1
|
Parker CA, Nutt DJ, Tyacke RJ. Imidazoline-I2 PET Tracers in Neuroimaging. Int J Mol Sci 2023; 24:9787. [PMID: 37372936 DOI: 10.3390/ijms24129787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Targeting neuroinflammation, and in particular, microglial activation and astrocytosis, is a current area of the focus of new treatment interventions for a number of neurodegenerative disorders. Probing the roles of microglia and astrocytes in human disease requires the development of useful tools, such as PET imaging tools that are specific for the cell type(s) of interest. This review concentrates on the recent advances in the development of Imidazoline2 binding site (I2BS) PET tracers, which are purported to target astrocytes, and hence could represent key clinical imaging tools for targeting astrocytes in neurodegenerative disease. Five PET tracers for the I2BS are described in this review, with only one (11C-BU99008) being currently validated to GMP for clinical use, and data reported from healthy volunteers, Alzheimer's disease patients, and Parkinson's disease patients. The clinical data utilising 11C-BU99008 have revealed the potential early involvement of astrogliosis in neurodegeneration that might precede the activation of microglia, which, if confirmed, could provide a vital new means for potentially targeting neurodegeneration earlier in the disease course.
Collapse
Affiliation(s)
- Christine A Parker
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Robin J Tyacke
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Laurencin C, Lancelot S, Merida I, Costes N, Redouté J, Le Bars D, Boulinguez P, Ballanger B. Distribution of α 2-Adrenergic Receptors in the Living Human Brain Using [ 11C]yohimbine PET. Biomolecules 2023; 13:biom13050843. [PMID: 37238713 DOI: 10.3390/biom13050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The neurofunctional basis of the noradrenergic (NA) system and its associated disorders is still very incomplete because in vivo imaging tools in humans have been missing up to now. Here, for the first time, we use [11C]yohimbine in a large sample of subjects (46 healthy volunteers, 23 females, 23 males; aged 20-50) to perform direct quantification of regional alpha 2 adrenergic receptors' (α2-ARs) availability in the living human brain. The global map shows the highest [11C]yohimbine binding in the hippocampus, the occipital lobe, the cingulate gyrus, and the frontal lobe. Moderate binding was found in the parietal lobe, thalamus, parahippocampus, insula, and temporal lobe. Low levels of binding were found in the basal ganglia, the amygdala, the cerebellum, and the raphe nucleus. Parcellation of the brain into anatomical subregions revealed important variations in [11C]yohimbine binding within most structures. Strong heterogeneity was found in the occipital lobe, the frontal lobe, and the basal ganglia, with substantial gender effects. Mapping the distribution of α2-ARs in the living human brain may prove useful not only for understanding the role of the NA system in many brain functions, but also for understanding neurodegenerative diseases in which altered NA transmission with specific loss of α2-ARs is suspected.
Collapse
Affiliation(s)
- Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Sophie Lancelot
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CERMEP-Imagerie du Vivant, 69500 Bron, France
- Hospices Civils de Lyon, 69677 Bron, France
| | - Inès Merida
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | | | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, 69500 Bron, France
- Hospices Civils de Lyon, 69677 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| |
Collapse
|
3
|
Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 2022; 16:807435. [PMID: 35210989 PMCID: PMC8862631 DOI: 10.3389/fnins.2022.807435] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as β-amyloid (Aβ) plaques and tau tangles in Alzheimer’s disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aβ plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aβ and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Ryuichi Harada,
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development and Aging, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Nobuyuki Okamura,
| |
Collapse
|
4
|
Relationship between astrocyte reactivity, using novel 11C-BU99008 PET, and glucose metabolism, grey matter volume and amyloid load in cognitively impaired individuals. Mol Psychiatry 2022; 27:2019-2029. [PMID: 35125495 PMCID: PMC9126819 DOI: 10.1038/s41380-021-01429-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer 11C-BU99008, 18F-FDG and 18F-florbetaben PET, and T1-weighted MRI. Differences between cognitively impaired patients and healthy controls in regional and voxel-wise levels of astrocyte reactivity, glucose metabolism, grey matter volume and amyloid load were explored, and their relationship to each other was assessed using Biological Parametric Mapping (BPM). Amyloid beta (Aβ)-positive patients showed greater 11C-BU99008 uptake compared to controls, except in the temporal lobe, whilst further increased 11C-BU99008 uptake was observed in Mild Cognitive Impairment subjects compared to those with Alzheimer's disease in the frontal, temporal and cingulate cortices. BPM correlations revealed that regions which showed reduced 11C-BU99008 uptake in Aβ-positive patients compared to controls, such as the temporal lobe, also showed reduced 18F-FDG uptake and grey matter volume, although the correlations with 18F-FDG uptake were not replicated in the ROI analysis. BPM analysis also revealed a regionally-dynamic relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas of the temporal lobe and cingulate cortices was associated with reduced 11C-BU99008 uptake, whilst increased amyloid uptake in primary motor and sensory areas (in which amyloid deposition occurs later) was associated with increased 11C-BU99008 uptake. These novel observations add to the hypothesis that while astrocyte reactivity may be triggered by early Aβ-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy and glucose hypometabolism, although the evidence for glucose hypometabolism here is less strong.
Collapse
|
5
|
Calsolaro V, Matthews PM, Donat CK, Livingston NR, Femminella GD, Guedes SS, Myers J, Fan Z, Tyacke RJ, Venkataraman AV, Perneczky R, Gunn R, Rabiner EA, Gentleman S, Parker CA, Murphy PS, Wren PB, Hinz R, Sastre M, Nutt DJ, Edison P. Astrocyte reactivity with late-onset cognitive impairment assessed in vivo using 11C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry 2021; 26:5848-5855. [PMID: 34267329 PMCID: PMC8758500 DOI: 10.1038/s41380-021-01193-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
11C-BU99008 is a novel positron emission tomography (PET) tracer that enables selective imaging of astrocyte reactivity in vivo. To explore astrocyte reactivity associated with Alzheimer's disease, 11 older, cognitively impaired (CI) subjects and 9 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging (MRI), 18F-florbetaben and 11C-BU99008 PET. The 8 amyloid (Aβ)-positive CI subjects had higher 11C-BU99008 uptake relative to HC across the whole brain, but particularly in frontal, temporal, medial temporal and occipital lobes. Biological parametric mapping demonstrated a positive voxel-wise neuroanatomical correlation between 11C-BU99008 and 18F-florbetaben. Autoradiography using 3H-BU99008 with post-mortem Alzheimer's brains confirmed through visual assessment that increased 3H-BU99008 binding localised with the astrocyte protein glial fibrillary acid protein and was not displaced by PiB or florbetaben. This proof-of-concept study provides direct evidence that 11C-BU99008 can measure in vivo astrocyte reactivity in people with late-life cognitive impairment and Alzheimer's disease. Our results confirm that increased astrocyte reactivity is found particularly in cortical regions with high Aβ load. Future studies now can explore how clinical expression of disease varies with astrocyte reactivity.
