1
|
Batool I, Ayyaz A, Zhang K, Hannan F, Sun Y, Qin T, Athar HUR, Naeem MS, Zhou W, Farooq MA. Chromium uptake and its impact on antioxidant level, photosynthetic machinery, and related gene expression in Brassica napus cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59363-59381. [PMID: 39349895 DOI: 10.1007/s11356-024-35175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
The development of heavy metals, particularly chromium (Cr)-tolerant crop cultivars, is hampered due to lack of understanding of the mechanisms behind Cr stress tolerance. In this study, two Brassica napus cultivars, ZS758 and ZD622, were compared for Cr stress resistance by using the chlorophyll a fluorescence technique and biochemical characteristics. In both cultivars, Cr stress dramatically decreased PSII and PSI efficiency, biomass accumulation, and antioxidant enzyme levels. Although, cultivar ZS758 showed reduction in oxidative stress by decreasing the production of reactive oxygen species (ROS) in terms of reduced H2O2 and MDA content and increased enzymatic activities of key antioxidants enzymes including SOD, APX, CAT, and POD activities that play a crucial role in the regulation of numerous transcriptional pathways involved in oxidative stress responses. Higher non-photochemical quenching (NPQ) and QY were found in tolerant ZS758 cultivar under Cr stress, indicating that tolerant cultivar had a greater capacity to preserve PSII activity under Cr stress by enhancing heat dissipation as a photo-protective component of NPQ. Lower PSI activity and electron transfer from PSII were confirmed by lower PSI efficiency and higher donor end limitation of PSI in both rapeseed cultivars. The Cr concentration was greater in the ZD622 as compared to ZS758, which affected the mineral nutrients profile and damaged the cellular ultrastructure and related gene expression levels. However, current study suggest that cultivar ZS758 is more resistant to Cr stress than ZD622 due to improved metabolism and structural integrity and Cr stress tolerance that is linked with the increased PSII activity, NPQ, and antioxidant potential; these physiological characteristics can be exploited to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Iram Batool
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Tongjun Qin
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | | | | | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Truax K, Dulai H, Misra A, Kuhne W, Smith C, Bongolan-Aquino C. Applications of LIF to Document Natural Variability of Chlorophyll Content and Cu Uptake in Moss. PLANTS (BASEL, SWITZERLAND) 2024; 13:2031. [PMID: 39124149 PMCID: PMC11314132 DOI: 10.3390/plants13152031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Chlorophyll has long been used as a natural indicator of plant health and photosynthetic efficiency. Laser-induced fluorescence (LIF) is an emerging technique for understanding broad spectrum organic processes and has more recently been used to monitor chlorophyll response in plants. Previous work has focused on developing a LIF technique for imaging moss mats to identify metal contamination with the current focus shifting toward application to moss fronds and aiding sample collection for chemical analysis. Two laser systems (CoCoBi a Nd:YGa pulsed laser system and Chl-SL with two blue continuous semiconductor diodes) were used to collect images of moss fronds exposed to increasing levels of Cu (1, 10, and 100 nmol/cm2) using a CMOS camera. The best methods for the preprocessing of images were conducted before the analysis of fluorescence signatures were compared to a control. The Chl-SL system performed better than the CoCoBi, with dynamic time warping (DTW) proving the most effective for image analysis. Manual thresholding to remove lower decimal code values improved the data distributions and proved whether using one or two fronds in an image was more advantageous. A higher DTW difference from the control correlated to lower chlorophyll a/b ratios and a higher metal content, indicating that LIF, with the aid of image processing, can be an effective technique for identifying Cu contamination shortly after an event.
Collapse
Affiliation(s)
- Kelly Truax
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Henrietta Dulai
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Anupam Misra
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Wendy Kuhne
- Savannah River National Laboratory, Aiken, SC 29831, USA;
| | - Celia Smith
- School of Life Science, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
| | - Ciara Bongolan-Aquino
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| |
Collapse
|
3
|
Gholamian F, Karimi N, Gholamian F, Bayat P. Phycoremediation potential and agar yield of red macroalgae (Gracilaria corticata) against HEDP (hydroxyethylidene diphosphonic acid) and CAPB (cocoamidopropyl betaine) detergents and the heavy metal pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101110-101120. [PMID: 37648916 DOI: 10.1007/s11356-023-29427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The discharge of raw industrial, agricultural, and domestic wastes leads to an increase in heavy metal (HM) burden and detergents in aquatic environs, which can have destructive effects on aquatic organisms. Agarophyte Gracilaria corticata, a major component of seaweed flora of the southern coast of Iran (Bushehr) that contains agar and red pigments, is one of the economically valuable red marine algae. Agar is one of the important polysaccharides with high economic value, widely used in pharmaceutical, medicinal, and cosmetic product manufacturing industries. The aim of this work was to investigate the effect of 5 HMs and two common surfactants in household and industrial detergents on the agar yield, appearance color, and the red algae's phycoremediation potential against HMs. The metal ions were Zn(II), Cu(II), Ni(II), Mn(II), and Cr(VI), and the surfactants were HEDP and CAPB. The analysis results of samples cultured for 60 days in seawater and polluted environments showed that G. corticata can accumulate copper and nickel. In the presence of detergents without HMs, the amount of extracted agar significantly increased compared to the control sample with no change in algae color. But with increasing concentration of HMs, the amount of agar in seaweed samples decreased significantly, and the algae discolored from red to dark green or yellowish-green color (signs of death in the algae). These results show that increasing of HM pollution and detergents can lead to toxicological effects and reduce the species diversity of red seaweeds in the future.
Collapse
Affiliation(s)
- Fatemeh Gholamian
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | | | - Parviz Bayat
- Bushehr Agricultural and Natural Resources Research and Education Center, AREEO, Tehran, Iran
| |
Collapse
|
4
|
Lukáčová A, Lihanová D, Beck T, Alberty R, Vešelényiová D, Krajčovič J, Vesteg M. The Influence of Phenol on the Growth, Morphology and Cell Division of Euglena gracilis. Life (Basel) 2023; 13:1734. [PMID: 37629591 PMCID: PMC10455851 DOI: 10.3390/life13081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Phenol, a monocyclic aromatic hydrocarbon with various commercial uses, is a major pollutant in industrial wastewater. Euglena gracilis is a unicellular freshwater flagellate possessing secondary chloroplasts of green algal origin. This protist has been widely used for monitoring the biological effect of various inorganic and organic environmental pollutants, including aromatic hydrocarbons. In this study, we evaluate the influence of different phenol concentrations (3.39 mM, 3.81 mM, 4.23 mM, 4.65 mM, 5.07 mM, 5.49 mM and 5.91 mM) on the growth, morphology and cell division of E. gracilis. The cell count continually decreases (p < 0.05-0.001) over time with increasing phenol concentration. While phenol treatment does not induce bleaching (permanent loss of photosynthesis), the morphological changes caused by phenol include the formation of spherical (p < 0.01-0.001), hypertrophied (p < 0.05) and monster cells (p < 0.01) and lipofuscin bodies. Phenol also induces an atypical form of cell division of E. gracilis, simultaneously producing more than 2 (3-12) viable cells from a single cell. Such atypically dividing cells have a symmetric "star"-like shape. The percentage of atypically dividing cells increases (p < 0.05) with increasing phenol concentration. Our findings suggest that E. gracilis can be used as bioindicator of phenol contamination in freshwater habitats and wastewater.
