1
|
Hamberg L, Vanhatalo J, Velmala S, Taylor AFS, MacKay J, Caron S, Asiegbu FO, Sievänen R, Raumonen P, Hytönen T, Pennanen T. The community of root fungi is associated with the growth rate of Norway spruce (Picea abies). Environ Microbiol 2024; 26:e16662. [PMID: 38840258 DOI: 10.1111/1462-2920.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.
Collapse
Affiliation(s)
- Leena Hamberg
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarno Vanhatalo
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - John MacKay
- Department of Biology, University of Oxford, Oxford, UK
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | - Fred O Asiegbu
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Risto Sievänen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Tuija Hytönen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
2
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
3
|
Kranabetter JM, Robbins S, Hawkins BJ. Host population effects on ectomycorrhizal fungi vary between low and high phosphorus soils of temperate rainforests. MYCORRHIZA 2023; 33:199-209. [PMID: 36947254 DOI: 10.1007/s00572-023-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023]
Abstract
Geographic distinctions in the affinity of tree populations for select ectomycorrhizal fungi (EMF) may occur where strong edaphic pressures act on fungal communities and their hosts. We examine this premise for Pseudotsuga menziesii var. menziesii of southwest British Columbia, using ten native seedlots collected from a range of mean annual precipitation (MAP), as a proxy for podzolization extent and phosphorus (P) deficiencies, and evaluated in contrasting low P and high P soils. After two growing seasons, seedling biomass in the high P soil dwarfed that of the low P soil, and better growth rates under high P were detected for populations from very dry and very wet origins. EMF communities on the high P soil displayed more symmetry among host populations than the low P soil (average community dissimilarity of 0.20% vs. 0.39%, respectively). Seedling foliar P% differed slightly but significantly in relation to MAP of origin. EMF species richness varied significantly among host populations but independently of climatic parameters. There were significant shifts in EMF species abundance related to seedlot MAP, particularly on the low P soil where nonlinear relationships were found for Wilcoxina mikolae, Hyaloscypha finlandica, and Rhizopogon villosulus. Despite efforts to enhance colonization by native fungi, the predominance of ruderal EMF species hindered a realistic evaluation of local adaptation among host-fungi populations. Nevertheless, the shifting affinity in taxa abundance and wider community disparity on low P soil reflected the potential for a consequential host genetic effect related to geographical patterns in P availability across temperate rainforests.
Collapse
Affiliation(s)
- J M Kranabetter
- British Columbia Ministry of Forests, P.O. Box 9536, Stn Prov Govt, Victoria, B.C., Canada, V8W 9C4.
| | - S Robbins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| | - B J Hawkins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| |
Collapse
|
4
|
Senior JK, Gundale MJ, Iason GR, Whitham TG, Axelsson EP. Progeny selection for enhanced forest growth alters soil communities and processes. Ecosphere 2022. [DOI: 10.1002/ecs2.3943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- John K. Senior
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | | | - Thomas G. Whitham
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona USA
| | - E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
5
|
Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc Natl Acad Sci U S A 2021; 118:2105207118. [PMID: 34810258 PMCID: PMC8640791 DOI: 10.1073/pnas.2105207118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Microscale interactions between marine phytoplankton and their bacterial microbiomes can influence ecosystem functioning and global biogeochemical cycling through complex exchanges of metabolites and sophisticated ecological processes. Previous investigation of the phytoplankton microbiome has not focused on the role of a host’s underlying genetic background. Through examination of a single phytoplankton species’ microbiome across the global ocean, we found that host genotype strongly influenced microbiome community composition, with associations that potentially persist across generations and ocean basins but assemble rapidly (within days). The long-term association of microbiomes with host genetic background could explain the evolution and maintenance of intricate phytoplankton–bacteria interactions. Phytoplankton support complex bacterial microbiomes that rely on phytoplankton-derived extracellular compounds and perform functions necessary for algal growth. Recent work has revealed sophisticated interactions and exchanges of molecules between specific phytoplankton–bacteria pairs, but the role of host genotype in regulating those interactions is unknown. Here, we show how phytoplankton microbiomes are shaped by intraspecific genetic variation in the host using global environmental isolates of the model phytoplankton host Thalassiosira rotula and a laboratory common garden experiment. A set of 81 environmental T. rotula genotypes from three ocean basins and eight genetically distinct populations did not reveal a core microbiome. While no single bacterial phylotype was shared across all genotypes, we found strong genotypic influence of T. rotula, with microbiomes associating more strongly with host genetic population than with environmental factors. The microbiome association with host genetic population persisted across different ocean basins, suggesting that microbiomes may be associated with host populations for decades. To isolate the impact of host genotype on microbiomes, a common garden experiment using eight genotypes from three distinct host populations again found that host genotype influenced microbial community composition, suggesting that a process we describe as genotypic filtering, analogous to environmental filtering, shapes phytoplankton microbiomes. In both the environmental and laboratory studies, microbiome variation between genotypes suggests that other factors influenced microbiome composition but did not swamp the dominant signal of host genetic background. The long-term association of microbiomes with specific host genotypes reveals a possible mechanism explaining the evolution and maintenance of complex phytoplankton–bacteria chemical exchanges.