Collapse
Affiliation(s)
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Blast Injury Studies, Imperial College London, London, UK
| | | | | | | | - Jim Myers
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zhen Fan
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robin J Tyacke
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Disorders (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Roger Gunn
- Department of Brain Sciences, Imperial College London, London, UK
- Invicro, London, UK
| | | | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Christine A Parker
- Department of Brain Sciences, Imperial College London, London, UK
- GlaxoSmithKline, Stevenage, UK
| | | | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK.
- Cardiff University, Cardiff, Wales, United Kingdom.
| |
Collapse
|
6
|
Mirzaei N, Mota BC, Birch AM, Davis N, Romero-Molina C, Katsouri L, Palmer EOC, Golbano A, Riggall LJ, Nagy I, Tyacke R, Nutt DJ, Sastre M. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer's disease. Br J Pharmacol 2020; 178:654-671. [PMID: 33140839 DOI: 10.1111/bph.15312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-β (Aβ)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Amy M Birch
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carmen Romero-Molina
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Loukia Katsouri
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Arantxa Golbano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura J Riggall
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Istvan Nagy
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Robin Tyacke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
7
|
van der Laan JW, van Malderen K, de Jager N, Duarte D, Egger GF, Lavergne F, Roque CG, Vieira I, Wiesner L, Carleer J. Evaluation of Juvenile Animal Studies for Pediatric CNS-Targeted Compounds: A Regulatory Perspective. Int J Toxicol 2019; 38:456-475. [PMID: 31662008 DOI: 10.1177/1091581819883569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS)-targeted products are an important category of pediatric pharmaceuticals. In view of the significant postnatal maturation of the CNS, juvenile animal studies (JAS) are performed to support pediatric development of these new medicines. In this project, the design and results of juvenile toxicity studies from 15 drug compounds for the treatment of neurologic or psychiatric conditions were analyzed. Studies were conducted mostly in rats; sometimes in addition in dogs and monkeys. The study design of the pivotal JAS was variable, even for compounds with a similar therapeutic indication. Age of the juvenile animals was not consistently related to the starting age of the intended patient population. Of 15 compounds analyzed, 6 JAS detected more severe toxicities and 6 JAS evidenced novel CNS effects compared to their adult counterparts. The effects of CNS on acoustic startle and learning and memory were observed at high dosages. Reversibility was tested in most cases and revealed some small effects that were retained or only uncovered after termination of treatment. The interpretation of the relevance of these findings was often hampered by the lack of matching end points in the adult studies or inappropriate study designs. Detailed clinical observation and motor activity measures were the most powerful end points to detect juvenile CNS effects. The need for more detailed behavioral examinations in JAS, for example, on learning and memory, should, therefore, be decided upon on a case-by-case basis, based on specific concerns in order to avoid overloading the studies.
Collapse
Affiliation(s)
- Jan Willem van der Laan
- Section on Pharmacological, Toxicological, and Kinetic Assessment, Medical Evaluation Board (MEB), Utrecht, the Netherlands.,Division of Toxicology, Leiden Academic Center for Drug Research, Leiden, the Netherlands.,Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands
| | - Karen van Malderen
- Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands.,Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium.,Alternate members of the Pediatric Committee (PDCO-EMA), Belgium
| | - Nico de Jager
- Section on Pharmacological, Toxicological, and Kinetic Assessment, Medical Evaluation Board (MEB), Utrecht, the Netherlands.,Division of Toxicology, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Dinah Duarte
- Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands.,INFARMED-National Authority of Medicines and Health Products, Lisbon, Portugal
| | | | - Fabien Lavergne
- Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands.,Agence Nationale de Sécurité du Médicament et des produits de santé, Saint-Denis, France
| | | | - Isabel Vieira
- Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands.,INFARMED-National Authority of Medicines and Health Products, Lisbon, Portugal
| | - Lutz Wiesner
- Members of the Non-Clinical Working Group of the PDCO (EMA) Amsterdam, the Netherlands.,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Jacqueline Carleer
- Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium.,Alternate members of the Pediatric Committee (PDCO-EMA), Belgium.,Retired de Jager is now with Hospital Pharmacy-Clinical Pharmacology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands. Roque is now with The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, Gunn RN, Rabiner EA, Nutt D, Politis M. Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: an in vivo11C-BU99008 PET study. Brain 2019; 142:3116-3128. [PMID: 31504212 DOI: 10.1093/brain/awz260] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Astroglia are multifunctional cells that regulate neuroinflammation and maintain homeostasis within the brain. Astroglial α-synuclein-positive cytoplasmic accumulations have been shown post-mortem in patients with Parkinson's disease and therefore astroglia may play an important role in the initiation and progression of Parkinson's disease. Imidazoline 2 binding sites are expressed on activated astroglia in the cortex, hippocampus, basal ganglia and brainstem; therefore, by measuring imidazoline 2 binding site levels we can indirectly evaluate astrogliosis in patients with Parkinson's disease. Here, we aimed to evaluate the role of astroglia activation in vivo in patients with Parkinson's disease using 11C-BU99008 PET, a novel radioligand with high specificity and selectivity for imidazoline 2 binding sites. Twenty-two patients with Parkinson's disease and 14 healthy control subjects underwent 3 T MRI and a 120-min 11C-BU99008 PET scan with volume of distribution (VT) estimated using a two-tissue compartmental model with a metabolite corrected arterial plasma input function. Parkinson's disease patients were stratified into early (n = 8) and moderate/advanced (n = 