1
|
Ghosh E, van Nouhuys S, Ode PJ. Anthropogenic effects on the eco-immunology of herbivorous insects. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101285. [PMID: 39454724 DOI: 10.1016/j.cois.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Insect herbivore eco-immunology involves complex interactions between herbivore immunity and their natural enemies, and the responses of these interactions to environmental factors including plant anti-herbivore toxins. Plant toxins can affect herbivore immunity, leading to either immunoenhancement or immunosuppression, which in turn influences their vulnerability to parasitoids and pathogens. Herbivore immune responses differ among species regionally, reflecting adaptations to local environmental conditions and natural enemy pressures. Additionally, anthropogenic factors including like climate change, plant domestication, and invasive species are altering these eco-immunological dynamics. Such changes can ripple through food webs, affecting not only herbivores and their natural enemies but also broader community structures. By understanding these complex interactions, we can better predict ecosystem responses to environmental change.
Collapse
Affiliation(s)
- Enakshi Ghosh
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA; Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO 80523-1101, USA.
| | - Saskya van Nouhuys
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Paul J Ode
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1021, USA
| |
Collapse
|
2
|
Welti EA, Kaspari M. Elevated CO 2, nutrition dilution, and shifts in Earth's insect abundance. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101255. [PMID: 39182720 DOI: 10.1016/j.cois.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.
Collapse
Affiliation(s)
- Ellen Ar Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630 USA.
| | - Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Swain A, Azevedo-Schmidt LE, Maccracken SA, Currano ED, Meineke EK, Pierce NE, Fagan WF, Labandeira CC. Interactive Effects of Temperature, Aridity, and Plant Stoichiometry on Insect Herbivory: Past and Present. Am Nat 2024; 204:416-431. [PMID: 39326060 DOI: 10.1086/731995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.
Collapse
|
4
|
Filipiak ZM, Mayoral C, Mills SA, Hayward SAL, Ullah S. Elevated atmospheric CO 2 alters the multi-element stoichiometry of pollen-bearing oak flowers, with possible negative effects on bees. Oecologia 2024; 206:101-114. [PMID: 39245757 PMCID: PMC11489284 DOI: 10.1007/s00442-024-05610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Increasing atmospheric CO2 levels change the elemental composition in plants, altering their nutritional quality and affecting consumers and ecosystems. Ecological stoichiometry provides a framework for investigating how CO2-driven nutrient dilution in pollen affects bees by linking changes in pollen chemical element proportions to the nutritional needs of bees. We investigated the consequences of five years of Free Air CO2 Enrichment (FACE) in a mature oak-dominated temperate forest on the elemental composition of English oak (Quercus robur) pollen. We measured the concentrations and proportions of 12 elements (C, N, P, S, K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in Q. robur pollen-bearing flowers collected from the Birmingham Institute for Forest Research (BIFoR) FACE facility. An elevated CO2 (eCO2) level of 150 ppm above ambient significantly reduced the S, K, and Fe levels and altered the multi-element ratio, with different elements behaving differently. This shift in pollen multi-element composition may have subsequent cascading effects on higher trophic levels. To assess the impact on bees, we calculated the stoichiometric mismatch (a measure of the discrepancy between consumer needs and food quality) for two bee species, Osmia bicornis (red mason bee) and Apis mellifera (honey bee), that consume oak pollen in nature. We observed stoichiometric mismatches for P and S, in pollen under eCO2, which could negatively affect bees. We highlight the need for a comprehensive understanding of the changes in pollen multi-element stoichiometry under eCO2, which leads to nutrient limitations under climate change with consequences for bees.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Carolina Mayoral
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sophie A Mills
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Scott A L Hayward
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sami Ullah
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
6
|
Kaspari M, Welti EAR. Nutrient dilution and the future of herbivore populations. Trends Ecol Evol 2024; 39:809-820. [PMID: 38876933 DOI: 10.1016/j.tree.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
Nutrient dilution (ND) - the decrease in the concentration of nutritional elements in plant tissue - arises from an increase in the mass of carbohydrates and/or a decrease in the 20+ essential elements. Increasing CO2 levels and its promotion of biomass are linked to nutrient dilution. We build a case for nutrient dilution as a key driver in global declines in herbivore abundance. Herbivores must build element-rich animal tissue from nutrient-poor plant tissue, and their abundance commonly increases with fertilization of both macro- and micronutrients. We predict the global impacts of nutrient dilution will be magnified in some of Earth's most biodiverse, highly productive, and/or nutrient-poor ecosystems and should favor specific traits of herbivores, including sap-feeding and ruminant microbiomes.
Collapse
Affiliation(s)
- Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
7
|
Li H, Wu S, Liu J, Chen Y, Meng L, Li B. Effects of CO 2 elevation on life-history traits of two insecticide-resistant strains of planthopper Nilaparvata lugens on rice. INSECT SCIENCE 2024. [PMID: 39034425 DOI: 10.1111/1744-7917.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 μL/L as compared to 390 μL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 μL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 μL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 μL/L but higher at 780 μL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 μL/L compared to 390 μL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.
Collapse
Affiliation(s)
- Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yong Chen
- College of Life and Environment Science, Huangshan College, Huangshan, Anhui, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Reeves LA, Garratt MPD, Fountain MT, Senapathi D. A whole ecosystem approach to pear psyllid ( Cacopsylla pyri) management in a changing climate. JOURNAL OF PEST SCIENCE 2024; 97:1203-1226. [PMID: 39188924 PMCID: PMC11344733 DOI: 10.1007/s10340-024-01772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 08/28/2024]
Abstract
Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (Cacopsylla pyri Linnaeus) within pear (Pyrus communis L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in C. pyri management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of C. pyri as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.
Collapse
Affiliation(s)
- Laura A. Reeves
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | - Michael P. D. Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| |
Collapse
|
9
|
Chapman CA, Gogarten JF, Golooba M, Kalbitzer U, Omeja PA, Opito EA, Sarkar D. Fifty+ years of primate research illustrates complex drivers of abundance and increasing primate numbers. Am J Primatol 2023:e23577. [PMID: 37985837 DOI: 10.1002/ajp.23577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Many primate populations are threatened by human actions and a central tool used for their protection is establishing protected areas. However, even if populations in such areas are protected from hunting and deforestation, they still may be threatened by factors such as climate change and its cascading impacts on habitat quality and disease dynamics. Here we provide a long-term and geographically wide-spread population assessment of the five common diurnal primates of Kibale National Park, Uganda. Over 7 year-long or longer census efforts that spanned 52 years, our team walked 1466 km, and recorded 480 monkey groups. Populations were generally relatively stable with a few exceptions, for which no apparent causative factors could be identified. This stability is unexpected as many ecological changes documented over the last 34+ years (e.g., decreasing food abundance and quality) were predicted to have negative impacts. Populations of some species declined at some sites but increased at others. This highlights the need for large, protected areas so that declines in particular areas are countered by gains in others. Kibale has large areas of regenerating forest and this most recent survey revealed that after 20+ years, forest regeneration in many of these areas appears sufficient to sustain sizeable primate populations, except for blue monkeys that have not colonized these areas. Indeed, the average primate abundance in the regenerating forest was only 8.1% lower than in neighboring old-growth forest. Thus, park-wide primate abundance has likely increased, despite many pressures on the park having risen; however, some areas in the park remain to be assessed. Our study suggests that the restoration, patrolling, and community outreach efforts of the Uganda Wildlife Authority and their partners have contributed significantly to protecting the park and its animals.