Collapse
Affiliation(s)
- Alexandra Lukáčová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Diana Lihanová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Terézia Beck
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Roman Alberty
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Dominika Vešelényiová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Juraj Krajčovič
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| |
Collapse
|
5
|
Gan T, Yin G, Zhao N, Tan X, Wang Y. A Sensitive Response Index Selection for Rapid Assessment of Heavy Metals Toxicity to the Photosynthesis of Chlorella pyrenoidosa Based on Rapid Chlorophyll Fluorescence Induction Kinetics. TOXICS 2023; 11:toxics11050468. [PMID: 37235282 DOI: 10.3390/toxics11050468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Heavy metals as toxic pollutants have important impacts on the photosynthesis of microalgae, thus seriously threatening the normal material circulation and energy flow of the aquatic ecosystem. In order to rapidly and sensitively detect the toxicity of heavy metals to microalgal photosynthesis, in this study, the effects of four typical toxic heavy metals, chromium (Cr(VI)), cadmium (Cd), mercury (Hg), and copper (Cu), on nine photosynthetic fluorescence parameters (φPo, ΨEo, φEo, δRo, ΨRo, φRo, FV/FO, PIABS, and Sm) derived from the chlorophyll fluorescence rise kinetics (OJIP) curve of microalga Chlorella pyrenoidosa, were investigated based on the chlorophyll fluorescence induction kinetics technique. By analyzing the change trends of each parameter with the concentrations of the four heavy metals, we found that compared with other parameters, φPo (maximum photochemical quantum yield of photosystem II), FV/FO (photochemical parameter of photosystem II), PIABS (photosynthetic performance index), and Sm (normalized area of the OJIP curve) demonstrated the same monotonic change characteristics with an increase in concentration of each heavy metal, indicating that these four parameters could be used as response indexes to quantitatively detect the toxicity of heavy metals. By further comparing the response performances of φPo, FV/FO, PIABS, and Sm to Cr(VI), Cd, Hg, and Cu, the results indicated that whether it was analyzed from the lowest observed effect concentration (LOEC), the influence degree by equal concentration of heavy metal, the 10% effective concentration (EC10), or the median effective concentration (EC50), the response sensitivities of PIABS to each heavy metal were all significantly superior to those of φRo, FV/FO, and Sm. Thus, PIABS was the most suitable response index for sensitive detection of heavy metals toxicity. Using PIABS as a response index to compare the toxicity of Cr(VI), Cd, Hg, and Cu to C. pyrenoidosa photosynthesis within 4 h by EC50 values, the results indicated that Hg was the most toxic, while Cr(VI) toxicity was the lowest. This study provides a sensitive response index for rapidly detecting the toxicity of heavy metals to microalgae based on the chlorophyll fluorescence induction kinetics technique.
Collapse
Affiliation(s)
- Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Xiaoxuan Tan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Ying Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
6
|
Speghini R, Buscato C, Marcato S, Fortunati I, Baldan B, Ferrante C. Response of Coccomyxa cimbrica sp.nov. to Increasing Doses of Cu(II) as a Function of Time: Comparison between Exposure in a Microfluidic Device or with Standard Protocols. BIOSENSORS 2023; 13:bios13040417. [PMID: 37185492 PMCID: PMC10135970 DOI: 10.3390/bios13040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
In this study, we explore how the in vitro conditions chosen to cultivate and observe the long-term (up to 72 h) toxic effect of Cu(II) on the freshwater microalga Coccomyxa cimbrica sp.nov. can affect the dose response in time. We test three different cultivation protocols: (i) under static conditions in sealed glass cells, (ii) in a microfluidic device, where the sample is constantly circulated with a peristaltic pump, and (iii) under continuous agitation in plastic falcons on an orbital shaker. The advantage and novelty of this study resides in the fact that each condition can mimic different environmental conditions that alga cells can find in nature. The effect of increasing dose of Cu(II) as a function of time (24, 48, and 72 h) is monitored following chlorophyll a fluorescence intensity from single cells. Fluorescence lifetime imaging experiments are also explored to gain information on the changes induced by Cu(II) in the photosynthetic cycle of this microalga.
Collapse
Affiliation(s)
- Riccardo Speghini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Carlo Buscato
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefania Marcato
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy
| | - Ilaria Fortunati
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Barbara Baldan
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy
| | - Camilla Ferrante
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Dauda S, Lombardi AT. Environmentally relevant copper concentrations stimulate photosynthesis in Monoraphidium sp. PHOTOSYNTHESIS RESEARCH 2023; 155:49-58. [PMID: 36266605 DOI: 10.1007/s11120-022-00976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.
Collapse
Affiliation(s)
- Suleiman Dauda
- Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
| | - Ana Teresa Lombardi
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
8
|
A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis. BIOLOGY 2022; 11:biology11111618. [DOI: 10.3390/biology11111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A chemical analysis of water quality cannot detect some toxicants due to time constraints, high costs, and limited interactions for detection. Bioassays would offer a complementary means to assess pollution levels in water. Euglena is a flagellate green alga and an excellent system for toxicity testing thanks to its ease of culture, rapid growth, and quick response to environmental stresses. Herein, we examined the sensitivity of E. agilis to seven heavy metals by analyzing six end-point parameters: motility, velocity, cell compactness, upward swimming, r-value, and alignment. Notably, the velocity of E. agilis was most sensitive to cadmium (96.28 mg·L−1), copper (6.51 mg·L−1), manganese (103.28 mg·L−1), lead (78.04 mg·L−1), and zinc (101.90 mg·L−1), while r-values were most sensitive to arsenic (12.84 mg·L−1) and mercury (4.26 mg·L−1). In this study, velocity and r-values are presented as useful biomarkers for the assessment of metal toxicity in Euglena. The metals As, Cd, Cu, and Pb were suitable for this test. The advantages of the ecotoxicity test are its rapidity: It takes 10 min to obtain results, as opposed to the typical 3–4 d of exposure time with intensive labor. Moreover, this test can be performed at room temperature under dark conditions.
Collapse
|
9
|
Li X, Wang Z, Bai M, Chen Z, Gu G, Li X, Hu C, Zhang X. Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23461-23473. [PMID: 34806148 DOI: 10.1007/s11356-021-17545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) released into aquatic environment interact with other pollutants that already exist in water, potentially altering their toxicity, which poses a new problem for aquatic ecosystems. In the present study, we first evaluated the effects of polystyrene MPs (mPS) on copper (Cu) toxicity to the protozoan Euglena gracilis using three methods based on 96-h acute toxicity, orthogonal test and 12-d sub-acute toxicity data. Thereafter, the 12-d sub-acute exposure was employed to investigate protozoan growth, photosynthetic parameters and pigments, soluble protein, total antioxidant capacity and trace metal accumulation in E. gracilis after exposure to either 1.5 mg/L of Cu, 75-nm mPS (1 and 5 mg/L) or a combination therein, with the objective to understand the underlined mechanisms. The results show that the concentration and exposure time are key factors influencing the effects of the mPS on Cu toxicity. A mPS concentration of 5 mg/L caused significantly more dissipation energy, which is used for photosynthesis and thus decreased photosynthetic efficiency, but this effect weakened after 12 d of exposure. Exposure to Cu alone resulted in significantly high Cu accumulation in the cells and inhibited uptake of manganese and zinc. The presence of mPS did not influence the effects of Cu on trace metal accumulation. Our result suggests that application of multiple methods and indices could provide more information for a comprehensive understanding of the effects of mPS on toxicity of other pollutants. In addition, long-term exposure seems necessary for evaluating mPS toxicity.