14) groups according to disease stage. In early Parkinson's disease, increased 11C-BU99008 VT uptake was observed in frontal (P = 0.022), temporal (P = 0.02), parietal (P = 0.026) and occipital (P = 0.047) cortical regions compared with healthy controls. The greatest 11C-BU99008 VT increase in patients with early Parkinson's disease was observed in the brainstem (52%; P = 0.018). In patients with moderate/advanced Parkinson's disease, loss of 11C-BU99008 VT was observed across frontal (P = 0.002), temporal (P < 0.001), parietal (P = 0.039), occipital (P = 0.024), and insula (P < 0.001) cortices; and in the subcortical regions of caudate (P < 0.001), putamen (P < 0.001) and thalamus (P < 0.001); and in the brainstem (P = 0.018) compared with healthy controls. In patients with Parkinson's disease, loss of 11C-BU99008 VT in cortical regions, striatum, thalamus and brainstem correlated with longer disease duration (P < 0.05) and higher disease burden scores, measured with Movement Disorder Society Unified Parkinson's Disease Rating Scale (P < 0.05). In the subgroup of patients with moderate/advanced Parkinson's disease, loss of 11C-BU99008 VT in the frontal (r = 0.79; P = 0.001), temporal (r = 0.74; P = 0.002) and parietal (r = 0.89; P < 0.001) cortex correlated with global cognitive impairment. This study demonstrates in vivo the role of astroglia in the initiation and progression of Parkinson's disease. Reactive astroglia observed early in Parkinson's disease could reflect a neuroprotective compensatory mechanisms and pro-inflammatory upregulation in response to α-synuclein accumulation. However, as the disease progresses and significant neurodegeneration occurs, astroglia lose their reactive function and such loss in the cortex has clinical relevance in the development of cognitive impairment.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - George Dervenoulas
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin J Tyacke
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Hospital campus, 160 Du Cane Road, London, UK
| | - Sotirios Polychronis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jim Myers
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Hospital campus, 160 Du Cane Road, London, UK
| | - Roger N Gunn
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
- Invicro LLC, Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Eugenii A Rabiner
- Invicro LLC, Centre for Imaging Sciences, Hammersmith Hospital, London, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, Burlington Danes Building, Hammersmith Hospital campus, 160 Du Cane Road, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Molecular Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:289-333. [PMID: 30409256 DOI: 10.1016/bs.irn.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a rare monogenic neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in the huntingtin gene resulting in the formation of intranuclear inclusions of mutated huntingtin. The accumulation of mutated huntingtin leads to loss of GABAergic medium spiny neurons (MSNs); subsequently resulting in the development of chorea, cognitive dysfunction and psychiatric symptoms. Premanifest HD gene expansion carriers, provide a unique cohort to examine very early molecular changes, occurring before the development of overt symptoms, to elucidate disease pathophysiology and identify reliable biomarkers of HD progression. Positron emission tomography (PET) is a non-invasive molecular imaging technique allowing the evaluation of specific molecular targets in vivo. Selective PET radioligands provide invaluable tools to investigate the role of the dopaminergic system, brain metabolism, microglial activation, phosphodiesterase 10A, and cannabinoid, GABA, adenosine and opioid receptors in HD. PET has been employed to monitor disease progression aiming to identify a reliable biomarker to predict phenoconversion from premanifest to manifest HD.
Collapse
|
10
|
Siemian JN, Obeng S, Zhang Y, Zhang Y, Li JX. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor. J Pharmacol Exp Ther 2016; 357:509-19. [PMID: 27056847 DOI: 10.1124/jpet.116.232421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund's adjuvant-induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R ligands than high-efficacy μ-opioid receptor agonists.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Samuel Obeng
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yanan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| |
Collapse
|
11
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Callado LF, Meana JJ. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: differential effect of antidepressant treatment. J Affect Disord 2015; 167:343-50. [PMID: 25020269 DOI: 10.1016/j.jad.2014.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain α2- and β-adrenoceptor alterations have been suggested in suicide and major depressive disorder. METHODS The densities of α2-, β1- and β2-adrenoceptors in postmortem prefrontal cortex of 26 subjects with depression were compared with those of age-, gender- and postmortem delay-matched controls. The effect of antidepressant treatment on α2- and β-adrenoceptor densities was also evaluated. α2- and β-adrenoceptor densities were measured by saturation experiments with respective radioligands [(3)H]UK14304 and [(3)H]CGP12177. β1- and β2-adrenoceptor subtype densities were dissected by means of β1-adrenoceptor selective antagonist CGP20712A. RESULTS Both, α2- and β1-adrenoceptors densities were higher in antidepressant-free depressed subjects (n=14) than those in matched controls (Δ~24%, p=0.013 and Δ~20%, p=0.044, respectively). In antidepressant-treated subjects (n=12), α2-adrenoceptor density remained increased over that in controls (Δ~20%), suggesting a resistance of α2-adrenoceptors to the down-regulatory effect of antidepressants. By contrast, β1-adrenoceptor density in antidepressant-treated depressed subjects was not different from controls, suggesting a possible down-regulation by antidepressants. The down-regulation of β1-adrenoceptor density in antidepressant-treated depressed subjects differs from the unaltered β1-adrenoceptor density observed in citalopram-treated rats and in a group of non-depressed subjects also treated with antidepressants (n=6). β2-adrenoceptor density was not altered in depressed subjects independently of treatment. LIMITATIONS Antidepressant-treated subjects had been treated with a heterogeneous variety of antidepressant drugs. The results should be understood in the context of suicide victims with depression. CONCLUSIONS These results show the up-regulation of brain α2- and β1-adrenoceptors in depression and suggest that the regulation induced by chronic antidepressant treatment would be altered in these subjects.
