1
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
2
|
Wang J, Wang F, Mai D, Qu S. Molecular Mechanisms of Glutamate Toxicity in Parkinson's Disease. Front Neurosci 2020; 14:585584. [PMID: 33324150 PMCID: PMC7725716 DOI: 10.3389/fnins.2020.585584] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease, the pathological features of which include the presence of Lewy bodies and the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. However, until recently, research on the pathogenesis and treatment of PD have progressed slowly. Glutamate and dopamine are both important central neurotransmitters in mammals. A lack of enzymatic decomposition of extracellular glutamate results in glutamate accumulating at synapses, which is mainly absorbed by excitatory amino acid transporters (EAATs). Glutamate exerts its physiological effects by binding to and activating ligand-gated ion channels [ionotropic glutamate receptors (iGluRs)] and a class of G-protein-coupled receptors [metabotropic glutamate receptors (mGluRs)]. Timely clearance of glutamate from the synaptic cleft is necessary because high levels of extracellular glutamate overactivate glutamate receptors, resulting in excitotoxic effects in the central nervous system. Additionally, increased concentrations of extracellular glutamate inhibit cystine uptake, leading to glutathione depletion and oxidative glutamate toxicity. Studies have shown that oxidative glutamate toxicity in neurons lacking functional N-methyl-D-aspartate (NMDA) receptors may represent a component of the cellular death pathway induced by excitotoxicity. The association between inflammation and excitotoxicity (i.e., immunoexcitotoxicity) has received increased attention in recent years. Glial activation induces neuroinflammation and can stimulate excessive release of glutamate, which can induce excitotoxicity and, additionally, further exacerbate neuroinflammation. Glutamate, as an important central neurotransmitter, is closely related to the occurrence and development of PD. In this review, we discuss recent progress on elucidating glutamate as a relevant neurotransmitter in PD. Additionally, we summarize the relationship and commonality among glutamate excitotoxicity, oxidative toxicity, and immunoexcitotoxicity in order to posit a holistic view and molecular mechanism of glutamate toxicity in PD.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
| | - Dongmei Mai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Yager JY. Glucose and Perinatal Brain Injury—Questions and Controversies. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Zhao L, Dong M, Ren M, Li C, Zheng H, Gao H. Metabolomic Analysis Identifies Lactate as an Important Pathogenic Factor in Diabetes-associated Cognitive Decline Rats. Mol Cell Proteomics 2018; 17:2335-2346. [PMID: 30171160 PMCID: PMC6283288 DOI: 10.1074/mcp.ra118.000690] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus causes brain structure changes and cognitive decline, and it has been estimated that diabetes doubles the risk for dementia. Until now, the pathogenic mechanism of diabetes-associated cognitive decline (DACD) has remained unclear. Using metabolomics, we show that lactate levels increased over time in the hippocampus of rats with streptozotocin-induced diabetes, as compared with age-matched control rats. Additionally, mRNA levels, protein levels, and enzymatic activity of lactate dehydrogenase-A (LDH-A) were significantly up-regulated, suggesting increased glycolysis activity. Importantly, by specifically blocking the glycolysis pathway through an LDH-A inhibitor, chronic diabetes-induced memory impairment was prevented. Analyzing the underlying mechanism, we show that the expression levels of cAMP-dependent protein kinase and of phosphorylated transcription factor cAMP response element-binding proteins were decreased in 12-week diabetic rats. We suggest that G protein-coupled receptor 81 mediates cognitive decline in the diabetic rat. In this study, we report that progressively increasing lactate levels is an important pathogenic factor in DACD, directly linking diabetes to cognitive dysfunction. LDH-A may be considered as a potential target for alleviating or treating DACD in the future.
Collapse
Affiliation(s)
- Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Mengqian Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
5
|
Jackson DA, Michael T, Vieira de Abreu A, Agrawal R, Bortolato M, Fisher SJ. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment With Verapamil. Diabetes 2018; 67:2107-2112. [PMID: 29724724 PMCID: PMC6152340 DOI: 10.2337/db18-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022]
Abstract
People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Because calcium influx may mediate brain damage, we tested the hypothesis that the calcium-channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Sprague-Dawley rats (10 weeks old) were randomly assigned to one of three treatments: 1) control hyperinsulinemic (200 mU ⋅ kg-1 ⋅ min-1)-euglycemic (80-100 mg/dL) clamps (n = 14), 2) hyperinsulinemic-hypoglycemic (10-15 mg/dL) clamps (n = 16), or 3) hyperinsulinemic-hypoglycemic clamps, followed by a single treatment with verapamil (20 mg/kg) (n = 11). Compared with euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus by 16-fold and cortex by 14-fold. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil after severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin-treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage.
Collapse
Affiliation(s)
- David A Jackson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Trevin Michael
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Adriana Vieira de Abreu
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Rahul Agrawal
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
6
|
Florez CM, Lukankin V, Sugumar S, McGinn R, Zhang ZJ, Zhang L, Carlen PL. Hypoglycemia-induced alterations in hippocampal intrinsic rhythms: Decreased inhibition, increased excitation, seizures and spreading depression. Neurobiol Dis 2015; 82:213-225. [PMID: 26093168 DOI: 10.1016/j.nbd.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Seizures are the most common clinical presentation of severe hypoglycemia, usually as a side effect of insulin treatment for juvenile onset type 1 diabetes mellitus and advanced type 2 diabetes. We used the mouse thick hippocampal slice preparation to study the pathophysiology of hypoglycemia-induced seizures and the effects of severe glucose depletion on the isolated hippocampal rhythms from the CA3 circuitry. METHODS AND RESULTS Dropping the glucose perfusate concentration from the standard 10 mM to 1 mM produced epileptiform activity in 14/16 of the slices. Seizure-like events (SLEs) originated in the CA3 region and then spread into the CA1 region. Following the SLE, a spreading-depression (SD)-like event occurred (12/16 slices) with irreversible synaptic failure in the CA1 region (8/12 slices). CA3 SD-like events followed ~30 s after the SD-like event in the CA1 region. Less commonly, SD-like events originated in the CA3 region (4/12). Additionally, prior to the onset of the SLE in the CA3 area, there was decreased GABA correlated baseline SPW activity (bSPW), while there was increased large-amplitude sharp wave (LASW) activity, thought to originate from synchronous pyramidal cell firing. CA3 pyramidal cells displayed progressive tonic depolarization prior to the seizure which was resistant to synaptic transmission blockade. The initiation of hypoglycemic seizures and SD was prevented by AMPA/kainate or NMDA receptor blockade. CONCLUSIONS Severe glucose depletion induces rapid changes initiated in the intrinsic CA3 rhythms of the hippocampus including depressed inhibition and enhanced excitation, which may underlie the mechanisms of seizure generation and delayed spreading depression.
Collapse
Affiliation(s)
- C M Florez
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada; Division of Fundamental Neurobiology, TWRI, UHN, Toronto, Canada
| | - V Lukankin
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - S Sugumar
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - R McGinn
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - Z J Zhang
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - L Zhang
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - P L Carlen
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada; Division of Fundamental Neurobiology, TWRI, UHN, Toronto, Canada.
| |
Collapse
|
7
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
8
|
Thomas RB, Joy S, Ajayan MS, Paulose CS. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell Mol Neurobiol 2013; 33:1065-74. [PMID: 23975094 DOI: 10.1007/s10571-013-9973-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/09/2013] [Indexed: 11/27/2022]
Abstract
Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p < 0.001) in dopamine D1 receptor number in the hypoglycaemic condition, suggesting cognitive dysfunction. cAMP content was significantly (p < 0.001) downregulated in hypoglycaemic neonatal rats indicating the reduction in cell signalling of the dopamine D1 receptors. It is attributed to the deficits in spatial learning and memory. Hypoglycaemic neonatal rats treated with Bacopa extract alone and Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.