Collapse
|
6
|
Ha J, Gao Y, Zhang R, Li K, Zhang Y, Niu X, Chen X, Luo K, Chen Y. Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava ( Manihot esculenta Crantz) Genotypes. Front Microbiol 2021; 12:729022. [PMID: 34659156 PMCID: PMC8515189 DOI: 10.3389/fmicb.2021.729022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Root-associated microbial communities play important roles in plant growth and development. However, little attention has been paid to the microbial community structures associated with cassava, which is a staple food for approximately 800 million people worldwide. Here, we studied the diversity and structure of tuber endosphere and rhizosphere bacterial communities in fourteen cassava genotypes: SC5, SC8, SC9, SC205, KU50, R72, XL1, FX01, SC16, 4612, 587, 045, S0061, and 1110. The results of bacterial 16S rDNA sequencing showed that the richness and diversity of bacteria in the rhizosphere were higher than those in the tuber endosphere across the 14 cassava genotypes. After sequencing, 21 phyla and 310 genera were identified in the tuberous roots, and 36 phyla and 906 genera were identified in the rhizosphere soils. The dominant phylum across all tuber samples was Firmicutes, and the dominant phyla across all rhizosphere samples were Actinobacteria, Proteobacteria, and Acidobacteria. The numbers of core bacterial taxa within the tuber endospheres and the rhizospheres of all cassava genotypes were 11 and 236, respectively. Principal coordinate analysis and hierarchical cluster analysis demonstrated significant differences in the compositions of rhizosphere soil microbiota associated with the different cassava genotypes. Furthermore, we investigated the metabolic changes in tuber roots of three genotypes, KU50, SC205, and SC9. The result showed that the abundances of Firmicutes, Proteobacteria, and Actinobacteria in tuber samples were positively correlated with organic acids and lipids and negatively correlated with vitamins and cofactors. These results strongly indicate that there are clear differences in the structure and diversity of the bacterial communities associated with different cassava genotypes.
Collapse
Affiliation(s)
- Jingwen Ha
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yu Gao
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Rui Zhang
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Ke Li
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yijie Zhang
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xiaolei Niu
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xin Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kai Luo
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yinhua Chen
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| |
Collapse
|
7
|
Hoeber S, Baum C, Weih M, Manzoni S, Fransson P. Site-Dependent Relationships Between Fungal Community Composition, Plant Genotypic Diversity and Environmental Drivers in a Salix Biomass System. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671270. [PMID: 37744105 PMCID: PMC10512226 DOI: 10.3389/ffunb.2021.671270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 09/26/2023]
Abstract
Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype ("Loden") on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.
Collapse
Affiliation(s)
- Stefanie Hoeber
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Salmela MJ. Patterns of genetic diversity vary among shoot and root functional traits in Norway spruce
Picea abies
along a latitudinal gradient. OIKOS 2021. [DOI: 10.1111/oik.08203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Downie J, Taylor AFS, Iason G, Moore B, Silvertown J, Cavers S, Ennos R. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine ( Pinus sylvestris L.) seedlings. Ecol Evol 2021; 11:4826-4842. [PMID: 33976851 PMCID: PMC8093658 DOI: 10.1002/ece3.7384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling's mycorrhizal community.While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling's terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.
Collapse
Affiliation(s)
- Jim Downie
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- Centre for Ecology and HydrologyPenicuikUK
- School of Natural SciencesBangor UniversityWalesUK
| | - Andy F. S. Taylor
- The James Hutton InstituteAberdeenUK
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | | | - Ben Moore
- The James Hutton InstituteAberdeenUK
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Jonathan Silvertown
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | | | - Richard Ennos
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia 2021; 195:367-382. [PMID: 33471200 DOI: 10.1007/s00442-020-04835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Provenance translocations of tree species are promoted in forestry, conservation, and restoration in response to global climate change. While this option is driven by adaptive considerations, less is known of the effects translocations can have on dependent communities. We investigated the relative importance and consistency of extended genetic effects in Eucalyptus using two species-E. globulus and E. pauciflora. In E. globulus, the dependent arthropod and pathogen canopy communities were quantified based on the abundance of 49 symptoms from 722 progeny from 13 geographic sub-races across 2 common gardens. For E. pauciflora, 6 symptoms were quantified over 2 years from 238 progeny from 16 provenances across 2 common gardens. Genetic effects significantly influenced communities in both species. However, site and year effects outweighed genetic effects with site explaining approximately 3 times the variation in community traits in E. globulus and site and year explaining approximately 6 times the variation in E. pauciflora. While the genetic effect interaction terms were significant in some community traits, broad trends in community traits associated with variation in home-site latitude for E. globulus and home-site altitude for E. pauciflora were evident. These broad-scale trends were consistent with patterns of adaptive differentiation within each species, suggesting there may be extended consequences of local adaptation. While small in comparison to site and year, the consistency of genetic effects highlights the importance of provenance choice in tree species, such as Eucalyptus, as adaptive divergence among provenances may have significant long-term effects on biotic communities.