Collapse
MESH Headings
- Adult
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Depression/drug therapy
- Depression/pathology
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/pathology
- Female
- Humans
- Male
- Middle Aged
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, beta-1/analysis
- Receptors, Adrenergic, beta-1/drug effects
- Reference Values
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Romano La Harpe
- Centre Universitaire Romand de Médicine Légale-site Genève, University of Geneva, Switzerland
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
12
|
In vivo evaluation of a new 18F-labeled PET ligand, [18F]FEBU, for the imaging of I2-imidazoline receptors. Nucl Med Biol 2015; 42:406-12. [DOI: 10.1016/j.nucmedbio.2014.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
|
13
|
Mar GY, Chou MT, Chung HH, Chiu NH, Chen MF, Cheng JT. Changes of imidazoline receptors in spontaneously hypertensive rats. Int J Exp Pathol 2012; 94:17-24. [PMID: 23176371 DOI: 10.1111/iep.12000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/13/2012] [Indexed: 12/27/2022] Open
Abstract
The role of imidazoline receptors in the regulation of vascular function remains unclear. In this study, we evaluated the effect of agmatine, an imidazoline receptor agonist, on systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) and investigated the expressions of imidazoline receptors by Western blot. The isometric tension of aortic rings isolated from male SHRs was also estimated. Agmatine decreased SBP in a dose-dependent manner in SHRs but not in the normal group [Wistar-Kyoto (WKY) rats]. This reduction in SBP in SHRs was abolished by BU224, a selective antagonist of imidazoline I(2) -receptors. Higher expression of imidazoline receptors in SHR was observed. Moreover, agmatine-induced relaxation in isolated aortic rings precontracted with phenylephrine or KCl. This relaxation was also abolished by BU224 but was not modified by efaroxan, an imidazoline I(1) -receptor antagonist. Agmatine-induced relaxation was also attenuated by PNU 37883, a selective blocker of vascular ATP-sensitive potassium (K(ATP) ) channels. Additionally, vasodilatation by agmatine was reduced by an inhibitor of protein kinase A (PKA). We suggest that agmatine can lower blood pressure in SHRs through activation of the peripheral imidazoline I(2) -receptor, which is expressed more highly in SHRs.
Collapse
Affiliation(s)
- Guang-Yuan Mar
- Department of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
McDonald GR, Olivieri A, Ramsay RR, Holt A. On the formation and nature of the imidazoline I2 binding site on human monoamine oxidase-B. Pharmacol Res 2010; 62:475-88. [PMID: 20832472 DOI: 10.1016/j.phrs.2010.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022]
Abstract
An allosteric binding site with high affinity for imidazoline I(2) ligands has been proposed to exist on monoamine oxidase-B (MAO-B). However, enzyme inhibition only occurs at ligand concentrations far higher than are required to saturate this site. We here confirm previous reports that inactivation of recombinant human MAO-B with tranylcypromine results in the formation of a high affinity I(2) site on the enzyme, measured as an increase in binding of [(3)H]2-BFI. Incubation of MAO-B with 2-phenylethylamine, an endogenous trace amine and MAO-B substrate, resulted in a progressive loss of enzyme activity, increased enzyme mass, distinct spectral changes and, as was observed with tranylcypromine, a parallel increase in high affinity binding of [(3)H]2-BFI. Kinetic studies of the mechanism by which 2-BFI inhibits MAO-B activity suggested binding of 2-BFI, at micromolar concentrations, to a site distinct from the active site on at least two forms of the pure enzyme, probably corresponding to oxidised and reduced enzyme states. Studies with mutant enzymes revealed a pattern of changes consistent with binding of 2-BFI to the substrate entrance channel of human MAO-B. Structural data confirm that high affinity binding of I(2) ligands occurs within the entrance channel of inactive enzyme, while lower affinity binding at the same location in catalytically active enzyme results in mixed inhibition of MAO-B activity. High affinity I(2) sites may form in vivo due to inactivation of a portion of MAO-B during amine oxidation, while the low affinity I(2) site on active enzyme is a target for novel MAO-B inhibitor drugs.
Collapse
Affiliation(s)
- G Reid McDonald
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | | | |
Collapse
|
15
|
Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Nucl Med Biol 2010; 37:625-35. [DOI: 10.1016/j.nucmedbio.2010.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/23/2022]
|
16
|
Hyett MP, Parker GB, Proudfoot J, Fletcher K. Examining age effects on prototypic melancholic symptoms as a strategy for refining definition of melancholia. J Affect Disord 2008; 109:193-7. [PMID: 18162189 DOI: 10.1016/j.jad.2007.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Melancholic depression appears to have a later age of onset than the non-melancholic disorders, and its phenotypic picture also appears to change with age. The latter phenomenon allows clarification of key symptoms of melancholia by examining for age effects on putative melancholic symptoms, thus enabling identification and refinement of the melancholic sub-type. METHODS We studied 158 patients receiving a diagnosis of unipolar depression (65 melancholic: 93 non-melancholic), dichotomised by age and with a higher representation of those with melancholia in the older age band. The severity of individual DSM-IV-TR melancholic candidate symptom constructs were quantified across age groups and diagnostic sub-type. RESULTS Symptom constructs identified as most clearly associated with age effects in those with melancholia were anhedonia, non-reactivity, diurnal mood variation and, to a lesser degree, psychomotor slowing. When melancholic and non-melancholic patients were compared, non-reactivity, psychomotor slowing and diurnal mood variation were the most differentiating in the older age group. CONCLUSIONS The capacity of certain symptoms to mark the changing phenotypic expression of melancholia with age may not only assist refined definition of melancholia but inform about underlying causes and, of key importance, explain the suggested differential impact of narrow-action and broad-action antidepressant on those with melancholia across differing age groups.
Collapse
Affiliation(s)
- Matthew P Hyett
- School of Psychiatry, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
17
|
Bousquet P. Section Review—Cardiovascular & Renal: Recent Advances in Imidazoline Receptor Research. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.5.431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Specific binding of [3H]Ro 19-6327 (lazabemide) to monoamine oxidase B is increased in frontal cortex of suicide victims after controlling for age at death. Eur Neuropsychopharmacol 2008; 18:55-61. [PMID: 17570647 DOI: 10.1016/j.euroneuro.2007.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/04/2007] [Accepted: 05/07/2007] [Indexed: 12/01/2022]
Abstract
Previous studies have reported negative findings for the association among brain monoamine oxidase B (MAO-B) and suicidal behaviour. However those studies did not adequately control their main results for the influence of confounding variables such as age at death. We have evaluated the association of MAO-B density (assessed by [3H]Ro 19-6327 - lazabemide - binding) with type of death (suicide victims vs non-suicide controls) after controlling for age at death. Frontal cortex samples from 43 subjects (21 suicides, 22 controls) were assayed for MAO-B density at a single concentration of lazabemide (8 nM). A linear regression modelling approach comparing nested models resulted with both type of death (p<0.05) and age of death (p<0.01) as main explanatory variables for the variability of MAO-B density. Suicide victims had >30% more binding sites for lazabemide than controls. Contrary to previous reports, MAO-B density seems to increase in suicide victims.