Collapse
Affiliation(s)
- Roshni Baby Thomas
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | | | | | | |
Collapse
|
9
|
El Hage M, Baverel G, Conjard-Duplany A, Martin G. Effect of glucose on glutamine metabolism in rat brain slices: a cellular metabolomic study with Effect of glucose ¹³C NMR. Neuroscience 2013; 248:243-51. [PMID: 23769890 DOI: 10.1016/j.neuroscience.2013.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
To examine the effect of glucose on the cerebral metabolism of glutamine, rat brain slices were incubated with 5mM [3-(13)C]glutamine without and with 5mM unlabeled glucose. Tissue plus medium extracts were analyzed by using enzymatic and (13)C NMR techniques and fluxes through the enzymatic steps involved were calculated with a mathematical model. We demonstrate that glucose increased alanine, pyruvate and glutamate accumulations and decreased ammonium ions accumulation, aspartate accumulation and labeling, and GABA labeling. In order to determine the participation of glutamine synthetase when glucose was added to the incubation medium, we incubated rat brain slices with 5mM [3-(13)C]glutamine plus 5mM unlabeled glucose without and with 2mM methionine sulfoximine (MSO). The results indicate that 77% of the newly appeared glutamine was formed via glutamine synthetase and 23% from endogenous sources; the stimulation of [3-(13)C]glutamine removal by MSO also strongly suggests the existence of a cycle between [3-(13)C]glutamine and [3-(13)C]glutamate. This work also demonstrates that glucose increased fluxes through hexokinase, pyruvate kinase, lactate dehydrogenase, alanine aminotransferase, pyruvate carboxylase, pyruvate dehydrogenase, citrate synthase, flux from α-ketoglutarate to glutamate and flux through glutamine synthetase whereas it inhibited fluxes through aspartate aminotransferase, glutamic acid decarboxylase and GABA aminotransferase.
Collapse
Affiliation(s)
- M El Hage
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France.
| | - G Baverel
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - A Conjard-Duplany
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - G Martin
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| |
Collapse
|
10
|
Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view. Neurochem Int 2013; 63:331-43. [PMID: 23876631 DOI: 10.1016/j.neuint.2013.06.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 01/01/2023]
Abstract
The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Gabriela Languren
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, AP 70-253, México, D.F., Mexico
| | | | | | | |
Collapse
|
11
|
Liu K, Ye XJ, Hu WY, Zhang GY, Bai GH, Zhao LC, He JW, Zhu H, Shao JB, Yan ZH, Gao HC. Neurochemical changes in the rat occipital cortex and hippocampus after repetitive and profound hypoglycemia during the neonatal period: an ex vivo ¹H magnetic resonance spectroscopy study. Mol Neurobiol 2013; 48:729-36. [PMID: 23553314 DOI: 10.1007/s12035-013-8446-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo (1)H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.
Collapse
Affiliation(s)
- Kun Liu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Isom AM, Gudelsky GA, Benoit SC, Richtand NM. Antipsychotic medications, glutamate, and cell death: A hidden, but common medication side effect? Med Hypotheses 2013; 80:252-8. [DOI: 10.1016/j.mehy.2012.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022]
|
13
|
The effects of insulin, glucagon, glutamate, and glucose infusion on blood glutamate and plasma glucose levels in naive rats. J Neurosurg Anesthesiol 2012; 23:323-8. [PMID: 21836527 DOI: 10.1097/ana.0b013e3182299b15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated levels of glutamate in brain fluids, in the context of several neurodegenerative conditions, are associated with a worsened neurological outcome. Because there is a clear relationship between brain glutamate levels and glutamate levels in the blood, and an association of the latter with stress, the purpose of this study was to investigate the effects of glucose, insulin, and glucagon on rat blood glutamate levels. METHODS Rats received either 1 mL/100 g of rat body weight (BW) intravenous isotonic saline (control), 150 mg/1 mL/100 g BW intravenous glucose, 75 mg/1 mL/100 g BW intravenous glutamate, 50 g/100 g BW intraparitoneal glucagon, or 0.2 UI/100 g BW intraparitoneal insulin. Blood samples were subsequently drawn at 0, 30, 60, 90, and 120 minutes for determination of blood glutamate and glucose levels. RESULTS We observed a significant decrease in blood glutamate levels at 30 minutes after injection of glucose (P<0.05), at 30 and 60 minutes after injection of insulin (P<0.05), and at 90 and 120 minutes after injection of glucagon. Plasma glucose levels were elevated after infusion of glutamate and glucose but were decreased after injection of insulin. CONCLUSIONS The results of this study demonstrate that glucose, insulin, and glucagon significantly reduce blood glutamate levels. The effect of insulin is immediate and transient, whereas the effect of glucagon is delayed but longer lasting, suggesting that the sensitivity of pancreatic glucagon and insulin-secreting cells to glutamate is dependent on glucose concentration. The results of this study provide insight into blood glutamate homeostasis and may assist in the implementation of new therapies for brain neuroprotection from excess glutamate.
Collapse
|
14
|
Stelmashook EV, Isaev NK, Lozier ER, Goryacheva ES, Khaspekov LG. Role of Glutamine in Neuronal Survival and Death During Brain Ischemia and Hypoglycemia. Int J Neurosci 2011; 121:415-22. [DOI: 10.3109/00207454.2011.570464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Silverstein JM, Musikantow D, Puente EC, Daphna-Iken D, Bree AJ, Fisher SJ. Pharmacologic amelioration of severe hypoglycemia-induced neuronal damage. Neurosci Lett 2011; 492:23-8. [PMID: 21272612 DOI: 10.1016/j.neulet.2011.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Hypoglycemia is a common complication for insulin treated people with diabetes. Severe hypoglycemia, which occurs in the setting of excess or ill-timed insulin administration, has been shown to cause brain damage. Previous pre-clinical studies have shown that memantine (an N-methyl-d-aspartate receptor antagonist) and erythropoietin can be neuroprotective in other models of brain injury. We hypothesized that these agents might also be neuroprotective in response to severe hypoglycemia-induced brain damage. To test this hypothesis, 9-week old, awake, male Sprague-Dawley rats underwent hyperinsulinemic (0.2 U kg(-1)min(-1)) hypoglycemic clamps to induce severe hypoglycemia (blood glucose 10-15 mg/dl for 90 min). Animals were randomized into control (vehicle) or pharmacological treatments (memantine or erythropoietin). One week after severe hypoglycemia, neuronal damage was assessed by Fluoro-Jade B and hematoxylin and eosin staining of brain sections. Treatment with both memantine and erythropoietin significantly decreased severe hypoglycemia-induced neuronal damage in the cortex by 35% and 39%, respectively (both p<0.05 vs. controls). These findings demonstrate that memantine and erythropoietin provide a protective effect against severe hypoglycemia-induced neuronal damage.
Collapse
Affiliation(s)
- Julie M Silverstein
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine,Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
16
|
Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB. Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. BIOCHEMISTRY (MOSCOW) 2011; 73:149-55. [DOI: 10.1134/s0006297908020053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Wang M, Slaney T, Mabrouk O, Kennedy RT. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution. J Neurosci Methods 2010; 190:39-48. [PMID: 20447417 PMCID: PMC2885530 DOI: 10.1016/j.jneumeth.2010.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
An off-line in vivo neurochemical monitoring approach was developed based on collecting nanoliter microdialysate fractions as an array of "plugs" segmented by immiscible oil in a piece of Teflon tubing. The dialysis probe was integrated with the plug generator in a polydimethlysiloxane microfluidic device that could be mounted on the subject. The microfluidic device also allowed derivatization reagents to be added to the plugs for fluorescence detection of analytes. Using the device, 2 nL fractions corresponding to 1-20 ms sampling times depending upon dialysis flow rate, were collected. Because axial dispersion was prevented between them, each plug acted as a discrete sample collection vial and temporal resolution was not lost by mixing or diffusion during transport. In vitro tests of the system revealed that the temporal resolution of the system was as good as 2 s and was limited by mass transport effects within the dialysis probe. After collection of dialysate fractions, they were pumped into a glass microfluidic chip that automatically analyzed the plugs by capillary electrophoresis with laser-induced fluorescence at 50 s intervals. By using a relatively low flow rate during transfer to the chip, the temporal resolution of the samples could be preserved despite the relatively slow analysis time. The system was used to detect rapid dynamics in neuroactive amino acids evoked by microinjecting the glutamate uptake inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) or K(+) into the striatum of anesthetized rats. The resulted showed increases in neurotransmitter efflux that reached a peak in 20 s for PDC and 13 s for K(+).
