1
|
Tyra AT, Garner SB, Ginty AT. Examining the association between habitual emotion regulation strategies and cardiovascular stress reactivity across three studies. Biol Psychol 2024; 194:108966. [PMID: 39681253 DOI: 10.1016/j.biopsycho.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Poor emotion regulation is associated with cardiovascular disease risk, with altered cardiovascular responses to psychological stress a possible underlying mechanism. However, prior research has predominantly focused on instructed (laboratory-based) emotion regulation; there is limited conclusive research on the relationship between every-day (habitual) emotion regulation and cardiovascular responses to active psychological stress. As such, this study aimed to examine the associations between two common habitual emotion regulation strategies-cognitive reappraisal and expressive suppression-and cardiovascular stress responses across three independent laboratory studies, each involving a different active acute psychological stress task. Participants (Study 1: N = 239, 64.9 % female; Study 2: N = 289, 51.9 % female, Study 3: N = 169, 50.9 % female) underwent cardiovascular monitoring during a 10-min baseline and subsequent stress task (Study 1: mental arithmetic task; Study 2: speech task; Study 3: Multisource Interference/Stroop tasks). Participants also completed the Emotion Regulation Questionnaire and ratings of perceived task stressfulness. Cardiovascular reactivity (stress mean - baseline mean) was calculated for systolic/diastolic blood pressure and heart rate for each study. Across all three studies, regression analyses demonstrated no statistically significant linear associations between habitual emotion regulation and cardiovascular reactivity (ps ≥ .10) or self-reported perceived stress (ps ≥ .06), both before and after controlling for demographic covariates. This investigation furthers our understanding of how habitual emotion regulation strategies may-or may not-impact cardiovascular stress responses, thus providing valuable insights into the complex relationship between emotion regulation and long-term cardiovascular health.
Collapse
Affiliation(s)
- Alexandra T Tyra
- Department of Psychology and Neuroscience, Baylor University, One Bear Place 97334, Waco, TX 76798, USA.
| | - Sarah-Beth Garner
- Department of Psychology and Neuroscience, Baylor University, One Bear Place 97334, Waco, TX 76798, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, One Bear Place 97334, Waco, TX 76798, USA
| |
Collapse
|
2
|
Kraynak TE, Karim HT, Banihashemi L, Tudorascu DL, Butters MA, Pascoal T, Lopresti B, Andreescu C. A preliminary investigation of worry, cortical amyloid burden, and stressor-evoked brain and cardiovascular reactivity in older adults. J Affect Disord 2024; 367:623-631. [PMID: 39151757 DOI: 10.1016/j.jad.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Worry is a transdiagnostic symptom common to many neurocognitive disorders of aging, including early stages of Alzheimer's disease and related dementias (ADRD). Severe worry is associated with amyloid burden in cognitively intact older adults, yet the mechanisms underlying this association are not well understood. We hypothesize that this relationship involves altered brain and cardiovascular reactivity to acute stressors, a brain-body phenotype that also increases risk for cardiovascular disease. Twenty cognitively normal older adults (age 60 to 80) with varying levels of worry severity underwent positron emission tomography using Pittsburgh Compound-B and functional magnetic resonance imaging. We examined associations of worry severity and amyloid burden with cardiovascular reactivity, brain activation, and brain connectivity using a cognitive stressor task. Worry severity was not associated with global amyloid burden, but was associated with greater resting levels of cardiovascular physiology and lower systolic blood pressure reactivity. Worry severity also was associated with altered stressor-evoked activation and effective connectivity in brain circuits implicated in stress processing, emotion perception, and physiological regulation. These associations showed small to medium effect sizes. These preliminary findings introduce key components of a model that may link severe worry to ADRD risk via stressor-evoked brain-body interactions.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, United States of America; Department of Psychiatry, University of Pittsburgh, United States of America
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Bioengineering, University of Pittsburgh, United States of America
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Bioengineering, University of Pittsburgh, United States of America
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Tharick Pascoal
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Neurology, University of Pittsburgh, United States of America
| | - Brian Lopresti
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, United States of America.
| |
Collapse
|
3
|
Müller VI, Cieslik EC, Ficco L, Tyralla S, Sepehry AA, Aziz-Safaie T, Feng C, Eickhoff SB, Langner R. Not All Stroop-Type Tasks Are Alike: Assessing the Impact of Stimulus Material, Task Design, and Cognitive Demand via Meta-analyses Across Neuroimaging Studies. Neuropsychol Rev 2024:10.1007/s11065-024-09647-1. [PMID: 39264479 DOI: 10.1007/s11065-024-09647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
The Stroop effect is one of the most often studied examples of cognitive conflict processing. Over time, many variants of the classic Stroop task were used, including versions with different stimulus material, control conditions, presentation design, and combinations with additional cognitive demands. The neural and behavioral impact of this experimental variety, however, has never been systematically assessed. We used activation likelihood meta-analysis to summarize neuroimaging findings with Stroop-type tasks and to investigate whether involvement of the multiple-demand network (anterior insula, lateral frontal cortex, intraparietal sulcus, superior/inferior parietal lobules, midcingulate cortex, and pre-supplementary motor area) can be attributed to resolving some higher-order conflict that all of the tasks have in common, or if aspects that vary between task versions lead to specialization within this network. Across 133 neuroimaging experiments, incongruence processing in the color-word Stroop variant consistently recruited regions of the multiple-demand network, with modulation of spatial convergence by task variants. In addition, the neural patterns related to solving Stroop-like interference differed between versions of the task that use different stimulus material, with the only overlap between color-word, emotional picture-word, and other types of stimulus material in the posterior medial frontal cortex and right anterior insula. Follow-up analyses on behavior reported in these studies (in total 164 effect sizes) revealed only little impact of task variations on the mean effect size of reaction time. These results suggest qualitative processing differences among the family of Stroop variants, despite similar task difficulty levels, and should carefully be considered when planning or interpreting Stroop-type neuroimaging experiments.
Collapse
Affiliation(s)
- Veronika I Müller
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linda Ficco
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Department of Linguistics and Cultural Evolution, International Max Planck Research School for the Science of Human History, Jena, Germany
| | - Sandra Tyralla
- Institute for Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Amir Ali Sepehry
- Clinical Psychology Program, Adler University (Vancouver Campus), Vancouver, Canada
| | - Taraneh Aziz-Safaie
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Guangzhou, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Nestor K, Rasero J, Betzel R, Gianaros PJ, Verstynen T. Cortical network reconfiguration aligns with shifts of basal ganglia and cerebellar influence. ARXIV 2024:arXiv:2408.07977v1. [PMID: 39184535 PMCID: PMC11343224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian functional architecture flexibly adapts, transitioning from integration where information is distributed across the cortex, to segregation where information is focal in densely connected communities of brain regions. This flexibility in cortical brain networks is hypothesized to be driven by control signals originating from subcortical pathways, with the basal ganglia shifting the cortex towards integrated processing states and the cerebellum towards segregated states. In a sample of healthy human participants (N=242), we used fMRI to measure temporal variation in global brain networks while participants performed two tasks with similar cognitive demands (Stroop and Multi-Source Inference Task (MSIT)). Using the modularity index, we determined cortical networks shifted from integration (low modularity) at rest to high modularity during easier i.e. congruent (segregation). Increased task difficulty (incongruent) resulted in lower modularity in comparison to the easier counterpart indicating more integration of the cortical network. Influence of basal ganglia and cerebellum was measured using eigenvector centrality. Results correlated with decreases and increases in cortical modularity respectively, with only the basal ganglia influence preceding cortical integration. Our results support the theory the basal ganglia shifts cortical networks to integrated states due to environmental demand. Cerebellar influence correlates with shifts to segregated cortical states, though may not play a causal role.