Collapse
|
11
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Salmela MJ, Velmala SM, Pennanen T. Seedling traits from root to shoot exhibit genetic diversity and distinct responses to environmental heterogeneity within a tree population. OIKOS 2020. [DOI: 10.1111/oik.06797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matti J. Salmela
- Natural Resources Inst. Finland (Luke) Latokartanonkaari 9 FI‐00790 Helsinki Finland
| | - Sannakajsa M. Velmala
- Natural Resources Inst. Finland (Luke) Latokartanonkaari 9 FI‐00790 Helsinki Finland
| | - Taina Pennanen
- Natural Resources Inst. Finland (Luke) Latokartanonkaari 9 FI‐00790 Helsinki Finland
| |
Collapse
|
13
|
Koizumi T, Nara K. Ectomycorrhizal fungal communities in ice-age relict forests of Pinus pumila on nine mountains correspond to summer temperature. THE ISME JOURNAL 2020; 14:189-201. [PMID: 31611652 PMCID: PMC6908592 DOI: 10.1038/s41396-019-0524-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (ECM) fungi are critical symbionts of major forest trees, and their communities are affected by various environmental factors including temperature. However, previous knowledge concerning temperature effects does not exclude the effects of host species and coexisting plants, which usually change with temperature, and should be rigorously tested under the same vegetation type. Herein we examined ECM fungal communities in ice-age relict forests dominated by a single host species (Pinus pumila) distributed on nine mountains across >1000 km in Japan. Direct sequencing of rDNA ITS regions identified 154 ECM fungal species from 4134 ECM root-tip samples. Gradient analyses revealed a large contribution of temperature, especially summer temperature, to ECM fungal communities. Additionally, we explored global sequence records of each fungal species to infer its potential temperature niche, and used it to estimate the temperature of the observed communities. The estimated temperature was significantly correlated with the actual temperature of the research sites, especially in summer seasons, indicating inherent temperature niches of the fungal components could determine their distribution among the sites. These results indicate that temperature is still a significant determinant in structuring ECM fungal communities after excluding the effects of host species and coexisting plants. The results also imply that the rising temperature under global warming may have been affecting soil microbes unnoticeably, while such microbial community change may have been contributing to the resilience of the same vegetation.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
14
|
Reazin C, Baird R, Clark S, Jumpponen A. Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes. MYCORRHIZA 2019; 29:313-324. [PMID: 31129728 DOI: 10.1007/s00572-019-00897-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Restoration of the American chestnut (Castanea dentata) is underway using backcross breeding that confers chestnut blight disease resistance from Asian chestnuts (most often Castanea mollissima) to the susceptible host. Successful restoration will depend on blight resistance and performance of hybrid seedlings, which can be impacted by below-ground fungal communities. We compared fungal communities in roots and rhizospheres (rhizobiomes) of nursery-grown, 1-year-old chestnut seedlings from different genetic families of American chestnut, Chinese chestnut, and hybrids from backcross breeding generations as well as those present in the nursery soil. We specifically focused on the ectomycorrhizal (EcM) fungi that may facilitate host performance in the nursery and aid in seedling establishment after outplanting. Seedling rhizobiomes and nursery soil communities were distinct and seedlings recruited heterogeneous communities from shared nursery soil. The rhizobiomes included EcM fungi as well as endophytes, putative pathogens, and likely saprobes, but their relative proportions varied widely within and among the chestnut families. Notably, hybrid seedlings that hosted few EcM fungi hosted a large proportion of potential pathogens and endophytes, with possible consequences in outplanting success. Our data show that chestnut seedlings recruit divergent rhizobiomes and depart nurseries with communities that may facilitate or compromise the seedling performance in the field.
Collapse
Affiliation(s)
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Stacy Clark
- Southern Research Station, USDA Forest Service, Knoxville, TN, 37996, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Unuk T, Martinović T, Finžgar D, Šibanc N, Grebenc T, Kraigher H. Root-Associated Fungal Communities From Two Phenologically Contrasting Silver Fir ( Abies alba Mill.) Groups of Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:214. [PMID: 30891052 PMCID: PMC6413537 DOI: 10.3389/fpls.2019.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Root-associated fungal communities are important components in ecosystem processes, impacting plant growth and vigor by influencing the quality, direction, and flow of nutrients and water between plants and fungi. Linkages of plant phenological characteristics with belowground root-associated fungal communities have rarely been investigated, and thus our aim was to search for an interplay between contrasting phenology of host ectomycorrhizal trees from the same location and root-associated fungal communities (ectomycorrhizal, endophytic, saprotrophic and pathogenic root-associated fungi) in young and in adult silver fir trees. The study was performed in a managed silver fir forest site. Twenty-four soil samples collected under two phenologically contrasting silver fir groups were analyzed for differences in root-associated fungal communities using Illumina sequencing of a total root-associated fungal community. Significant differences in beta diversity and in mean alpha diversity were confirmed for overall community of ectomycorrhizal root-associated fungi, whereas for ecologically different non-ectomycorrhizal root-associated fungal communities the differences were significant only for beta diversity and not for mean alpha diversity. At genus level root-associated fungal communities differed significantly between early and late flushing young and adult silver fir trees. We discuss the interactions through which the phenology of host plants either drives or is driven by the root-associated fungal communities in conditions of a sustainably co-naturally managed silver fir forest.
Collapse
Affiliation(s)
- Tina Unuk
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Tijana Martinović
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Domen Finžgar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Nataša Šibanc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Ljubljana, Slovenia
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Hojka Kraigher
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| |
Collapse
|
16
|
Wagner K, Krause K, Gallegos-Monterrosa R, Sammer D, Kovács ÁT, Kothe E. The Ectomycorrhizospheric Habitat of Norway Spruce and Tricholoma vaccinum: Promotion of Plant Growth and Fitness by a Rich Microorganismic Community. Front Microbiol 2019; 10:307. [PMID: 30842767 PMCID: PMC6391851 DOI: 10.3389/fmicb.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
The contribution of the mycorrhizospheric microbes in a stand of ectomycorrhizal Norway spruce (Picea abies) featuring mycorrhiza with the basidiomycete Tricholoma vaccinum was addressed by microbiome analysis and in vitro reconstruction of microbial as well as plant-microbe interactions. The protective role of the mycorrhizal fungus with respect to pathogen attack could be validated against Botrytis cinerea and Heterobasidion annosum in co-cultures revealing reduced pathogen growth, higher survival rate of the spruce trees and reduced symptoms on needles upon symbiosis with T. vaccinum. The community structure was shown to yield a high diversity in ECM forming basidiomycetes of Thelephorales and Agaricales associated with a rich bacterial diversity dominated by Rhizobiales with the most abundant Nitrobacter winogradski (3.9%). Isolated bacteria were then used to address plant growth promoting abilities, which included production of the phytohormone indole-3-acetic acid (performed by 74% of the bacterial isolates), siderophores (22%), and phosphate mobilization (23%). Among the isolates, mycorrhiza helper bacteria (MHB) were identified, with Bacillus cereus MRZ-1 inducing hyperbranching in T. vaccinum, supporting tree germination, shoot elongation, and root formation as well as higher mycorrhization rates. Thus, a huge pool of potential MHB and fungal community with widely distributed auxin-production potential extended the ability of T. vaccinum to form ectomycorrhiza. The forest community profited from the mycorrhizal fungus T. vaccinum, with spruce survival enhanced by 33% in microcosms using soil from the native habitat. A higher fungal abundance and diversity in cases where the tree had died during the experiment, showing that decomposition of plant litter from a dead tree supported a different community. T. vaccinum thus actively structured the community of microorganisms in its habitat.