Collapse
Affiliation(s)
- Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Wilson Center, Washington, District of Columbia, USA
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Jan F Gogarten
- Helmholtz Institute for One Health, Greifswald, Germany
- Department of Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - Martin Golooba
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Urs Kalbitzer
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Patrick A Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Emmanuel A Opito
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Dipto Sarkar
- Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada
| |
Collapse
|
10
|
de Souza Rodrigues J, Shilling D, Tishchenko V, Bowen S, Deng S, Hall DB, Grey TL. Early growth, development and allometry of glyphosate-resistant and susceptible Amaranthus palmeri in response to current and elevated temperature and CO 2. Sci Rep 2023; 13:14427. [PMID: 37660074 PMCID: PMC10475059 DOI: 10.1038/s41598-023-41121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
This study aimed to evaluate the influence of CO2 and temperature on glyphosate-resistant and susceptible biotypes of Amaranthus palmeri (Palmer amaranth) in terms of morphological development. Height (cm), stem diameter (cm), leaf area (cm2), number of leaves, leaf, stem, and root dry matter, plant volume (m3), as well as shoot-to-root allometry were evaluated. The Palmer amaranth biotypes were grown under four different scenarios: 1-low temperature (23/33 °C) and CO2 (410 ± 25 ppm); 2-low temperature (23/33 °C) and high CO2 (750 ± 25 ppm); 3-high temperature (26/36 °C) and low CO2 (410 ± 25 ppm); and 4-high temperature (26/36 °C) and CO2 (750 ± 25 ppm). Between CO2 and temperature, the majority of differences observed were driven by CO2 levels. Palmer amaranth grown under 750 ppm of CO2 was 15.5% taller, displayed 10% more leaf area (cm2), 18% more stem dry matter, and had a 28.4% increase in volume (m3) compared to 410 ppm of CO2. GA2017 and GA2020 were 18% and 15.5% shorter, respectively. The number of leaves was 27% greater for GA2005. Plant volume decreased in GA2017 (35.6%) and GA2020 (23.8%). The shoot-to-root ratio was isomeric, except at 14 and 21 DAT, where an allometric growth towards shoot development was significant. Palmer amaranth biotypes responded differently to elevated CO2, and the impacts of temperature need further investigation on weed physiology. Thus, environmental and genetic background may affect the response of glyphosate-resistant and susceptible populations to climate change scenarios.
Collapse
Affiliation(s)
- Juliana de Souza Rodrigues
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA.
| | - Donn Shilling
- Department of Crop and Soil Sciences, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Viktor Tishchenko
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Samantha Bowen
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| | - Shiyuan Deng
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA, 30602, USA
| | - Daniel B Hall
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA, 30602, USA
| | - Timothy L Grey
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| |
Collapse
|
11
|
Bastías DA, Ueno AC, Gundel PE. Global Change Factors Influence Plant- Epichloë Associations. J Fungi (Basel) 2023; 9:446. [PMID: 37108902 PMCID: PMC10145611 DOI: 10.3390/jof9040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
There is an increasing interest in determining the influence of global change on plant-microorganism interactions. We review the results of experiments that evaluated the effects of the global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon dioxide levels and low temperatures differentially influenced the growth of plants and endophytes, which could compromise the symbioses. Furthermore, we summarise the plant stage in which the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just a few of them. While only studied in response to ozone and drought, evidence showed that the effects of these factors on symbiotic plants persisted trans-generationally. We also identified the putative mechanisms that would explain the effects of the factors on plant-endophyte associations. These mechanisms included the increased contents of reactive oxygen species and defence-related phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants, reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and photosynthesis levels. Knowledge gaps regarding the effects of global change on plant-endophyte associations were identified and discussed.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Andrea C. Ueno
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Talca 3480094, Chile
| | - Pedro E. Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Facultad de Agronomía, IFEVA, CONICET, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
12
|
Love SJ, Schweitzer JA, Bailey JK. Climate-driven convergent evolution in riparian ecosystems on sky islands. Sci Rep 2023; 13:2817. [PMID: 36797341 PMCID: PMC9935884 DOI: 10.1038/s41598-023-29564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Climate-induced evolution will determine population persistence in a changing world. However, finding natural systems in which to study these responses has been a barrier to estimating the impact of global change on a broad scale. We propose that isolated sky islands (SI) and adjacent mountain chains (MC) are natural laboratories for studying long-term and contemporary climatic pressures on natural populations. We used greenhouse common garden trees to test whether populations on SI exposed to hot and dry climates since the end of the Pleistocene have phenotypically diverged from populations on MC, and if SI populations have converged in these traits. We show: (1) populations of Populus angustifolia from SI have diverged from MC, and converged across SI, in reproductive and productivity traits, (2) these traits (cloning and aboveground biomass, respectively) are significantly correlated, suggesting a genetic linkage between them, and (3) the trait variation is driven by both natural selection and genetic drift. These shifts represent potentially beneficial phenotypes for population persistence in a changing world. These results suggest that the SI-MC comparison is a natural laboratory, as well as a predictive framework, for studying long-term responses to climate change across the globe.
Collapse
Affiliation(s)
- S J Love
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA.
| | - J A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| | - J K Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| |
Collapse
|
13
|
Lu Z, Sun Z, Li Y, Hao R, Chen Y, Chen B, Qin X, Tao X, Gui F. Effects of Elevated CO 2 Concentration on Host Adaptability and Chlorantraniliprole Susceptibility in Spodoptera frugiperda. INSECTS 2022; 13:1029. [PMID: 36354853 PMCID: PMC9699368 DOI: 10.3390/insects13111029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous agricultural pest that may attack more than 350 host plant species and has developed resistance to both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of eCO2 on (1) FAW's susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW's population performance traits (including the growth and reproduction), and (3) changes in gene expression in the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2, the life span of pupae and adults and the total number of generations were significantly shorter than the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment, including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole by inducing the expression of detoxification enzyme genes. This study has important implications for assessing the damage of FAW in the future under the environment of increasing atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Ruoshi Hao
- Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoping Qin
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Tao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
14
|
Abbas F, O'Neill Rothenberg D, Zhou Y, Ke Y, Wang HC. Volatile organic compounds as mediators of plant communication and adaptation to climate change. PHYSIOLOGIA PLANTARUM 2022; 174:e13840. [PMID: 36512339 DOI: 10.1111/ppl.13840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Plant volatile organic compounds are the most abundant and structurally diverse plant secondary metabolites. They play a key role in plant lifespan via direct and indirect plant defenses, attracting pollinators, and mediating various interactions between plants and their environment. The ecological diversity and context-dependence of plant-plant communication driven by volatiles are crucial elements that influence plant performance in different habitats. Plant volatiles are also valued for their multiple applications in food, flavor, pharmaceutical, and cosmetics industries. In the current review, we summarize recent advances that have elucidated the functions of plant volatile organic compounds as mediators of plant interaction at community and individual levels, highlighting the complexities of plant receiver feedback to various signals and cues. This review emphasizes volatile terpenoids, the most abundant class of plant volatile organic compounds, highlighting their role in plant adaptability to global climate change and stress-response pathways that are integral to plant growth and survival. Finally, we identify research gaps and suggest future research directions.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanguo Ke
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
16
|
Baker SJ, Dewhirst RA, McElwain JC, Haworth M, Belcher CM. CO 2 -induced biochemical changes in leaf volatiles decreased fire-intensity in the run-up to the Triassic-Jurassic boundary. THE NEW PHYTOLOGIST 2022; 235:1442-1454. [PMID: 35672945 PMCID: PMC9545750 DOI: 10.1111/nph.18299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
The Triassic-Jurassic boundary marks the third largest mass extinction event in the Phanerozoic, characterized by a rise in CO2 -concentrations from c. 600 ppm to c. 2100-2400 ppm, coupled with a c. 3.0-4.0°C temperature rise. This is hypothesized to have induced major floral turnover, altering vegetation structure, composition and leaf morphology, which in turn are hypothesized to have driven changes in wildfire. However, the effects of elevated CO2 on fuel properties, such as chemical composition of leaves, are also important in influencing fire behaviour, but yet have not been considered. We test this by selecting three Triassic analogue species grown experimentally in different atmospheric compositions, and analyse variations in leaf chemistry, and leaf level flammability. These data were used to inform a fire behaviour model. We find that all three species tested showed a reduction in their volatile component, leading to lower flammability. Accounting for these variations in a model, our results suggest that leaf intrinsic flammability has a measurable impact on modelled fire behaviour. If scaled up to ecosystem level, periods of elevated CO2 may therefore be capable of inducing both biochemical and morphological changes in fuel properties, and thus may be capable of influencing fire behaviour.