Collapse
|
19
|
Jones TZE, Giurato L, Guccione S, Ramsay RR. Interactions of imidazoline ligands with the active site of purified monoamine oxidase A. FEBS J 2007; 274:1567-75. [PMID: 17480205 DOI: 10.1111/j.1742-4658.2007.05704.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The two forms of monoamine oxidase, monoamine oxidase A and monoamine oxidase B, have been associated with imidazoline-binding sites (type 2). Imidazoline ligands saturate the imidazoline-binding sites at nanomolar concentrations, but inhibit monoamine oxidase activity only at micromolar concentrations, suggesting two different binding sites [Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M & García-Sevilla JA (1997) Br J Pharmacol121, 901-912]. When purified human monoamine oxidase A was used to examine the interaction with the active site, inhibition by guanabenz, 2-(2-benzofuranyl)-2-imidazoline and idazoxan was competitive with kynuramine as substrate, giving K(i) values of 3 microM, 26 microM and 125 microM, respectively. Titration of monoamine oxidase A with imidazoline ligands induced spectral changes that were used to measure the binding affinities for guanabenz (19.3 +/- 3.9 microM) and 2-(2-benzofuranyl)-2-imidazoline (49 +/- 8 microM). Only one type of binding site was detected. Agmatine, a putative endogenous ligand for some imidazoline sites, reduced monoamine oxidase A under anaerobic conditions, indicating that it binds close to the flavin in the active site. Flexible docking studies revealed multiple orientations within the large active site, including orientations close to the flavin that would allow oxidation of agmatine.
Collapse
Affiliation(s)
- Tadeusz Z E Jones
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | | | | | | |
Collapse
|
20
|
Alemany R, Perona JS, Sánchez-Dominguez JM, Montero E, Cañizares J, Bressani R, Escribá PV, Ruiz-Gutierrez V. G protein-coupled receptor systems and their lipid environment in health disorders during aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:964-75. [PMID: 17070497 DOI: 10.1016/j.bbamem.2006.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 02/05/2023]
Abstract
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.
Collapse
Affiliation(s)
- Regina Alemany
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitary d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 2006; 19:219-28. [PMID: 16959471 DOI: 10.1016/j.cellsig.2006.06.013] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/29/2006] [Indexed: 01/23/2023]
Abstract
Oxidative stress has been implicated as playing a role in neurodegenerative disorders, such as ischemic stroke, Alzheimer's, Huntington's, and Parkinson's disease. Persuasive evidences have shown that microglial-mediated oxidative stress contributes significantly to cell loss and accompanying cognitive decline characteristic of the diseases. Based on the facts that (i) levels of catalytically active myeloperoxidase are elevated in diseased brains and (ii) myeloperoxidase polymorphism is associated with the risk of developing neurodegenerative disorders, HOCl as a major oxidant produced by activated phagocytes in the presence of myeloperoxidase is therefore suggested to be involved in neurodegeneration. Its association with neurodegeneration is further showed by elevated level of 3-chlorotyrosine (bio-marker of HOCl in vivo) in affected brain regions as well as HOCl scavenging ability of neuroprotectants, desferrioxamine and uric acid. In this review, we will summary the current understanding concerning the association of HOCl and neuronal cell death where production of HOCl will lead to further formation of reactive nitrogen and oxygen species. In addition, HOCl also causes tissue destruction and cellular damage leading cell death.
Collapse
Affiliation(s)
- Yann Wan Yap
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
22
|
Martín-Gómez JI, Ruiz J, Barrondo S, Callado LF, Meana JJ. Opposite changes in Imidazoline I2 receptors and α2-adrenoceptors density in rat frontal cortex after induced gliosis. Life Sci 2005; 78:205-9. [PMID: 16107261 DOI: 10.1016/j.lfs.2005.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/18/2005] [Indexed: 11/29/2022]
Abstract
Opposite age-dependent changes in alpha2-adrenoceptor and imidazoline I2 receptor (I2-IRs) density have been related to brain gliosis development with aging. To check this hypothesis we applied in rats a model of reactive gliosis induced by heat. The specific binding of [3H]idazoxan (0.5-20 nM) in the presence of (-)adrenaline (5 x 10(-6) M) to membranes from rat brain cortex showed that the density of I(2)-IRs was significantly higher in membranes of injured cortex (Bmax=60+/-6 fmol/mg protein; n=9) than in control (Bmax=38+/-3 fmol/mg protein; n=9; p=0.0053). Conversely, the density of alpha2-adrenoceptors, measured by [3H]clonidine (0.25-16 nM), in the injured cortex (Bmax=75+/-4 fmol/mg protein; n=9) was significantly lower than in sham membranes (Bmax=103+/-7 fmol/mg protein; n=9; p=0.0035). No significant differences in receptor's affinity were observed between both groups. These results support the hypothesis that gliosis induces opposite changes in alpha2-adrenoceptor and I2-IR density.
Collapse
Affiliation(s)
- J Ignacio Martín-Gómez
- Department of Pharmacology, University of the Basque Country, E-48940 Leioa, Bizkaia and E-01006 Vitoria-Gasteiz, Spain
| | | | | | | | | |
Collapse
|
23
|
Anderson NJ, Lupo PA, Nutt DJ, Hudson AL, Robinson ESJ. Characterisation of imidazoline I2 binding sites in pig brain. Eur J Pharmacol 2005; 519:68-74. [PMID: 16109401 DOI: 10.1016/j.ejphar.2005.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 06/28/2005] [Indexed: 11/29/2022]
Abstract
The imidazoline I2 binding sites in the central nervous system have previously been described in several different species including rat, mouse, rabbit and frog. The present study has investigated the imidazoline I2 binding site, and its relationship to the monoamine oxidase isoforms, in pig whole brain and compared the results obtained with data from other species. Results from saturation binding studies revealed that the imidazoline I2-selective ligand, [3H]2BFI (2-(2-benzofuranyl)-2-imidazoline) labelled a single saturable population of sites with a KD=6.6 nM and Bmax=771.7 fmol/mg protein. The pharmacological characterisation of the sites was similar to that previously reported with a rank order of potency for the imidazoline I2 ligands of 2BFI>BU224>Idazoxan>BU226. Displacement by the imidazoline I1 ligands was low affinity and the monoamine oxidase inhibitors displaced with micromolar affinity. The majority of compounds displaced the binding in a monophasic manner, however, displacement by the putative endogenous ligand, harmane was biphasic. The relative populations of the two monoamine oxidase isoforms revealed a 10 fold greater expression of monoamine oxidase B relative to monoamine oxidase A. These data confirm the presence of imidazoline I2 binding sites in pig brain and show that their pharmacology is characteristic of that seen in other species. The proportion of monoamine oxidase A and B expressed in the pig brain is similar to that seen in the human brain therefore, given the association between imidazoline I2 binding sites and monoamine oxidase, the pig may provide a more useful model for human imidazoline I2 binding sites than other species such as the rat.