Collapse
Affiliation(s)
- Kimberly Nestor
- Department of Psychology, Carnegie Mellon University, Pittsburgh PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh PA, USA
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburgh PA, USA
- School of Data Science, University of Virginia, Charlottesville VA, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN, USA
- Cognitive Science Program, Indiana University, Bloomington IN, USA
- Indiana University, Network Science Institute, Bloomington IN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Peter J. Gianaros
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh PA, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh PA, USA
| |
Collapse
|
5
|
Rasero J, Betzel R, Sentis AI, Kraynak TE, Gianaros PJ, Verstynen T. Similarity in evoked responses does not imply similarity in macroscopic network states. Netw Neurosci 2024; 8:335-354. [PMID: 38711543 PMCID: PMC11073549 DOI: 10.1162/netn_a_00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 05/08/2024] Open
Abstract
It is commonplace in neuroscience to assume that if two tasks activate the same brain areas in the same way, then they are recruiting the same underlying networks. Yet computational theory has shown that the same pattern of activity can emerge from many different underlying network representations. Here we evaluated whether similarity in activation necessarily implies similarity in network architecture by comparing region-wise activation patterns and functional correlation profiles from a large sample of healthy subjects (N = 242). Participants performed two executive control tasks known to recruit nearly identical brain areas, the color-word Stroop task and the Multi-Source Interference Task (MSIT). Using a measure of instantaneous functional correlations, based on edge time series, we estimated the task-related networks that differed between incongruent and congruent conditions. We found that the two tasks were much more different in their network profiles than in their evoked activity patterns at different analytical levels, as well as for a wide range of methodological pipelines. Our results reject the notion that having the same activation patterns means two tasks engage the same underlying representations, suggesting that task representations should be independently evaluated at both node and edge (connectivity) levels.
Collapse
Affiliation(s)
- Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Amy Isabella Sentis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas E. Kraynak
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. Gianaros
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Taylor WD, Ajilore O, Karim HT, Butters MA, Krafty R, Boyd BD, Banihashemi L, Szymkowicz SM, Ryan C, Hassenstab J, Landman BA, Andreescu C. Assessing depression recurrence, cognitive burden, and neurobiological homeostasis in late life: Design and rationale of the REMBRANDT Study. JOURNAL OF MOOD AND ANXIETY DISORDERS 2024; 5:100038. [PMID: 38523701 PMCID: PMC10959248 DOI: 10.1016/j.xjmad.2023.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Background Late-life depression is characterized by disability, cognitive impairment and decline, and a high risk of recurrence following remission. Aside from past psychiatric history, prognostic neurobiological and clinical factors influencing recurrence risk are unclear. Moreover, it is unclear if cognitive impairment predisposes to recurrence, or whether recurrent episodes may accelerate brain aging and cognitive decline. The purpose of the REMBRANDT study (Recurrence markers, cognitive burden, and neurobiological homeostasis in late-life depression) is to better elucidate these relationships and identify phenotypic, cognitive, environmental, and neurobiological factors contributing to and predictive of depression recurrence. Methods Across three sites, REMBRANDT will enroll 300 depressed elders who will receive antidepressant treatment. The goal is to enroll 210 remitted depressed participants and 75 participants with no mental health history into a two-year longitudinal phase focusing on depression recurrence. Participants are evaluated every 2 months with deeper assessments occurring every 8 months, including structural and functional neuroimaging, environmental stress assessments, deep symptom phenotyping, and two weeks of 'burst' ecological momentary assessments to elucidate variability in symptoms and cognitive performance. A broad neuropsychological test battery is completed at the beginning and end of the longitudinal study. Significance REMBRANDT will improve our understanding of how alterations in neural circuits and cognition that persist during remission contribute to depression recurrence vulnerability. It will also elucidate how these processes may contribute to cognitive impairment and decline. This project will obtain deep phenotypic data that will help identify vulnerability and resilience factors that can help stratify individual clinical risk.
Collapse
Affiliation(s)
- Warren D. Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Robert Krafty
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Brian D. Boyd
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sarah M. Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Claire Ryan
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Jason Hassenstab
- Departments of Neurology and Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Bennett A. Landman
- Departments of Computer Science, Electrical Engineering, and Biomedical Engineering, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
7
|
Rasero J, Verstynen TD, DuPont CM, Kraynak TE, Barinas-Mitchell E, Scudder MR, Kamarck TW, Sentis AI, Leckie RL, Gianaros PJ. Stressor-evoked brain activity, cardiovascular reactivity, and subclinical atherosclerosis in midlife adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302236. [PMID: 38370849 PMCID: PMC10871357 DOI: 10.1101/2024.02.05.24302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Cardiovascular responses to psychological stressors have been separately associated with preclinical atherosclerosis and hemodynamic brain activity patterns across different studies and cohorts; however, what has not been established is whether cardiovascular stress responses reliably link indicators of stressor-evoked brain activity and preclinical atherosclerosis that have been measured in the same individuals. Accordingly, the present study used cross-validation and predictive modeling to test for the first time whether stressor-evoked systolic blood pressure (SBP) responses statistically mediated the association between concurrently measured brain activity and a vascular marker of preclinical atherosclerosis in the carotid arteries. Methods 624 midlife adults (aged 28-56 years, 54.97% female) from two different cohorts underwent two information-conflict fMRI tasks, with concurrent SBP measures collected. Carotid artery intima-media thickness (CA-IMT) was measured by ultrasonography. A mediation framework that included harmonization, cross-validation, and penalized principal component regression was then employed, while significant areas in possible direct and indirect effects were identified through bootstrapping. Sensitivity analysis further tested the robustness of findings after accounting for prevailing levels of cardiovascular disease risk and brain imaging data quality control. Results Task-averaged patterns of hemodynamic brain responses exhibited a generalizable association with CA-IMT, which was mediated by an area-under-the-curve measure of aggregate SBP reactivity. Importantly, this effect held in sensitivity analyses. Implicated brain areas in this mediation included the ventromedial prefrontal cortex, anterior cingulate cortex, insula and amygdala. Conclusions These novel findings support a link between stressor-evoked brain activity and preclinical atherosclerosis accounted for by individual differences in corresponding levels of stressor-evoked cardiovascular reactivity.
Collapse
Affiliation(s)
- Javier Rasero
- Department of Psychology, Carnegie Mellon University, PA
- School of Data Science, University of Virginia, Charlottesville, VA
| | | | - Caitlin M DuPont
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | - Mark R Scudder
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas W Kamarck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Amy I Sentis
- School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Regina L Leckie
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Cho E, Granger J, Theall B, Lemoine N, Calvert D, Marucci J, Mullenix S, O'Neal H, Jacome T, Irving BA, Johannsen NM, Carmichael O, Spielmann G. Blood and MRI biomarkers of mild traumatic brain injury in non-concussed collegiate football players. Sci Rep 2024; 14:665. [PMID: 38182718 PMCID: PMC10770029 DOI: 10.1038/s41598-023-51067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Football has one of the highest incidence rates of mild traumatic brain injury (mTBI) among contact sports; however, the effects of repeated sub-concussive head impacts on brain structure and function remain under-studied. We assessed the association between biomarkers of mTBI and structural and functional MRI scans over an entire season among non-concussed NCAA Division I linemen and non-linemen. Concentrations of S100B, GFAP, BDNF, NFL, and NSE were assessed in 48 collegiate football players (32 linemen; 16 non-linemen) before the start of pre-season training (pre-camp), at the end of pre-season training (pre-season), and at the end of the competitive season (post-season). Changes in brain structure and function were assessed in a sub-sample of 11 linemen and 6 non-linemen using structural and functional MRI during the execution of Stroop and attention network tasks. S100B, GFAP and BDNF concentrations were increased at post-season compared to pre-camp in linemen. White matter hyperintensities increased in linemen during pre-season camp training compared to pre-camp. This study showed that the effects of repeated head impacts are detectable in the blood of elite level non-concussed collegiate football players exposed to low-moderate impacts to the heads, which correlated with some neurological outcomes without translating to clinically-relevant changes in brain anatomy or function.