Collapse
Affiliation(s)
- Katharina Wagner
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Katrin Krause
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Dominik Sammer
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
17
|
Hamberg L, Velmala SM, Sievänen R, Kalliokoski T, Pennanen T. Early root growth and architecture of fast- and slow-growing Norway spruce (Picea abies) families differ-potential for functional adaptation. TREE PHYSIOLOGY 2018; 38:853-864. [PMID: 29253241 DOI: 10.1093/treephys/tpx159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO™ image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ~30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.
Collapse
Affiliation(s)
- Leena Hamberg
- Natural Resources Institute Finland (Luke), P.O. Box 2 (Latokartanonkaari 9), FI-00790 Helsinki, Finland
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), P.O. Box 2 (Latokartanonkaari 9), FI-00790 Helsinki, Finland
| | - Risto Sievänen
- Natural Resources Institute Finland (Luke), P.O. Box 2 (Latokartanonkaari 9), FI-00790 Helsinki, Finland
| | - Tuomo Kalliokoski
- Department of Physics, University of Helsinki, Atmospheric Sciences, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), P.O. Box 2 (Latokartanonkaari 9), FI-00790 Helsinki, Finland
| |
Collapse
|
18
|
Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age. Appl Environ Microbiol 2017; 83:AEM.01797-17. [PMID: 28970220 DOI: 10.1128/aem.01797-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity.IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities, including ECM and saprotrophic fungi, in urban parks are affected by plant functional type and park age. However, ECM fungal diversity and its responses to urban stress, plant functional type, or park age remain unknown. The significance of our study is in identifying, in greater detail, the responses of ECM fungi in the rhizospheres of conifer and broadleaf trees in urban parks. This will greatly enhance our knowledge of ECM fungal communities under urban stresses, and the findings can be utilized by urban planners to improve urban ecosystem services.
Collapse
|
19
|
Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce. Cryobiology 2017; 76:8-17. [PMID: 28501323 DOI: 10.1016/j.cryobiol.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) is considered as the most-effective method for vegetative propagation of Norway spruce (Picea abies L. Karst). For mass propagation, a cryopreservation method able to handle large numbers of embryogenic tissues (ETs) reliably and at low costs is needed. The aim of the present study was to compare pretreatments, cryoprotectants and slow-cooling devices for cryopreservation of Norway spruce ETs, with 12 variations of methods and a total of 136 spruce genotypes. Secondly, possible applications for cold storage of mature somatic embryos were studied with the aim of developing a flexible time window for embling production. At best, 100% of the embryogenic lines were recovered following cryopreservation, but the results varied among the sets of lines. Also physiological condition of the tissues, pre-treatment and cryoprotectant applied, as well as the slow-cooling device used were found to affect the recovery. The best option for cryopreservation of Norway spruce is to select fresh growth from young ETs as samples, pretreat them on semi-solid medium with increasing sucrose concentration (0.1 M for 24 h; 0.2 M for another 24 h), apply a mixture of polyethylene glycol 6000, glucose, and dimethylsulfoxide, 10% w/v each, as cryoprotectant and use a programmable freezer with a slow cooling rate (0.17 °C/min). On average, 87% of the genotypes can be recovered, without any effect on their genetic fidelity, as shown by microsatellite markers and embryo production capacity. Mature somatic embryos of Norway spruce can also be safely cold-stored at +4 °C, without adverse effects on their germination ability.
Collapse
|
20
|
Pérez-Izquierdo L, Zabal-Aguirre M, Flores-Rentería D, González-Martínez SC, Buée M, Rincón A. Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests. Environ Microbiol 2017; 19:1639-1652. [DOI: 10.1111/1462-2920.13690] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | | | - Marc Buée
- INRA, UMR1136 INRA Nancy - Université de Lorraine, Interactions Arbres-Microorganismes Labex ARBRE; Champenoux 54280 France
| | - Ana Rincón
- Instituto de Ciencias Agrarias; ICA-CSIC. Serrano 115bis Madrid 28006 Spain
| |
Collapse
|
21
|
Lamit L, Holeski L, Flores-Rentería L, Whitham T, Gehring C. Tree genotype influences ectomycorrhizal fungal community structure: Ecological and evolutionary implications. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Nadeau MB, P. Khasa D. Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region. PLoS One 2016; 11:e0166420. [PMID: 27835688 PMCID: PMC5106017 DOI: 10.1371/journal.pone.0166420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/30/2016] [Indexed: 11/19/2022] Open
Abstract
Little is known about edaphic selection pressures as drivers of contrasting white spruce ectomycorrhizal fungal community structure and diversity in the Canadian boreal forest. We hypothesized that community composition differs among the four sites sampled-nursery, mining site, forest edge, and natural forest. Ectomycorrhizal (ECM) fungal community structure and diversity was studied at the four locations with soil fertility gradient through morpho-molecular and phylogenetic analyses in relationships with rhizospheric soil chemical properties. 41 different species were identified. Mining site had a significantly different species composition than the surrounding environments. Soil pH and percentage of roots colonized by ECM fungi increased while soil P, N, Fe, C, K, Mg, Al, Ca, and Na contents declined across the soil fertility gradient: nursery → natural forest → forest edge → mining site. Contrary to the preference of acid soils by ECM fungi, a few ecologically adapted to high pH, poor soil chemical fertility, and low organic matter content colonize white spruce roots on the non-acidogenic mining site, allowing natural regeneration of white spruce seedlings. Other ECM fungi are adapted to high fertigation level of commercial nursery. This study clearly shows the contrasting difference in white spruce ectomycorrhizal fungal community structure and diversity driven by edaphic selection pressures.