Collapse
Affiliation(s)
| | | | - Jennifer C. McElwain
- Botany Department, School of Natural SciencesTrinity College DublinDublinD02 PN40Ireland
| | - Matthew Haworth
- Institute for Sustainable Plant ProtectionNational Research Council (CNR‐IPSP)Via Madonna del Piano 10 Sesto FiorentinoFlorenceFirenze50019Italy
| | | |
Collapse
|
17
|
Rauschkolb R, Li Z, Godefroid S, Dixon L, Durka W, Májeková M, Bossdorf O, Ensslin A, Scheepens JF. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. THE NEW PHYTOLOGIST 2022; 235:773-785. [PMID: 35357713 DOI: 10.1111/nph.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ongoing global warming, coupled with increased drought frequencies, together with other biotic drivers may have resulted in complex evolutionary adaptation. The resurrection approach, comparing ancestors raised from stored seeds with their contemporary descendants under common conditions, is a powerful method to test for recent evolution in plant populations. We used 21-26-yr-old seeds of four European plant species - Matthiola tricuspidata, Plantago crassifolia, Clinopodium vulgare and Leontodon hispidus - stored in seed banks together with re-collected seeds from their wild populations. To test for evolutionary changes, we conducted a glasshouse experiment that quantified heritable changes in plant responses to drought and simulated insect herbivory. In three out of the four studied species, we found evidence that descendants had evolved shorter life cycles through faster growth and flowering. Shifts in the osmotic potential and leaf dry matter content indicated that descendants also evolved increased drought tolerance. A comparison of quantitative genetic differentiation (QST ) vs neutral molecular differentiation (FST ) values, using double digest restriction-site associated DNA (ddRAD) genotyping data, suggested that directional selection, and therefore adaptive evolution, was underlying some of the observed phenotypic changes. In summary, our study revealed evolutionary changes in plant populations over the last decades that are consistent with adaptation of drought escape and tolerance as well as herbivory avoidance.
Collapse
Affiliation(s)
- Robert Rauschkolb
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Germany, Philosophenweg 16, 07743, Jena, Germany
| | - Zixin Li
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | | | - Lara Dixon
- Conservatoire Botanique National Méditerranéen de Porquerolles, 34 avenue Gambetta, 83400, Hyères, France
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Maria Májeková
- Plant Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Andreas Ensslin
- Conservatory and Botanic Garden of the City of Geneva, 1296, Chambésy, Geneva, Switzerland
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Bazinet Q, Tang L, Bede JC. Impact of Future Elevated Carbon Dioxide on C 3 Plant Resistance to Biotic Stresses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:527-539. [PMID: 34889654 DOI: 10.1094/mpmi-07-21-0189-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Before the end of the century, atmospheric carbon dioxide levels are predicted to increase to approximately 900 ppm. This will dramatically affect plant physiology and influence environmental interactions and, in particular, plant resistance to biotic stresses. This review is a broad survey of the current research on the effects of elevated CO2 (eCO2) on phytohormone-mediated resistance of C3 agricultural crops and related model species to pathogens and insect herbivores. In general, while plants grown in eCO2 often have increased constitutive and induced salicylic acid levels and suppressed induced jasmonate levels, there are exceptions that implicate other environmental factors, such as light and nitrogen fertilization in modulating these responses. Therefore, this review sets the stage for future studies to delve into understanding the mechanistic basis behind how eCO2 will affect plant defensive phytohormone signaling pathways under future predicted environmental conditions that could threaten global food security to inform the best agricultural management practices.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Quinn Bazinet
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lawrence Tang
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
19
|
Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest. FORESTS 2022. [DOI: 10.3390/f13070998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insect herbivory is one of the most important ecological processes affecting plant–soil feedbacks and overall forest ecosystem health. In this study, we assess how elevated carbon dioxide (eCO2) impacts (i) leaf level insect herbivory and (ii) the stand-level herbivore-mediated transfer of carbon (C) and nitrogen (N) from the canopy to the ground in a natural mature oak temperate forest community in central England at the Birmingham Institute of Forest Research Free Air CO2 Enrichment (BIFoR FACE) site. Recently abscised leaves were collected every two weeks through the growing season in August to December from 2017–2019, with the identification of four dominant species: Quercus robur (pedunculate oak), Acer pseudoplatanus (sycamore), Crataegus monogyna (common hawthorn) and Corylus avellana (hazel). The selected leaves were scanned and visually analyzed to quantify the leaf area loss from folivory monthly. Additionally, the herbivore-mediated transfer of C and N fluxes from the dominant tree species Q. robur was calculated from these leaf-level folivory estimates, the total foliar production and the foliar C and N contents. This study finds that the leaf-level herbivory at the BIFoR FACE has not changed significantly across the first 3 years of eCO2 treatment when assessed across all dominant tree species, although we detected significant changes under the eCO2 treatment for individual tree species and years. Despite the lack of any strong leaf-level herbivory response, the estimated stand-level foliar C and N transferred to the ground via herbivory was substantially higher under eCO2, mainly because there was a ~50% increase in the foliar production of Q. robur under eCO2. This result cautions against concluding much from either the presence or absence of leaf-level herbivory responses to any environmental effect, because their actual ecosystem effects are filtered through so many (usually unmeasured) factors.
Collapse
|
20
|
Windley HR, Starrs D, Stalenberg E, Rothman JM, Ganzhorn JU, Foley WJ. Plant secondary metabolites and primate food choices: A meta-analysis and future directions. Am J Primatol 2022; 84:e23397. [PMID: 35700311 DOI: 10.1002/ajp.23397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
The role of plant secondary metabolites (PSMs) in shaping the feeding decisions, habitat suitability, and reproductive success of herbivorous mammals has been a major theme in ecology for decades. Although primatologists were among the first to test these ideas, studies of PSMs in the feeding ecology of non-human primates have lagged in recent years, leading to a recent call for primatologists to reconnect with phytochemists to advance our understanding of the primate nutrition. To further this case, we present a formal meta-analysis of diet choice in response to PSMs based on field studies on wild primates. Our analysis of 155 measurements of primate feeding response to PSMs is drawn from 53 studies across 43 primate species which focussed primarily on the effect of three classes of PSMs tannins, phenolics, and alkaloids. We found a small but significant effect of PSMs on the diet choice of wild primates, which was largely driven by the finding that colobine primates showed a moderate aversion to condensed tannins. Conversely, there was no evidence that PSMs had a significant deterrent effect on food choices of non-colobine primates when all were combined into a single group. Furthermore, within the colobine primates, no other PSMs influenced feeding choices and we found no evidence that foregut anatomy significantly affected food choice with respect to PSMs. We suggest that methodological improvements related to experimental approaches and the adoption of new techniques including metabolomics are needed to advance our understanding of primate diet choice.