Collapse
Affiliation(s)
- Neil J Anderson
- Department of Pharmacology, School of Medical Sciences, University Walk, Clifton, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
24
|
Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K. Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 2005; 28:362-79. [PMID: 16054841 DOI: 10.1016/j.neuroimage.2005.06.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/06/2005] [Accepted: 06/10/2005] [Indexed: 12/28/2022] Open
Abstract
Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.
Collapse
Affiliation(s)
- Filip Scheperjans
- C. and O. Vogt Brain Research Institute, University of Düsseldorf, PO Box 10 10 07, 40001 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
25
|
Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P, Smyrniotopoulos P, Mann JJ, Sibille E. Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol Psychiatry 2005; 57:549-58. [PMID: 15737671 DOI: 10.1016/j.biopsych.2004.10.034] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/30/2004] [Accepted: 10/27/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Aging leads to morphologic and functional changes in the brain and is associated with increased risk for psychiatric and neurological disorders. METHODS To identify age-related transcriptional changes in the human brain, we profiled gene expression in two prefrontal cortex (PFC) areas in postmortem samples from 39 subjects, ranging in age from 13 to 79 years. RESULTS Robust transcriptional age-related changes were identified for at least 540 genes. Gene expression correlates of aging were highly specific, and the large majority of the 22,000 transcripts investigated were unaffected by age. Across subjects, changes were progressive throughout adult life and accurately predicted chronological age. Age-upregulated transcripts were mostly of glial origin and related to inflammation and cellular defenses, whereas downregulated genes displayed mostly neuron-enriched transcripts relating to cellular communication and signaling. CONCLUSIONS Continuous changes in gene expression with increasing age revealed a "molecular profile" of aging in human PFC. The restricted scope of the transcript changes suggests cellular populations or functions that are selectively vulnerable during aging. Because age-related gene expression changes begin early in adulthood and are continuous throughout life, our results suggest the possibility of identifying early cellular mechanisms that may be engaged in preventive or detrimental age-related brain functions.
Collapse
|
26
|
Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol 2004; 30:77-89. [PMID: 15247489 DOI: 10.1385/mn:30:1:077] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 01/02/2004] [Indexed: 11/11/2022]
Abstract
The catecholamine-oxidizing enzyme monoamine oxidase-B (MAO-B) has been hypothesized to be an important determining factor in the etiology of both normal aging and age-related neurological disorders such as Parkinson's disease (PD). Catalysis of substrate by the enzyme produces H2O2 which is a primary originator of oxidative stress which in turn can lead to cellular damage. MAO-B increases with age as does predisposition towards PD which has also been linked to increased oxidative stress. Inhibition of MAO-B, along with supplementation of lost dopamine via L-DOPA, is one of the major antiparkinsonian therapies currently in use. In this review, we address several factors contributing to a possible role for MAO-B in normal brain aging and neurological disease and also discuss the use of MAO-B inhibitors as drug therapy for these conditions.
Collapse
|
27
|
Kumar MJ, Nicholls DG, Andersen JK. Oxidative alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson's disease. J Biol Chem 2003; 278:46432-9. [PMID: 12963742 DOI: 10.1074/jbc.m306378200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related increases in brain monoamine oxidase B (MAO-B) and its ability to produce reactive oxygen species as a by-product of catalysis could contribute to neurodegeneration associated with Parkinson's disease. This may be via increased oxidative stress and/or mitochondrial dysfunction either on its own or through its interaction with endogenous or exogenous neurotoxic species. We have created genetically engineered dopaminergic PC12 cell lines with subtly increased levels of MAO-B mimicking those observed during normal aging. In our cells, increased MAO-B activity was found to result in increased H2O2 production. This was found to correlate with a decrease in mitochondrial complex I activity which may involve both direct oxidative damage to the complex itself as well as oxidative effects on the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) which provides substrate for the complex. Both complex I and KGDH activities have been reported to be decreased in the Parkinsonian brain. These in vitro events are reversible by catalase addition. Importantly, MAO-B elevation was found to abolish the spare KGDH threshold capacity, which can normally be significantly inhibited before it affects maximal mitochondrial oxygen consumption rates. Our data suggest that H2O2 production via subtle elevations in MAO-B levels can result in oxidative effects on KGDH that can compromise the ability of dopaminergic neurons to cope with increased energetic stress.