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Thomas Slaney
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Omar Mabrouk
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
- Departmenat of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Wang M, Roman GT, Perry ML, Kennedy RT. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal Chem 2009; 81:9072-8. [PMID: 19803495 PMCID: PMC2784254 DOI: 10.1021/ac901731v] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An effective method for in vivo chemical monitoring is to couple sampling probes, such as microdialysis, to online analytical methods. A limitation of this approach is that in vivo chemical dynamics may be distorted by flow and diffusion broadening during transfer from sampling probe to analytical system. Converting a homogeneous sample stream to segmented flow can prevent such broadening. We have developed a system for coupling segmented microdialysis flow with chip-based electrophoresis. In this system, the dialysis probe is integrated with a PDMS chip that merges dialysate with fluorogenic reagent and segments the flow into 8-10 nL plugs at 0.3-0.5 Hz separated by perfluorodecalin. The plugs flow to a glass chip where they are extracted to an aqueous stream and analyzed by electrophoresis with fluorescence detection. The novel extraction system connects the segmented flow to an electrophoresis sampling channel by a shallow and hydrophilic extraction bridge that removes the entire aqueous droplet from the oil stream. With this approach, temporal resolution was 35 s and independent of distance between sampling and analysis. Electrophoretic analysis produced separation with 223,000 +/- 21,000 theoretical plates, 4.4% RSD in peak height, and detection limits of 90-180 nM for six amino acids. This performance was made possible by three key elements: (1) reliable transfer of plug flow to a glass chip; (2) efficient extraction of aqueous plugs from segmented flow; (3) electrophoretic injection suitable for high efficiency separation with minimal dilution of sample. The system was used to detect rapid concentration changes evoked by infusing glutamate uptake inhibitor into the striatum of anesthetized rats. These results demonstrate the potential of incorporating segmented flow into separations-based sensing schemes for studying chemical dynamics in vivo with improved temporal resolution.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
19
|
Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ. Diabetes increases brain damage caused by severe hypoglycemia. Am J Physiol Endocrinol Metab 2009; 297:E194-201. [PMID: 19435850 PMCID: PMC2711670 DOI: 10.1152/ajpendo.91041.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin-induced severe hypoglycemia causes brain damage. The hypothesis to be tested was that diabetes portends to more extensive brain tissue damage following an episode of severe hypoglycemia. Nine-week-old male streptozotocin-diabetic (DIAB; n = 10) or vehicle-injected control (CONT; n = 7) Sprague-Dawley rats were subjected to hyperinsulinemic (0.2 U.kg(-1).min(-1)) severe hypoglycemic (10-15 mg/dl) clamps while awake and unrestrained. Groups were precisely matched for depth and duration (1 h) of severe hypoglycemia (CONT 11 +/- 0.5 and DIAB 12 +/- 0.2 mg/dl, P = not significant). During severe hypoglycemia, an equal number of episodes of seizure-like activity were noted in both groups. One week later, histological analysis demonstrated extensive neuronal damage in regions of the hippocampus, especially in the dentate gyrus and CA1 regions and less so in the CA3 region (P < 0.05), although total hippocampal damage was not different between groups. However, in the cortex, DIAB rats had significantly (2.3-fold) more dead neurons than CONT rats (P < 0.05). There was a strong correlation between neuronal damage and the occurrence of seizure-like activity (r(2) > 0.9). Separate studies conducted in groups of diabetic (n = 5) and nondiabetic (n = 5) rats not exposed to severe hypoglycemia showed no brain damage. In summary, under the conditions studied, severe hypoglycemia causes brain damage in the cortex and regions within the hippocampus, and the extent of damage is closely correlated to the presence of seizure-like activity in nonanesthetized rats. It is concluded that, in response to insulin-induced severe hypoglycemia, diabetes uniquely increases the vulnerability of specific brain areas to neuronal damage.
Collapse
Affiliation(s)
- Adam J Bree
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University in St. Louis, Campus Box 8127, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
20
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
21
|
El-Zayat E, Rawi S, Ismail N. Delayed Effects of Acute Deltamethrin Toxicity on Brain and Blood Monoamines and Free Amino Acids: Therapeutic Role of Selenium-Supplementation. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/rjet.2008.35.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
23
|
Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 2007; 51:333-55. [PMID: 17517448 PMCID: PMC2075474 DOI: 10.1016/j.neuint.2007.03.012] [Citation(s) in RCA: 442] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 12/20/2022]
Abstract
Extracellular concentrations of the predominant excitatory neurotransmitter, glutamate, and related excitatory amino acids are maintained at relatively low levels to ensure an appropriate signal-to-noise ratio and to prevent excessive activation of glutamate receptors that can result in cell death. The latter phenomenon is known as 'excitotoxicity' and has been associated with a wide range of acute and chronic neurodegenerative disorders, as well as disorders that result in the loss of non-neural cells such as oligodendroglia in multiple sclerosis. Unfortunately clinical trials with glutamate receptor antagonists that would logically seem to prevent the effects of excessive receptor activation have been associated with untoward side effects or little clinical benefit. In the mammalian CNS, the extracellular concentrations of glutamate are controlled by two types of transporters; these include a family of Na(+)-dependent transporters and a cystine-glutamate exchange process, referred to as system X(c)(-). In this review, we will focus primarily on the Na(+)-dependent transporters. A brief introduction to glutamate as a neurotransmitter will be followed by an overview of the properties of these transporters, including a summary of the presumed physiologic mechanisms that regulate these transporters. Many studies have provided compelling evidence that impairing the function of these transporters can increase the sensitivity of tissue to deleterious effects of aberrant activation of glutamate receptors. Over the last decade, it has become clear that many neurodegenerative disorders are associated with a change in localization and/or expression of some of the subtypes of these transporters. This would suggest that therapies directed toward enhancing transporter expression might be beneficial. However, there is also evidence that glutamate transporters might increase the susceptibility of tissue to the consequences of insults that result in a collapse of the electrochemical gradients required for normal function such as stroke. In spite of the potential adverse effects of upregulation of glutamate transporters, there is recent evidence that upregulation of one of the glutamate transporters, GLT-1 (also called EAAT2), with beta-lactam antibiotics attenuates the damage observed in models of both acute and chronic neurodegenerative disorders. While it seems somewhat unlikely that antibiotics specifically target GLT-1 expression, these studies identify a potential strategy to limit excitotoxicity. If successful, this type of approach could have widespread utility given the large number of neurodegenerative diseases associated with decreases in transporter expression and excitotoxicity. However, given the massive effort directed at developing glutamate receptor agents during the 1990s and the relatively modest advances to date, one wonders if we will maintain the patience needed to carefully understand the glutamatergic system so that it will be successfully targeted in the future.
Collapse
Affiliation(s)
- Amanda L. Sheldon
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA. 19104-4318
- Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA. 19104-4318
| | - Michael B. Robinson
- Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA. 19104-4318
| |
Collapse
|
24
|
Camacho A, Montiel T, Massieu L. The anion channel blocker, 4,4′-dinitrostilbene-2,2′-disulfonic acid prevents neuronal death and excitatory amino acid release during glycolysis inhibition in the hippocampus in vivo. Neuroscience 2006; 142:1005-17. [PMID: 16920271 DOI: 10.1016/j.neuroscience.2006.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/29/2006] [Accepted: 07/11/2006] [Indexed: 12/14/2022]
Abstract
Neuronal death associated with cerebral ischemia and hypoglycemia is related to increased release of excitatory amino acids (EAA) and energy failure. The intrahippocampal administration of the glycolysis inhibitor, iodoacetate (IOA), induces the accumulation of EAA and neuronal death. We have investigated by microdialysis the role of exocytosis, glutamate transporters and volume-sensitive organic anion channel (VSOAC) on IOA-induced EAA release. Results show that the early component of EAA release is inhibited by riluzole, a voltage-dependent sodium channel blocker, and by the VSOAC blocker, tamoxifen, while the early and late components are blocked by the glutamate transport inhibitors, L-trans-pyrrolidine 2,4-dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA); and by the VSOAC blocker 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Riluzole, DL-TBOA and tamoxifen did not prevent IOA-induced neuronal death, while PDC and DNDS did. The VSOAC blockers 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) and phloretin had no effect either on EAA efflux or neuronal damage. Results suggest that acute inhibition of glycolytic metabolism promotes the accumulation of EAA by exocytosis, impairment or reverse action of glutamate transporters and activation of a DNDS-sensitive mechanism. The latest is substantially involved in the triggering of neuronal death. To our knowledge, this is the first study to show protection of neuronal death by DNDS in an in vivo model of neuronal damage, associated with deficient energy metabolism and EAA release, two conditions involved in some pathological states such as ischemia and hypoglycemia.