Collapse
Affiliation(s)
- Martin B. Nadeau
- Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6
| | - Damase P. Khasa
- Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6
| |
Collapse
|
23
|
Eusemann P, Schnittler M, Nilsson RH, Jumpponen A, Dahl MB, Würth DG, Buras A, Wilmking M, Unterseher M. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome-Picea glauca system at an arctic treeline ecotone. THE NEW PHYTOLOGIST 2016; 211:1221-1231. [PMID: 27144386 DOI: 10.1111/nph.13988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Plant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping. In the present study, fungal metabarcoding and tree microsatellite data were compared for the first time. In general, neighbouring trees shared more fungal taxa with each other than trees growing in further distance. Mycobiomes correlated strongly with phenological host traits and local habitat characteristics contrasting a dense forest stand with an open treeline site. Genetic similarity between trees did not influence fungal composition and no significant correlation existed between needle mycobiome and tree genotype. Our results suggest the pronounced influence of local habitat conditions and phenotypic tree traits on needle-inhabiting fungi. By contrast, the tree genetic identity cannot be benchmarked as a dominant driver for needle-inhabiting mycobiomes, at least not for white spruce in this extreme environment.
Collapse
Affiliation(s)
- Pascal Eusemann
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
- Institute of Forest Genetics, Thünen Institute, Eberswalder Chaussee 3a, 15377, Waldsieversdorf, Germany
| | - Martin Schnittler
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - R Henrik Nilsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - Ari Jumpponen
- Division of Biology, Kansas State University, 433 Ackert Hall, Manhattan, KS, 66506, USA
| | - Mathilde B Dahl
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - David G Würth
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - Allan Buras
- Chair of Ecoclimatology, TU Munich, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - Martin Wilmking
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - Martin Unterseher
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| |
Collapse
|
24
|
|
25
|
Axelsson EP, Iason GR, Julkunen-Tiitto R, Whitham TG. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis. PLoS One 2015; 10:e0142257. [PMID: 26554587 PMCID: PMC4640599 DOI: 10.1371/journal.pone.0142257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host genetics supports our hypothesis that the canopies of Norway spruce differ in their community phenotypes.
Collapse
Affiliation(s)
- E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- * E-mail:
| | - Glenn R. Iason
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland
| | - Riitta Julkunen-Tiitto
- Department of Biology, University of Eastern Finland, PO Box 111, Joensuu 80101, Finland
| | - Thomas G. Whitham
- Merriam-Powell Center for Environmental Research & Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
26
|
Sanz-Ros AV, Müller MM, San Martín R, Diez JJ. Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain. Fungal Biol 2015; 119:870-883. [PMID: 26399183 DOI: 10.1016/j.funbio.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/25/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Most plant species harbour a diverse community of endophytic, but their role is still unknown in most cases, including ecologically and economically important tree species. This study describes the culturable fungal endophytic community of Pinus sylvestris L. twigs in northern Spain and its relationship with diametric growth of the host. In all, 360 twig samples were collected from 30 Scots pines in fifteen stands. Isolates were obtained from all twig samples and 43 fungal taxa were identified by morphogrouping and subsequent ITS rDNA sequencing. All isolates were Ascomycetes, being Dothideomycetes and Sordariomycetes the most abundant classes. Half of the species were host generalists while the others were conifer or pine specialists. We found three new endophytic species for the Pinaceae: Biscogniauxia mediterranea, Phaeomoniella effusa and Plectania milleri, and additional six new species for P. sylvestris: Daldinia fissa, Hypocrea viridescens, Nigrospora oryzae, Ophiostoma nigrocarpum, Penicillium melinii and Penicillium polonicum. The endophytic community of fast and slow growing trees showed differences in species composition, abundance and evenness, but not in diversity. Phoma herbarum was associated to fast growing trees and Hypocrea lixii to those growing slow. Our results support the hypothesis that some endophytic species may affect growth of P. sylvestris.
Collapse
Affiliation(s)
- Antonio V Sanz-Ros
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Avenida Madrid, 44, Campus La Yutera, Edificio E, 34071, Palencia, Castilla y León, Spain; Calabazanos Forest Health Centre (Junta de Castilla y León), Polígono industrial de Villamuriel, S/N, 34190, Villamuriel de Cerrato, Palencia, Spain.
| | - Michael M Müller
- The Finnish Forest Research Institute, PO Box 18 (Jokiniemenkuja 1), FI-01301, Vantaa, Finland
| | - Roberto San Martín
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Avenida Madrid, 44, Campus La Yutera, Edificio E, 34071, Palencia, Castilla y León, Spain
| | - Julio J Diez
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Avenida Madrid, 44, Campus La Yutera, Edificio E, 34071, Palencia, Castilla y León, Spain
| |
Collapse
|
27
|
Vaario LM, Pennanen T, Lu J, Palmén J, Stenman J, Leveinen J, Kilpeläinen P, Kitunen V. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. MYCORRHIZA 2015; 25:325-334. [PMID: 25355073 DOI: 10.1007/s00572-014-0615-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40% of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus.
Collapse
Affiliation(s)
- Lu-Min Vaario
- Finnish Forest Research Institute, PL 18, 01301, Vantaa, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vuorinen I, Hamberg L, Müller M, Seiskari P, Pennanen T. Development of growth media for solid substrate propagation of ectomycorrhizal fungi for inoculation of Norway spruce (Picea abies) seedlings. MYCORRHIZA 2015; 25:311-324. [PMID: 25348909 DOI: 10.1007/s00572-014-0611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
A silica-based propagation medium was developed for large-scale production of ectomycorrhizal (ECM) fungal inoculum by solid state fermentation. Development of the medium was started by screening for an optimal growth medium among six different semisynthetic agar media traditionally used in cultivation of ECM fungi. The majority (65 %) of the twenty tested ECM fungal strains that typically colonize Norway spruce (Picea abies) seedlings grew best on modified Melin-Norkrans (MMN) medium with reduced sugar content (½MMN). In order to develop a nutritionally similar medium for large-scale cultivation of the ECM fungi, we chose silica to form a solid matrix and light brewery malt extract to provide nutrients. The medium was supplemented with a commercial humic acid product that was shown to boost fungal growth. The optimal concentration of the constituents was screened for in two assays by determining the growth rates of seven potential inoculant ECM fungal strains (Amphinema sp., Cenococcum geophilum, Hebeloma sp., Meliniomyces bicolor, Paxillus involutus, Piloderma byssinum, and Tylospora asterophora). As a result, we composed a silica-based mass propagation medium (pH 5.8) containing 2.5 % brewery malt extract and 0.5 g/l humic acid product Lignohumate AM. This medium is easily produced and supported good growth of even the slowly growing and rarely studied Athelioid ECM strains. Furthermore, root systems of Norway spruce nursery seedlings were colonized by the tested ECM fungi by using solid inoculum formulated from the silica medium.