Collapse
Affiliation(s)
- Eunhan Cho
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | - Joshua Granger
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | - Bailey Theall
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | | | | | | | | | - Hollis O'Neal
- Louisiana State University Health Sciences Center, Baton Rouge, LA, 70803, USA
- Our Lady of the Lake, Baton Rouge, LA, 70810, USA
| | - Tomas Jacome
- Our Lady of the Lake, Baton Rouge, LA, 70810, USA
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Neil M Johannsen
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA.
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
9
|
Molina Hidalgo C, Collins AM, Crisafio ME, Grove G, Kamarck TW, Kang C, Leckie RL, MacDonald M, Manuck SB, Marsland AL, Muldoon MF, Rasero J, Scudder MR, Velazquez-Diaz D, Verstynen T, Wan L, Gianaros PJ, Erickson KI. Effects of a laboratory-based aerobic exercise intervention on brain volume and cardiovascular health markers: protocol for a randomised clinical trial. BMJ Open 2023; 13:e077905. [PMID: 37968003 PMCID: PMC10660203 DOI: 10.1136/bmjopen-2023-077905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Physical activity (PA) has beneficial effects on brain health and cardiovascular disease (CVD) risk. Yet, we know little about whether PA-induced changes to physiological mediators of CVD risk influence brain health and whether benefits to brain health may also explain PA-induced improvements to CVD risk. This study combines neurobiological and peripheral physiological methods in the context of a randomised clinical trial to better understand the links between exercise, brain health and CVD risk. METHODS AND ANALYSIS In this 12-month trial, 130 healthy individuals between the ages of 26 and 58 will be randomly assigned to either: (1) moderate-intensity aerobic PA for 150 min/week or (2) a health information control group. Cardiovascular, neuroimaging and PA measurements will occur for both groups before and after the intervention. Primary outcomes include changes in (1) brain structural areas (ie, hippocampal volume); (2) systolic blood pressure (SBP) responses to functional MRI cognitive stressor tasks and (3) heart rate variability. The main secondary outcomes include changes in (1) brain activity, resting state connectivity, cortical thickness and cortical volume; (2) daily life SBP stress reactivity; (3) negative and positive affect; (4) baroreflex sensitivity; (5) pulse wave velocity; (6) endothelial function and (7) daily life positive and negative affect. Our results are expected to have both mechanistic and public health implications regarding brain-body interactions in the context of cardiovascular health. ETHICS AND DISSEMINATION Ethical approval has been obtained from the University of Pittsburgh Institutional Review Board (IRB ID: 19020218). This study will comply with the NIH Data Sharing Policy and Policy on the Dissemination of NIH-Funded Clinical Trial Information and the Clinical Trials Registration and Results Information Submission rule. TRIAL REGISTRATION NUMBER NCT03841669.
Collapse
Affiliation(s)
- Cristina Molina Hidalgo
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Audrey M Collins
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary E Crisafio
- College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - George Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas W Kamarck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chaeryon Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina L Leckie
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison MacDonald
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew F Muldoon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Javier Rasero
- ExPhy Research group and Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | - Mark R Scudder
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Velazquez-Diaz
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- ExPhy Research group and Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lu Wan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Chuang KC, Ramakrishnapillai S, Madden K, St Amant J, McKlveen K, Gwizdala K, Dhullipudi R, Bazzano L, Carmichael O. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study. Front Aging Neurosci 2023; 15:1110434. [PMID: 36998317 PMCID: PMC10043334 DOI: 10.3389/fnagi.2023.1110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionEffective connectivity (EC), the causal influence that functional activity in a source brain location exerts over functional activity in a target brain location, has the potential to provide different information about brain network dynamics than functional connectivity (FC), which quantifies activity synchrony between locations. However, head-to-head comparisons between EC and FC from either task-based or resting-state functional MRI (fMRI) data are rare, especially in terms of how they associate with salient aspects of brain health.MethodsIn this study, 100 cognitively-healthy participants in the Bogalusa Heart Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. EC and FC among 24 regions of interest (ROIs) previously identified as involved in Stroop task execution (EC-task and FC-task) and among 33 default mode network ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI using deep stacking networks and Pearson correlation. The EC and FC measures were thresholded to generate directed and undirected graphs, from which standard graph metrics were calculated. Linear regression models related graph metrics to demographic, cardiometabolic risk factors, and cognitive function measures.ResultsWomen and whites (compared to men and African Americans) had better EC-task metrics, and better EC-task metrics associated with lower blood pressure, white matter hyperintensity volume, and higher vocabulary score (maximum value of p = 0.043). Women had better FC-task metrics, and better FC-task metrics associated with APOE-ε4 3–3 genotype and better hemoglobin-A1c, white matter hyperintensity volume and digit span backwards score (maximum value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker status, and better BMI, white matter hyperintensity volume, logical memory II total score, and word reading score (maximum value of p = 0.044). Women and non-drinkers had better FC-rest metrics (value of p = 0.004).DiscussionIn a diverse, cognitively healthy, middle-aged community sample, EC and FC based graph metrics from task-based fMRI data, and EC based graph metrics from resting-state fMRI data, were associated with recognized indicators of brain health in differing ways. Future studies of brain health should consider taking both task-based and resting-state fMRI scans and measuring both EC and FC analyses to get a more complete picture of functional networks relevant to brain health.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Kai-Cheng Chuang,
| | - Sreekrishna Ramakrishnapillai
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kaitlyn Madden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Julia St Amant
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kevin McKlveen
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kathryn Gwizdala
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | | | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
11
|
DuPont CM, Pressman SD, Reed RG, Manuck SB, Marsland AL, Gianaros PJ. An online Trier social stress paradigm to evoke affective and cardiovascular responses. Psychophysiology 2022; 59:e14067. [DOI: 10.1111/psyp.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Caitlin M. DuPont
- Department of Psychology University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Sarah D. Pressman
- Department of Psychological Science University of California Irvine California USA
| | - Rebecca G. Reed
- Department of Psychology University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Stephen B. Manuck
- Department of Psychology University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Anna L. Marsland
- Department of Psychology University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Peter J. Gianaros
- Department of Psychology University of Pittsburgh Pittsburgh Pennsylvania USA
| |
Collapse
|
12
|
Carmichael OT, Pillai SR, Murray K, Shankapal P, Caldwell J, Vartanian O, Berryman CE, Karl JP, Harris M, Rood JC, Pasiakos SM, Lieberman HR. Effects of testosterone administration on fMRI responses to executive function, aggressive behavior, and emotion processing tasks during severe exercise- and diet-induced energy deficit. Neuroimage 2021; 243:118496. [PMID: 34425226 DOI: 10.1016/j.neuroimage.2021.118496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Clinical administration of testosterone is widely used due to a variety of claimed physical and cognitive benefits. Testosterone administration is associated with enhanced brain and cognitive function, as well as mood, in energy-balanced males, although such relationships are controversial. However, the effects of testosterone administration on the brains of energy-deficient males, whose testosterone concentrations are likely to be well below normal, have not been investigated. METHODS This study collected functional magnetic resonance imaging (fMRI) data from 50 non-obese young men before (PRE) and shortly after (POST) 28 days of severe exercise-and-diet-induced energy deficit during which testosterone (200 mg testosterone enanthate per week in sesame oil, TEST) or placebo (sesame seed oil only, PLA) were administered. Scans were also collected after a post-energy-deficit weight regain period (REC). Participants completed five fMRI tasks that assessed aspects of: 1) executive function (Attention Network Task or ANT; Multi-Source Interference Task or MSIT; AXE Continuous Processing Task or AXCPT); 2) aggressive behavior (Provoked Aggression Task or AGG); and 3) latent emotion processing (Emotional Face Processing or EMO). RESULTS Changes over time in task-related fMRI activation in a priori defined task-critical brain regions during performance of 2 out of 5 tasks were significantly different between TEST and PLA, with TEST showing greater levels of activation during ANT in the right anterior cingulate gyrus at POST and during MSIT in several brain regions at REC. Changes over time in objective task performance were not statistically significant; testosterone-treated volunteers had greater self-reported anger during AGG at POST. CONCLUSIONS Testosterone administration can alter some aspects of brain function during severe energy deficit and increase levels of anger.