Collapse
Affiliation(s)
- Xiuling Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science, Linyi University, Linyi, 276000, People's Republic of China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhehua Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Gan Gu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Xiao Y, Liu S, Zhang M, Tong F, Xu Z, Ford R, Zhang T, Shi X, Wu Z, Luo T. Plant Functional Groups Dominate Responses of Plant Adaptive Strategies to Urbanization. FRONTIERS IN PLANT SCIENCE 2021; 12:773676. [PMID: 34917107 PMCID: PMC8669269 DOI: 10.3389/fpls.2021.773676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Urbanization causes alteration in atmospheric, soil, and hydrological factors and substantially affects a range of morphological and physiological plant traits. Correspondingly, plants might adopt different strategies to adapt to urbanization promotion or pressure. Understanding of plant traits responding to urbanization will reveal the capacity of plant adaptation and optimize the choice of plant species in urbanization green. In this study, four different functional groups (herbs, shrubs, subcanopies, and canopies, eight plant species totally) located in urban, suburban, and rural areas were selected and eight replicated plants were selected for each species at each site. Their physiological and photosynthetic properties and heavy metal concentrations were quantified to reveal plant adaptive strategies to urbanization. The herb and shrub species had significantly higher starch and soluble sugar contents in urban than in suburban areas. Urbanization decreased the maximum photosynthetic rates and total chlorophyll contents of the canopies (Engelhardtia roxburghiana and Schima superba). The herbs (Lophatherum gracile and Alpinia chinensis) and shrubs (Ardisia quinquegona and Psychotria rubra) species in urban areas had significantly lower nitrogen (N) allocated in the cell wall and leaf δ15N values but higher heavy metal concentrations than those in suburban areas. The canopy and subcanopy (Diospyros morrisiana and Cratoxylum cochinchinense) species adapt to the urbanization via reducing resource acquisition but improving defense capacity, while the herb and shrub species improve resource acquisition to adapt to the urbanization. Our current studies indicated that functional groups affected the responses of plant adaptive strategies to the urbanization.
Collapse
Affiliation(s)
- Yihua Xiao
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Shirong Liu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Manyun Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Fuchun Tong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Rebecca Ford
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Tianlin Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xin Shi
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhongmin Wu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Tushou Luo
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
11
|
Ayyaz A, Farooq MA, Dawood M, Majid A, Javed M, Athar HUR, Bano H, Zafar ZU. Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis and antioxidative protection in Brassica napus cultivars. PLANT CELL REPORTS 2021; 40:2063-2080. [PMID: 34417832 DOI: 10.1007/s00299-021-02769-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 05/06/2023]
Abstract
Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Majid
- Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Javed
- Department of Botany, University of Education, Lahore, Sub-Campus Dera Ghazi Khan, Lahore, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussan Bano
- Department of Botany, The Women University, Multan, 60000, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
12
|
Effect of Lead and Copper on Photosynthetic Apparatus in Citrus ( Citrus aurantium L.) Plants. The Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. PLANTS 2021; 10:plants10010155. [PMID: 33466929 PMCID: PMC7830311 DOI: 10.3390/plants10010155] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb- and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.
Collapse
|
13
|
Li Z, Juneau P, Lian Y, Zhang W, Wang S, Wang C, Shu L, Yan Q, He Z, Xu K. Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. PLANTS 2020; 9:plants9121748. [PMID: 33321890 PMCID: PMC7763043 DOI: 10.3390/plants9121748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023]
Abstract
The effects of the photocatalytic toxicity of titanium dioxide nanoparticle (nano-TiO2) on phytoplankton are well understood. However, as UV light intensity decreases sharply with the depth of the water column, the effects of nano-TiO2 itself on deeper water phytoplankton, such as green algae, need further research. In this research, we investigated the effects of three sizes of TiO2 (10, 50 and 200 nm) on the photosynthetic and antioxidative processes of Scenedesmus obliquus in the absence of UV light. We found that 50 nm and 10 nm TiO2 (10 mg/L) inhibited growth rates and the maximal photosystem II quantum yield compared to the control in Scenedesmus obliquus. The minimal and maximal fluorescence yields, and the contents of reactive oxygen species and lipid peroxidation, increased, indicating that photosynthetic energy/electrons transferred to oxygen and induced oxidative stress in nano-TiO2-treated samples. In addition, we found that aggregations of algae and 10 nm TiO2 were present, which could induce cell membrane disruption, and vacuoles were induced to cope with nano-TiO2 stress in Scenedesmus obliquus. These results enhance our understanding of the effects of nano-TiO2 on the photosynthetic and antioxidative processes of green algae, and provide basic information for evaluating the ecotoxicity of nano-TiO2 in freshwater ecosystems.
Collapse
Affiliation(s)
- Zhou Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Wei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
- Correspondence: (Z.H.); (K.X.)
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- Correspondence: (Z.H.); (K.X.)
| |
Collapse
|
14
|
Al-Huqail AA, Ali HM, Kushwaha BK, AL-Huqail AA, Singh VP, Siddiqui MH. Ascorbic acid is essential for inducing chromium (VI) toxicity tolerance in tomato roots. J Biotechnol 2020; 322:66-73. [DOI: 10.1016/j.jbiotec.2020.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
|
15
|
Kushwaha BK, Singh VP. Glutathione and hydrogen sulfide are required for sulfur-mediated mitigation of Cr(VI) toxicity in tomato, pea and brinjal seedlings. PHYSIOLOGIA PLANTARUM 2020; 168:406-421. [PMID: 31503325 DOI: 10.1111/ppl.13024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In plants, investigation on heavy metal toxicity and its mitigation by nutrient elements have gained much attention. However, mechanism(s) associated with nutrients-mediated mitigation of metal toxicity remain elusive. In this study, we have investigated the role and interrelation of glutathione (GSH) and hydrogen sulfide (H2 S) in the regulation of hexavalent chromium [Cr(VI)] toxicity in tomato (Solanum lycopersicum), pea (Pisum sativum) and brinjal (Solanum melongena) seedlings, supplemented with additional sulfur (S). The results show that Cr(VI) significantly reduced growth, total chlorophyll and photosynthetic quantum yield of tomato, pea and brinjal seedlings which was accompanied by enhanced intracellular accumulation of Cr(VI) in roots. Moreover, Cr(VI) enhanced the generation of reactive oxygen species in the studied vegetables, while antioxidant defense system exhibited differential responses. However, additional supply of S alleviated Cr(VI) toxicity. Interestingly, addition of l-buthionine sulfoximine (BSO, a glutathione biosynthesis inhibitor) further increased Cr(VI) toxicity even in the presence of additional S but GSH addition reverses the effect of BSO. Under similar condition, endogenous H2 S, l-cysteine desulfhydrase (DES) activity and cysteine content did not significantly differ when compared to controls. Hydroxylamine (HA, an inhibitor of DES) also increased Cr(VI) toxicity even in the presence of additional S but sodium hydrosulfide (NaHS, an H2 S donor) reverses the effect of HA. Moreover, Cr(VI) toxicity amelioration by NaHS was reversed by the addition of hypotaurine (HT, an H2 S scavenger). Taken together, the results show that GSH which might be derived from supplied S is involved in the mitigation of Cr(VI) toxicity in which H2 S signaling preceded GSH biosynthesis.