Collapse
Affiliation(s)
- Hannah R Windley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Danswell Starrs
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eleanor Stalenberg
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Hawkesbury Institute of the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, and New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Joerg U Ganzhorn
- Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Elevated CO2 Altered Rice VOCs Aggravate Population Occurrence of Brown Planthoppers by Improving Host Selection Ability. BIOLOGY 2022; 11:biology11060882. [PMID: 35741403 PMCID: PMC9219841 DOI: 10.3390/biology11060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years, the atmospheric CO2 concentration was increasing continuously, which has led to the change in the photosynthesis and chemical composition of rice plants. The growth and development of brown planthopper (BPH) Nilaparvata lugens are further affected. Plants release volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. Therefore, here we aim to explore the effect of rice VOCs on the host selection ability of BPH under elevated CO2. Among the identified thirty-six rice VOCs, the contents of heptadecane, linalool and limonene from rice plants were significantly decreased under elevated CO2. Moreover, we found that the VOCs of rice damaged by BPH were also changed. Undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants, which might lead to enhancement of the host selection ability of BPH, eventually aggravating the damage caused by BPH. However, the role of these VOCs in host selection ability of BPH is not clear, and more experiments are needed to verify their function. Abstract It is predicted that plant volatile organic compounds (VOCs) are affected by the atmospheric CO2 levels rising globally, which further affects the interaction between plants and herbivorous insects, especially the host selection behavior of herbivorous insects. In this study, the effects of elevated CO2 on the host-selection behavior of the brown planthopper (BPH) Nilaparvata lugens, and the emission of VOCs from the healthy and BPH-damaged rice plants were studied simultaneously to make clear the population occurrence of BPH under global climate change. Compared with ambient CO2, elevated CO2 significantly increased the host selection percent of BPH for the healthy (CK) and BPH-damaged rice plants, and the host selection percent of BPH for the BPH-damaged rice plants was significantly higher than that for the healthy rice plants under elevated CO2, which might be regulated by the transcription levels of OBP1, OBP2 and CSP8 in BPH due to the upregulated transcriptional levels of these three genes of BPH under elevated CO2. In addition, we analyzed and quantified the emission of VOCs in rice plants grown under ambient CO2 and elevated CO2 by GS-MS. A total of 36 VOCs from rice plants were identified into eight categories, including alkanes, alkenes, alcohols, aldehydes, ketones, esters, phenols and aromatic hydrocarbons. Elevated CO2 significantly decreased the contents of heptadecane, linalool and limonene from rice plants compared with ambient CO2. Besides, the contents of linalool, phytol, decanal, 1-methyldecalin and 2,6-diphenylphenol from BPH-damaged rice plants under ambient CO2, and undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants. The percentage composition of phenols was positively correlated with the host selection rate of BPH. Our study indicates that elevated CO2 is beneficial to promote the host selection ability of BPH for rice plants damaged by BPHs due to the changed plant VOCs.
Collapse
|
22
|
Effects of Elevated CO2 on the Fitness of Three Successive Generations of Lipaphis erysimi. INSECTS 2022; 13:insects13040333. [PMID: 35447775 PMCID: PMC9031089 DOI: 10.3390/insects13040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Global warming caused by the increase in atmospheric CO2 concentration is becoming a major environmental issue. Lipaphis erysimi is one of the most damaging pests of cruciferous crops worldwide, and L. erysimi has strong adaptability to the environment and reproductive capacity. The age-stage, two-sex life table is currently used by many researchers in place of the traditional age-specific life table, providing many details such as fitness and potential damage. In this study, the individual fitness and population dynamics parameters of three successive generations of L. erysimi were analyzed using the age-stage, two-sex life table. The results show that a high CO2 concentration had a cumulative effect on the survival rate and fecundity of L. erysimi, and elevated CO2 had a negative effect on the individual fitness parameters of L. erysimi. The life expectancy (exj) is significantly lower in elevated CO2 than that in ambient CO2 treatment in the three successive generations, indicating that L. erysimi was more sensitive to CO2 concentration and the life of L. erysimi was shortened under elevated CO2. Additionally, we can find that elevated CO2 has a short-term effect on the population parameters, including the intrinsic rate of increase (r) and finite rate of increase (λ) in L. erysimi. Through the data from this experiment, we believe that the individual and population fitness of L. erysimi will be decreased under elevated CO2, which indicates that the damage caused by L. erysimi may be reduced in the future with increasing CO2 levels. Abstract To assess the effect of elevated CO2 on the development, fecundity, and population dynamic parameters of L. erysimi, the age-stage, two-sex life table was used to predict the individual fitness and population parameters of three successive generations of L. erysimi in this study. The results show that a significantly longer total pre-adult stage before oviposition (TPOP) was observed in the third generation compared with the first generation of L. erysimi under the 800 μL/L CO2 treatment. The fecundity is significantly lower in the 800 μL/L CO2 treatment than that in the 400 μL/L CO2 treatment in the third generation of L. erysimi, which indicates that elevated CO2 had a negative effect on the individual fitness parameters of L. erysimi. Additionally, the life expectancy (exj) is significantly lower under the 800 μL/L CO2 treatment than that under the 400 μL/L CO2 treatment in the three successive generations. A significantly higher intrinsic rate of increase (r) and finite rate of increase (λ) were found in the second generation compared with those in the first and third generations of L. erysimi under the 800 μL/L CO2 treatment. Moreover, significantly lower r and λ were observed under the 800 μL/L CO2 treatment compared with those under the 400 μL/L and 600 μL/L CO2 treatments in the first generation of L. erysimi, which indicates that elevated CO2 has a short-term effect on the population parameters (r and λ) of L. erysimi. Our experiment can provide the data for the comprehensive prevention and control of L. erysimi in the future with increasing CO2 levels.
Collapse
|
23
|
Knaden M, Anderson P, Andersson MN, Hill SR, Sachse S, Sandgren M, Stensmyr MC, Löfstedt C, Ignell R, Hansson BS. Human Impacts on Insect Chemical Communication in the Anthropocene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.791345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The planet is presently undergoing dramatic changes caused by human activities. We are living in the era of the Anthropocene, where our activities directly affect all living organisms on Earth. Insects constitute a major part of the world’s biodiversity and currently, we see dwindling insect biomass but also outbreaks of certain populations. Most insects rely on chemical communication to locate food, mates, and suitable oviposition sites, but also to avoid enemies and detrimental microbes. Emissions of, e.g., CO2, NOx, and ozone can all affect the chemical communication channel, as can a rising temperature. Here, we present a review of the present state of the art in the context of anthropogenic impact on insect chemical communication. We concentrate on present knowledge regarding fruit flies, mosquitoes, moths, and bark beetles, as well as presenting our views on future developments and needs in this emerging field of research. We include insights from chemical, physiological, ethological, and ecological directions and we briefly present a new international research project, the Max Planck Centre for Next Generation Insect Chemical Ecology (nGICE), launched to further increase our understanding of the impact of human activities on insect olfaction and chemical communication.
Collapse
|
24
|
Johnson SN, Cibils-Stewart X, Waterman JM, Biru FN, Rowe RC, Hartley SE. Elevated atmospheric CO 2 changes defence allocation in wheat but herbivore resistance persists. Proc Biol Sci 2022; 289:20212536. [PMID: 35168395 PMCID: PMC8848237 DOI: 10.1098/rspb.2021.2536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
Predicting how plants allocate to different anti-herbivore defences in response to elevated carbon dioxide (CO2) concentrations is important for understanding future patterns of crop susceptibility to herbivory. Theories of defence allocation, especially in the context of environmental change, largely overlook the role of silicon (Si), despite it being the major anti-herbivore defence in the Poaceae. We demonstrated that elevated levels of atmospheric CO2 (e[CO2]) promoted plant growth by 33% and caused wheat (Triticum aestivum) to switch from Si (-19%) to phenolic (+44%) defences. Despite the lower levels of Si under e[CO2], resistance to the global pest Helicoverpa armigera persisted; relative growth rates (RGRs) were reduced by at least 33% on Si-supplied plants, irrespective of CO2 levels. RGR was negatively correlated with leaf Si concentrations. Mandible wear was c. 30% higher when feeding on Si-supplemented plants compared to those feeding on plants with no Si supply. We conclude that higher carbon availability under e[CO2] reduces silicification and causes wheat to increase concentrations of phenolics. However, Si supply, at all levels, suppressed the growth of H. armigera under both CO2 regimes, suggesting that shifts in defence allocation under future climate change may not compromise herbivore resistance in wheat.
