System, Danville, PA, USA
| | | | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Yin W, Löf M, Pedersen NL, Sandin S, Fang F. Mediterranean Dietary Pattern at Middle Age and Risk of Parkinson's Disease: A Swedish Cohort Study. Mov Disord 2020; 36:255-260. [PMID: 33078857 PMCID: PMC7894345 DOI: 10.1002/mds.28314] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The Mediterranean diet has been proposed to protect against neurodegeneration. Objectives The aim of this study was to assess the association of adherence to Mediterranean dietary pattern (MDP) at middle age with risk for Parkinson's disease (PD) later in life. Method In a population‐based cohort of >47,000 Swedish women, information on diet was collected through a food frequency questionnaire during 1991–1992, from which adherence to MDP was calculated. We also collected detailed information on potential confounders. Clinical diagnosis of PD was ascertained from the Swedish National Patient Register through 2012. Results We observed an inverse association between adherence to MDP and PD, multivariable hazard ratio of 0.54 (95% confidence interval: 0.30–0.98), comparing high with low adherence. The association was noted primarily from age 65 years onward. One unit increase in the adherence score was associated with a 29% lower risk for PD at age ≥ 65 years (95% confidence interval: 0.57–0.89). Conclusion Higher adherence to a Mediterranean diet at middle age was associated with lower risk for PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Weiyao Yin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, Ichan School of Medicine, Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment at Mount Sinai, New York, New York, USA
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Brown EG, Goldman SM. Modulation of the Microbiome in Parkinson's Disease: Diet, Drug, Stool Transplant, and Beyond. Neurotherapeutics 2020; 17:1406-1417. [PMID: 33034846 PMCID: PMC7851230 DOI: 10.1007/s13311-020-00942-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome is altered in Parkinson's disease and likely plays a key role in its pathophysiology, affecting symptoms and response to therapy and perhaps modifying progression or even disease initiation. Gut dysbiosis therefore has a significant potential as a therapeutic target in Parkinson's disease, a condition elusive to disease-modifying therapy thus far. The gastrointestinal environment hosts a complex ecology, and efforts to modulate the relative abundance or function of established microorganisms are still in their infancy. Still, these techniques are being rapidly developed and have important implications for our understanding of Parkinson's disease. Currently, modulation of the microbiome can be achieved through non-pharmacologic means such as diet, pharmacologically through probiotic, prebiotic, or antibiotic use and procedurally through fecal transplant. Novel techniques being explored include the use of small molecules or genetically engineered organisms, with vast potential. Here, we review how some of these approaches have been used to date, important areas of ongoing research, and how microbiome modulation may play a role in the clinical management of Parkinson's disease in the future.
Collapse
Affiliation(s)
- Ethan G Brown
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA.
| | - Samuel M Goldman
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
Alabi AO, Ajayi AM, Ben-Azu B, Omorobge O, Umukoro S. Methyl jasmonate ameliorates rotenone-induced motor deficits in rats through its neuroprotective activity and increased expression of tyrosine hydroxylase immunopositive cells. Metab Brain Dis 2019; 34:1723-1736. [PMID: 31463866 DOI: 10.1007/s11011-019-00478-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Decreased tyrosine hydroxylase (TH) activity, due to degeneration of dopaminergic neurons contributes to the low dopamine content and the motor deficits that characterized Parkinson's disease (PD). This study examines the effect of methyl jasmonate (MJ), a neuroprotective bioactive compound isolated from jasminum grandiflorum, on motor functions, immunopositive cells of TH, dendritic neurons and dopamine contents in rotenone (Rot)-treated rats. Rats pretreated daily with MJ (100 mg/kg, i.p) for 21 days also received Rot (2.5 mg/kg, i.p.) 30 min after each pretreatment for every 48 h for 21 days. Motor functions were assessed on day 22. The specific brain regions of the rats were processed for determination of dopamine contents, immunopositive cells of TH, neuronal cell morphology and dendritic aborizations. Rot impaired locomotion and rearing behavior, and decreased dopamine content in the striatum, prefrontal cortex and midbrain. It further reduced the expression of TH in the substantia nigra and striatum relative to vehicle-control (p < 0.05). Histopathologic studies revealed that Rot-treated rats had degenerated neurons with pyknotic nuclei and loss of nigrostriatal neuronal cells. Rot also altered the nigrostriatal dendritic neuronal networks, decreased the dendritic length and spine density. However, pretreatment with MJ improved motor deficits, increased TH activity and dopamine contents in the specific brain regions of Rot-treated rats. MJ also attenuated the cyto-architectural distortions, loss of neuronal cells and dendritic aborizations of the striatum of Rot-treated rats. These findings suggest that MJ may reverse the motor deficits associated with PD by modifying the key pathological abnormalities involved in the disease progression.