Collapse
Affiliation(s)
| | | | - Kori Murray
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - John Caldwell
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Laulima Government Solutions, Orlando, FL, USA
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Oak Ridge Institute for Science and Education, Belcamp, MD, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - J P Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Melissa Harris
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| |
Collapse
|
13
|
Frontostriatal Brain Activation Is Associated With the Longitudinal Progression of Cardiometabolic Risk. Psychosom Med 2020; 82:454-460. [PMID: 32310839 PMCID: PMC7283003 DOI: 10.1097/psy.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cardiometabolic risk refers to a set of interconnected factors of vascular and metabolic origin associated with both cardiovascular disease and various brain disorders. Although midlife cardiometabolic risk is associated with future brain dysfunction, emerging evidence suggests that alterations in autonomic and central nervous system function may precede increases in cardiometabolic risk. METHODS The present study tested whether patterns of cerebral blood flow in brain areas associated with autonomic regulation were associated with increases in overall cardiometabolic risk. A community sample of 109 adults with resting systolic blood pressure between 120 and 139 mm Hg, diastolic blood pressure between 80 and 89 mm Hg, or both underwent pseudocontinuous arterial spin labeling to quantify cerebral blood flow responses to cognitively challenging tasks. Cardiometabolic risk and cerebral blood flow measurements were collected at baseline and at a 2-year follow-up. RESULTS Regression analyses showed that greater frontostriatal cerebral blood flow responses to cognitive challenge were associated with higher cardiometabolic risk at follow-up (β = 0.26 [95% confidence interval = 0.07 to 0.44], t = 2.81, p = .006, ΔR = 0.04). These findings were specific to frontostriatal brain regions, as frontoparietal, insular-subcortical, and total cerebral blood flow were not associated with progression of cardiometabolic risk. Moreover, cardiometabolic risk was not associated with frontostriatal cerebral blood flow responses 2 years later. CONCLUSIONS Frontostriatal brain function may precede and possibly forecast the progression of cardiometabolic risk.
Collapse
|
14
|
Effects of Whey Protein Supplementation on Aortic Stiffness, Cerebral Blood Flow, and Cognitive Function in Community-Dwelling Older Adults: Findings from the ANCHORS A-WHEY Clinical Trial. Nutrients 2020; 12:nu12041054. [PMID: 32290271 PMCID: PMC7230701 DOI: 10.3390/nu12041054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
ANCHORS A-WHEY was a 12-week randomized controlled trial (RCT) designed to examine the effect of whey protein on large artery stiffness, cerebrovascular responses to cognitive activity and cognitive function in older adults. Methods: 99 older adults (mean ± SD; age 67 ± 6 years, BMI 27.2 ± 4.7kg/m2, 45% female) were randomly assigned to 50g/daily of whey protein isolate (WPI) or an iso-caloric carbohydrate (CHO) control for 12 weeks (NCT01956994). Aortic stiffness was determined as carotid-femoral pulse wave velocity (cfPWV). Aortic hemodynamic load was assessed as the product of aortic systolic blood pressure and heart rate (Ao SBP × HR). Cerebrovascular response to cognitive activity was assessed as change in middle-cerebral artery (MCA) blood velocity pulsatility index (PI) during a cognitive perturbation (Stroop task). Cognitive function was assessed using a computerized neurocognitive battery. Results: cfPWV increased slightly in CHO and significantly decreased in WPI (p < 0.05). Ao SBP × HR was unaltered in CHO but decreased significantly in WPI (p < 0.05). Although emotion recognition selectively improved with WPI (p < 0.05), WPI had no effect on other domains of cognitive function or MCA PI response to cognitive activity (p > 0.05 for all). Conclusions: Compared to CHO, WPI supplementation results in favorable reductions in aortic stiffness and aortic hemodynamic load with limited effects on cognitive function and cerebrovascular function in community-dwelling older adults.
Collapse
|
15
|
Barber AD, John M, DeRosse P, Birnbaum ML, Lencz T, Malhotra AK. Parasympathetic arousal-related cortical activity is associated with attention during cognitive task performance. Neuroimage 2019; 208:116469. [PMID: 31846756 PMCID: PMC7200169 DOI: 10.1016/j.neuroimage.2019.116469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Abstract
Parasympathetic arousal is associated with states of heightened attention and well-being. Arousal may affect widespread cortical and subcortical systems across the brain, however, little is known about its influence on cognitive task processing and performance. In the current study, healthy adult participants (n = 20) underwent multi-band echo-planar imaging (TR = 0.72 s) with simultaneous pulse oximetry recordings during performance of the Multi Source Interference Task (MSIT), the Oddball Task (OBT), and during rest. Processing speed on both tasks was robustly related to heart rate (HR). Participants with slower HR responded faster on both the MSIT (33% variance explained) and the OBT (25% variance explained). Within all participants, trial-to-trial fluctuations in processing speed were robustly related to the heartbeat-stimulus interval, a metric that is dependent both on the concurrent HR and the stimulus timing with respect to the heartbeat. Models examining the cardiac-BOLD response revealed that a distributed set of regions showed arousal-related activity that was distinct for different task conditions. Across these cortical regions, activity increased with slower HR. Arousal-related activity was distinct from task-evoked activity and it was robust to the inclusion of additional physiological nuisance regressors into the models. For the MSIT, such arousal-related activity occurred across visual and dorsal attention network regions. For the OBT, this activity occurred within fronto-parietal regions. For rest, arousal-related activity also occurred, but was confined to visual regions. The pulvinar nucleus of the thalamus showed arousal-related activity during all three task conditions. Widespread cortical activity, associated with increased parasympathetic arousal, may be propagated by thalamic circuits and contributes to improved attention. This activity is distinct from task-evoked activity, but affects cognitive performance and therefore should be incorporated into neurobiological models of cognition and clinical disorders.