Collapse
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela Research Station, Ruta 50, Km. 11, Colonia, Uruguay
| | - Jamie M. Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Fikadu N. Biru
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma 307, Ethiopia
| | - Rhiannon C. Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Susan E. Hartley
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
25
|
Thornley JHM, Newman JA. Climate sensitivity of the complex dynamics of the green spruce aphid—Spruce plantation interactions: Insight from a new mechanistic model. PLoS One 2022; 17:e0252911. [PMID: 35176013 PMCID: PMC8853561 DOI: 10.1371/journal.pone.0252911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Aphids can have a significant impact on the growth and commercial yield of spruce plantations. Here we develop a mechanistic deterministic mathematical model for the dynamics of the green spruce aphid (Elatobium abietum Walker) growing on Sitka spruce (Picea sitchensis (Bong.) Carr.). These grow in a northern British climate in managed plantations, with planting, thinning and a 60-year rotation. Aphid infestation rarely kills the tree but can reduce growth by up to 55%. We used the Edinburgh Forest Model (efm) to simulate spruce tree growth. The aphid sub-model is described in detail in an appendix. The only environmental variable which impacts immediately on aphid dynamics is air temperature which varies diurnally and seasonally. The efm variables that are directly significant for the aphid are leaf area and phloem nitrogen and carbon. Aphid population predictions include dying out, annual, biennual and other complex patterns, including chaos. Predicted impacts on plantation yield of managed forests can be large and variable, as has been observed; they are also much affected by temperature, CO2 concentration and other climate variables. However, in this system, increased CO2 concentration appears to ameliorate the severity of the effects of increasing temperatures coupled to worsening aphid infestations on plantation yield.
Collapse
Affiliation(s)
- John H. M. Thornley
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan A. Newman
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Liu X, Liu H, Wang Y, Qian L, Chen F. Elevated CO 2 aggravates invasive thrip damage by altering its host plant nutrient and secondary metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118736. [PMID: 34953953 DOI: 10.1016/j.envpol.2021.118736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
As atmospheric CO2 concentration continues to increase, plants using CO2 as raw materials for photosynthesis will inevitably be affected, which in turn affects the life history and behavior of herbivorous insects. Our previous research has shown increased food intake and aggravated damage of western flower thrips, Frankliniella occidentalis to kidney bean (Phaseolus vulgaris) caused by elevated CO2 (eCO2), however the molecular mechanism of this phenomenon is unclear. In this study, the comparative transcriptome analysis combined with corresponding phenotypic changes were studied to reveal the molecular mechanism of interaction between F. occidentalis and P. vulgaris under eCO2. Inferred from the results, eCO2 had different degrees of inhibition to the defense responses caused by thrips infestation in P. vulgaris leaf sap based on nutrients, plant hormones and secondary metabolites, making P. vulgaris leaves less resistant to thrips under eCO2 compared to ambient CO2 (aCO2). Besides, the contents of glucose, trehalose, triglycerides and free fatty acids in F. occidentalis adults increased significantly after feeding on the P. vulgaris leaf sap with significantly increased soluble sugars content under eCO2, which might lead to glucolipid metabolic disorders and increased food intake of F. occidentalis adults. The results indicated that decreased plant defense of P. vulgaris and increased food intake of F. occidentalis adults were combined to aggravate the thrips damage under eCO2, providing a theoretical basis for future occurrence trend of thrips under eCO2.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanhui Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Qian
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
Li W, Zhao Y, Li Y, Zhang S, Yun Y, Cui J, Peng Y. Elevated CO 2 concentration affects survival, but not development, reproduction, or predation of the predator Hylyphantes graminicola (Araneae: Linyphiidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117791. [PMID: 34280744 DOI: 10.1016/j.envpol.2021.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Elevated CO2 concentrations can change the multi-level nutritional relationship of the ecosystem through the cascading effect of the food chain. To date, few studies have investigated the effects of elevated CO2 concentration on the Araneae species through the tritrophic system. Hylyphantes graminicola (Araneae: Linyphiidae) is distributed widely in Asia and is a dominant predator in cotton fields. This study investigated chemical components in the food chain of cotton (Gossypium hirsutum)-cotton aphid (Aphis gossypii)-predator (H. graminicola) and compared the development, reproduction, and predation of H. graminicola under ambient (400 ppm) and elevated concentration of CO2 (800 ppm). The results showed that the elevated CO2 concentration increased the chemicals of cotton and cotton aphid, but it did not affect the nutrients, development, reproduction, and predation of the spider. However, the survival rate of the spider was significantly decreased in elevated CO2. The results will further our understanding of the role of natural enemies in an environment with elevated CO2 concentration.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingying Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
28
|
Tocco C, Foster J, Venter N, Cowie B, Marlin D, Byrne M. Elevated atmospheric CO 2 adversely affects a dung beetle's development: Another potential driver of decline in insect numbers? GLOBAL CHANGE BIOLOGY 2021; 27:4592-4600. [PMID: 34265139 DOI: 10.1111/gcb.15804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Insect declines have been attributed to several drivers such as habitat loss, climate change, invasive alien species and insecticides. However, in the global context, these effects remain patchy, whereas insect losses appear to be consistent worldwide. Increases in atmospheric CO2 concentrations are known to have indirect effects on herbivorous insects, but the effects on other insects are largely unexplored. We wondered if elevated atmospheric CO2 (eCO2 ) could influence the growth and survival of insects, not via rising temperature, nor through their changes in food quality, but by other means. Rearing tunnelling dung beetle Euoniticellus intermedius (Reiche, 1848) at pre-industrial (250 parts per million [ppm]), current (400 ppm) and eCO2 levels (600 and 800 ppm), we found that exposure to eCO2 resulted in longer developmental times and increased mortality. Elevated CO2 also caused reduction of adult size and mass which is detrimental to dung beetle fitness. Additional results showed associated increases in CO2 levels inside dung brood balls, dung pH and respiration rates of the soil surrounding the developing dung beetles (CO2 flux). We thus hypothesize that elevated CO2 increases competition for O2 and nutrients between soil microbiota and subterranean insects. Given that many insect orders spend at least part of their life underground, our findings indicate the possibility of a negative ubiquitous effect of eCO2 on a large portion of the earth's insect biota. These findings therefore suggest an important area for future research on the soil community in the context of atmospheric change.
Collapse
Affiliation(s)
- Claudia Tocco
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Foster
- Zoologie II, Universität Würzburg, Würzburg, Germany
| | - Nic Venter
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Blair Cowie
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Danica Marlin
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marcus Byrne
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Effect of enriched CO2 atmosphere on morphological and chemical characteristics of Alternanthera philoxeroides. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Crossley MS, Smith OM, Davis TS, Eigenbrode SD, Hartman GL, Lagos-Kutz D, Halbert SE, Voegtlin DJ, Moran MD, Snyder WE. Complex life histories predispose aphids to recent abundance declines. GLOBAL CHANGE BIOLOGY 2021; 27:4283-4293. [PMID: 34216186 DOI: 10.1111/gcb.15739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Many animals change feeding habits as they progress through life stages, exploiting resources that vary in space and time. However, complex life histories may bring new risks if rapid environmental change disrupts the timing of these switches. Here, we use abundance times series for a diverse group of herbivorous insects, aphids, to search for trait and environmental characteristics associated with declines. Our meta dataset spanned three world regions and >300 aphid species, tracked at 75 individual sites for 10-50 years. Abundances were generally falling, with median changes of -8.3%, -5.6%, and -0.1% per year in the central USA, northwestern USA, and United Kingdom, respectively. Aphids that obligately alternated between host plants annually and those that were agricultural pests exhibited the steepest declines, relative to species able to persist on the same host plant year-round or those in natural areas. This suggests that host alternation might expose aphids to climate-induced phenology mismatches with one or more of their host plant species, with additional risks from exposure to insecticides and other management efforts. Warming temperatures through time were associated with milder aphid declines or even abundance increases, particularly at higher latitudes. Altogether, while a warming world appeared to benefit some aphid species in some places, most aphid species that had time-sensitive movements among multiple host plants seemed to face greater risk of decline. More generally, this suggests that recent human-induced rapid environmental change is rebalancing the risks and rewards associated with complex life histories.