Collapse
Affiliation(s)
- Akinyinka O Alabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, River States, Port Harcourt, Nigeria
| | - Osarume Omorobge
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
28
|
Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Front Aging Neurosci 2019; 11:302. [PMID: 31787891 PMCID: PMC6856011 DOI: 10.3389/fnagi.2019.00302] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM), a group of diseases characterized by defective glucose metabolism, is the most widespread metabolic disorder affecting over 400 million adults worldwide. This pathological condition has been implicated in the pathogenesis of a number of central encephalopathies and peripheral neuropathies. In further support of this notion, recent epidemiological evidence suggests a link between DM and Parkinson’s disease (PD), with hyperglycemia emerging as one of the culprits in neurodegeneration involving the nigrostriatal pathway, the neuroanatomical substrate of the motor symptoms affecting parkinsonian patients. Indeed, dopaminergic neurons located in the mesencephalic substantia nigra appear to be particularly vulnerable to oxidative stress and degeneration, likely because of their intrinsic susceptibility to mitochondrial dysfunction, which may represent a direct consequence of hyperglycemia and hyperglycemia-induced oxidative stress. Other pathological pathways induced by increased intracellular glucose levels, including the polyol and the hexosamine pathway as well as the formation of advanced glycation end-products, may all play a pivotal role in mediating the detrimental effects of hyperglycemia on nigral dopaminergic neurons. In this review article, we will examine the epidemiological as well as the molecular and cellular clues supporting the potential susceptibility of nigrostriatal dopaminergic neurons to hyperglycemia.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute for Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| |
Collapse
|
29
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
30
|
Nutritional Risk Factors, Microbiota and Parkinson's Disease: What Is the Current Evidence? Nutrients 2019; 11:nu11081896. [PMID: 31416163 PMCID: PMC6722832 DOI: 10.3390/nu11081896] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a frequent neurodegenerative disease among elderly people. Genetic and underlying environmental factors seem to be involved in the pathogenesis of PD related to degeneration of dopaminergic neurons in the striatum. In previous experimental researches oxidative stress, mitochondrial dysfunction, homocysteine, and neuroinflammation have been reported as potential mechanisms. Among environmental factors, nutrition is one of the most investigated areas as it is a potentially modifiable factor. The purpose of this review is to provide current knowledge regarding the relation between diet and PD risk. We performed a comprehensive review including the most relevant studies from the year 2000 onwards including prospective studies, nested case-control studies, and meta-analysis. Among dietary factors we focused on specific nutrients and food groups, alcoholic beverages, uric acid, and dietary patterns. Furthermore, we included studies on microbiota as recent findings have shown a possible impact on neurodegeneration. As a conclusion, there are still many controversies regarding the relationship between PD and diet which, beside methodological differences among studies, may be due to underlying genetic and gender-specific factors. However, some evidence exists regarding a potential protective effect of uric acid, poly-unsaturated fatty acids, coffee, and tea but mainly in men, whereas dairy products, particularly milk, might increase PD risk through contaminant mediated effect.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW We reviewed the most recent literature examining the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration. RECENT FINDINGS Most, but not all, epidemiologic studies report a protective association between MD adherence, cognitive impairment, and brain health. Data from clinical trials supporting these observational findings are also emerging. Limited evidence suggests that MD adherence may be protective for Parkinson's disease risk. Mechanistically, plant polyphenols may activate similar molecular pathways as caloric restriction diets, which helps explain the neuroprotective properties of the MD. Evidence for cognitive disorders is abundant, but there is a dearth of literature for other neurodegenerative disorders and for markers of neurodegeneration. Further research is needed to elucidate the protective role of MD on neurodegeneration, the most salient components of the MD, and the most sensitive time periods over the lifecourse at which the MD may exert its effects.