Collapse
Affiliation(s)
- Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA.
| | - Majnu John
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Department of Mathematics, Hofstra University, 100 Hofstra University, Hempstead, NY, 11549, USA
| | - Pamela DeRosse
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA
| | - Michael L Birnbaum
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA
| | - Todd Lencz
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA
| | - Anil K Malhotra
- Department of Psychiatry, Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY, 11004, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA
| |
Collapse
|
16
|
Gianaros PJ, Jennings JR. Host in the machine: A neurobiological perspective on psychological stress and cardiovascular disease. ACTA ACUST UNITED AC 2019; 73:1031-1044. [PMID: 30394781 DOI: 10.1037/amp0000232] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Psychological stress still attracts scientific, clinical, and public interest because of its suspected connection to health, particularly cardiovascular health. Psychological stress is thought to arise from appraisal processes that imbue events and contexts with personal significance and threat-related meaning. These appraisal processes are also thought to be instantiated in brain systems that generate and control peripheral physiological stress reactions through visceral motor (brain-to-body) and visceral sensory (body-to-brain) mechanisms. In the short term, physiological stress reactions may enable coping and adaptive action. Among some individuals, however, the patterning of these reactions may predict or contribute to pathology in multiple organ systems, including the cardiovascular system. At present, however, we lack a precise understanding of the brain systems and visceral control processes that link psychological appraisals to patterns of stress physiology and physical health. This understanding is important: A mechanistic account of how the brain connects stressful experiences to bodily changes and health could help refine biomarkers of risk and targets for cardiovascular disease prevention and intervention. We review research contributing to this understanding, focusing on the neurobiology of cardiovascular stress reactivity and cardiovascular health. We suggest that a dysregulation of visceral motor and visceral sensory processes during stressful experiences may confer risk for poor cardiovascular health among vulnerable individuals. We further describe a need for new interpretive frameworks and markers of this brain-body dysregulation in cardiovascular behavioral medicine. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh
| | | |
Collapse
|
17
|
Carmichael O, Stuchlik P, Pillai S, Biessels GJ, Dhullipudi R, Madden-Rusnak A, Martin S, Hsia DS, Fonseca V, Bazzano L. High-Normal Adolescent Fasting Plasma Glucose Is Associated With Poorer Midlife Brain Health: Bogalusa Heart Study. J Clin Endocrinol Metab 2019; 104:4492-4500. [PMID: 31058974 PMCID: PMC6736207 DOI: 10.1210/jc.2018-02750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/30/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT It is unclear how adolescent glycemic status relates to brain health in adulthood. OBJECTIVE To assess the association between adolescent fasting plasma glucose (FPG) and MRI-based brain measures in midlife. DESIGN Between 1973 and 1992, the Bogalusa Heart Study (BHS) collected FPG from children, 3 to 18 years old, and followed up between 1992 and 2018. Cognitive tests and brain MRI were collected in 2013 to 2016 and 2018. SETTING Observational longitudinal cohort study. PARTICIPANTS Of 1298 contacted BHS participants, 74 completed screening, and 50 completed MRI. MAIN OUTCOME MEASURES Mean FPG per participant at ages <20, 20 to 40, and over 40 years old; brain white matter hyperintensity (WMH) volume, gray matter volume, and functional MRI (fMRI) activation to a Stroop task; tests of logical and working memory, executive function, and semantic fluency. RESULTS At MRI, participants were middle aged (51.3 ± 4.4 years) and predominantly female (74%) and white (74%). Mean FPG was impaired for zero, two, and nine participants in pre-20, 20 to 40, and over-40 periods. The pre-20 mean FPG above the pre-20 median value (i.e., above 83.5 mg/dL) was associated with greater WMH volume [mean difference: 0.029% of total cranial volume, CI: (0.0059, 0.052), P = 0.015] and less fMRI activation [-1.41 units (-2.78, -0.05), P = 0.043] on midlife MRI compared with below-median mean FPG. In controlling for over-40 mean FPG status did not substantially modify the associations. Cognitive scores did not differ by pre-20 mean FPG. CONCLUSIONS High-normal adolescent FPG may be associated with preclinical brain changes in midlife.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Correspondence and Reprint Requests: Owen Carmichael, PhD, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808. E-mail:
| | | | | | - Geert-Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Ram Dhullipudi
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Shane Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Vivian Fonseca
- Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
18
|
Ginty AT, Kraynak TE, Kuan DC, Gianaros PJ. Ventromedial prefrontal cortex connectivity during and after psychological stress in women. Psychophysiology 2019; 56:e13445. [PMID: 31376163 DOI: 10.1111/psyp.13445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/25/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023]
Abstract
The ventromedial prefrontal cortex (vmPFC) integrates sensory, affective, memory-related, and social information from diverse brain systems to coordinate behavioral and peripheral physiological responses according to contextual demands that are appraised as stressful. However, the functionality of the vmPFC during stressful experiences is not fully understood. Among 40 female participants, the present study evaluated (a) functional connectivity of the vmPFC during exposure to and recovery following an acute psychological stressor, (b) associations among vmPFC functional connectivity, heart rate, and subjective reports of stress across individuals, and (c) whether patterns of vmPFC functional connectivity were associated with distributed brain networks. Results showed that psychological stress increased vmPFC functional connectivity with individual brain areas implicated in stressor processing (e.g., insula, amygdala, anterior cingulate cortex) and decreased connectivity with the posterior cingulate cortex and thalamus. There were no statistical differences in vmPFC connectivity to individual brain areas during recovery, as compared with baseline. Spatial similarity analyses revealed stressor-evoked increased connectivity of the vmPFC with the so-called dorsal attention, ventral attention, and frontoparietal networks, as well as decreased connectivity with the default mode network. During recovery, vmPFC connectivity increased with the frontoparietal network. Finally, individual differences in heart rate and perceived stress were associated with vmPFC connectivity to the ventral attention, frontoparietal, and default mode networks. Psychological stress appears to alter network-level functional connectivity of the vmPFC in a manner that further relates to individual differences in stressor-evoked cardiovascular and affective reactivity.
Collapse
Affiliation(s)
- Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas
| | - Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dora C Kuan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Lefferts WK, DeBlois JP, Barreira TV, Heffernan KS. Neurovascular coupling during cognitive activity in adults with controlled hypertension. J Appl Physiol (1985) 2018; 125:1906-1916. [DOI: 10.1152/japplphysiol.00100.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypertension, even when controlled, may accelerate arterial stiffening and impair the ability of the cerebrovasculature to increase blood flow to support neural activity, i.e., neurovascular coupling (NVC). Optimal NVC depends on continuous, nonpulsatile flow, which is partially determined by extra- and intracranial vessel function. We sought to compare extra- and intracranial hemodynamics during cognitive activity (Stroop task) in 30 middle-aged, well-controlled medicated hypertensive and 30 age-, sex-, and body mass index (BMI)-matched nonhypertensive adults (56 ± 6 years, 28.2 ± 2.9 kg/m2 BMI; 32 men). Aortic and carotid (single point) pulse wave velocity (PWV) were assessed via tonometry and ultrasound, respectively. Carotid and middle cerebral artery (MCA) blood velocity pulsatility were measured via ultrasound and Doppler. Prefrontal cortex (PFC) oxygenation was measured via tissue saturation index (TSI) using near-infrared spectroscopy. Accuracy and reaction times were computed to assess cognitive performance. Stroop performance was similar between groups ( P > 0.01). Aortic and carotid PWV increased, carotid flow pulsatility decreased ( P < 0.01), and MCA flow pulsatility and PFC TSI were maintained during Stroop ( P > 0.01). Our findings indicate that middle-age adults with medically controlled hypertension and adults without hypertension demonstrate similar intra- and extracranial cerebrovascular reactivity during cognitive engagement. Despite increases in large artery stiffness, middle-aged adults with controlled hypertension and without hypertension exhibit reductions in extracranial flow pulsatility during cognitive engagement that may be part of a concerted cerebrovascular response to support downstream cerebral oxygenation and overall NVC. NEW & NOTEWORTHY Hypertension is associated with accelerated arterial stiffening, which may alter extra- and intracranial vascular reactivity during cognitive activity and impair neurovascular coupling. Middle-aged adults with medicated hypertension exhibit similar neurovascular coupling and extra-/intracranial vascular reactivity during sustained cognitive activity. Extracranial modulation of central hemodynamics may be an important component of optimal neurovascular coupling.