Collapse
Affiliation(s)
- A Camacho
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México AP 70-253, México DF CP 04510, Mexico
| | | | | |
Collapse
|
25
|
Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS JOURNAL 2006; 8:E222-35. [PMID: 16796373 PMCID: PMC3231563 DOI: 10.1007/bf02854892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many cases the clinical outcome of therapy needs to be determined by the drug concentration in the tissue compartment in which the pharmacological effect occurs rather than in the plasma. Microdialysis is an in vivo technique that allows direct measurement of unbound tissue concentrations and permits monitoring of the biochemical and physiological effects of drugs throughout the body. Microdialysis was first used in pharmacodynamic research to study neurotransmission, and this remains its most common application in the field. In this review, we give an overview of the principles, techniques, and applications of microdialysis in pharmacodynamic studies of local physiological events, including measurement of endogenous substances such as acetylcholine, catecholamines, serotonin, amino acids, peptides, glucose, lactate, glycerol, and hormones. Microdialysis coupled with systemic drug administration also permits the more intensive examination of the pharmacotherapeutic effect of drugs on extracellular levels of endogenous substances in peripheral compartments and blood. Selected examples of the physiological effects and mechanisms of action of drugs are also discussed, as are the advantages and limitations of this method. It is concluded that microdialysis is a reliable technique for the measurement of local events, which makes it an attractive tool for local pharmacodynamic research.
Collapse
Affiliation(s)
- Yanjun Li
- />Department of Pharmaceutics, University of Florida, PO Box 100494, College of Pharmacy, 32610 Gainesville, FL
| | - Joanna Peris
- />Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32610 Gainesville, FL
| | - Li Zhong
- />Department of Pediatrics, College of Medicine, University of Florida, 32610 Gainesville, FL
| | - Hartmut Derendorf
- />Department of Pharmaceutics, University of Florida, PO Box 100494, College of Pharmacy, 32610 Gainesville, FL
| |
Collapse
|
26
|
Tetsuka K, Takanaga H, Ohtsuki S, Hosoya KI, Terasaki T. The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J Neurochem 2004; 87:891-901. [PMID: 14622120 DOI: 10.1046/j.1471-4159.2003.02063.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspartic acid (Asp) undergoes l-isomer-selective efflux transport across the blood-brain barrier (BBB). This transport system appears to play an important role in regulating l- and d-Asp levels in the brain. The purpose of this study was to identify the responsible transporters and elucidate the mechanism for l-isomer-selective Asp transport at the BBB. The l-isomer-selective uptake of Asp by conditionally immortalized mouse brain capillary endothelial cells used as an in vitro model of the BBB took place in an Na+- and pH-dependent manner. This process was inhibited by system ASC substrates such as l-alanine and l-serine, suggesting that system ASC transporters, ASCT1 and ASCT2, are involved in the l-isomer selective transport. Indeed, l-Asp uptake by oocytes injected with either ASCT1 or ASCT2 cRNA took place in a similar manner to that in cultured BBB cells, whereas no significant d-Asp uptake occurred. Although both ASCT1 and ASCT2 mRNA were expressed in the cultured BBB cells, the expression of ASCT2 mRNA was 6.7-fold greater than that of ASCT1. Moreover, immunohistochemical analysis suggests that ASCT2 is localized at the abluminal side of the mouse BBB. These results suggest that ASCT2 plays a key role in l-isomer-selective Asp efflux transport at the BBB.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
27
|
Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 2003. [PMID: 14627653 DOI: 10.1523/jneurosci.23-33-10681.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage. Cortical neuron cultures were subjected to glucose deprivation to assess the role of PARP-1 in hypoglycemic neuronal death. PARP-1-/- neurons and wild-type, PARP-1+/+ neurons treated with the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone both showed increased resistance to glucose deprivation. A rat model of insulin-induced hypoglycemia was used to assess the therapeutic potential of PARP inhibitors after hypoglycemia. Rats subjected to severe hypoglycemia (30 min EEG isoelectricity) accumulated both nitrotyrosine and the PARP-1 product, poly(ADP-ribose), in vulnerable neurons. Treatment with PARP inhibitors immediately after hypoglycemia blocked production of poly(ADP-ribose) and reduced neuronal death by >80% in most brain regions examined. Increased neuronal survival was also achieved when PARP inhibitors were administered up to 2 hr after blood glucose correction. Behavioral and histological assessments performed 6 weeks after hypoglycemia confirmed a sustained salutary effect of PARP inhibition. These results suggest that PARP-1 activation is a major factor mediating hypoglycemic neuronal death and that PARP-1 inhibitors can rescue neurons that would otherwise die after severe hypoglycemia.
Collapse
|
28
|
Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Hatano T, Ogawa Y. Inhibitory effect of intrathecal glycine on the micturition reflex in normal and spinal cord injury rats. Exp Neurol 2003; 183:232-40. [PMID: 12957506 DOI: 10.1016/s0014-4886(03)00175-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the influence of lumbosacral glycinergic neurons on the spinobulbospinal and spinal micturition reflexes. Female rats were divided into intact rats, rats with acute injury to the lower thoracic spinal cord (SCI), and rats with chronic SCI. Under urethane anesthesia, isovolumetric cystometry was performed in each group before and after intrathecal (IT) injection of glycine or strychnine into the lumbosacral cord level. The glutamate and glycine levels of the lumbosacral cord were measured after injection of glycine or strychnine in intact and chronic SCI rats. Expression of strychnine-sensitive glycine receptor alpha-1 (GlyR alpha1) mRNA in the lumbosacral cord was also assessed in both rats. In chronic SCI rats, the interval and amplitude of bladder contractions were shorter and smaller when compared with intact rats. IT glycine (0.1-100 microg) prolonged the interval and decreased the amplitude of bladder contractions in both intact rats and chronic SCI rats. IT strychnine (0.01-10 microg) elevated the baseline pressure in intact rats and induced bladder contraction in acute SCI rats. On amino acid analysis, IT glycine (0.01-100 microg) decreased the glutamate level of the lumbosacral cord in intact rats, but not in chronic SCI rats. The glycine level of the lumbosacral cord was 54% lower in chronic SCI rats when compared with intact rats, while the GlyR alpha1 mRNA level did not change after SCI. These results suggest that glycinergic neurons may have an important inhibitory effect on the spinobulbospinal and spinal micturition reflexes at the level of the lumbosacral cord.
Collapse
Affiliation(s)
- Minoru Miyazato
- Department of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Hertz L. Astrocytic amino acid metabolism under control conditions and during oxygen and/or glucose deprivation. Neurochem Res 2003; 28:243-58. [PMID: 12608698 DOI: 10.1023/a:1022377100379] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amino acid contents were measured in 1- and 3-week-old primary cultures of astrocytes and in their incubation media, an amino acid-free salt solution with or without glucose, during 3-h incubation under normoxic or anoxic conditions. Most essential amino acids were rapidly released to the medium during the beginning of the incubation. A subsequent slow medium increase reflected proteolysis. Glutamate and aspartate were absent from the media during all conditions, indicating fueling of their uptake by either glycolytically or oxidatively derived energy. The total content of glutamine increased, except during incubation in glucose-deprived media, when it declined or remained constant. Changes in aspartate were negligible, suggesting oxidative degradation of aspartate-derived oxaloacetate during normoxia and its reduction to succinate during anoxia, driving regeneration of NAD+ from NADH. An increase of alanine was reduced in glucose-free media, whereas serine showed especially large increase during isolated glucose deprivation, suggesting its production from glutamine via 3-phosphoglycerate.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Abstract
Although many of the problems associated with the use of conventional lesion techniques (aspiration, electrolytic, radiofrequency) can be avoided by employing focal injections of excitotoxins, experience gained over the past 12 years has shown that considerable care must be exercised with this newer method, to limit the cell loss to the intended area or structure. Of the toxins that have been used most often to selectively destroy the cells that comprise the hippocampus, ibotenic acid (IBO) and N-methyl-D-aspartate (NMDA) have proved to be nonspecific in their effects on different cell types and these toxins do not cause seizures. In contrast, focal injections of kainate (KA) and quisqualate result in damage that centers primarily in the CA3 pyramidal cell field and hilar cells in the dentate gyrus. In addition, there are obvious seizures and secondary distant damage involving a number of structures and areas associated with mediating seizure activity. Intrahippocampal injections of the toxin colchicine result in a preferential destruction of dentate granule cells but usually also lead to additional cell loss in adjacent areas. Attempts to limit cell loss to specific hippocampal subfields, using different toxins, have met with mixed success. Both the dosage of the agent and the volume injected are important in determining the extent of cell loss, but the volume of the toxin injected has been shown to be especially important in limiting the damage to the intended area. With the development of newer procedures (e.g., immunotoxins, gene knockouts, antisense) that permit more selective cell loss, it should be possible in the future to achieve a level of lesion control that has been lacking in the past. As with the use of excitotoxins, these newer approaches will require special care to limit the damage to the intended area and interpret the results obtained properly.