Collapse
Affiliation(s)
- Hannah Gardener
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.
| | - Michelle R Caunca
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.,Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 NW 14th Street, 1007B, Miami, FL, 33136, USA
| |
Collapse
|
32
|
UYAR GÖ, YILDIRAN H. A nutritional approach to microbiota in Parkinson's disease. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2019; 38:115-127. [PMID: 31763115 PMCID: PMC6856517 DOI: 10.12938/bmfh.19-002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor impairment and the accumulation of alpha-synucleinopathy (α-syn), which can affect different levels of the brain-gut axis. There is a two-way communication between the gastrointestinal tract, and brain that includes the gut microbiota. This bidirectional communication between the gut microbiota and the brain includes many pathways, such as immune mechanisms, the vagus nerve, and microbial neurometabolite production. The common cause of constipation in PD is thought to be the accumulation of α-syn proteins in the enteric nervous system. Recent studies have focused on changes in microbial metabolites and gut microbiota dysbiosis. Microbiota dysbiosis is associated with increased intestinal permeability, intestinal inflammation, and neuroinflammation. Many factors, such as unbalanced nutrition, antibiotic use, age, and infection, result in alteration of microbial metabolites, triggering α-syn accumulation in the intestinal mucosa cells. Increased evidence indicates that the amount, type, and balance of dietary macronutrients (carbohydrates, proteins, and fats); high consumption of vegetables, fruits, and omega-3 fatty acids; and healthy diet patterns such as the Mediterranean diet may have a great protective impact on PD. This review focuses on the potential benefits of prebiotics, probiotics, and synbiotics to regulate microbiota dysbiosis along with the effect of diet on the gut microbiota in PD.
Collapse
Affiliation(s)
- Gizem Özata UYAR
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Besevler, Ankara, Turkey
| | - Hilal YILDIRAN
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
33
|
Reimers A, Ljung H. The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Ther Adv Psychopharmacol 2019; 9:2045125319858901. [PMID: 31258889 PMCID: PMC6591664 DOI: 10.1177/2045125319858901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of neurologic and psychiatric diseases has been increasing for decades and, given the moderate therapeutic efficacy and safety profile of existing pharmacological treatments, there is an urgent need for new therapeutic approaches. Nutrition has recently been recognized as an important factor for the prevention and treatment of neuropsychiatric disorders. The omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play critical roles in neuronal cell function and neurotransmission as well as inflammatory and immune reactions that are involved in neuropsychiatric disease states. A large number of experimental and epidemiological studies provide a strong basis for interventional clinical trials that assessed the clinical efficacy of n-3 PUFAs in various neurological and psychiatric disorders. Most of these trials found beneficial effects of dietary supplementation with EPA and DHA, and no serious safety concerns have emerged. This review gives an introduction to recent findings on the clinical efficacy of n-3 PUFAs in various neuropsychiatric disorders and the underlying biochemical mechanisms. In addition, the reader will be enabled to identify common methodological weaknesses of clinical studies on n-3 PUFAs, and suggestions for the design of future studies are given.
Collapse
Affiliation(s)
- Arne Reimers
- Department of Clinical Chemistry and Pharmacology, Division of Laboratory Medicine, Klinikgatan 17, Lund, 22185, Sweden
| | - Hanna Ljung
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Tyrtyshnaia AA, Manzhulo IV. The Effect of Omega-3 Polyunsaturated Fatty Acids on Neuroinflammation in the Hippocampus. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Silva J, Alves C, Pinteus S, Mendes S, Pedrosa R. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:58. [PMID: 29444677 PMCID: PMC5813419 DOI: 10.1186/s12906-018-2103-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder of the central nervous system. Although the causes of PD pathogenesis remain incomplete, some evidences has suggested that oxidative stress is an important mediator in its pathogenesis. The aim of this study was to evaluate the protective effects of seaweeds with high antioxidant activity on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y, as well as the associated intracellular signaling pathways. METHODS Cell viability studies were assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) bromide assay and the intracellular signaling pathways analyzed were: hydrogen peroxide (H2O2) production, changes in the mitochondrial membrane potential and Caspase-3 activity. RESULTS Exposure of SH-SY5Y cells to 6-OHDA (10-1000 μM) reduced cell's viability in a concentration and time-dependent manner. The data suggest that the cell death induced by 6-OHDA was mediated by an increase of H2O2 production, the depolarization of mitochondrial membrane potential and the increase of Caspase-3 activity. Extracts from S. polyshides, P. pavonica, S. muticum, C. tomentosum and U. compressa revealed to efficiently protect cell's viability in the presence of 6-OHDA (100 μM; 24 h). These effects appear to be associated with the reduction of H2O2 cell's production, the protection of mitochondrial membrane's potential and the reduction of Caspase-3 activity. CONCLUSIONS These results suggest that seaweeds can be a promising source of new compounds with neuroprotective potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
- Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Celso Alves
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Susete Pinteus
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Susana Mendes
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Rui Pedrosa
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
36
|