Collapse
Affiliation(s)
- Irmeli Vuorinen
- Finnish Forest Research Institute-Metla, Jokiniemenkuja 1, Box 18, 01301, Vantaa, Finland,
| | | | | | | | | |
Collapse
|
29
|
Huusko K, Tarvainen O, Saravesi K, Pennanen T, Fritze H, Kubin E, Markkola A. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings. THE ISME JOURNAL 2015; 9:581-91. [PMID: 25171334 PMCID: PMC4331576 DOI: 10.1038/ismej.2014.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/17/2014] [Accepted: 07/17/2014] [Indexed: 11/09/2022]
Abstract
The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding.
Collapse
Affiliation(s)
| | - Oili Tarvainen
- Oulu Unit, Finnish Forest Research Institute, Oulu, Finland
| | | | - Taina Pennanen
- Vantaa Unit, Finnish Forest Research Institute, Vantaa, Finland
| | - Hannu Fritze
- Vantaa Unit, Finnish Forest Research Institute, Vantaa, Finland
| | - Eero Kubin
- Oulu Unit, Finnish Forest Research Institute, Oulu, Finland
| | | |
Collapse
|
30
|
Rajala T, Velmala SM, Vesala R, Smolander A, Pennanen T. The community of needle endophytes reflects the current physiological state of Norway spruce. Fungal Biol 2014; 118:309-15. [DOI: 10.1016/j.funbio.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/07/2013] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
31
|
Crutsinger GM, Rodriguez-Cabal MA, Roddy AB, Peay KG, Bastow JL, Kidder AG, Dawson TE, Fine PVA, Rudgers JA. Genetic variation within a dominant shrub structures green and brown community assemblages. Ecology 2014; 95:387-98. [DOI: 10.1890/13-0316.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T. Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow-growing phenotypes. THE NEW PHYTOLOGIST 2014; 201:610-622. [PMID: 24117652 DOI: 10.1111/nph.12542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
We studied the role of taxonomical and functional ectomycorrhizal (ECM) fungal diversity in root formation and nutrient uptake by Norway spruce (Picea abies) seedlings with fast- and slow-growing phenotypes. Seedlings were grown with an increasing ECM fungal diversity gradient from one to four species and sampled before aboveground growth differences between the two phenotypes were apparent. ECM fungal colonization patterns were determined and functional diversity was assayed via measurements of potential enzyme activities of eight exoenzymes probably involved in nutrient mobilization. Phenotypes did not vary in their receptiveness to different ECM fungal species. However, seedlings of slow-growing phenotypes had higher fine-root density and thus more condensed root systems than fast-growing seedlings, but the potential enzyme activities of ectomycorrhizas did not differ qualitatively or quantitatively. ECM species richness increased host nutrient acquisition potential by diversifying the exoenzyme palette. Needle nitrogen content correlated positively with high chitinase activity of ectomycorrhizas. Rather than fast- and slow-growing phenotypes exhibiting differing receptiveness to ECM fungi, our results suggest that distinctions in fine-root structuring and in the belowground growth strategy already apparent at early stages of seedling development may explain later growth differences between fast- and slow-growing families.
Collapse
Affiliation(s)
| | - Tiina Rajala
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| | - Jussi Heinonsalo
- Viikki Biocenter, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, PO Box 56, 00014 University of Helsinki, Finland
| | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Taina Pennanen
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| |
Collapse
|
33
|
Ostonen I, Rosenvald K, Helmisaari HS, Godbold D, Parts K, Uri V, Lõhmus K. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments. FRONTIERS IN PLANT SCIENCE 2013; 4:335. [PMID: 24032035 PMCID: PMC3759007 DOI: 10.3389/fpls.2013.00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/09/2013] [Indexed: 05/13/2023]
Abstract
Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.