Collapse
Affiliation(s)
| | - Jacob P. DeBlois
- Department of Exercise Science, Syracuse University, Syracuse New York
| | - Tiago V. Barreira
- Department of Exercise Science, Syracuse University, Syracuse New York
| | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The present review discusses brain circuits that are engaged by negative emotions and possibly linked to cardiovascular disease risk. It describes recent human brain imaging studies that relate activity in these brain circuits to emotional processes, peripheral physiology, preclinical pathophysiology, as well as clinical outcomes. RECENT FINDINGS Negative emotions and the regulation of negative emotions reliably engage several brain regions that cross-sectional and longitudinal brain imaging studies have associated with CVD risk markers and outcomes. These brain regions include the amygdala, anterior cingulate cortex, medial prefrontal cortex, and insula. Other studies have applied advanced statistical techniques to characterize multivariate patterns of brain activity and brain connectivity that associate with negative emotion and CVD-relevant peripheral physiology. Brain imaging studies on emotion and cardiovascular disease risk are expanding our understanding of the brain-body bases of psychosocial and behavioral risk for cardiovascular disease.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, 210 South Bouquet Street, Pittsburgh, PA, 15260, USA. .,Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, 210 South Bouquet Street, Pittsburgh, PA, 15260, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, 210 South Bouquet Street, Pittsburgh, PA, 15260, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Soehner AM, Goldstein TR, Gratzmiller SM, Phillips ML, Franzen PL. Cognitive control under stressful conditions in transitional age youth with bipolar disorder: Diagnostic and sleep-related differences in fronto-limbic activation patterns. Bipolar Disord 2018; 20:238-247. [PMID: 29441653 PMCID: PMC6002960 DOI: 10.1111/bdi.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Adults with bipolar disorder (BD) display aberrant activation in fronto-limbic neural circuitry during cognitive control. However, fronto-limbic response to cognitive control, and factors destabilizing this circuitry, remain under-studied during the transition from adolescence to young adulthood in BD. Sleep patterns are disturbed in BD, undergo change in adolescence, and support brain function. Among transitional age youth, BD diagnosis and sleep (duration and variability) were tested as predictors of fronto-limbic response to a stressful cognitive control task. METHODS Two groups of youth (13-22 years old) participated: 15 with BD type I, II or not otherwise specified (NOS) [BD; age 18.1 ± 2.7 years (mean ± standard deviation, SD); 17 female] and 25 healthy controls [CTL; age 19.4 ± 2.7 years (mean ± SD); 17 female]. Sleep was monitored with actigraphy for at least 1 week prior to an adaptive multi-source interference functional magnetic resonance imaging (fMRI) paradigm (a Stroop-like cognitive interference task). Group status and sleep duration (average and intra-individual variability) were examined as predictors of activation in response to incongruent>congruent trials within the bilateral amygdala, anterior cingulate (ACC), ventrolateral prefrontal and dorsolateral prefrontal cortical regions of interest. RESULTS The BD group displayed greater right amygdala activation than the CTL group. Average sleep duration and rostroventral ACC (rvACC) activity were negatively associated in the CTL group, but exhibited a quadratic relationship in the BD group such that short and long sleep were related to greater rvACC activation. Sleep duration variability and dorsal ACC activity were negatively associated in the BD group, and unrelated in the CTL group. Findings remained significant after controlling for age, sex, and mood symptoms. CONCLUSIONS Subjects with BD displayed a hyper-limbic response during cognitive control, and sleep was a source of variability in ACC engagement. Stabilizing sleep may be one avenue for improving cognitive control in BD.
Collapse
Affiliation(s)
- Adriane M. Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tina R. Goldstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah M. Gratzmiller
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter L. Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
King JL, Fearnbach SN, Ramakrishnapillai S, Shankpal P, Geiselman PJ, Martin CK, Murray KB, Hicks JL, McClernon FJ, Apolzan JW, Carmichael OT. Perceptual Characterization of the Macronutrient Picture System (MaPS) for Food Image fMRI. Front Psychol 2018; 9:17. [PMID: 29434559 PMCID: PMC5790788 DOI: 10.3389/fpsyg.2018.00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 01/28/2023] Open
Abstract
Food image fMRI paradigms are used widely for investigating the neural basis of ingestive behavior. However, these paradigms have not been validated in terms of ingestive behavior constructs, engagement of food-relevant neural systems, or test-retest reliability, making the generalizability of study findings unclear. Therefore, we validated the Macronutrient Picture System (MaPS) (McClernon et al., 2013), which includes food images from the six categories represented in the Geiselman Food Preference Questionnaire (FPQ) (Geiselman et al., 1998). Twenty-five healthy young adults (n = 21 female, mean age = 20.6 ± 1.1 years, mean BMI = 22.1 ± 1.9 kg/m2) rated the MaPS images in terms of visual interest, appetitive quality, nutrition, emotional valence, liking, and frequency of consumption, and completed the FPQ. In a second study, 12 individuals (n=8 female, mean age = 25.0 ± 6.5 years, mean BMI = 28.2 ± 8.7 kg/m2) viewed MaPS and control images (vegetables and non-food) during two separate 3T BOLD fMRI scans after fasting overnight. Intuitively, high fat/high sugar (HF/HS) and high fat/high complex carbohydrate (HF/HCCHO) images achieved higher liking and appetitive ratings, and lower nutrition ratings, than low fat/low complex carbohydrate/high protein (LF/LCHO/HP) images on average. Within each food category, FPQ scores correlated strongly with MaPS image liking ratings (p < 0.001). Brain activation differences between viewing images of HF/HS and vegetables, and between HF/HCCHO and vegetables, were seen in several reward-related brain regions (e.g., putamen, insula, and medial frontal gyrus). Intra-individual, inter-scan agreement in a summary measure of brain activation differences in seven reward network regions of interest was high (ICC = 0.61), and was even higher when two distinct sets of food images with matching visual ratings were shown in the two scans (ICC = 0.74). These results suggest that the MaPS provides valid representation of food categories and reliably activates food-reward-relevant neural systems.