Collapse
Affiliation(s)
- Bishwajit K Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj, India
| |
Collapse
|
16
|
Copper-induced changes in growth, photosynthesis, antioxidative system activities and lipid metabolism of cilantro (Coriandrum sativum L.). Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00419-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Laporte D, Rodríguez F, González A, Zúñiga A, Castro-Nallar E, Sáez CA, Moenne A. Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta). BMC PLANT BIOLOGY 2020; 20:25. [PMID: 31941449 PMCID: PMC6964094 DOI: 10.1186/s12870-019-2229-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The marine alga Ulva compressa is the dominant species in copper-polluted coastal areas in northern Chile. It has been shown that the alga tolerates micromolar concentrations of copper and accumulates copper at the intracellular level. Transcriptomic analyses were performed using total RNA of the alga cultivated with 10 μ M copper for 0, 1, 3 and 5 days using RNA-seq in order to identify processes involved in copper tolerance. RESULTS The levels of transcripts encoding proteins belonging to Light Harvesting Complex II (LHCII), photosystem II (PSII), cytochrome b6f, PSI, LHCI, ATP synthase and proteins involved in repair of PSII and protection of PSI were increased in the alga cultivated with copper. In addition, the level of transcripts encoding proteins of mitochondrial electron transport chain, ATP synthase, and enzymes involved in C, N and S assimilation were also enhanced. The higher percentages of increase in the level of transcripts were mainly observed at days 3 and 5. In contrast, transcripts involved protein synthesis and degradation, signal transduction, and replication and DNA repair, were decreased. In addition, net photosynthesis and respiration increased in the alga cultivated with copper, mainly at days 1 to 3. Furthermore, the activities of enzymes involved in C, N and S assimilation, rubisco, glutamine synthase and cysteine synthase, respectively, were also increased, mainly at days 1 and 3. CONCLUSIONS The marine alga U. compressa tolerates copper excess through a concomitant increase in expression of proteins involved in photosynthesis, respiration, and C, N and S assimilation, which represents an exceptional mechanism of copper tolerance.
Collapse
Affiliation(s)
- Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Felipe Rodríguez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Antonio Zúñiga
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, 2340000, Valparaíso, Chile
| | - Eduardo Castro-Nallar
- Center of Bioinformatics and Integrative Biology, Faculty of Life Sciences, University Andrés Bello, República 330, Santiago, Chile
| | - Claudio A Sáez
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, 2340000, Valparaíso, Chile
- Laboratory of Aquatic Environmental Research, Center of Advanced Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
18
|
Baracho DH, Silva JC, Lombardi AT. The effects of copper on photosynthesis and biomolecules yield in Chlorolobion braunii. JOURNAL OF PHYCOLOGY 2019; 55:1335-1347. [PMID: 31408527 DOI: 10.1111/jpy.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Our knowledge of the effects of copper on microalgal physiology is largely based on studies conducted with high copper concentrations; much less is known when environmentally relevant copper levels come into question. Here, we evaluated the physiology of Chlorolobion braunii exposed to free copper ion concentrations between 5.7 × 10-9 and 5.0 × 10-6 mol · L-1 , thus including environmentally relevant values. Population growth and maximum photosynthetic quantum yield of PSII were determined daily during the 96 h laboratory controlled experiment. Exponentially-growing cells (48 h) were analyzed for effective quantum yield and rapid light curves (RLC), and total lipids, proteins, carbohydrates, chlorophyll a and carotenoids were determined. The results showed that growth rates and population density decreased gradually as copper increased in experiment, but the photosynthetic parameters (maximum and effective quantum yields) and photochemical quenching (qP) decreased only at the highest free copper concentration tested (5.0 × 10-6 mol · L-1 ); nonphotochemical quenching (NPQ) increased gradually with copper increase. The RLC parameters Ek and rETRmax were inversely proportional to copper concentration, while α and Im decreased only at 5.0 × 10-6 mol · L-1 . The effects of copper in biomolecules yield (mg · L-1 ) varied depending on the biomolecule. Lipid yield increased at free copper concentration as low as 2.5 × 10-8 mol · L-1 , but proteins and carbohydrates were constant throughout.
Collapse
Affiliation(s)
- Douglas H Baracho
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| | - Jaqueline C Silva
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| | - Ana T Lombardi
- Departamento de Botânica, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| |
Collapse
|
19
|
Kottuparambil S, Park J. Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Sci Rep 2019; 9:15323. [PMID: 31653882 PMCID: PMC6814832 DOI: 10.1038/s41598-019-51451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
The freshwater flagellate alga Euglena agilis Carter was exposed to the polycyclic aromatic hydrocarbon (PAH) anthracene for 96 h under optimal photosynthetically active radiation (PAR), and responses of growth, photosynthetic pigment production, and photosynthetic efficiency were assessed. Anthracene reduced the growth rate (μ) and levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoids. The growth rate was more sensitive than photosynthetic parameters, with a median effective concentration (EC50) of 4.28 mg L-1. Between 5 and 15 mg L-1, anthracene inhibited the maximum quantum yield (Fv/Fm) of photosystem II (PSII) and the maximum photosynthetic electron transport rate through PSII (rETRmax) with EC50 values of 14.88 and 11.8 mg L-1, respectively. At all anthracene concentrations, intracellular reactive oxygen species (ROS) were elevated, indicating increased oxidative stress. Anthracene presumably reduced the PSII efficiency of photochemical energy regulation and altered the photochemistry through intracellular ROS formation. Acute exposure to PAHs may induce severe physiological changes in phytoplankton cells, which may influence vital ecological processes within the aquatic environments. Additionally, growth and Chl a content may serve as sensitive risk assessment parameters of anthracene toxicity in water management since EC50 values for both overlap with anthracene levels (8.3 mg L-1) permitted by the US Environmental Protection Agency (USEPA).
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jihae Park
- Ghent University Global Campus, Songomunhwa-Ro, 119, Yeonsu-gu, Incheon, 21985, Republic of Korea.