Agarwal P, Wang Y, Buchman AS, Holland TM, Bennett DA, Morris MC. MIND Diet Associated with Reduced Incidence and Delayed Progression of ParkinsonismA in Old Age. J Nutr Health Aging 2018; 22:1211-1215. [PMID: 30498828 PMCID: PMC6436549 DOI: 10.1007/s12603-018-1094-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In old age, motor impairments including parkinsonian signs are common, but treatment is lacking for many older adults. In this study, we examined the association of a diet specifically developed to promote brain health, called MIND (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay), to the incidence and progression of parkinsonism in older adults. METHODS A total of 706 Memory and Aging Project participants aged 59 -97 years and without parkinsonism at baseline were assessed annually for the presence of four parkinsonian signs using a 26-item modified version of the United Parkinson's Disease Rating Scale. Incident parkinsonism was defined as the first occurrence over 4.6 years of follow-up of two or more parkinsonian signs. The progression of parkinsonism was assessed by change in a global parkinsonian score (range: 0-100). MIND, Mediterranean, and DASH diet pattern scores were computed based on a validated food frequency questionnaire including 144 food items. We employed Cox-Proportional Hazard models and linear mixed models, to examine the associations of baseline diet scores with incident parkinsonism and the annual rate of change in global parkinsonian score, respectively. RESULTS In models adjusted for age, sex, smoking, total energy intake, BMI and depressive symptoms, higher MIND diet scores were associated with a decreased risk of parkinsonism [(HR=0.89, 95% CI 0.83-0.96)]; and a slower rate of parkinsonism progression [(β= -0.008; SE=0.0037; p=0.04)]. The Mediterranean diet was marginally associated with reduced parkinsonism progression (β= -0.002; SE=0.0014; p=0.06). The DASH diet, by contrast, was not associated with either outcome. CONCLUSION The MIND diet created for brain health may be a associated with decreased risk and slower progression of parkinsonism in older adults.
Collapse
Affiliation(s)
- P Agarwal
- Puja Agarwal, Rush University Medical Center, 1645 W Jackson, Chicago, IL, 60612, Phone: 312-563-0151,
| | | | | | | | | | | |
Collapse
|
37
|
LaHue SC, Comella CL, Tanner CM. The best medicine? The influence of physical activity and inactivity on Parkinson's disease. Mov Disord 2017; 31:1444-1454. [PMID: 27477046 DOI: 10.1002/mds.26728] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022] Open
Abstract
The incidence of Parkinson's disease (PD) is expected to increase as our population ages and will likely strain the projected capacity of our health care system. Despite being the most common movement disorder, there have been few noninvasive therapeutic advances for people with PD since the first levodopa clinical trial in 1961. The study of PD pathogenesis, combined with an appreciation for the biochemical mechanisms by which physical activity and exercise may impact physiology, has resulted in emerging hypotheses for new modifiable risk factors for PD. Physical activity and exercise as a means of preventing PD, or maintaining the functionality of people with PD, are a promising area of investigation. Conversely, physical inactivity is implicated in many disease states, some of which are also correlated with the development of PD, such as metabolic syndrome. The primary relationship between these diseases is likely rooted in heightened inflammation and oxidative stress at the cellular level. Physical activity and exercise as a means of attenuating inflammation have led to increased interest in related potential therapeutic targets for PD. Ultimately, these findings may translate into low-cost, universally available therapies for PD disease modification or prevention. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sara C LaHue
- Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | | | - Caroline M Tanner
- San Francisco Veterans Affairs Medical Center and Department of Neurology, University of California, San Francisco, California, USA.
| |
Collapse
|
38
|
Han J, Plummer J, Liu L, Byrd A, Aschner M, Erikson KM. The impact of obesity on brain iron levels and α-synuclein expression is regionally dependent. Nutr Neurosci 2017; 22:335-343. [PMID: 29034829 DOI: 10.1080/1028415x.2017.1387720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The importance of iron homeostasis is particularly apparent in the brain, where iron deficiency results in impaired cognition and iron accumulation is associated with neurodegenerative diseases. Obesity is linked to iron deficiency systemically, but the effects of obesity on brain iron and its associated consequences, including neurodegenerative processes remain unexplored. This preliminary study examined the effect of dietary-induced obesity on brain regional iron, α-synuclein expression, and F2-isoprostane (oxidative stress marker) concentrations in selected brain regions. OBJECTIVE The objective of the study was to elucidate the vulnerability of selected brain regions (e.g. midbrain, hippocampus) to the possible process of neurodegeneration due to the altered iron content associated with obesity. METHODS Twenty-one-day-old male C57BL/6J mice were fed with a high-fat diet (60% kcal from fat) or a control-fat diet (10% kcal from fat) for 20 weeks. Brain samples were collected and dissected into hippocampus, midbrain, striatum, and thalamus regions. Iron content, ferritin H (FtH) and α-synuclein protein and mRNA expressions, and F2-isoprostane were measured in selected regions. RESULTS The results indicated that obesity caused significant differences in iron levels in the midbrain and thalamus, but not in the hippocampus or striatum, compared to control mice. Furthermore, markers of neurodegeneration (α-synuclein mRNA expression and F2-isoprostanes) were increased in the midbrain. DISCUSSION These results support previous findings that brain iron metabolism responds to environmental stress in a regionally distinct manner and suggests that alterations in brain iron metabolism due to obesity may be relevant in neurodegeneration.