Collapse
Affiliation(s)
| | - Olivia M Smith
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Thomas S Davis
- Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Glen L Hartman
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL, USA
| | - Doris Lagos-Kutz
- United States Department of Agriculture-Agricultural Research Service, Urbana, IL, USA
| | - Susan E Halbert
- Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | | | - Matthew D Moran
- Department of Biology and Health Sciences, Hendrix College, Conway, AR, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J Chem Ecol 2021; 47:889-906. [PMID: 34415498 PMCID: PMC8613123 DOI: 10.1007/s10886-021-01303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
Collapse
|
32
|
Kaspari M, de Beurs KM, Welti EAR. How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance. Ecology 2021; 102:e03459. [PMID: 34171182 DOI: 10.1002/ecy.3459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Plant elemental content can vary up to 1,000-fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant-essential), 7 essential to animals but not plants (animal-essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply-side hypothesis, the plant-essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle-grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP-catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant-essential elements of forbs, in contrast, consistently varied as per the nutrient-dilution hypothesis-there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient-poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient-rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases in pCO2 via nutrient dilution.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Kirsten M de Beurs
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
| |
Collapse
|
33
|
Li C, Sun Q, Gou Y, Zhang K, Zhang Q, Zhou JJ, Liu C. Long-Term Effect of Elevated CO 2 on the Development and Nutrition Contents of the Pea Aphid ( Acyrthosiphon pisum). Front Physiol 2021; 12:688220. [PMID: 34149461 PMCID: PMC8213344 DOI: 10.3389/fphys.2021.688220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
It is predicted that the current atmospheric CO2 level will be doubled by the end of this century. Here, we investigate the impacts of elevated CO2 (550 and 750 μL/L) on the development and nutrition status of the green pea aphid for six generations, which is longer than previous studies. All seven examined physiological parameters were not affected over six generations under the ambient CO2 level (380 μL/L). However, the elevated CO2 levels (550 and 750 μL/L) prolonged nymph duration, decreased adult longevity, female fecundity and protein content, and increased the contents of total lipid, soluble sugar and glycogen. There was a significant interaction between the effect of CO2 levels and the effect of generations on nymph duration, female fecundity and adult longevity. The elevated CO2 had immediate effects on the female fecundity and the contents of total protein, total lipid and soluble sugar, starting within F0 generation. The adult longevity decreased, and the glycogen content increased from the F1 generation. However, the significant effect on the nymph development was only observed after three generations. Our study indicates that the elevated CO2 levels first influence the reproduction, the nutrition and the energy supply, then initiate aphid emergency responses by shortening lifespan and increasing glucose metabolism, and finally result in the slow development under further persistent elevated CO2 conditions after three generations, possibly leading to population decline under elevated CO2 conditions. Our results will guide further field experiments under climate change conditions to evaluate the effects of elevated CO2 on the development of the pea aphids and other insects, and to predict the population dynamics of the green pea aphid.
Collapse
Affiliation(s)
- Chunchun Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qian Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
34
|
Smith CM. Conventional breeding of insect-resistant crop plants: still the best way to feed the world population. CURRENT OPINION IN INSECT SCIENCE 2021; 23:367-369. [PMID: 33271365 DOI: 10.1016/j.tplants.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Insect-resistant crops feed much of the world, using reduced carbon inputs and providing much greater economic returns on investment. Newer, more efficient efforts are urgently needed to speed development of insect-resistant plants before a projected 30% global population increase. Plant resistance researchers must employ genotyping by sequencing and high-throughput phenotyping to identify, map and track resistance genes. In contrast to maize, rice, vegetables and wheat, limited progress has occurred to develop meaningful levels of pest resistance in cassava, cowpea and pigeonpea - major sources of nutrition for nearly 1 billion people. A knowledge void exists about the effects of climate change (elevated CO2) on resistant plants, necessitating efforts to understand this stress. Collaborations with social scientists, extension specialists, economists, spatiotemporal modelers, ecologists, and virologists will be required to develop better ways to integrate insect resistant plants into integrated crop pest management programs.
Collapse
|
35
|
Rice C, Wolf J, Fleisher DH, Acosta SM, Adkins SW, Bajwa AA, Ziska LH. Recent CO 2 levels promote increased production of the toxin parthenin in an invasive Parthenium hysterophorus biotype. NATURE PLANTS 2021; 7:725-729. [PMID: 34099902 DOI: 10.1038/s41477-021-00938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Recent carbon dioxide (CO2) concentrations promoted higher parthenin concentrations in an invasive Parthenium hysterophorus biotype. Mean concentrations of parthenin, an allelopathic and defensive sesquiterpene lactone, were 49% higher at recent (~400 ppm) than at mid-twentieth-century (~300 ppm) CO2 concentrations, but did not vary in a non-invasive biotype, suggesting that recent increases in atmospheric CO2 may have already altered the chemistry of this destructive weed, potentially contributing to its invasive success.
Collapse
Affiliation(s)
- C Rice
- Sustainable Agricultural Systems Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA
| | - J Wolf
- Adaptive Cropping Systems Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA.
| | - D H Fleisher
- Adaptive Cropping Systems Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA
| | - S M Acosta
- District of Columbia Department of Energy and Environment, Washington DC, Washington DC, USA
| | - S W Adkins
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - A A Bajwa
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
- Weed Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, Australia
| | - L H Ziska
- Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Biru FN, Islam T, Cibils-Stewart X, Cazzonelli CI, Elbaum R, Johnson SN. Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO 2. GLOBAL CHANGE BIOLOGY 2021; 27:2959-2969. [PMID: 33772982 DOI: 10.1111/gcb.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Silicon (Si) has an important role in mitigating diverse biotic and abiotic stresses in plants, mainly via the silicification of plant tissues. Environmental changes such as atmospheric CO2 concentrations may affect grass Si concentrations which, in turn, can alter herbivore performance. We recently demonstrated that pre-industrial atmospheric CO2 increased Si accumulation in Brachypodium distachyon grass, yet the patterns of Si deposition in leaves and whether this affects insect herbivore performance remains unknown. Moreover, it is unclear whether CO2 -driven changes in Si accumulation are linked to changes in gas exchange (e.g. transpiration rates). We therefore investigated how pre-industrial (reduced; rCO2 , 200 ppm), ambient (aCO2 , 410 ppm) and elevated (eCO2 , 640 ppm) CO2 concentrations, in combination with Si-treatment (Si+ or Si-), affected Si accumulation in B. distachyon and its subsequent effect on the performance of the global insect pest, Helicoverpa armigera. rCO2 increased Si concentrations by 29% and 36% compared to aCO2 and eCO2 respectively. These changes were not related to observed changes in gas exchange under different CO2 regimes, however. The increased Si accumulation under rCO2 decreased herbivore relative growth rate (RGR) by 120% relative to eCO2, whereas rCO2 caused herbivore RGR to decrease by 26% compared to eCO2 . Si supplementation also increased the density of macrohairs, silica and prickle cells, which was associated with reduced herbivore performance. There was a negative correlation among macrohair density, silica cell density, prickle cell density and herbivore RGR under rCO2 suggesting that these changes in leaf surface morphology were linked to reduced performance under this CO2 regime. To our knowledge, this is the first study to demonstrate that increased Si accumulation under pre-industrial CO2 reduces insect herbivore performance. Contrastingly, we found reduced Si accumulation under higher CO2 , which suggests that some grasses may become more susceptible to insect herbivores under projected climate change scenarios.