| |
Collapse
|
20
|
Luo F, Cai JH, Kong XM, Zhou Q, Zhou X, Zhao YB, Ji SJ. Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing. HORTICULTURE RESEARCH 2019; 6:74. [PMID: 31231532 PMCID: PMC6544632 DOI: 10.1038/s41438-019-0155-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 05/08/2023]
Abstract
Postharvest broccoli is prone to yellowing during storage, which is the key factor leading to a reduction in value. To explore appropriate control methods, it is important to understand the mechanisms of yellowing. We analyzed the genes related to the metabolism of chlorophyll, carotenoids, and flavonoids and the transcription factors (TFs) involved in broccoli yellowing using transcriptome sequencing profiling. Broccoli stored at 10 °C showed slight yellowing on postharvest day 5 and serious symptoms on day 12. There were significant changes in chlorophyll fluorescence kinetics, mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching, during the yellowing process. Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6, 5, and 4 differentially expressed genes involved in chlorophyll metabolism, carotenoid biosynthesis, and flavonoid biosynthesis, respectively. The transcription factor gene ontology categories showed that the MYB, bHLH, and bZip gene families were involved in chlorophyll metabolism. In addition, the transcription factor families included NACs and ethylene response factors (ERFs) that regulated carotenoid biosynthesis. Reverse transcription polymerase chain reaction further confirmed that bHLH66, PIF4, LOB13, NAC92, and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process. The flavonoid biosynthetic pathway was mainly regulated by MYBs, NACs, WRKYs, MADSs, and bZips. The results of the differentially expressed gene (DEG) and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Jia-Hui Cai
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| |
Collapse
|
21
|
Long M, Holland A, Planquette H, González Santana D, Whitby H, Soudant P, Sarthou G, Hégaret H, Jolley DF. Effects of copper on the dinoflagellate Alexandrium minutum and its allelochemical potency. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:251-261. [PMID: 30878793 DOI: 10.1016/j.aquatox.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Alexandrium minutum produces toxic compounds, including paralytic shellfish toxins, but also some unknown extracellular toxins. Although copper (Cu) is an essential element, it can impair microalgal physiology and increase their toxic potency. This study investigated the effect of different concentrations of dissolved Cu (7 nM, 79 nM and 164 nM) on A. minutum allelochemical potency, here defined as negative effects of a protist on competing protists through the release of chemicals. This was studied in relation to its physiology. The effects of Cu were assessed on A. minutum growth, reactive oxygen species level, photosynthesis proxies, lipid metabolism, exudation of dissolved organic compounds, allelochemical potency and on the associate free bacterial community of A. minutum. Only the highest Cu exposure (164 nM) inhibited and delayed the growth of A. minutum, and only in this treatment did the allelochemical potency significantly increase, when the dissolved Cu concentration was still toxic. Within the first 7 days of the high Cu treatment, the physiology of A. minutum was severely impaired with decreased growth and photosynthesis, and increased stress responses and free bacterial density per algal cell. After 15 days, A. minutum partially recovered from Cu stress as highlighted by the growth rate, reactive oxygen species level and photosystem II yields. This recovery could be attributed to the apparent decrease in background dissolved Cu concentration to a non-toxic level, suggesting that the release of exudates may have partially decreased the bioavailable Cu fraction. Overall, A. minutum appeared quite tolerant to Cu, and this work suggests that the modifications in the physiology and in the exudates help the algae to cope with Cu exposure. Moreover, this study shows the complex interplay between abiotic and biotic factors that can influence the dynamic of A. minutum blooms. Modulation in allelochemical potency of A. minutum by Cu may have ecological implications with an increased competitiveness of this species in environments contaminated with Cu.
Collapse
Affiliation(s)
- Marc Long
- School of Chemistry, University of Wollongong, NSW, 2522, Australia; Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France.
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, VIC, Australia
| | - Hélène Planquette
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - David González Santana
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Hannah Whitby
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Géraldine Sarthou
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Dianne F Jolley
- School of Chemistry, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
22
|
Li L, Long M, Islam F, Farooq MA, Wang J, Mwamba TM, Shou J, Zhou W. Synergistic effects of chromium and copper on photosynthetic inhibition, subcellular distribution, and related gene expression in Brassica napus cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11827-11845. [PMID: 30820917 DOI: 10.1007/s11356-019-04450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, modern plant physiology focuses on complex behavior of metal co-contaminants in agrosystems. Keeping this in view, the current study was conducted to investigate the response of two Brassica napus cultivars (Zheda 622 and ZS 758) under co-contamination of copper (Cu2+) and chromium (Cr6+) to observe their effects on plant growth, photosynthetic parameters, and subcellular distribution of these metals in leaves and roots. The results showed that exposure to Cu and Cr causes decline in plant growth, including biomass and plant height. Significant decrease in pigment concentration and the photosynthetic activity [photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E), maximal quantum yield of photosystem II (Fv/Fm)] in leaves was also observed. Results of subcellular distribution of metals showed that Cu and Cr were predominantly distributed in cell wall and soluble fraction of roots and leaves. Moreover, Cu and Cr in cellular fractions showed a synergistic accumulation pattern under combined metal stress treatment. Both cultivars showed increased levels of reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2) and superoxide radical (O2•-), and significant modulation in the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX)] under Cu/Cr alone or their combined treatments. Similarly, expression levels of defense-related genes, such as BnCat, BnApx, BnPrx, and BnSod, were also generally up-regulated compared with control. Electron micrographs (TEM) of the mesophyll and root tip cells indicated prominent alterations both in cellular and organelle levels. Additionally, Cr was found to be more toxic than Cu but less than their combined effect, as revealed by enhanced production of oxidative stress and a reduction in biomass production and photosynthetic activity. The present results also suggest that cultivar ZS 758 is more resistant to Cu/Cr than Zheda 622, due to better adapted metabolism and maintenance of structural integrity under metal stress.
Collapse
Affiliation(s)
- Lan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Meijuan Long
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Theodore M Mwamba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Jianyao Shou
- Zhuji Municipal Agro-Tech Extension Center, Zhuji, 311800, China.
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 PMCID: PMC6245705 DOI: 10.1186/s12864-018-5226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
Background The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. Results De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. Conclusions Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5226-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
24
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 DOI: 10.118/2fs12864-018-5226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. RESULTS De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. CONCLUSIONS Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
25
|
Sathicq MB, Gómez N. Effects of hexavalent chromium on phytoplankton and bacterioplankton of the Río de la Plata estuary: an ex-situ assay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:229. [PMID: 29550888 DOI: 10.1007/s10661-018-6619-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We examined the responses of the phytoplankton and the bacterioplankton of the freshwater zone of the Río de la Plata estuary when exposed to an addition of hexavalent chromium (Cr+6). The planktonic community from a coastal site was exposed to a chromium increase of 80 μg L-1 for 72 h in laboratory conditions. The results showed a decrease in the concentration of Cr+6 by 33% in the treatments, along with significant decreases in chlorophyll-a (63%), the chlorophyll-a:pheophytin-a ratio (33%), oxygen production (37%), and in the total density of the phytoplankton (15%). The relative abundance of chlorophytes and diatoms decreased, while the cyanobacteria thrived. Finally, the total bacterial density and the density of viable bacteria decreased. These results show that even small increments in Cr+6 can cause significant effects on the phytoplankton and bacterioplankton, which could potentially affect other trophic levels of the community, risking alterations of the entire ecosystem.
Collapse
Affiliation(s)
- María Belén Sathicq
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina.
| | - Nora Gómez
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina
| |
Collapse
|
26
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
27
|
A Novel Cyclophilin B Gene in the Red Tide Dinoflagellate Cochlodinium polykrikoides: Molecular Characterizations and Transcriptional Responses to Environmental Stresses. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101580. [PMID: 29226135 PMCID: PMC5684524 DOI: 10.1155/2017/4101580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/13/2017] [Indexed: 11/25/2022]
Abstract
The marine dinoflagellate Cochlodinium polykrikoides is one of the most common ichthyotoxic species that causes harmful algal blooms (HABs), which leads to ecological damage and huge economic loss in aquaculture industries. Cyclophilins (CYPs) belong to the immunophilin superfamily, and they may play a role in the survival mechanisms of the dinoflagellate in stress environments. In the present study, we identified a novel cyclophilin gene from C. polykrikoides and examined physiological and gene transcriptional responses to biocides copper sulphate (CuSO4) and sodium hypochlorite (NaOCl). The full length of CpCYP was 903 bp, ranging from the dinoflagellate splice leader (DinoSL) sequence to the polyA tail, comprising a 639 bp ORF, a 117 bp 5′-UTR, and a 147 bp 3′-UTR. Motif and phylogenetic comparisons showed that CpCYP was affiliated to group B of CYP. In biocide stressors, cell counts, chlorophyll a, and photosynthetic efficiency (Fv/Fm) of C. polykrikoides were considerably decreased in both exposure time- and dose-dependent manners. In addition, CpCYP gene expression was significantly induced after 24 h exposure to the biocide-treated stress conditions. These results indicate an effect of the biocides on the cell physiology and expression profile of CpCYP, suggesting that the gene may play a role in environmental stress responses.