Collapse
Affiliation(s)
- Jian Han
- a Department of Biology , North Carolina Agricultural and Technical State University , Greensboro , NC 27411 , USA
| | - Justin Plummer
- b Department of Nutrition , The University of North Carolina at Greensboro , Greensboro , NC 27412 , USA
| | - Lumei Liu
- a Department of Biology , North Carolina Agricultural and Technical State University , Greensboro , NC 27411 , USA
| | - Aria Byrd
- c Department of Toxicology and Cancer Biology , University of Kentucky , Lexington , KY 40536 , USA
| | - Michael Aschner
- d Department of Molecular Pharmacology , Albert Einstein School of Medicine , Bronx , NY 10461 , USA
| | - Keith M Erikson
- b Department of Nutrition , The University of North Carolina at Greensboro , Greensboro , NC 27412 , USA
| |
Collapse
|
39
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
40
|
Parkinson's disease research in a prospective cohort in China. Parkinsonism Relat Disord 2015; 21:1200-4. [PMID: 26318964 DOI: 10.1016/j.parkreldis.2015.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/08/2015] [Accepted: 08/18/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION China has the largest population of Parkinson's disease (PD) patients; however few etiological studies of PD have been conducted in China. METHODS The Shanghai Women's Health Study recruited 74,941 women in urban Shanghai, aged 40 to 70, from 1996 to 2000. Self-reported PD cases were invited for a neurological examination and diagnoses were made by a movement disorder specialist. RESULTS This cohort had very few smokers (2.7%), alcohol drinkers (2.3%), and post-menopausal hormone users (4.3%); however, tea drinking (29.9%) and exposure to tobacco smoke from husbands (61.8%) were common. A total of 301 participants reported PD diagnosis during the follow-up. The diagnosis was confirmed in 76 (57%) of the 133 clinically examined patients. An additional 19 (53%) PD cases were identified out of 36 participants who self-confirmed the diagnosis and provided a history on PD symptoms and treatments. As expected, increasing age was strongly associated with PD risk. Further, PD risk appears to be inversely associated with exposures to second-hand tobacco smoke from husbands and tea drinking, and positively with education, although none of these reached statistical significance. The age-adjusted odds ratio (OR) was 0.7 (95% confidence interval: 0.4-1.1) for participants whose husbands were current smokers at baseline and 0.8 (0.5-1.3) for ever tea-drinkers. Compared with primary education or lower, the age-adjusted OR was 1.3 (0.7-2.4) for middle school and 1.6 (1.0-2.7) for high school or above. CONCLUSION PD research in this unique cohort is feasible and, with extended follow-up, will allow for prospective PD etiological research in China.
Collapse
|
41
|
|
42
|
Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson's disease. Front Aging Neurosci 2014; 6:36. [PMID: 24639650 PMCID: PMC3945400 DOI: 10.3389/fnagi.2014.00036] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. It is now clear that genetic susceptibility and environmental factors play a role in disease etiology and progression. Because environmental factors are involved with the majority of the cases of PD, it is important to understand the role nutrition plays in both neuroprotection and neurodegeneration. Recent epidemiological studies have revealed the promise of some nutrients in reducing the risk of PD. In contrast, other nutrients may be involved with the etiology of neurodegeneration or exacerbate disease progression. This review summarizes the studies that have addressed these issues and describes in detail the nutrients and their putative mechanisms of action in PD.
Collapse
Affiliation(s)
- Stacey E Seidl
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Hope Bilyk
- The Nutrition Department, The College of Health Professions, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| |
Collapse
|
43
|
|
44
|
Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V. Vitamin A and Carotenoids and the Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 2014; 42:25-38. [DOI: 10.1159/000355849] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|