Collapse
Affiliation(s)
- Leonard E Jarrard
- Department of Psychology, Washington and Lee University, Lexington, Virginia 24450, USA.
| |
Collapse
|
31
|
Abstract
Despite the fact that hypoglycemia is an extremely common disorder of the newborn, consensus has been difficult to reach regarding definition, diagnosis, outcome, and treatment. With improved neuroradiologic techniques, such as MRI and PET scanning becoming increasingly available, studies to determine the correlation between hypoglycemia and outcome will help to clarify issues surrounding the effects of hypoglycemia on brain pathology. Long-term epidemiologic studies correlating the severity and duration of hypoglycemia with neurologic consequences are required, and can be complemented by appropriate parallel investigations in animal models of neonatal hypoglycemia.
Collapse
Affiliation(s)
- Jerome Y Yager
- Department of Pediatrics, Division of Neurosciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 0W8.
| |
Collapse
|
32
|
Zornow MH, Prough DS. Does acute hyperventilation cause cerebral ischemia in severely head-injured patients? Crit Care Med 2002; 30:2774-5. [PMID: 12483073 DOI: 10.1097/00003246-200212000-00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
McGowan JE, Zanelli SA, Haynes-Laing AG, Mishra OP, Delivoria-Papadopoulos M. Modification of glutamate binding sites in newborn brain during hypoglycemia. Brain Res 2002; 927:80-6. [PMID: 11814434 DOI: 10.1016/s0006-8993(01)03333-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have shown that acute insulin-induced hypoglycemia leads to specific changes in the cerebral NMDA receptor-associated ion channel in the newborn piglet. The present study tests the hypothesis that exposure to acute hypoglycemia in the newborn will alter the glutamate binding site of both NMDA and kainate receptors. Studies were performed in 3-6 days-old piglets randomized to control (n=6) or hypoglycemic (n=6) groups. Hypoglycemia was maintained for 120 min using insulin infusion. Saturation binding assays were performed in cerebral cell membranes using (3)H-glutamate or (3)H-kainate to determine the characteristics of the glutamate binding sites of the NMDA and kainate receptors, respectively. The concentration of glucose in cerebral cortex was 10-fold less in hypoglycemic piglets than in controls (P<0.05). Brain ATP was not significantly decreased during hypoglycemia, but phosphocreatine decreased from control of 6.6 +/- 1.3 micromoles/g brain to 3.2 +/- 1.9 micromoles/g brain in hypoglycemic piglets. The B(max) for NMDA-displaceable (3)H-glutamate binding was 992 +/- 64 fmol/mg protein in hypoglycemic animals, significantly higher than the control value of 746 +/- 42 fmol/mg protein. However, the dissociation constant for glutamate was unchanged during hypoglycemia. The (3)H-kainate binding studies demonstrated no change in B(max) of high-affinity kainate receptors during hypoglycemia. In contrast, the affinity of the kainate receptor glutamate binding site significantly increased compared to control. Thus, acute hypoglycemia in the newborn piglet had specific effects on the glutamate binding sites of the NMDA and kainate receptors that could be due to alterations in cell membrane lipids or modification of receptor proteins.
Collapse
Affiliation(s)
- Jane E McGowan
- Department of Pediatrics, St. Christopher's Hospital for Children and MCP Hahnemann University School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
34
|
Smith CP, Somogyi GT, Bird ET, Chancellor MB, Boone TB. Neurogenic bladder model for spinal cord injury: spinal cord microdialysis and chronic urodynamics. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2002; 9:57-64. [PMID: 11852271 DOI: 10.1016/s1385-299x(01)00137-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe an animal model to study neurotransmitter changes in parallel with urodynamic testing following Spinal Cord Injury (SCI). Urodynamic access was achieved using a subcutaneously placed 7 French dual lumen portacatheter. Spinal cord injury was induced by weight drop technique onto exposed dura at T8. The L6-S1 detrusor nuclei were localized stereotactically and microdialysis probe placement was confirmed through histologic methods. Chronic urodynamics revealed detrusor hyperreflexia (DH) 14 days following SCI. In vivo microdialysis of spinal cord amino acids was performed using CMA 11 (240 uM) probes in halothane-anesthetized rats at baseline and intervals of 20-30 min following spinal cord injury. Significant increases in the excitatory amino acid glutamate, and the inhibitory amino acids, glycine and taurine, were seen following spinal cord injury. Amino acid levels peaked at approximately 40 min following contusion injury with glycine demonstrating the highest levels of all amino acids measured. This neurogenic rat model provides a useful means of examining the effects of spinal cord injury on bladder function. By utilizing spinal cord microdialysis, one could intervene at the level of the detrusor nuclei to modulate bladder function.
Collapse
Affiliation(s)
- Christopher P Smith
- Department of Urology, Baylor College of Medicine and the Veterans Affairs Spinal Cord Injury Unit, Houston TX, USA.
| | | | | | | | | |
Collapse
|
35
|
Gill SS, Pulido OM. Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 2001; 29:208-23. [PMID: 11421488 DOI: 10.1080/019262301317052486] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We illustrate the specific cellular distribution of different subtypes of glutamate receptors (GluRs) in peripheral neural and non-neural tissues. Some of the noteworthy locations are the heart, kidney, lungs, ovary, testis and endocrine cells. In these tissues the GluRs may be important in mediating cardiorespiratory, endocrine and reproductive functions which include hormone regulation, heart rhythm, blood pressure, circulation and reproduction. Since excitotoxicity of excitatory amino acids (EAAs) in the CNS is intimately associated with the GluRs, the toxic effects may be more generalized than initially assumed. Currently there is not enough evidence to suggest the reassessment of the regulated safety levels for these products in food since little is known on how these receptors work in each of these organs. More research is required to assess the extent that these receptors participate in normal functions and/or in the development of diseases and how they mediate the toxic effects of EAAs. Non-neural GluRs may be involved in normal cellular functions such as excitability and cell to cell communication. This is supported by the wide distribution in plants and animals from invertebrates to primates. The important tasks for the future will be to clarify the multiple biological roles of the GluRs in neural and non-neural tissues and identify the conditions under in which these are up- or down-regulated. Then this could provide new therapeutic strategies to target GluRs outside the CNS.
Collapse
|
36
|
Santizo RA, Koenig HM, Pelligrino DA. beta-Adrenoceptor and nNOS-derived NO interactions modulate hypoglycemic pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 2001; 280:H562-8. [PMID: 11158952 DOI: 10.1152/ajpheart.2001.280.2.h562] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the relative contributions from nitric oxide (NO) and catecholaminergic pathways in promoting cerebral arteriolar dilation during hypoglycemia (plasma glucose congruent with 1.4 mM). To that end, we monitored the effects of beta-adrenoceptor (beta-AR) blockade with propranolol (Pro, 1.5 mg/kg iv), neuronal nitric oxide synthase (nNOS) inhibition with 7-nitroindazole (7-NI, 40 mg/kg ip) or ARR-17477 (300 microM, via topical application), or combined intravenous Pro + 7-NI or ARR-17477 on pial arteriolar diameter changes in anesthetized rats subjected to insulin-induced hypoglycemia. Additional experiments, employing topically applied TTX (1 microM), addressed the possibility that the pial arteriolar response to hypoglycemia required neuronal transmission. Separately, Pro and 7-NI elicited modest but statistically insignificant 10-20% reductions in the normal ~40% increase in arteriolar diameter accompanying hypoglycemia. However, combined Pro-7-NI was accompanied by a >80% reduction in the hypoglycemia-induced dilation. On the other hand, the combination of intravenous Pro and topical ARR-17477 did not affect the hypoglycemia response. In the presence of TTX, the pial arteriolar response to hypoglycemia was lost completely. These results suggest that 1) beta-ARs and nNOS-derived NO interact in contributing to hypoglycemia-induced pial arteriolar dilation; 2) the interaction does not occur in the vicinity of the arteriole; and 3) the vasodilating signal is transmitted via a neuronal pathway.