Collapse
|
28
|
Biochemistry and Physiology of Reactive Oxygen Species in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:47-64. [PMID: 28429317 DOI: 10.1007/978-3-319-54910-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP+-glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.
Collapse
|
29
|
Gabbasova DT, Matorin DN, Konyukhov IV, Seifullina NK, Zayadan BK. Effect of chromate ions on marine microalgae Phaeodactylum tricornutum. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Guo R, Lim WA, Ki JS. Genome-wide analysis of transcription and photosynthesis inhibition in the harmful dinoflagellate Prorocentrum minimum in response to the biocide copper sulfate. HARMFUL ALGAE 2016; 57:27-38. [PMID: 30170719 DOI: 10.1016/j.hal.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 06/08/2023]
Abstract
Copper is an essential trace metal for organisms; however, excess copper may damage cellular processes. Their efficiency and physiological effects of biocides have been well documented; however, molecular transcriptome responses to biocides are insufficiently studied. In the present study, a 6.0K oligonucleotide chip was developed to investigate the molecular responses of the harmful dinoflagellate Prorocentrum minimum to copper sulfate (CuSO4) treatment. The results revealed that 515 genes (approximately 8.6%) responded to CuSO4, defined as being within a 2-fold change. Further, KEGG pathway analysis showed that differentially expressed genes (DEGs) were involved in ribosomal function, RNA transport, carbon metabolism, biosynthesis of amino acids, photosystem maintenance, and other cellular processes. Among the DEGs, 49 genes were related to chloroplasts and mitochondria. Furthermore, the genes involved in the RAS signaling pathway, MAPK signaling pathway, and transport pathways were identified. An additional experiment showed that the photosynthesis efficiency decreased considerably, and reactive oxygen species (ROS) production increased in P. minimum after CuSO4 exposure. These results suggest that CuSO4 caused cellular oxidative stress in P. minimum, affecting the ribosome and mitochondria, and severely damaged the photosystem. These effects may potentially lead to cell death, although the dinoflagellate has developed a complex signal transduction process to combat copper toxicity.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Weol-Ae Lim
- Oceanic Climate & Ecology Research Division, the National Institute of Fisheries Science (NISF), Busan 46083, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
31
|
Assessment of the effects of As(III) treatment on cyanobacteria lipidomic profiles by LC-MS and MCR-ALS. Anal Bioanal Chem 2016; 408:5829-5841. [DOI: 10.1007/s00216-016-9695-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
|
32
|
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. THE NEW PHYTOLOGIST 2016; 210:1244-1258. [PMID: 26840406 DOI: 10.1111/nph.13840] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.
Collapse
Affiliation(s)
- Elisa Andresen
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Sophie Kappel
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Ulrike Riegger
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Jakub Borovec
- Department of Hydrochemistry and Ecosystem Modelling, Institute of Hydrobiology, Biology Centre of the CAS, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Jürgen Mattusch
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Šárka Matoušková
- Institute of Geology of the CAS, Rozvojová 269, Praha 6 - Lysolaje, CZ-16500, Czech Republic
| | - Bryan Dickinson
- Department of Chemistry, The University of Chicago, GCIS E 319A, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
- Faculty of Biological Science, University of South Bohemia, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
33
|
Abstract
Metal toxicity in plants is still a global problem for the environment, agriculture and ultimately human health.
Collapse
Affiliation(s)
- Hendrik Küpper
- Biology Center of the Czech Academy of Sciences
- Institute of Plant Molecular Biology
- Department of Plant Biophysics & Biochemistry
- 370 05 České Budějovice, Czech Republic
- University of South Bohemia
| | - Elisa Andresen
- Biology Center of the Czech Academy of Sciences
- Institute of Plant Molecular Biology
- Department of Plant Biophysics & Biochemistry
- 370 05 České Budějovice, Czech Republic
| |
Collapse
|
34
|
Xie J, Bai X, Lavoie M, Lu H, Fan X, Pan X, Fu Z, Qian H. Analysis of the Proteome of the Marine Diatom Phaeodactylum tricornutum Exposed to Aluminum Providing Insights into Aluminum Toxicity Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11182-11190. [PMID: 26308585 DOI: 10.1021/acs.est.5b03272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trace aluminum (Al) concentrations can be toxic to marine phytoplankton, the basis of the marine food web, but the fundamental Al toxicity and detoxification mechanisms at the molecular levels are poorly understood. Using an array of proteomic, transcriptomic, and biochemical techniques, we describe in detail the cellular response of the model marine diatom Phaeodactylum tricornutum to a short-term sublethal Al stress (4 h of exposure to 200 μM total initial Al). A total of 2204 proteins were identified and quantified by isobaric tags for relative and absolute quantification (iTRAQ) in response to the Al stress. Among them, 87 and 78 proteins performing various cell functions were up- and down-regulated after Al treatment, respectively. We found that photosynthesis was a key Al toxicity target. The Al-induced decrease in electron transport rates in thylakoid membranes lead to an increase in reactive oxygen species (ROS) production, which cause increased lipid peroxidation. Several ROS-detoxifying proteins were induced to help decrease Al-induced oxidative stress. In parallel, glycolysis and pentose phosphate pathway were up-regulated in order to produce cell energy (NADPH, ATP) and carbon skeleton for cell growth, partially circumventing the Al-induced toxicity effects on photosynthesis. These cellular responses to Al stress were coordinated by the activation of various signal transduction pathways. The identification of Al-responsive proteins in the model marine phytoplankton P. tricornutum provides new insights on Al stress responses as well as a good start for further exploring Al detoxification mechanisms.
Collapse
Affiliation(s)
- Jun Xie
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
| | - Xiaocui Bai
- Department of Food Science and Technology, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval , Québec City, Québec G1V 0A6 Canada
| | - Haiping Lu
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. of China
| | - Xiaoji Fan
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences , Urumqi, Xinjiang 830011, P. R. of China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
| | - Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
- Department of Food Science and Technology, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, P. R. of China
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences , Urumqi, Xinjiang 830011, P. R. of China
| |
Collapse
|
35
|
Santiago-Martínez MG, Lira-Silva E, Encalada R, Pineda E, Gallardo-Pérez JC, Zepeda-Rodriguez A, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 288:104-112. [PMID: 25698571 DOI: 10.1016/j.jhazmat.2015.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.