Collapse
Affiliation(s)
- Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Katrin Rosenvald
- Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | | | | | - Kaarin Parts
- Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Veiko Uri
- Institute of Forestry and Rural Engineering, Estonian University of Life SciencesTartu, Estonia
| | - Krista Lõhmus
- Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| |
Collapse
|
34
|
Tedersoo L, Mett M, Ishida TA, Bahram M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2013; 199:822-31. [PMID: 23692134 DOI: 10.1111/nph.12328] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/07/2013] [Indexed: 05/17/2023]
Abstract
Geographic and taxonomic host ranges determine the distribution of biotrophic organisms. Host phylogenetic distance strongly affects the community composition of pathogens and parasites, but little is known about the host phylogeny effect on communities of mutualists, such as plant-pollinator and plant-mycorrhizal fungi systems. By incorporating phylogenetic eigenvectors into univariate and multivariate models, we aimed to determine the relative contribution of host phylogeny and environmental variables to mycorrhizal traits and community composition of ectomycorrhizal (EcM) fungi in Salicaceae at the local scale. Host phylogeny explained 75% of the variation in fungal species richness and 20% of the variation in community composition. We also re-analyzed a system involving eight hosts from Japan, in which host phylogeny explained 26% and 9% of the variation in fungal richness and community composition, respectively. [Correction added after online publication 21 May 2013: in the preceding sentence the values 9% and 26% have been transposed.] Phylogenetic eigenvectors that differentially account for clades and terminal taxa across the phylogeny revealed stronger host effects than did the treatment of host species as categorical or dummy variables in multiregression models, and in comparison with methods such as Mantel test and its analogs. Our results indicate the usefulness of the eigenvector method for the quantification of the host phylogeny effect, which represents an integrated complex function of taxonomic sampling effect and phylogenetic distance per se.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
35
|
Gugerli F, Brandl R, Castagneyrol B, Franc A, Jactel H, Koelewijn HP, Martin F, Peter M, Pritsch K, Schröder H, Smulders MJM, Kremer A, Ziegenhagen B. Community genetics in the time of next-generation molecular technologies. Mol Ecol 2013; 22:3198-207. [DOI: 10.1111/mec.12300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/30/2013] [Accepted: 02/16/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Felix Gugerli
- WSL Swiss Federal Research Institute; 8903 Birmensdorf Switzerland
| | - Roland Brandl
- Fachbereich Biologie; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Bastien Castagneyrol
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Alain Franc
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Hervé Jactel
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Hans-Peter Koelewijn
- ALTERRA Centre for Ecosystem Studies; Wageningen UR; 6700 AA Wageningen The Netherlands
| | - Francis Martin
- UMR “Interactions Arbres/Micro-Organismes”; INRA Nancy; 54280 Champenoux France
| | - Martina Peter
- WSL Swiss Federal Research Institute; 8903 Birmensdorf Switzerland
| | - Karin Pritsch
- Institute of Soil Ecology; Helmholtz Zentrum München; 85764 Neuherberg Germany
| | - Hilke Schröder
- Institute for Forest Genetics; Johann Heinrich von Thuenen-Institute; 22927 Grosshansdorf Germany
| | | | - Antoine Kremer
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Birgit Ziegenhagen
- Fachbereich Biologie; Philipps-Universität Marburg; 35032 Marburg Germany
| | | |
Collapse
|
36
|
Rajala T, Velmala SM, Tuomivirta T, Haapanen M, Müller M, Pennanen T. Endophyte communities vary in the needles of Norway spruce clones. Fungal Biol 2013; 117:182-90. [DOI: 10.1016/j.funbio.2013.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/26/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
37
|
Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. MYCORRHIZA 2013; 23:21-33. [PMID: 22644394 DOI: 10.1007/s00572-012-0446-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H(2) = 0.04-0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H(2) = 0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.
Collapse
Affiliation(s)
- S M Velmala
- Finnish Forest Research Institute-Metla, Jokiniemenkuja 1, Box 18, FI-01301 Vantaa, Finland.
| | | | | | | | | |
Collapse
|
38
|
Baynes MA, Russell DM, Newcombe G, Carta LK, Rossman AY, Ismaiel A. A mutualistic interaction between a fungivorous nematode and a fungus within the endophytic community of Bromus tectorum. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Wilkinson A, Alexander I, Johnson D. Genotype identity determines productivity and CO2 efflux across a genotype-species gradient of ectomycorrhizal fungi. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Raherison E, Rigault P, Caron S, Poulin PL, Boyle B, Verta JP, Giguère I, Bomal C, Bohlmann J, MacKay J. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics 2012; 13:434. [PMID: 22931377 PMCID: PMC3534630 DOI: 10.1186/1471-2164-13-434] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022] Open
Abstract
Background Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.
Collapse
Affiliation(s)
- Elie Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, Canada, G1V 0A6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu B, Maruyama H, Teramoto M, Hogetsu T. Structural and functional interactions between extraradical mycelia of ectomycorrhizal Pisolithus isolates. THE NEW PHYTOLOGIST 2012; 194:1070-1078. [PMID: 22471555 DOI: 10.1111/j.1469-8137.2012.04126.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Extraradical mycelia from different ectomycorrhizal (ECM) roots coexist and interact under the forest floor. We investigated structural connections of conspecific mycelia and translocation of carbon and phosphorus between the same or different genets. Paired ECM Pinus thunbergii seedlings colonized by the same or different Pisolithus isolates were grown side by side in a rhizobox as their mycelia contacted each other. (14)CO(2) or (33)P-phosphoric acid was fed to leaves or a spot on the mycelium in one of the paired seedlings. Time-course distributions of (14)C and (33)P were visualized using a digital autoradiographic technique with imaging plates. Hyphal connections were observed between mycelia of the same Pisolithus isolate near the contact site, but hyphae did not connect between different isolates. (14)C and (33)P were translocated between mycelia of the same isolate. In (33)P-fed mycelia, accumulation of (33)P from the feeding spot toward the host ECM roots was observed. No (14)C and (33)P translocation occurred between mycelia of different isolates. These results provide direct evidence that contact and hyphal connection between mycelia of the same ECM isolate can cause nutrient translocation. The ecological significance of contact between extraradical mycelia is discussed.
Collapse
Affiliation(s)
- Bingyun Wu
- Department of Forest Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Haruka Maruyama
- Department of Forest Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Munemasa Teramoto
- Department of Forest Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taizo Hogetsu
- Department of Forest Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
42
|
Pumpanen J, Heinonsalo J, Rasilo T, Villemot J, Ilvesniemi H. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. TREE PHYSIOLOGY 2012; 32:724-736. [PMID: 22345325 DOI: 10.1093/treephys/tps007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.
Collapse
Affiliation(s)
- Jukka Pumpanen
- Department of Forest Sciences, University of Helsinki, PO Box 27, FI-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
43
|
Johnson D, Martin F, Cairney JWG, Anderson IC. The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. THE NEW PHYTOLOGIST 2012; 194:614-628. [PMID: 22489902 DOI: 10.1111/j.1469-8137.2012.04087.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A key component of biodiversity is the number and abundance of individuals (i.e. genotypes), and yet such intraspecific diversity is rarely considered when investigating the effects of biodiversity of mycorrhizal plants and fungi on ecosystem processes. Within a species, individuals vary considerably in important reproductive and functional attributes, including carbon fixation, mycelial growth and nutrient utilization, but this is driven by both genetic and environmental (including climatic) factors. The interactions between individual plants and mycorrhizal fungi can have important consequences for the maintenance of biodiversity and regulation of resource transfers in ecosystems. There is also emerging evidence that assemblages of genotypes may affect ecosystem processes to a similar extent as assemblages of species. The application of whole-genome sequencing and population genomics to mycorrhizal plants and fungi will be crucial to determine the extent to which individual variation in key functional attributes is genetically based. We argue the need to unravel the importance of the diversity (especially assemblages of different evenness and richness) of individuals of both mycorrhizal plants and fungi, and the need to take a 'community genetics' approach to better understand the functional significance of the biodiversity of mycorrhizal symbioses.