Collapse
Affiliation(s)
- M Jyothi Kumar
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | |
Collapse
|
28
|
Piletz JE, Ordway GA, Rajkowska G, Zhu H, Klimek V, Swilley S, Duncan BJ, May W, Halaris AE. Differential expression of alpha2-adrenoceptor vs. imidazoline binding sites in postmortem orbitofrontal cortex and amygdala of depressed subjects. J Psychiatr Res 2003; 37:399-409. [PMID: 12849932 DOI: 10.1016/s0022-3956(03)00046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clonidine is a well established antihypertensive agent that is also used effectively to treat a variety of psychiatric disorders. Clonidine is a prototypic imidazoline compound that acts as an alpha(2)-adrenergic agonist but possesses nearly equivalent affinity for non-adrenergic imidazoline binding sites (I-sites). Receptor autoradiography of [(3)H]-clonidine binding presented herein compares densities of alpha(2)-adrenoceptors and I-sites (under a noradrenergic-mask) in Brodmann's area 47 of the left orbitofrontal cortex (OFC) and in six amygdaloid nuclei of subjects with major depression (n=12) vs. controls with no psychiatric history (n=11). Postmortem diagnoses were made from psychiatric interviews with next-of-kin. [(3)H]-Clonidine binding to alpha(2)-adrenoceptors in each of six OFC layers was lower, although not reaching statistical significance in any one layer by multivariate analysis, in depressives vs. control subjects. Binding to I-sites was conversely higher in depressives compared to control OFC layers, but did not reach statistical significance alone. However, the ratios of alpha(2)-adrenoceptor : I-sites in all six layers of OFC of depressed subjects were nearly half that of control subjects (P<0.008). In amygdalas from a different group of depressed patients there were no changes in alpha(2)-adrenoceptors or I-sites, or their ratios, compared with controls. The results support previous western blot data indicating a cortex-selective shift away from alpha(2)AR towards I-site preponderance in depressed patients.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Callado LF, Maeztu AI, Ballesteros J, Gutiérrez M, Meana JJ. Differential [(3)H]idazoxan and [(3)H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) binding to imidazoline I(2) receptors in human postmortem frontal cortex. Eur J Pharmacol 2001; 423:109-14. [PMID: 11448473 DOI: 10.1016/s0014-2999(01)01097-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[(3)H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) and [(3)H]idazoxan are the most used tools to characterise imidazoline I(2) receptors. We evaluated the binding of both radioligands to human postmortem frontal cortex membranes. Saturation binding analyses revealed that [(3)H]idazoxan (in the presence of 2 microM efaroxan to avoid radioligand binding to alpha(2)-adrenoceptors and imidazoline I(1) receptors) and [(3)H]2-BFI bound with high affinity to an apparent single population of sites. However, in competition studies whereas [(3)H]idazoxan (10 nM) binding was displaced monophasically by idazoxan and 2-BFI, both drugs displayed biphasic curves for [(3)H]2-BFI (1 nM). The proportion of the low-affinity binding site increased from 17% to 25% when 10 nM [(3)H]2-BFI was displaced by idazoxan. Amiloride inhibited [(3)H]2-BFI (10 nM) binding with low affinity and in a monophasic way. These data indicate that [(3)H]2-BFI recognises in human postmortem brain membranes a second binding site different from the imidazoline I(2) receptors labelled by [(3)H]idazoxan.
Collapse
Affiliation(s)
- L F Callado
- Department of Pharmacology, University of the Basque Country, E-48940 Leioa, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
30
|
Sastre M, Guimón J, García-Sevilla JA. Relationships between beta- and alpha2-adrenoceptors and G coupling proteins in the human brain: effects of age and suicide. Brain Res 2001; 898:242-55. [PMID: 11306010 DOI: 10.1016/s0006-8993(01)02190-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions between brain alpha2- and beta-adrenoceptors are of interest in physiological (aging) and pathological (major depression) processes involving both receptors. In this study, total beta-adrenoceptors and beta1/2-subtypes were quantitated in postmortem human brains to investigate their relationships with alpha2A-adrenoceptors and specific G proteins during the process of aging and in brains of suicide victims. Analysis of [3H]CGP12177 binding, in the presence of CGP20712A (beta1-antagonist), indicated that the predominant beta-adrenoceptor in the frontal cortex is the beta1-subtype (65-75%). The density of total beta- (r=-0.60, n=44) or beta1-adrenoceptors (r=-0.78, n=22), but not the beta2-subtype, declined with aging (3-80 years). The density of total beta- or beta1-adrenoceptors, but not the beta2-subtype, correlated with the number of alpha2-adrenoceptors quantitated in the same brains with the agonist [3H]UK14304 (r=0.71-0.81) or the antagonist [3H]RX821002 (r=0.61-0.66). Interestingly, the ratios alpha2/beta- or alpha2/beta1-adrenoceptors did not correlate with the age of the subject at death, indicating that the proportion of alpha2/beta-adrenoceptors in brain remains rather constant during the process of aging. The density of beta-adrenoceptors correlated with the immunodensity of G(alpha)s (r=0.55) and Gbeta (r=0.61) proteins, and that of alpha2-adrenoceptors with those of G(alpha)i1/2 (r=0.88) and Gbeta (r=0.65). In brains of suicides, compared to controls, the ratio between alpha2- and beta- or beta1-adrenoceptors (alpha2-full agonist sites/beta-sites) was greater (1.3- to 2.0-fold; P<0.05). The results demonstrate a close interdependence between brain alpha2- and beta-adrenoceptors during aging, and in brains of suicides. The quantitation of the alpha2A/beta-adrenoceptor ratio could represent a relevant neurochemical index in the study of brain pathologies in which both receptors are involved.
Collapse
Affiliation(s)
- M Sastre
- Laboratory of Neuropharmacology, Associate Unit of the Institute Cajal/CSIC, Department of Biology, University of the Balearic Islands, Cra. Valldemossa Km 7.5, E-07071, Palma de Mallorca, Spain
| | | | | |
Collapse
|
31
|
Fu CH, Reed LJ, Meyer JH, Kennedy S, Houle S, Eisfeld BS, Brown GM. Noradrenergic dysfunction in the prefrontal cortex in depression: an [15O] H2O PET study of the neuromodulatory effects of clonidine. Biol Psychiatry 2001; 49:317-25. [PMID: 11239902 DOI: 10.1016/s0006-3223(00)01050-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noradrenergic dysfunction has been consistently implicated in depression. Much of the evidence, though, has been indirect, such as an attenuated growth hormone response to the alpha2-adrenoceptor agonist clonidine. To more directly examine central functioning of the noradrenergic system in depression, we have used [15O] H2O positron emission tomography (PET) to measure cerebral blood flow (rCBF) in combination with clonidine as a neuromodulatory probe. METHODS Subjects were six depressed and six healthy women, medication free and matched for age and phase of menstrual cycle. Two PET scans were acquired at baseline and two scans at 20 and 35 min following an intravenous clonidine infusion of 1.4 microg/kg while subjects performed a sustained attention task. RESULTS The growth hormone response did not show a significant difference between groups. However, PET results revealed a difference in the right superior prefrontal cortex that was resolved as an interaction from decreased rCBF in healthy control subjects but increased rCBF in the depressed group, which was not accounted for by differences in task performance. CONCLUSIONS This differential effect of clonidine in the right prefrontal cortex provides in vivo evidence of noradrenergic dysfunction in depression, which we postulate arises from functionally impaired presynaptic alpha2-adrenoceptors as well as regionally "supersensitive" postsynaptic cortical alpha2-adrenoceptors.