Collapse
Affiliation(s)
- R A Santizo
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
37
|
Gundersen V, Fonnum F, Ottersen OP, Storm-Mathisen J. Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study. J Cereb Blood Flow Metab 2001; 21:41-51. [PMID: 11149667 DOI: 10.1097/00004647-200101000-00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postembedding immunocytochemistry was used to localize aspartate, glutamate, gamma-aminobutyric acid (GABA), and glutamine in hippocampus and striatum during normo- and hypoglycemia in rat. In both brain regions, hypoglycemia caused aspartatelike immunoreactivity to increase. In hippocampus, this increase was evident particularly in the terminals of known excitatory afferents-in GABA-ergic neurons and myelinated axons. Aspartate was enriched along with glutamate in nerve terminals forming asymmetric synapses on spines and with GABA in terminals forming symmetric synapses on granule and pyramidal cell bodies. In both types of terminal, aspartate was associated with clusters of synaptic vesicles. Glutamate and glutamine immunolabeling were markedly reduced in all tissue elements in both brain regions, but less in the terminals than in the dendrosomatic compartments of excitatory neurons. In glial cells, glutamine labeling showed only slight attenuation. The level of GABA immunolabeling did not change significantly during hypoglycemia. The results support the view that glutamate and glutamine are used as energy substrates in hypoglycemia. Under these conditions both excitatory and inhibitory terminals are enriched with aspartate, which may be released from these nerve endings and thus contribute to the pattern of neuronal death characteristic of hypoglycemia.
Collapse
Affiliation(s)
- V Gundersen
- Anatomical Institute, University of Oslo, Norway
| | | | | | | |
Collapse
|
38
|
Madl JE, Royer SM. Glutamate dependence of GABA levels in neurons of hypoxic and hypoglycemic rat hippocampal slices. Neuroscience 2000; 96:657-64. [PMID: 10727784 DOI: 10.1016/s0306-4522(99)00548-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia may increase GABA levels in neurons by ATP depletion-induced activation of glutamate decarboxylase and by inhibiting GABA transaminase. Hypoglycemia, which also depletes ATP, reduces neuronal levels of GABA and its precursor glutamate. We examined whether differences in glutamate levels may contribute to these altered GABA levels in hippocampal slices. GABA levels were highly correlated with endogenous glutamate levels during both hypoxia and hypoglycemia (R=0.93 for combined data). Hypoxia maximally increased GABA levels (146+/-6.3% of control, S.E.M.) when glutamate remained above 90% of control levels and ATP was at 30% of control levels. Hypoglycemia with similar ATP levels and glutamate levels at 40% of control decreased GABA levels to 55% of control. Effects of inhibitors of glutamate decarboxylase and GABA transaminase suggested that increased synthesis and decreased catabolism may both contribute to increased hypoxic GABA levels. Immunocytochemical studies suggested that hypoxia increased GABA concentrations primarily in neurons and their processes, but not in glial cells. Severe hypoxic ATP depletion increased the release of both GABA and glutamate. Hypoxia increased GABA levels in neurons, while hypoglycemia with a similar severity of ATP depletion decreased GABA levels. Much of the difference may be related to lower levels of precursor glutamate during hypoglycemia. The twofold higher levels of neuroprotective GABA available for release during hypoxia may contribute to differences in the pathophysiology of these metabolic insults.
Collapse
Affiliation(s)
- J E Madl
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
39
|
Yang Y, Li Q, Shuaib A. Enhanced neuroprotection and reduced hemorrhagic incidence in focal cerebral ischemia of rat by low dose combination therapy of urokinase and topiramate. Neuropharmacology 2000; 39:881-8. [PMID: 10699454 DOI: 10.1016/s0028-3908(99)00248-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thrombolysis is increasingly being used in treating acute ischemic stroke but it is also accompanied with a serious complication of cerebral hemorrhage in a dose-dependent fashion. As a lower dose may result in decreased effectiveness, we tested the efficacy of combining a neuroprotective agent, topiramate (TPM), with lower doses of intra-arterial urokinase in an embolic stroke model. Focal ischemia was produced by introduction of an autogenous thrombus into the right middle cerebral artery. Urokinase was infused via the ipsilateral internal carotid artery and neuroprotective agent, TPM, was administrated intra-peritoneally 2 h following ischemic insult. The animals were assigned to five groups: (1) control group (n=6); (2) urokinase 5000 units/kg (n=8); (3) urokinase at 2500 units/kg (n=8); (4) topiramate at 20 mg/kg (n=8); (5) urokinase at 2500 units/kg and topiramate at 20 mg/kg (n=8). Neurobehavioral outcome and the degree of brain infarct volume were assessed at 24 h. Three animals in the group treated by high dose urokinase developed intracranial hemorrhage but none in other groups. Animals in all medication-groups showed significant improvement in neurobehavioral score. Post-ischemia treatment with urokinase or TPM alone significantly attenuated brain infarct volume (low-dose urokinase, 39.1+/-13.0%, p<0.05; high-dose, 18.4+/-8.5%, p<0.001; TPM, 20. 1+/-11.2%, p<0.001) when compared to the control (54.2+/-9.04%). Addition of TPM to low dose urokinase achieved better neuroprotection (8.2+/-6.0%) than any single-drug-treated groups. Our data suggests that combination of low dose urokinase with a neuroprotective agent may benefit ischemic stroke treatment by improving neurologic recovery, attenuating infarction size, and reducing the risk of cerebral hemorrhage.
Collapse
Affiliation(s)
- Y Yang
- The Stroke Research Unit, Department of Medicine (Neurology), Rm. 530, HMRC, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
40
|
Madl JE, Royer SM. Glutamate in synaptic terminals is reduced by lack of glucose but not hypoxia in rat hippocampal slices. Neuroscience 1999; 94:417-30. [PMID: 10579205 DOI: 10.1016/s0306-4522(99)00340-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although excessive release of the neurotransmitter glutamate contributes to ischemic neuronal damage, immunocytochemical studies have not found a loss of glutamate from ischemic axon terminals. We examined the effects of two components of ischemia, hypoxia and hypoglycemia, on glutamate loss from rat hippocampal slices. In vitro hypoglycemia induced by incubation for 1 h without glucose depleted 50% of glutamate from slices when ATP levels were about 5 nmol/mg protein. Hypoxic slices aerated with N2 reached similar ATP levels without significant glutamate depletion. To induce 50% glutamate losses with chemical hypoxia, ATP had to be depleted to < 1 nmol/mg protein. Immunocytochemical staining indicated that glutamate-like immunoreactivity was reduced throughout slices by hypoglycemia. Hypoxia decreased glutamate-like immunoreactivity in neuronal perikarya and dendrites of pyramidal cells and granule cells. However, in contrast to hypoglycemia, hypoxia maintained or increased glutamate-like immunoreactivity in many terminals. Hypoxia and hypoglycemia induced similar, ATP-dependent releases of glutamate into supernatants, which could account for only part of the hypoglycemic losses. The additional hypoglycemic losses were consistent with increased catabolism of glutamate. Glutamate losses from hypoglycemic terminals were reduced by blockade of aspartate aminotransferase or the tricarboxylic acid cycle. Exogenous glutamate increased glutamate in hypoglycemic slices to hypoxic levels and returned glutamate-like immunoreactivity to terminals, suggesting that terminals maintained glutamate uptake during metabolic insults. Hypoglycemia induces a large loss of glutamate that does not occur during hypoxia. The greater loss of glutamate from terminals during hypoglycemia is consistent with increased metabolism of glutamate via aspartate aminotransferase and not increased release of glutamate. Continued uptake of glutamate by hypoxic terminals may help to maintain their levels of glutamate. Hypoglycemic metabolism of glutamate may decrease pathologic glutamate release and contribute to the prolonged neurologic abnormalities associated with recovery from hypoglycemia.
Collapse
Affiliation(s)
- J E Madl
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA.
| | | |
Collapse
|
41
|
Wolf ME, Xue CJ. Amphetamine-induced glutamate efflux in the rat ventral tegmental area is prevented by MK-801, SCH 23390, and ibotenic acid lesions of the prefrontal cortex. J Neurochem 1999; 73:1529-38. [PMID: 10501198 DOI: 10.1046/j.1471-4159.1999.0731529.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We showed previously that amphetamine challenge produces a delayed increase in glutamate efflux in the ventral tegmental area of both naive and chronic amphetamine-treated rats. The present study examined the mechanisms underlying this response. The NMDA receptor antagonist MK-801 (0.1 mg/kg, i.p.) or the D1 dopamine receptor antagonist SCH 23390 (0.1 mg/kg, i.p.), given 30 min before acute amphetamine (5 mg/kg, i.p.), prevented amphetamine-induced glutamate efflux. Neither antagonist by itself altered glutamate efflux. Ibotenic acid lesions of the prefrontal cortex similarly prevented amphetamine-induced glutamate efflux, while producing a trend toward decreased basal glutamate levels (82.8% of sham group). Previous work has shown that the doses of NMDA and D1 receptor antagonists used in this study prevent the induction of behavioral sensitization when coadministered repeatedly with amphetamine, and that identical prefrontal cortex lesions performed before repeated amphetamine prevent the induction of ambulatory sensitization. Thus, treatments that prevent acute amphetamine from elevating glutamate efflux in the ventral tegmental area also prevent repeated amphetamine from eliciting behavioral sensitization. These findings suggest that repeated elevation of glutamate levels during a chronic amphetamine regimen may contribute to the cascade of neuroadaptations within the ventral tegmental area that enables the induction of sensitization.