Collapse
Affiliation(s)
- Fikadu N Biru
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Tarikul Islam
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Entomology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Instituto Nacional de Investigación Agropecuaria (INIA), Colonia, Uruguay
| | | | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
37
|
Pokharel SS, Shen F, Parajulee MN, Wang Y, Chen F. Effects of elevated atmospheric CO2 concentration on tea quality and insect pests’ occurrences: A review. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Schmitt L, Burghardt KT. Urbanization as a disrupter and facilitator of insect herbivore behaviors and life cycles. CURRENT OPINION IN INSECT SCIENCE 2021; 45:97-105. [PMID: 33676055 DOI: 10.1016/j.cois.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Insect herbivores require a variety of habitats across their life cycle, with behavior often mediating transitions between life stages or habitats. Human management strongly alters urban habitats, yet herbivore behavior is rarely examined in cities. We review the existing literature on several key behaviors: host finding, feeding, egg placement and pupation location, and antipredator defense. We emphasize that unapparent portions of the life cycle, such as the habitat of the overwintering stage, may influence if urbanized areas act as population sources or sinks. Here, management of the soil surface and aboveground biomass are two areas with especially pressing research gaps. Lastly, high variability in urban environments may select for more plastic behaviors or greater generalism. We encourage future research that assesses both behavior and less apparent portions of insect life cycles to determine best practices for conservation and management.
Collapse
Affiliation(s)
- Lauren Schmitt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Karin T Burghardt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
39
|
Batista ER, Marinho-Prado JS, Mineiro JLC, Sato ME, Luiz AJB, Frighetto RTS. Increased atmospheric CO2 combined with local climatic variation affects phenolics and spider mite populations in coffee trees. AN ACAD BRAS CIENC 2021; 93:e20190696. [PMID: 33978065 DOI: 10.1590/0001-3765202120190696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022] Open
Abstract
Modelling studies on climate change predict continuous increases in atmospheric carbon dioxide concentration [CO2] and increase in temperature. This may alter carbon-based phytochemicals such phenolics and modify plant interactions with herbivorous. We investigated the effects of enhanced [CO2] and local climatic variation on young coffee plants, Coffea arabica L. cv Catuaí vermelho IAC-144 and Obatã vermelho IAC-1669-20, cultivated in the FACE (Free-Air Carbon Dioxide Enrichment) facility under two atmospheric [CO2] conditions. Coffee leaves were evaluated for total soluble phenolics (TSP), chlorogenic (5-CQA) and caffeic (CAF) acids, diversity and population size of mites, along two dry and two rainy seasons. Elevated atmospheric CO2 (e[CO2]) significantly decreased 5-CQA in cv. Catuaí but did not affect cv. Obatã. Species richness and population size of mites in coffee leaves were not affected by e[CO2] but were strongly related to the seasonal variability of coffee leaf phenolics. In general, high levels of phenolics were negatively correlated with population size while the mite species richness were negatively correlated with 5-CQA and TSP levels. Our findings show that [CO2] enhancement affects phenolics in coffee plants differentially by cultivars, however seasonality is the key determinant of phenolics composition, mite species richness and population size.
Collapse
Affiliation(s)
- Eunice R Batista
- Embrapa Meio Ambiente, Rodovia SP-340, Km 127,5, 13820-000 Jaguariúna, SP, Brazil
| | | | - Jeferson L C Mineiro
- APTA, Instituto Biológico, Centro Experimental do Instituto Biológico, Alameda dos Vidoeiros, 1097, Gramado, 13101-680 ampinas, SP, Brazil
| | - Mário E Sato
- APTA, Instituto Biológico, Centro Experimental do Instituto Biológico, Alameda dos Vidoeiros, 1097, Gramado, 13101-680 ampinas, SP, Brazil
| | - Alfredo J B Luiz
- Embrapa Meio Ambiente, Rodovia SP-340, Km 127,5, 13820-000 Jaguariúna, SP, Brazil
| | - Rosa T S Frighetto
- Embrapa Meio Ambiente, Rodovia SP-340, Km 127,5, 13820-000 Jaguariúna, SP, Brazil
| |
Collapse
|
40
|
van Doan C, Pfander M, Guyer AS, Zhang X, Maurer C, Robert CA. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO 2, temperature, and precipitation patterns. Ecol Evol 2021; 11:4182-4192. [PMID: 33976802 PMCID: PMC8093683 DOI: 10.1002/ece3.7314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four-day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short-term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate-dependent changes in multitrophic interaction networks.
Collapse
Affiliation(s)
- Cong van Doan
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Marc Pfander
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Anouk S. Guyer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
AgroscopeWädenswilSwitzerland
| | - Xi Zhang
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Corina Maurer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Agroecology and EnvironmentAgroscopeZürichSwitzerland
| | - Christelle A.M. Robert
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
41
|
Zytynska SE. Embracing the complexity of plant-microbe-insect interactions under a changing climate for sustainable agriculture. CURRENT OPINION IN INSECT SCIENCE 2021; 44:89-94. [PMID: 33887532 DOI: 10.1016/j.cois.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Using beneficial soil bacteria to promote plant growth and reduce pests is a promising direction for sustainable agriculture. However, we need to understand the ecological basis of these interactions in order to identify those with the greatest potential to have an impact in the field. To do this, we need to embrace the complexity of multifactorial experiments to observe the strength of benefits across variable environments. I briefly review the recent literature on plant-microbe-insect interactions across changing environments, focusing on those using multiple factors. I finish by exploring ecological research approaches and multifactorial experimental designs that can be used to simplify the study of plant-microbe-insect interactions.
Collapse
Affiliation(s)
- Sharon E Zytynska
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
42
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
43
|
Chen H, Markham J. The Interactive Effect of Elevated CO 2 and Herbivores on the Nitrogen-Fixing Plant Alnus incana ssp. rugosa. PLANTS (BASEL, SWITZERLAND) 2021; 10:440. [PMID: 33652618 PMCID: PMC7996819 DOI: 10.3390/plants10030440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022]
Abstract
Many studies have found that future predicted CO2 levels can increase plant mass but dilute N content in leaves, impacting antiherbivore compounds. Nitrogen-fixing plants may balance their leaf C:N ratio under elevated CO2, counteracting this dilution effect. However, we know little of how plants respond to herbivores at the higher CO2 levels that occurred when nitrogen-fixing plants first evolved. We grew Alnus incana ssp. rugosa was grown at 400, 800, or 1600 ppm CO2 in soil collected from the field, inoculated with Frankia and exposed to herbivores (Orgyia leucostigma). Elevated CO2 increased nodulated plant biomass and stimulated the nitrogen fixation rate in the early growth stage. However, nitrogen-fixing plants were not able to balance their C:N ratio under elevated CO2 after growing for 19 weeks. When plants were grown at 400 and 1600 ppm CO2, herbivores preferred to feed on leaves of nodulated plants. At 800 ppm CO2, nodulated plants accumulated more total phenolic compounds in response to herbivore damage than plants in the non-Frankia and non-herbivore treatments. Our results suggest that plant leaf defence, not leaf nutritional content, is the dominant driver of herbivory and nitrogen-fixing plants have limited ability to balance C:N ratios at elevated CO2 in natural soil.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Biological Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
44
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
45
|
Kumar L, Choudhary JS, Kumar B. Host plant-mediated effects of elevated CO 2 and temperature on growth and developmental parameters of Zygogramma bicolorata (Coleoptera: Chrysomelidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:111-119. [PMID: 32686624 DOI: 10.1017/s0007485320000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mexican beetle, Zygogramma bicolorata Pallister (Coleptera: Chrysomelidae) is a potential weed control biocontrol agent in Australia, India and other countries. Its grubs and adults feed on the leaves of parthenium weed, Parthenium hysterophorus and check the further growth of the plant. Experiments were conducted to understand host plant-mediated effects of elevated temperature and elevated CO2 on biocontrol agent Z. bicolorata. Food consumption, utilization, ecological efficiency and life-table parameters of Z. bicolorata were studied in grubs and adults stage up to diapause. Reduction of leaf nitrogen in parthenium weed foliage with a significant increase in carbon and C:N ratio was recorded at elevated CO2. Elevated CO2 and temperature had no effect on adult longevity before diapausing. Duration of egg's hatching, specific stages of grub and pupa of Z. bicolorata were significantly longer when beetles fed on leaves grown under elevated CO2 but these parameters decreased significantly on leaves grown under elevated temperature. Significantly high consumption rates with low growth and digestion conversions were observed under elevated CO2 and/or in coupled with elevated temperature. Elevated CO2 and temperature-grown parthenium weed foliage also had a significant effect on Z. bicolorata intrinsic rate of increase (R), finite rate of increase (λ), mean generation time (T), and gross reproductive rate. Changed quality of parthenium weed leaves in elevated CO2 and temperature levels resulted in the increase of consumption, slower food conversion rates, increase in developmental period with reduced reproduction efficiency of Z. bicolorata. Our results indicate that the reproduction efficiency of Z. bicolorata is likely to be reduced as the climate changes, despite increased feeding rates exhibited by grubs and adult beetles on parthenium weed foliage.