Collapse
Affiliation(s)
| | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | - Erika Pineda
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | |
Collapse
|
36
|
Peng C, Lee JW, Sichani HT, Ng JC. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:10-8. [PMID: 25463212 DOI: 10.1016/j.jhazmat.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 05/26/2023]
Abstract
BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 μM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia
| | - Jong-Wha Lee
- Department of Environmental Health, Soonchunhyang University, Asan-si, Chungcheongnam-do 336-745, Republic of Korea
| | - Homa Teimouri Sichani
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia.
| |
Collapse
|
37
|
Sarmishta D, P. BM, S. BP. Copper-induced changes in growth and antioxidative mechanisms of tea plant (Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Saucedo-Vázquez JP, Kroneck PMH, Sosa-Torres ME. The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines. Dalton Trans 2015; 44:5510-9. [DOI: 10.1039/c4dt03606a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanistic study is presented of the oxidative dehydrogenation of the iron(iii) complex [FeIIIL3]3+, 1, (L3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| | | | - Martha Elena Sosa-Torres
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| |
Collapse
|
39
|
Lyubenova L, Bipuah H, Belford E, Michalke B, Winkler B, Schröder P. Comparative study on the impact of copper sulphate and copper nitrate on the detoxification mechanisms in Typha latifolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:657-666. [PMID: 25096493 DOI: 10.1007/s11356-014-3402-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The present study focused on cupric sulphate and cupric nitrate uptake in Typha latifolia and the impact of these copper species on the plant's detoxification capacity. When the plants were exposed to 10, 50 and 100 μM cupric sulphate or cupric nitrate, copper accumulation in T. latifolia roots and shoots increased with rising concentration of the salts. Shoot to root ratios differed significantly depending on the form of copper supplementation, e.g. if it was added as cupric (II) sulphate or cupric (II) nitrate. After incubation with 100 μM of cupric sulphate, up to 450 mg Cu/kg fresh weight (FW) was accumulated, whereas the same concentration of cupric nitrate resulted in accumulation of 580 mg/kg FW. Furthermore, significant differences in the activity of some antioxidative enzymes in Typha roots compared to the shoots, which are essential in the plant's reaction to cope with metal stress, were observed. The activity of peroxidase (POX) in roots was increased at intermediate concentrations (10 and 50 μM) of CuSO4, whereas it was inhibited at the same Cu(NO3)2 concentrations. Ascorbate peroxidase (APOX) and dehydroascorbate reductase (DHAR) increased their enzyme activity intensely, which may be an indication for copper toxicity in T. latifolia plants. Besides, fluorodifen conjugation by glutathione S-transferases (GSTs) was increased up to sixfold, especially in roots.
Collapse
Affiliation(s)
- Lyudmila Lyubenova
- Department of Environmental Sciences, Research Unit Microbe-Plant Interactions, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Deng C, Shao H, Pan X, Wang S, Zhang D. Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 115:23-31. [PMID: 25307462 DOI: 10.1016/j.pestbp.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 05/26/2023]
Abstract
The herbicidal effects of harmaline extracted from Peganum harmala seed on cell growth and photosynthesis of green algae Chlorella pyrenoidosa were investigated using chlorophyll a fluorescence and thermoluminescence techniques. Exposure to harmaline inhibited cell growth, pigments contents and oxygen evolution of C. pyrenoidosa. Oxygen evolution was more sensitive to harmaline toxicity than cell growth or the whole photosystem II (PSII) activity, maybe it was the first target site of harmaline. The JIP-test parameters showed that harmaline inhibited the donor side of PSII. Harmaline decreased photochemical efficiency and electron transport flow of PSII but increased the energy dissipation. The charge recombination was also affected by harmaline. Amplitude of the fast phase decreased and the slow phase increased at the highest level of harmaline. Electron transfer from QA(-) to QB was inhibited and backward electron transport flow from QA(-) to oxygen evolution complex was enhanced at 10 μg mL(-1) harmaline. Exposure to 10 μg mL(-1) harmaline caused appearance of C band in thermoluminescence. Exposure to 5 μg mL(-1) harmaline inhibited the formation of proton gradient. The highest concentration of harmaline treatment inhibited S3QB(-) charge recombination but promoted formation of QA(-)YD(+) charge pairs. P. harmala harmaline may be a promising herbicide because of its inhibition of cell growth, pigments synthesis, oxygen evolution and PSII activities.
Collapse
Affiliation(s)
- Chunnuan Deng
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Tourism and Geography, Yunnan Normal University, Kunming 650500, China
| | - Hua Shao
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiangliang Pan
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Shuzhi Wang
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
41
|
Hernández-Zamora M, Perales-Vela HV, Flores-Ortíz CM, Cañizares-Villanueva RO. Physiological and biochemical responses of Chlorella vulgaris to Congo red. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:72-77. [PMID: 25042247 DOI: 10.1016/j.ecoenv.2014.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments.
Collapse
Affiliation(s)
- Miriam Hernández-Zamora
- Laboratorio de Biotecnología de Microalgas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, C.P. 07360 México DF, México.
| | - Hugo Virgilio Perales-Vela
- Laboratorio de Bioquímica, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Av. de los Barrios #1, Estado de México, México.
| | - César Mateo Flores-Ortíz
- Laboratorio de Biogeoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Av. de los Barrios #1, Estado de México, México.
| | - Rosa Olivia Cañizares-Villanueva
- Laboratorio de Biotecnología de Microalgas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, C.P. 07360 México DF, México.
| |
Collapse
|
42
|
Kumar KS, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:51-71. [PMID: 24632123 DOI: 10.1016/j.ecoenv.2014.01.042] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 05/22/2023]
Abstract
Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides).
Collapse
Affiliation(s)
- K Suresh Kumar
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Hans-Uwe Dahms
- Green Life Science Department, College of Convergence, Sangmyung University, 7 Hongij-dong, Jongno-gu, Seoul 110-743, Republic of Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hyung Chul Kim
- Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Won Chan Lee
- Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea.
| |
Collapse
|
43
|
Mishra S, Stärk HJ, Küpper H. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics 2014; 6:444-54. [PMID: 24382492 DOI: 10.1039/c3mt00317e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic (As) is a common pollutant, and still many questions remain concerning As toxicity mechanisms under environmentally relevant conditions in plants. Here we investigated thresholds and interactions of various proposed As toxicity mechanisms. Experiments were done under environmentally pertinent conditions in the rootless aquatic macrophyte Ceratophyllum demersum L., a model for plant shoots. Arsenic (provided as As(v)) inhibited plant metabolism at much lower concentrations and with a different sequence of events than previously reported. The first observed effect of toxicity was a decrease in pigment concentration, it started even at 0.5 μM As. In contrast to toxic metals, no inhibition of the photosystem II reaction centre (PSIIRC; measured as Fv/Fm) was found at sublethal As concentrations. Instead, the decrease in light harvesting pigments caused a less efficient exciton transfer towards the PSIIRC. At higher As concentrations this led to increased non-photochemical quenching (NPQ) by light harvesting complex II (LHCII). Afterwards, photosynthetic electron transport decreased, but the increase in starch content indicated stronger inhibition of starch consumption than production. At lethal As concentration, photosynthesis was completely inhibited, its malfunction caused oxidative stress and not the other way round as reported previously. Photosynthesis was inhibited before any sign of oxidative stress was observed. Elevated phosphate drastically shifted thresholds of lethal As effects, not only by the known uptake competition but also by modifying uptake regulation and intracellular processes.