Collapse
Affiliation(s)
- Jill L King
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | | | | | - Preetham Shankpal
- Department of Electronics and Communication Engineering, MS Ramaiah University of Applied Sciences, Bangalore, India
| | - Paula J Geiselman
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kori B Murray
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jason L Hicks
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Owen T Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
23
|
Heffernan KS, Augustine JA, Lefferts WK, Spartano NL, Hughes WE, Jorgensen RS, Gump BB. Arterial stiffness and cerebral hemodynamic pulsatility during cognitive engagement in younger and older adults. Exp Gerontol 2018; 101:54-62. [DOI: 10.1016/j.exger.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
|
24
|
Gianaros PJ, Sheu LK, Uyar F, Koushik J, Jennings JR, Wager TD, Singh A, Verstynen TD. A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. J Am Heart Assoc 2017; 6:JAHA.117.006053. [PMID: 28835356 PMCID: PMC5634271 DOI: 10.1161/jaha.117.006053] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Individuals who exhibit large‐magnitude blood pressure (BP) reactions to acute psychological stressors are at risk for hypertension and premature death by cardiovascular disease. This study tested whether a multivariate pattern of stressor‐evoked brain activity could reliably predict individual differences in BP reactivity, providing novel evidence for a candidate neurophysiological source of stress‐related cardiovascular risk. Methods and Results Community‐dwelling adults (N=310; 30–51 years; 153 women) underwent functional magnetic resonance imaging with concurrent BP monitoring while completing a standardized battery of stressor tasks. Across individuals, the battery evoked an increase systolic and diastolic BP relative to a nonstressor baseline period (M ∆systolic BP/∆diastolic BP=4.3/1.9 mm Hg [95% confidence interval=3.7–5.0/1.4–2.3 mm Hg]). Using cross‐validation and machine learning approaches, including dimensionality reduction and linear shrinkage models, a multivariate pattern of stressor‐evoked functional magnetic resonance imaging activity was identified in a training subsample (N=206). This multivariate pattern reliably predicted both systolic BP (r=0.32; P<0.005) and diastolic BP (r=0.25; P<0.01) reactivity in an independent subsample used for testing and replication (N=104). Brain areas encompassed by the pattern that were strongly predictive included those implicated in psychological stressor processing and cardiovascular responding through autonomic pathways, including the medial prefrontal cortex, anterior cingulate cortex, and insula. Conclusions A novel multivariate pattern of stressor‐evoked brain activity may comprise a phenotype that partly accounts for individual differences in BP reactivity, a stress‐related cardiovascular risk factor.
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA .,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA
| | - Lei K Sheu
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Fatma Uyar
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| | - Jayanth Koushik
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
| | - J Richard Jennings
- Departments of Psychology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Tor D Wager
- Departments of Psychology and Neuroscience, University of Colorado at Boulder, CO
| | - Aarti Singh
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
| | - Timothy D Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
25
|
Vetter NC, Steding J, Jurk S, Ripke S, Mennigen E, Smolka MN. Reliability in adolescent fMRI within two years - a comparison of three tasks. Sci Rep 2017; 7:2287. [PMID: 28536420 PMCID: PMC5442096 DOI: 10.1038/s41598-017-02334-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
Abstract
Longitudinal developmental fMRI studies just recently began to focus on within-subject reliability using the intraclass coefficient (ICC). It remains largely unclear which degree of reliability can be achieved in developmental studies and whether this depends on the type of task used. Therefore, we aimed to systematically investigate the reliability of three well-classified tasks: an emotional attention, a cognitive control, and an intertemporal choice paradigm. We hypothesized to find higher reliability in the cognitive task than in the emotional or reward-related task. 104 healthy mid-adolescents were scanned at age 14 and again at age 16 within M = 1.8 years using the same paradigms, scanner, and scanning protocols. Overall, we found both variability and stability (i.e. poor to excellent ICCs) depending largely on the region of interest (ROI) and task. Contrary to our hypothesis, whole brain reliability was fair for the cognitive control task but good for the emotional attention and intertemporal choice task. Subcortical ROIs (ventral striatum, amygdala) resulted in lower ICCs than visual ROIs. Current results add to the yet sparse overall ICC literature in both developing samples and adults. This study shows that analyses of stability, i.e. reliability, are helpful benchmarks for longitudinal studies and their implications for adolescent development.
Collapse
Affiliation(s)
- Nora C Vetter
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany. .,Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany. .,Department of Psychology, Bergische Universität Wuppertal, Wuppertal, Germany.
| | - Julius Steding
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Sarah Jurk
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Stephan Ripke
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Eva Mennigen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Jennings JR, Muldoon MF, Ryan C, Gach HM, Heim A, Sheu LK, Gianaros PJ. Prehypertensive Blood Pressures and Regional Cerebral Blood Flow Independently Relate to Cognitive Performance in Midlife. J Am Heart Assoc 2017; 6:JAHA.116.004856. [PMID: 28314796 PMCID: PMC5524017 DOI: 10.1161/jaha.116.004856] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background High blood pressure is thought to contribute to dementia in late life, but our understanding of the relationship between individual differences in blood pressure (BP) and cognitive functioning is incomplete. In this study, cognitive performance in nonhypertensive midlife adults was examined as a function of resting BP and regional cerebral blood flow (rCBF) responses during cognitive testing. We hypothesized that BP would be negatively related to cognitive performance and that cognitive performance would also be related to rCBF responses within areas related to BP control. We explored whether deficits related to systolic BP might be explained by rCBF responses to mental challenge. Methods and Results Healthy midlife participants (n=227) received neuropsychological testing and performed cognitive tasks in a magnetic resonance imaging scanner. A pseudocontinuous arterial spin labeling sequence assessed rCBF in brain areas related to BP in prior studies. Systolic BP was negatively related to 4 of 5 neuropsychological factors (standardized β>0.13): memory, working memory, executive function, and mental efficiency. The rCBF in 2 brain regions of interest was similarly related to memory, executive function, and working memory (standardized β>0.17); however, rCBF responses did not explain the relationship between resting systolic BP and cognitive performance. Conclusions Relationships at midlife between prehypertensive levels of systolic BP and both cognitive and brain function were modest but suggested the possible value of midlife intervention.
Collapse
|
27
|
Lockwood KG, Marsland AL, Cohen S, Gianaros PJ. Sex differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein. Brain Behav Immun 2016; 58:173-180. [PMID: 27377561 PMCID: PMC5067187 DOI: 10.1016/j.bbi.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022] Open
Abstract
Individuals differ consistently in the magnitude of their inflammatory responses to acute stressors, with females often showing larger responses than males. While the clinical significance of these individual differences remains unclear, it may be that greater inflammatory responses relate to increased systemic inflammation and thereby risk for chronic inflammatory disease. Here, we examined whether acute stressor-evoked interleukin (IL)-6 responses associate with resting levels of C-reactive protein (CRP), a marker of systemic inflammation, and whether this association differs by sex. Subjects were 57 healthy midlife adults (30-51years; 33% female; 68% white). Blood was drawn before and 30-min after two mental stress tasks: a multisource interference task and a Stroop color word task. Hierarchical regressions controlling for age, sex, race, and BMI tested whether stressor-evoked IL-6 responses were associated with resting CRP and whether this association differed by sex. Results indicated that sex and stressor-evoked IL-6 responses interacted to predict CRP (ΔR2=0.08, B=-1.33, β=-0.39, p=0.02). In males, larger stressor-evoked IL-6 responses associated with higher CRP, whereas in females, stressor-evoked IL-6 responses showed a non-significant negative association with CRP. These findings indicate that inflammatory responses to acute stressors associate with resting levels of CRP; however, this association differs by sex. Previous literature suggests that there are sex differences in stressor-evoked IL-6 responses, but this is the first study to show sex differences in the relationship between acute inflammatory responses and systemic inflammation. The contribution of these sex differences to inflammatory disease risk warrants further investigation.