Collapse
Affiliation(s)
- David Johnson
- Institute of Biological and Environmental Sciences, Cruickshank Building, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Francis Martin
- INRA, UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| | - John W G Cairney
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| |
Collapse
|
44
|
Whitham TG, Gehring CA, Lamit LJ, Wojtowicz T, Evans LM, Keith AR, Smith DS. Community specificity: life and afterlife effects of genes. TRENDS IN PLANT SCIENCE 2012; 17:271-281. [PMID: 22322002 DOI: 10.1016/j.tplants.2012.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems.
Collapse
Affiliation(s)
- Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rajala T, Peltoniemi M, Pennanen T, Mäkipää R. Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 2012; 81:494-505. [DOI: 10.1111/j.1574-6941.2012.01376.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tiina Rajala
- Finnish Forest Research Institute; Vantaa Research Unit; Vantaa; Finland
| | - Mikko Peltoniemi
- Finnish Forest Research Institute; Vantaa Research Unit; Vantaa; Finland
| | - Taina Pennanen
- Finnish Forest Research Institute; Vantaa Research Unit; Vantaa; Finland
| | - Raisa Mäkipää
- Finnish Forest Research Institute; Vantaa Research Unit; Vantaa; Finland
| |
Collapse
|
46
|
Kranabetter JM, Stoehr MU, O'Neill GA. Divergence in ectomycorrhizal communities with foreign Douglas-fir populations and implications for assisted migration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:550-560. [PMID: 22611853 DOI: 10.1890/11-1514.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Assisted migration of forest trees has been widely proposed as a climate change adaptation strategy, but moving tree populations to match anticipated future climates may disrupt the geographically based, coevolved association suggested to exist between host trees and ectomycorrhizal fungal (EMF) communities. We explored this issue by examining the consistency of EMF communities among populations of 40 year-old Douglas-fir (Pseudotsuga menziesii var. menziesii) trees in a common-garden field trial using four provenances from contrasting coastal climates in southwestern British Columbia. Considerable variation in EMF community composition within test sites was found, ranging from 0.38 to 0.65 in the mean similarity index, and the divergence in EMF communities from local populations increased with site productivity. Clinal patterns in colonization success were detected for generalist and specialist EMF species on only the two productive test sites. Host population effects were limited to EMF species abundance rather than species loss, as richness per site averaged 15.0 among provenances and did not differ by transfer extent (up to 450 km), while Shannon's diversity index declined slightly. Large differences in colonization rates of specialist fungi, such as Tomentella stuposa and Clavulina cristata, raise the possibility that EMF communities maladapted to soil conditions contributed to the inferior growth of some host populations on productive sites. The results of the study suggest locally based specificity in host-fungal communities is likely a contributing factor in the outcome of provenance trials, and should be a consideration in analyzing seed-transfer effects and developing strategies for assisted migration.
Collapse
Affiliation(s)
- J M Kranabetter
- B.C. Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9536 Stn Prov Govt, Victoria, British Columbia V8W 9C4, Canada.
| | | | | |
Collapse
|
47
|
Trocha LK, Kałucka I, Stasińska M, Nowak W, Dabert M, Leski T, Rudawska M, Oleksyn J. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees. MYCORRHIZA 2012; 22:121-34. [PMID: 21573837 PMCID: PMC3261385 DOI: 10.1007/s00572-011-0387-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/02/2011] [Indexed: 05/22/2023]
Abstract
Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.
Collapse
Affiliation(s)
- Lidia K Trocha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. THE ISME JOURNAL 2012; 6:248-58. [PMID: 21776033 PMCID: PMC3260513 DOI: 10.1038/ismej.2011.95] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
Abstract
Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identification of active microbial decomposers is essential for understanding organic matter transformation in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria and fungi and its active members were compared in topsoil of a Picea abies forest during a period of organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses. Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived populations, but significantly differ in the composition of microbial taxa. Several highly active taxa, especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and especially fungi are often distinctly associated with a particular soil horizon. Fungal communities are less even than bacterial ones and show higher relative abundances of dominant species. While dominant bacterial species are distributed across the studied ecosystem, distribution of dominant fungi is often spatially restricted as they are only recovered at some locations. The sequences of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose decomposition, were compared in soil metagenome and metatranscriptome and assigned to their producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations largely distinct between soil horizons. The results indicate that low-abundance species make an important contribution to decomposition processes in soils.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Vídeňská, Praha, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajík P, Pennanen T. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 2011; 77:8523-31. [PMID: 21984247 PMCID: PMC3233081 DOI: 10.1128/aem.05839-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
Fungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroom Tricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria. Tomentollopsis sp. in the organic layer above the shiro and Piloderma sp. in the shiro correlated positively with the presence of T. matsutake in all experimental sites. A Thermomonosporaceae bacterium and Nocardia sp. correlated positively with the presence of T. matsutake, and Streptomyces sp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots.
Collapse
Affiliation(s)
- Lu-Min Vaario
- Finnish Forest Research Institute, Vantaa Research Unit, PL 18, FI-01301 Vantaa, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Rajala T, Peltoniemi M, Hantula J, Mäkipää R, Pennanen T. RNA reveals a succession of active fungi during the decay of Norway spruce logs. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2011.05.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|