Collapse
Affiliation(s)
- Seema Mishra
- University of Konstanz, Department of Biology, Postbox M631, D-78457 Konstanz, Germany.
| | | | | |
Collapse
|
44
|
Peng C, Arthur DM, Sichani HT, Xia Q, Ng JC. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ. CHEMOSPHERE 2013; 93:2381-2389. [PMID: 24034892 DOI: 10.1016/j.chemosphere.2013.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Australia
| | | | | | | | | |
Collapse
|
45
|
Andresen E, Opitz J, Thomas G, Stärk HJ, Dienemann H, Jenemann K, Dickinson BC, Küpper H. Effects of Cd & Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft & hard water including a German lake. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:387-402. [PMID: 24096235 DOI: 10.1016/j.aquatox.2013.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/09/2013] [Accepted: 09/15/2013] [Indexed: 06/02/2023]
Abstract
Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far.
Collapse
Affiliation(s)
- Elisa Andresen
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Keymer PC, Pratt S, Lant PA. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity. Biotechnol Bioeng 2013; 110:2405-11. [DOI: 10.1002/bit.24905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Philip C. Keymer
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| | - Steven Pratt
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| | - Paul A. Lant
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| |
Collapse
|
47
|
Rai UN, Singh NK, Upadhyay AK, Verma S. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. BIORESOURCE TECHNOLOGY 2013; 136:604-9. [PMID: 23567737 DOI: 10.1016/j.biortech.2013.03.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 05/20/2023]
Abstract
A concentration-dependent increase in activity of antioxidant enzymes (catalase, ascorbate peroxidase, glutathione, superoxide dismutase) and carotenoid, MDA level have been observed in the green alga Chlorella vulgaris following chromium exposure at different concentrations (0.01-100 μg ml(-1)). Simultaneously, decrease in growth rate, chlorophyll and protein contents was observed. In case of ascorbate peroxidase, glutathione peroxidase and superoxide dismutase a bell shaped dose response was evident, however, lipid peroxidation followed a linear relationship along with catalase activity, which could be used as biomarker of Cr toxicity and played important role in providing tolerance and subsequently, high accumulation potential of chromium in C. vulgaris. In present investigation, the green alga C. vulgaris respond better under chromium stress in terms of tolerance, growth and metal accumulating potential at higher concentration of Cr (VI) which could be employed in decontamination of chromium for environmental cleanup.
Collapse
Affiliation(s)
- U N Rai
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226 001, India.
| | | | | | | |
Collapse
|
48
|
Rodríguez-Llorente ID, Lafuente A, Doukkali B, Caviedes MA, Pajuelo E. Engineering copper hyperaccumulation in plants by expressing a prokaryotic copC gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12088-12097. [PMID: 23020547 DOI: 10.1021/es300842s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g(-1)) and shoots (up to 400 μg Cu. g(-1)), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achieved-neither in roots nor in shoots-when compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants.
Collapse
|
49
|
Rocchetta I, Mazzuca M, Conforti V, Balzaretti V, del Carmen Ríos de Molina M. Chromium induced stress conditions in heterotrophic and auxotrophic strains of Euglena gracilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:147-154. [PMID: 22885056 DOI: 10.1016/j.ecoenv.2012.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
Oxidative stress parameter and antioxidant defense compound as well as enzyme activity were studied in relation to different Cr(VI) concentrations (0, 10, 20, 40 μM) in two strains of Euglena gracilis, one isolated from a polluted river (MAT) and the other acquired from a culture collection (UTEX). Chromium toxicity was measured in the auxotrophic and obligated heterotrophic variants of the two strains. Chromium uptake was higher in auxotrophic cultures, reflected by their higher cell proliferation inhibition and lower IC50 levels compared to heterotrophic ones. In the Cr(VI) treatments a reduction of chlorophyll a and b ratio (Chl a/Chl b) was observed, the ratio of protein to paramylon content was augmented, and total lipid content increased, having the auxotrophic strains the highest values. TBARS content increased significantly only at 40 μM Cr(VI) treatment. Unsaturated fatty acids also increased in the Cr(VI) treatments, with the higher storage lipid (saturated acids) content in the heterotrophic cells. The antioxidant response, such as SOD activity and GSH content, increased with chromium concentration, showing the highest GSH values in the heterotrophic cultures and the SOD enzyme participation in chromium toxicity. The MAT strain had higher IC50 values, higher carbohydrate and saturated acid content, and better response of the antioxidant system than the UTEX one. This strain isolated from the polluted place also showed higher GSH content and SOD activity in control cells and in almost all treated cultures. SOD activity reached a 9-fold increase in both MAT strains. These results suggest that tolerance of MAT strain against Cr(VI) stress is not only related to GSH level and/or biosynthesis capacity but is also related to the participation of the SOD antioxidant enzyme.
Collapse
Affiliation(s)
- Iara Rocchetta
- Department of Biological Chemistry, College of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
50
|
Lelong A, Jolley DF, Soudant P, Hégaret H. Impact of copper exposure on Pseudo-nitzschia spp. physiology and domoic acid production. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:37-47. [PMID: 22516673 DOI: 10.1016/j.aquatox.2012.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Microalgae have differing sensitivities to copper toxicity. Some species within the genus Pseudo-nitzschia produce domoic acid (DA), a phycotoxin that has been hypothesised to chelate Cu and ameliorate Cu toxicity to the cells. To better characterise the effect of Cu on Pseudo-nitzschia, a toxic strain of P. multiseries and a non-toxic strain of P. delicatissima were exposed to Cu(II) for 96 h (50 μg l(-1) for P. delicatissima and 50, 100 and 150 μg l(-1) for P. multiseries). Physiological measurements were performed daily on Pseudo-nitzschia cells using fluorescent probes and flow cytometry to determine the cell density, lipid concentration, chlorophyll autofluorescence, esterase activity, percentage of dead algal cells, and number of living and dead bacteria. Photosynthetic efficiency and O(2) consumption and production of cells were also measured using pulse amplitude modulated fluorometry and SDR Oxygen Sensor dish. The DA content was measured using ELISA kits. After 48 h of Cu exposure, P. delicatissima mortality increased dramatically whereas P. multiseries survival was unchanged (in comparison to control cells). Cellular esterase activity, chlorophyll autofluorescence, and lipid content significantly increased upon Cu exposure in comparison to control cells (24h for P. delicatissima, up to 96 h for P. multiseries). Bacterial concentrations in P. multiseries decreased significantly when exposed to Cu, whereas bacterial concentrations were similar between control and exposed populations of P. delicatissima. DA concentrations in P. multiseries were not modified by Cu exposure. Addition of DA to non-toxic P. delicatissima did not enhance cells survival; hence, extracellular DA does not protect Pseudo-nitzschia spp. against copper toxicity. Results suggested that cells of P. delicatissima are much more sensitive to Cu than P. multiseries. This difference is probably not related to the ability of P. multiseries to produce DA but could be explained by species differences in copper sensitivity, or a difference of bacterial community between the algal species.
Collapse
Affiliation(s)
- Aurélie Lelong
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Dianne F Jolley
- School of Chemistry, University of Wollongong, NSW 2522, Australia.
| | - Philippe Soudant
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Hélène Hégaret
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| |
Collapse
|