Collapse
Affiliation(s)
- Kimberly G. Lockwood
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA,Address correspondence to: Kimberly Lockwood, Department of Psychology, University of Pittsburgh, Room 506 Old Engineering Hall, 3943 O’Hara Street, Pittsburgh, PA, 15260.
| | - Anna L. Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
28
|
Clarkson BD, Tyagi S, Griffiths DJ, Resnick NM. Test-retest repeatability of patterns of brain activation provoked by bladder filling. Neurourol Urodyn 2016; 36:1472-1478. [PMID: 27778370 DOI: 10.1002/nau.23153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/15/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess short-term repeatability of an fMRI protocol widely used to assess brain control of the bladder. fMRI offers the potential to discern incontinence phenotypes as well as the mechanisms mediating therapeutic response. If so, this could enable more targeted efforts to enhance therapy. Such data, however, require excellent test-retest repeatability. METHODS Fifty-nine older women (age ≥60 years) with urgency incontinence underwent two fMRI scans within 5-10 min with a concurrent bladder infusion/withdrawal protocol. Activity in three brain regions relevant to bladder control was compared using paired t tests and intra-class correlation. RESULTS There were no statistically significant differences in brain activity between the two consecutive scans in the regions of interest. Intra-class correlation was 0.19 in the right insula, 0.32 in the dorsal anterior cingulate cortex/supplementary motor area, and 0.44 in the medial pre-frontal cortex. Such correlations are considered fair or poor, but are comparable to those from studies of other repeated fMRI tasks. CONCLUSIONS This is the first evaluation of the repeatability of a bladder fMRI protocol. The technique used provides a framework for comparing different fMRI protocols applied to brain-bladder research. Despite universal patient response to the stimulus, brain response had limited repeatability within individuals. Improvement of the investigational protocol should magnify brain response and reduce variability. These results suggest that although analysis of fMRI data among groups of subjects yields valuable insight into bladder control, fMRI is not yet appropriate for evaluation of the brain's role in continence on an individual level.
Collapse
Affiliation(s)
- Becky D Clarkson
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shachi Tyagi
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Derek J Griffiths
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil M Resnick
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Heffernan KS, Spartano NL, Augustine JA, Lefferts WK, Hughes WE, Mitchell GF, Jorgensen RS, Gump BB. Carotid artery stiffness and hemodynamic pulsatility during cognitive engagement in healthy adults: a pilot investigation. Am J Hypertens 2015; 28:615-22. [PMID: 25384407 DOI: 10.1093/ajh/hpu198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The matching of vascular supply to neuronal metabolic demand during cognitive engagement is known as neurovascular coupling (NVC). Arterial stiffness is a prominent determinant of pulsatility in the systemic circulation and may thus indirectly impact NVC. In this pilot investigation, we explored changes in carotid artery stiffness and cerebrovascular hemodynamic pulsatiltiy during cognitive engagement in healthy adults. METHODS Twenty-seven adults (age 39 ± 3 years, BMI 24 ± 1 kg/m(2)) underwent Doppler ultrasonography of the common carotid artery (CCA) combined with applanation tonometry to derive (i) CCA elastic modulus (Ep) and β-stiffness index; (ii) CCA flow pulsatility index (PI); (iii) CCA pulse pressure, (iv) CCA augmentation index (AIx). Cerebral PI was assessed using transcranial Doppler at the middle cerebral artery (MCA). All measures were made at rest and during an incongruent Stroop task. RESULTS CCA PI was reduced (1.75 ± 0.06 to 1.57 ± 0.06, P < 0.05) while MCA PI was unchanged (0.75 ± 0.02 to 0.75 ± 0.02, P > 0.05) during Stroop. Brachial pulse pressure increased during Stroop (43 ± 1 to 46 ± 1 mm Hg, P < 0.05) while CCA pulse pressure was unchanged (36 ± 1 to 35 ± 1 mm Hg, P > 0.05). Similarly, CCA Ep (54.5 ± 5.5 to 53.8 ± 4.9 kPa, P > 0.05) and β-stiffness index (4.4 ± 0.4 to 4.2 ± 0.3 aU, P > 0.05) were unchanged. CCA AIx increased (1 ± 4 to 13 ± 4%, P < 0.05). CONCLUSION Carotid pressure pulsatility is unaltered while carotid flow pulsatility is reduced during cognitive engagement. Carotid artery stiffness does not change suggesting that factors other than the dynamic elastic properties of the CCA buffer cerebrovascular hemodynamic pulsatility during cognitive engagement.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA;
| | - Nicole L Spartano
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA
| | | | - Wesley K Lefferts
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA
| | - William E Hughes
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA
| | - Gary F Mitchell
- Cardiovascular Engineering, Inc., Norwood, Massachusetts, USA
| | | | - Brooks B Gump
- Department of Public Health, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
30
|
The relationship between carotid blood pressure reactivity to mental stress and carotid intima-media thickness. Atherosclerosis 2014; 236:227-9. [PMID: 25099945 DOI: 10.1016/j.atherosclerosis.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/26/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Brachial blood pressure (BP) reactivity to stress predicts large artery damage and future cardiovascular (CV) events. Central BP is an emerging risk factor associated with target organ damage (TOD). Currently, little is known about the central BP response to mental stress and its association to TOD. METHODS AND RESULTS Twenty-five healthy, non-obese adults completed a computerized mental stress test. Brachial and carotid systolic (S)BP reactivity to stress were calculated as SBP during stress minus resting SBP. Resting carotid intima-media thickness (IMT) was also measured. Carotid SBP reactivity to stress was significantly associated with carotid IMT, independent of age, sex, body mass index, non-high density lipoprotein cholesterol and brachial SBP reactivity to stress (r = 0.386, p < 0.05). CONCLUSION The relationship between carotid SBP reactivity and carotid IMT suggests that the central BP response to stress may prove to be an early risk marker for potential subclinical TOD.
Collapse
|
31
|
Brindle RC, Ginty AT, Phillips AC, Carroll D. A tale of two mechanisms: A meta-analytic approach toward understanding the autonomic basis of cardiovascular reactivity to acute psychological stress. Psychophysiology 2014; 51:964-76. [DOI: 10.1111/psyp.12248] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/05/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Ryan C. Brindle
- School of Sport, Exercise, and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - Annie T. Ginty
- School of Sport, Exercise, and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - Anna C. Phillips
- School of Sport, Exercise, and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - Douglas Carroll
- School of Sport, Exercise, and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| |
Collapse
|
32
|
Banihashemi L, Sheu LK, Midei AJ, Gianaros PJ. Childhood physical abuse predicts stressor-evoked activity within central visceral control regions. Soc Cogn Affect Neurosci 2014; 10:474-85. [PMID: 24847113 DOI: 10.1093/scan/nsu073] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lei K Sheu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aimee J Midei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J Gianaros
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
van ‘t Ent D, den Braber A, Rotgans E, de Geus E, de Munck J. The use of fMRI to detect neural responses to cognitive interference and planning: Evidence for a contribution of task related changes in heart rate? J Neurosci Methods 2014; 229:97-107. [DOI: 10.1016/j.jneumeth.2014.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 01/21/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
34
|
Longitudinal growth curves of brain function underlying inhibitory control through adolescence. J Neurosci 2014; 33:18109-24. [PMID: 24227721 DOI: 10.1523/jneurosci.1741-13.2013] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature.
Collapse
|
35
|
Ginty AT, Gianaros PJ, Derbyshire SWG, Phillips AC, Carroll D. Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology 2013; 50:219-29. [DOI: 10.1111/psyp.12017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/15/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Annie T. Ginty
- School of Sport and Exercise Sciences; University of Birmingham; Birmingham; UK
| | - Peter J. Gianaros
- Department of Psychology; University of Pittsburgh; Pittsburgh; Pennsylvania; USA
| | | | - Anna C. Phillips
- School of Sport and Exercise Sciences; University of Birmingham; Birmingham; UK
| | - Douglas Carroll
- School of Sport and Exercise Sciences; University of Birmingham; Birmingham; UK
| |
Collapse
|