Collapse
Affiliation(s)
- Lavkush Kumar
- ICAR-Directorate of Weed Research, Maharajpur, Adhartal, Jabalpur, Madhya Pradesh, India
| | - Jaipal Singh Choudhary
- ICAR-Research Complex for Eastern Region, Research Centre, Plandu, Ranchi, Jharkhand834010, India
| | - Bhumesh Kumar
- ICAR-Directorate of Weed Research, Maharajpur, Adhartal, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
46
|
Kinnby A, White JCB, Toth GB, Pavia H. Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed. PLoS One 2021; 16:e0245017. [PMID: 33508019 PMCID: PMC7842949 DOI: 10.1371/journal.pone.0245017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Ocean acidification driven by anthropogenic climate change is causing a global decrease in pH, which is projected to be 0.4 units lower in coastal shallow waters by the year 2100. Previous studies have shown that seaweeds grown under such conditions may alter their growth and photosynthetic capacity. It is not clear how such alterations might impact interactions between seaweed and herbivores, e.g. through changes in feeding rates, nutritional value, or defense levels. Changes in seaweeds are particularly important for coastal food webs, as they are key primary producers and often habitat-forming species. We cultured the habitat-forming brown seaweed Fucus vesiculosus for 30 days in projected future pCO2 (1100 μatm) with genetically identical controls in ambient pCO2 (400 μatm). Thereafter the macroalgae were exposed to grazing by Littorina littorea, acclimated to the relevant pCO2-treatment. We found increased growth (measured as surface area increase), decreased tissue strength in a tensile strength test, and decreased chemical defense (phlorotannins) levels in seaweeds exposed to high pCO2-levels. The herbivores exposed to elevated pCO2-levels showed improved condition index, decreased consumption, but no significant change in feeding preference. Fucoid seaweeds such as F. vesiculosus play important ecological roles in coastal habitats and are often foundation species, with a key role for ecosystem structure and function. The change in surface area and associated decrease in breaking force, as demonstrated by our results, indicate that F. vesiculosus grown under elevated levels of pCO2 may acquire an altered morphology and reduced tissue strength. This, together with increased wave energy in coastal ecosystems due to climate change, could have detrimental effects by reducing both habitat and food availability for herbivores.
Collapse
Affiliation(s)
- Alexandra Kinnby
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Joel C. B. White
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Gunilla B. Toth
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
47
|
Geddes-McAlister J, Sukumaran A, Patchett A, Hager HA, Dale JCM, Roloson JL, Prudhomme N, Bolton K, Muselius B, Powers J, Newman JA. Examining the Impacts of CO 2 Concentration and Genetic Compatibility on Perennial Ryegrass- Epichloë festucae var lolii Interactions. J Fungi (Basel) 2020; 6:jof6040360. [PMID: 33322591 PMCID: PMC7770580 DOI: 10.3390/jof6040360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant-fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass-fungus pairings. In this study, we used a single cultivar, "Alto", of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the "common strain"). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
- Mass Spectrometry Facility—Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (J.G.-M.); (J.A.N.)
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Aurora Patchett
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Heather A. Hager
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jenna C. M. Dale
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jennifer L. Roloson
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Nicholas Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Kim Bolton
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Benjamin Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (N.P.); (B.M.)
| | - Jacqueline Powers
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
| | - Jonathan A. Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.P.); (H.A.H.); (J.C.M.D.); (J.L.R.); (K.B.); (J.P.)
- Correspondence: (J.G.-M.); (J.A.N.)
| |
Collapse
|
48
|
Decker LE, Jeffrey CS, Ochsenrider KM, Potts AS, de Roode JC, Smilanich AM, Hunter MD. Elevated atmospheric concentrations of CO 2 increase endogenous immune function in a specialist herbivore. J Anim Ecol 2020; 90:628-640. [PMID: 33241571 DOI: 10.1111/1365-2656.13395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Abigail S Potts
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Carreras Navarro E, Lam SK, Trębicki P. Elevated Carbon Dioxide and Nitrogen Impact Wheat and Its Aphid Pest. FRONTIERS IN PLANT SCIENCE 2020; 11:605337. [PMID: 33335537 PMCID: PMC7736075 DOI: 10.3389/fpls.2020.605337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/10/2020] [Indexed: 05/14/2023]
Abstract
The rise in atmospheric carbon dioxide (CO2) generally increases wheat biomass and grain yield but decreases its nutritional value. This, in turn, can alter the metabolic rates, development, and performance of insect pests feeding on the crop. However, it is unclear how elevated CO2 (eCO2) and nitrogen (N) input affect insect pest biology through changes in wheat growth and tissue N content. We investigated the effect of three different N application rates (low, medium, and high) and two CO2 levels (ambient and elevated) on wheat growth and quality and the development and performance of the bird cherry-oat aphid, a major cereal pest worldwide, under controlled environmental conditions. We found that eCO2 significantly decreased total aphid fecundity and wheat N content by 22 and 39%, respectively, when compared to ambient CO2 (aCO2). Greater N application significantly increased total aphid fecundity and plant N content but did not offset the effects of eCO2. Our findings provide important information on aphid threats under future CO2 conditions, as the heavy infestation of the bird cherry-oat aphid is detrimental to wheat grain yield and quality.
Collapse
Affiliation(s)
- Eva Carreras Navarro
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu Kee Lam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Piotr Trębicki
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Zhao MH, Zheng XX, Liu JP, Zeng YY, Yang FL, Wu G. Time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens in response to elevated CO 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114767. [PMID: 32447170 DOI: 10.1016/j.envpol.2020.114767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
To assess the time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens nymphs in response to elevated CO2, we measured the time-dependent allocation of nutrient compositions and physiological metabolism in the bodies of N. lugens at 1h, 4h and 12h under elevated CO2. Elevated CO2 significantly increased the contents of nutrient compositions (protein, glucose and total amino acids) and catalase (CAT) enzyme activity in the body of N. lugens at 12h relative to 1h and 4h (P < 0.05). Significantly higher genes expression levels of acetylcholinesterase (AChE), heat shock protein (HSP70) and vitellogenin gene (vg) were observed in the body of N. lugens compared with those in ambient CO2 at 4h (P < 0.05). These results showed that there was an instantaneous reaction of N. lugens nymphs to elevated CO2, which indicated N. lugens may enhance stress defense response to future increasing CO2 levels.
Collapse
Affiliation(s)
- Mu-Hua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiao-Xu Zheng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Ping Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yun-Yun Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Feng-Lian Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Gang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|