Collapse
Affiliation(s)
- M E Wolf
- Department of Neuroscience, FUHS/The Chicago Medical School, North Chicago, Illinois 60064-3095, USA
| | | |
Collapse
|
42
|
Yang Y, Shuaib A, Li Q, Siddiqui MM. Neuroprotection by delayed administration of topiramate in a rat model of middle cerebral artery embolization. Brain Res 1998; 804:169-76. [PMID: 9757028 DOI: 10.1016/s0006-8993(98)00410-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because topiramate (TPM) suppresses voltage-sensitive Na+ channels and non-N-methyl-D-aspartate (NMDA) receptors and enhances gamma-aminobutyric acid (GABA)-mediated inhibition, we tested whether it would protect against cerebral ischemia. The right middle cerebral artery (MCA) was embolized by an intra-arterial injection of autogenous thrombus. Two hours after thrombus injection, animals received intra-peritoneal injections (i.p.) of normal saline as control (n=6) or alternatively, a low- (20 mg/kg, i.p., n=6) or high-dose (40 mg/kg, i.p., n=6) of TPM. Neurological deficit was scored at 2 h and 24 h following the ischemic insult. The animals were sacrificed 24 h after ischemia and the coronal brain sections were stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC) for determination of the percentage of infarct volume. Administration of TPM significantly improved the 24-h neurological deficit scores (low dose, 1.75+/-0.5; high dose, 1.17+/-0.41; p<0.05 for both doses). A reduction in the percentage of infarct volume (low dose, 22.9+/-8.9%, p=0.002; high dose 7.6+/-3.4%, p<0.001) was seen when compared to the controls (infarct size, 54.2+/-9.0%; neurobehavior score, 2. 67+/-0.52). Treatment with TPM at the higher dose induced more neuroprotection than that at the lower dose (p<0.05). Thus, treatment with TPM resulted in a dose- and use-dependent neuroprotective effect, when used 2 h after MCA embolization in a rat model of focal ischemia.
Collapse
Affiliation(s)
- Y Yang
- Neurology Division, Department of Medicine, University of Alberta Hospital, 2E3.13 Walter Mackenzie Health Sciences Center, Edmonton, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
The effect of energetic metabolism compromise, obtained by chemical induction of hypoglycaemia (glucose deprivation), hypoxia (mitochondrial respiratory chain inhibition), and ischaemia (hypoglycaemia plus hypoxia), on glutamate toxicity was analyzed on PC12 cells. The respiratory status of these cells, measured by the MTT [3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide] assay, was significantly decreased after metabolic inhibition induced by ischaemia, but it was not affected by both hypoglycaemia and hypoxia. Under hypoglycaemia, but not under hypoxia, ATP levels were significantly reduced (from 12.67+/-0.48 to 5.38+/-1.41 nmol/mg protein). However, ischaemic-like conditions greatly potentiated the decline of ATP levels (95% decrease) observed after hypoglycaemia. The influence of metabolic inhibition on glutamate-induced cytotoxicity was also analyzed. When the cells were preincubated under conditions that deplete ATP (hypoglycaemia and ischaemia), the inhibition of MTT reduction, measured after glutamate incubation, was potentiated. This effect could be reverted when vitamin E and idebenone were present during the induction of metabolic inhibition. The ATP levels above which glutamate susceptibility was enhanced were also determined. These results indicate that glutamate toxicity on PC12 cells, which occurs by a mechanism independent of N-methyl-D-aspartate (NMDA) receptor activation, can be enhanced by the depletion of intracellular ATP upon metabolic stress; it is dependent on the extent of ATP depletion and seems to involve the generation of free radicals. It can be concluded that under ischaemic conditions, the deleterious effects of glutamate can be potentiated by the energetic compromise associated with this pathologic situation.
Collapse
Affiliation(s)
- C Pereira
- Center for Neuroscience of Coimbra, Faculty of Medicine, University of Coimbra, Portugal
| | | | | |
Collapse
|
44
|
Abstract
Astrocytes in primary culture possess a rapid L-aspartate saturable transport system (K(m) = 93 microM; V(max) = 81 nmol/min/mg protein), which shows certain stereospecificity since V(max) was 36% lower for D-aspartate uptake. These are values obtained at short incubation time (15 seconds), to obtain approximate initial rate conditions. Metabolic energy inhibitors, rotenone and iodoacetate very potently inhibited the L- and D-aspartate uptake processes, indicating that the transport process is an active one. However, the accumulation of L-aspartate was "enhanced" by inhibitors of L-aspartate metabolism, such as the aspartate aminotransferase inhibitor, aminooxyacetate and L-methionine sulfoximine, an inhibitor of glutamine synthetase, whereas D-aspartate (a non-metabolizable analog of L-aspartate) uptake was not affected. The accumulated levels of L-aspartate in the presence of aminooxyacetate were similar to the levels of D-aspartate. These effects of L-aspartate metabolic inhibitors, suggest that due to metabolism of the the L-aspartate, short incubation time (eg., 15 seconds) is necessary to measure the initial rate of L-aspartate uptake, in order to obtain the "true" kinetic parameters.
Collapse
Affiliation(s)
- A S Bender
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
45
|
Calò G, Sbrenna S, Bianchi C, Beani L. Immediate and delayed effects of in vitro ischemia on glutamate efflux from guinea-pig cerebral cortex slices. Brain Res 1997; 751:300-6. [PMID: 9099819 DOI: 10.1016/s0006-8993(96)01425-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immediate and delayed effects of glucose deprivation, oxygen deprivation (hypoxia) and both oxygen and glucose deprivation (in vitro ischemia) on glutamate efflux from guinea pig cerebral cortex slices were studied. Immediate effects were evaluated by measuring changes of glutamate efflux during the metabolic insults. Delayed effects were evaluated by measuring the response of the tissue to a 50 mM KCI pulse applied 60 min after the metabolic insults. Deprivation of glucose in the medium did not induce either immediate or delayed effects, while hypoxic condition produced an immediate slight stimulation of glutamate efflux without any delayed effect. Conversely, in vitro ischemia produced both immediate and delayed effects on glutamate efflux. During in vitro ischemia glutamate efflux dramatically increased in a calcium-independent and tetrodotoxin-sensitive manner; this effect was potentiated by a low sodium containing medium. The blockade of the sodium/potassium ATPase exchanger by ouabain caused a glutamate outflow similar to that induced by in vitro ischemia. On the whole, these data demonstrate the central role played by the sodium electrochemical gradient and by the membrane glutamate uptake system in the glutamate overflow induced by in vitro ischemia. Moreover, in slices previously exposed to both oxygen and glucose deprivation the effect of KCI on glutamate efflux was potentiated. This in vitro ischemia-induced delayed potentiation of neurotransmitter efflux, until now unreported in the literature, was found to be selectively restricted to glutamatergic structures and to be mainly due to an enhancement of the exocytotic component of glutamate release.
Collapse
Affiliation(s)
- G Calò
- Institute of Pharmacology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
46
|
Mertens-Strijthagen J, Lacremans-Pirsoul J, Baudoux G. Recovery potential in glucose deprived astrocytes. Neurosci Res 1996; 26:133-9. [PMID: 8953575 DOI: 10.1016/s0168-0102(96)01081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
D-glucose deprivation for a 45 min period reduces the ATP and creatine phosphate concentrations of astrocytes. Recovery experiments were initiated by reincubating the cells with D-glucose and glucose replacement metabolites. No recovery of ATP concentration could be obtained even after 1 h of reincubation with the replacement metabolites. After a 45 min incubation period without D-glucose, 14CO2 production fell to 36% and 21% of controls when the cells were reincubated respectively with D-[U-14C]-glucose and L-[2-14C]-pyruvate as substrate marker. When reincubated for 1 h in the presence of L-malate (1 mM)+L-pyruvate (10 mM) with L-[2-14C]-pyruvate as marker, a total recovery of 14CO2 production was ascertained. Reincubation of the glucose deprived cells in the presence of D-glucose (10 mM) did not increase the 14CO2 production indicating that the cells were unable to use D-glucose for oxidative purposes. As pyruvate concentration was dramatically decreased in glucose deprived cells, astrocytes were treated with alpha-ketovalerate (25 mM) which led to an 8-fold increase in pyruvate concentration. In these conditions 14CO2 production did not increase when the cells were incubated in the presence of L-malate (1 mM). O2 consumption of State 4 in astrocytes, submitted to glucose deprivation, decreased. These cells treated with FCCP could not be uncoupled and when reincubated in the presence of replacement metabolites only a 20% increase of oxygen consumption took place.
Collapse
Affiliation(s)
- J Mertens-Strijthagen
- Laboratory of Pharmacology and Physiology, Faculty of Medicine, Facultés Universitaires, Namur, Belgium
| | | | | |
Collapse
|
47
|
Milusheva EA, Dóda M, Baranyi M, Vizi ES. Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [Ca2+]o-dependent and independent release of [3H]dopamine in rat striatal slices. Neurochem Int 1996; 28:501-7. [PMID: 8792331 DOI: 10.1016/0197-0186(95)00129-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Release of [3H]dopamine ([3H]DA) from rat striatal slices kept under hypoxic or/and glucose-free conditions was measured using a microvolume perfusion method. The corresponding changes in nucleotide content were determined by reverse-phase high-performance liquid chromatography (RPHPLC). The resting release of [3H]DA was not affected by hypoxia, but under glucose-free conditions massive [Ca2+]o-independent release of [3H]DA was observed. Hypoxia reduced the energy charge (E.C.) and the total purine content from 19.36 +/- 4.15 to 6.98 +/- 1.83 nmol/mg protein. Glucose deprivation by itself, or in combination with hypoxia, markedly reduced the levels of adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The E.C under glucose-free conditions was significantly reduced from 0.73 +/- 0.04 to 0.44 +/- 0.20. When the tissue was exposed to hypoxic and glucose-free conditions for 18 min the level of ATP was reduced to 3.15 +/- 0.11 nmol/mg protein. However, when the exposure time was 30 min the ATP level was further reduced to 1.11 +/- 0.37 nmol/mg protein. The resting release was enhanced in a [Ca2+]o-independent manner, but there was no release in response to stimulation, and tetrodotoxin did not affect the enhanced resting release, indicating that the release was not associated with axonal activity. Similarly, 50 microM ouabain, inhibitor of Na+/K(+)-activated ATPase, enhanced the release of [3H]DA at rest in a [Ca2+]o-independent manner. It seems very likely that the reduced ATP level under glucose-free conditions leads to an inhibition of the activity of Na+/K(+)-ATPase that results in reversal of the uptake processes and in [Ca2+]o-independent [3H]DA release from the axon terminals.
Collapse
Affiliation(s)
- E A Milusheva
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
48
|
Herz RC, Gaillard PJ, de Wildt DJ, Versteeg DH. Differences in striatal extracellular amino acid concentrations between Wistar and Fischer 344 rats after middle cerebral artery occlusion. Brain Res 1996; 715:163-71. [PMID: 8739635 DOI: 10.1016/0006-8993(95)01572-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We hypothesized that the interstrain difference between Wistar and Fischer-344 (F344) rats in cerebral infarction volume after proximal middle cerebral artery (MCA) occlusion might be explained by differences in excitotoxicity between both rat strains. Using microdialysis we measured during a 5 h period after MCA occlusion the release of aspartate, glutamate and taurine in the cerebral cortex and the striatum. The volume of striatal infarction was comparable in Wistar and F344 rats. We found, however, in Wistar rats a significantly higher striatal efflux of aspartate and glutamate than in F344 rats, whereas the striatal taurine efflux was of a similar magnitude in the two strains. Because of the (variably) smaller volume of cortical infarction in Wistar rats (than that in F344), the location of the microdialysis probe-membrane with respect to the area of cortical infarction differed between Wistar rats. Hence, a reliable comparison between the quantitative amount of amino acids in the dialysate from the cortical probes of both rat strains could not be made. These results, demonstrating differences in striatal excitotoxicity between Wistar and F344 rats after MCA occlusion, are the first to show interstrain differences in striatal pathophysiology of focal ischemia between these normotensive rat strains. They do however not explain why MCA occlusion results in a significantly different volume of cortical infarction between Wistar and F344 rats. The F344 strain will probably show in a more sensitive way, as compared to Wistar rats, neuroprotective effects of agents that diminish excitotoxic damage during focal cerebral ischemia.
Collapse
Affiliation(s)
- R C Herz
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
49
|
Madl JE, Allen DL. Hyperthermia depletes adenosine triphosphate and decreases glutamate uptake in rat hippocampal slices. Neuroscience 1995; 69:395-405. [PMID: 8552237 DOI: 10.1016/0306-4522(95)00247-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The central nervous system is especially vulnerable to hyperthermia-induced dysfunction, yet the mechanism for this susceptibility is poorly understood. High levels of adenosine triphosphate are necessary to maintain normal re-uptake of glutamate and aspartate, the major excitatory amino acids, by excitatory amino acid co-transporters. We hypothesized that excitotoxic neurotransmitters accumulate extracellularly when hyperthermia depletes adenosine triphosphate, leading to decreased uptake or release of excitatory amino acids by these co-transporters. Incubation of hippocampal slices at 42 degrees C, a temperature that results in coma in vivo, reduced adenosine triphosphate to 70% of control values and decreased uptake of the transportable excitatory amino acid analogue, D,L threo-beta-hydroxyaspartate, to 50% of control values. The degree of adenosine triphosphate depletion induced by hyperthermia was highly correlated with decreases in excitatory amino acid uptake. Severe adenosine triphosphate depletion (< or = 20% of control) induced by hyperthermia in combination with metabolic insults was highly correlated with the release of endogenous glutamate and aspartate. Preloading slices with excitatory amino acid analogues potentiated hyperthermia-induced alterations of excitatory amino acid transport, strongly suggesting that the hyperthermia-induced changes were largely due to altered excitatory amino acid co-transporter activity. Immunocytochemical studies suggested glutamate-like immunoreactivity was lost from axonal terminals during hyperthermia in a similar manner to losses induced by metabolic toxins. Hyperthermia due to infectious diseases or heat stroke my induce disorientation and coma. These dysfunctions may be due, in part, to altered excitatory amino acid transport induced by adenosine triphosphate depletion.
Collapse
Affiliation(s)
- J E Madl
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
50
|
Wu G, Kim HK, Zornow MH. Transient brain ischemia in rabbits: the effect of omega-conopeptide MVIIC on hippocampal excitatory amino acids. Brain Res 1995; 692:118-22. [PMID: 8548294 DOI: 10.1016/0006-8993(95)00661-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurologic injury that occurs after ischemia results from a cascade of events involving the release of various endogenous neurotoxins. A portion of the release of excitatory neurotransmitters is calcium dependent and may be attenuated by administration of calcium channel blockers. Using an in vivo model of ischemia, we studied the effects of omega-conopeptide MVIIC, a voltage-sensitive calcium channel blocker, and hypothermia (32 degrees C) on hippocampal glutamate and aspartate release in the peri-ischemic period. Thirty-four New Zealand white rabbits of either sex were anesthetized with halothane, intubated, and mechanically ventilated. Monitored variables included blood gases, mean arterial blood pressure, and the electroencephalogram. Microdialysis catheters were transversely inserted through the anterior portion of the dorsal hippocampus and perfused with artificial cerebrospinal fluid at a rate of 2 microliters/min. After stabilization period, animals were randomly assigned to one of the following groups: Control group (n = 8), 10 microM omega-conopeptide MVIIC group (n = 7), 100 microM omega-conopeptide MVIIC group (n = 7), Hypothermia group (n = 6; cranial temperature = 32 degrees C), and omega-conopeptide MVIIC + hypothermia group (n = 6; 100 microM omega-conopeptide MVIIC and cranial temperature 32 degrees C). All the rabbits were subjected to 10 minutes of global cerebral ischemia produced by neck tourniquet inflation combined with hypotension during halothane anesthesia. Conopeptide MVIIC was administered in the artificial cerebrospinal fluid used to perfuse the microdialysis catheter. In control animals, ischemia caused a significant increase in glutamate (9.7 fold) and aspartate (11.3 fold) concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Wu
- Department of Anesthesiology, University of Texas Medical Branch, Galveston 77555-0830, USA
| | | | | |
Collapse
|