Collapse
Affiliation(s)
- C H Fu
- Centre for Addiction and Mental Health, Clarke Site, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Casanovas A, Olmos G, Ribera J, Boronat MA, Esquerda JE, García-Sevilla JA. Induction of reactive astrocytosis and prevention of motoneuron cell death by the I(2)-imidazoline receptor ligand LSL 60101. Br J Pharmacol 2000; 130:1767-76. [PMID: 10952664 PMCID: PMC1572252 DOI: 10.1038/sj.bjp.0703485] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Revised: 03/29/2000] [Accepted: 05/16/2000] [Indexed: 11/08/2022] Open
Abstract
I(2)-imidazoline receptors are mainly expressed on glial cells in the rat brain. This study was designed to test the effect of treatment with the I(2)-imidazoline selective receptor ligand LSL 60101 [2-(2-benzofuranyl)imidazole] on the morphology of astrocytes in the neonate and adult rat brain, and to explore the putative neuroprotective effects of this glial response. Short-term (3 days) or chronic (7-10 days) treatment with LSL 60101 (1 mg kg(-1), i.p. every 12 h) enhanced the area covered by astroglial cells in sections of facial motor nucleus from neonate rats processed for glial fibrillary acidic protein (GFAP) immunostaining. Facial motoneurons surrounded by positive glial cell processes were frequently observed in sections of LSL 60101-treated rats. A similar glial response was observed in the parietal cortex of adult rats after chronic (10 days) treatment with LSL 60101 (10 mg kg(-1), i.p. every 12 h). Western-blot detection of the specific astroglial glutamate transporter GLT-1, indicated increased immunoreactivity after LSL 60101 treatment in the pons of neonate and in the parietoccipital cortex of adult rats. In the facial motor nucleus of neonate rats, the glial response after LSL 60101 treatment was associated to a redistribution of the immunofluorescence of the basic fibroblast growth factor (FGF-2) from the perinuclear area of motoneurons to cover most of their cytoplasm, suggesting a translocation of this mitogenic and neurotrophic factor towards secretion pathways. The neuroprotective potential of the above effects of LSL 60101 treatment was tested after neonatal axotomy of facial motor nucleus. Treatment with LSL 60101 (1 mg kg(-1), i.p. every 12 h from day 0 to day 10 after birth) significantly reduced (38%) motoneuron death rate 7 days after facial nerve axotomy performed on day 3 after birth. It is concluded that treatment with the I(2)-imidazoline selective receptor ligand LSL 60101 provokes morphological/biochemical changes in astroglia that are neuroprotective after neonatal axotomy.
Collapse
Affiliation(s)
- A Casanovas
- Departament de Ciències Mèdiques Bàsiques, Unitat de Neurobiologia Cel.lular, Universitat de Lleida, Rovira Roure 44, E-25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Ballesteros J, Maeztu AI, Callado LF, Gutiérrez M, García-Sevilla JA, Meana JJ. I2-Imidazoline receptors and monoamine oxidase B enzyme sites in human brain: covariation with age. Neurosci Lett 2000; 288:135-8. [PMID: 10876079 DOI: 10.1016/s0304-3940(00)01218-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An association between monoamino oxidase B enzyme (MAO-B) sites and I(2)-imidazoline receptors (I(2)-IR) has been established in human brain on the basis of correlational studies of radiolabelled binding sites. Because both MAO-B and I(2)-IR densities increase with aging, the age at death could be partially involved in the observed correlations. The evaluation of two independent but similar datasets demonstrated that the linear correlation between MAO-B and I(2)-IR densities dropped from 0.70 (P=0.02) and 0.41 (P=0.14) in the crude analyses to the negligible values of 0.07 (P=0.84) and 0.09 (P=0.75) when the age at death was controlled for in the statistical analyses. The results lead to conclude, contrary to former interpretations, that there is not any statistical association linking both MAO-B catalytic unit sites and I(2)-IR densities in the human brain.
Collapse
Affiliation(s)
- J Ballesteros
- Department of Neurosciences, University of the Basque Country, E-48940 Leioa, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Gross-Isseroff R, Weizman A, Fieldust SJ, Israeli M, Biegon A. Unaltered alpha(2)-noradrenergic/imidazoline receptors in suicide victims: a postmortem brain autoradiographic analysis. Eur Neuropsychopharmacol 2000; 10:265-71. [PMID: 10871708 DOI: 10.1016/s0924-977x(00)00075-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro quantitative autoradiography of alpha(2)-adrenergic/imidazoline receptors, using [(125)I]iodoclonidine as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found no significant, region-dependent alterations in the density of alpha(2)-adrenergic receptors in brains of suicide victims as compared to matched controls. We also report age-dependent reductions in binding in the prefrontal cortex and hippocampus, as well as significant recent alcohol ingestion-dependent reductions in binding in the prefrontal cortex. Sex and time from death to autopsy did not affect iodoclonidine binding in our sample.
Collapse
Affiliation(s)
- R Gross-Isseroff
- Department of Neurobiology, The Weizman Institute of Science, 76100, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
35
|
Sánchez-Blázquez P, Boronat MA, Olmos G, García-Sevilla JA, Garzón J. Activation of I(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Br J Pharmacol 2000; 130:146-52. [PMID: 10781010 PMCID: PMC1572044 DOI: 10.1038/sj.bjp.0703294] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This work investigates the receptor acted upon by imidazoline compounds in the modulation of morphine analgesia. The effects of highly selective imidazoline ligands on the supraspinal antinociception induced by morphine in mice were determined. 2. Intracerebroventricular (i.c.v.) or subcutaneous (s.c.) administration of ligands selective for the I(2)-imidazoline receptor, 2-BFI, LSL 60101, LSL 61122 and aganodine, and the non selective ligand agmatine, increased morphine antinociception in a dose-dependent manner. Neither moxonidine, a mixed I(1)-imidazoline and alpha(2)-adrenoceptor agonist, RX821002, a potent alpha(2)-adrenoceptor antagonist that displays low affinity at I(2)-imidazoline receptors, nor the selective non-imidazoline alpha(2)-adrenoceptor antagonist RS-15385-197, modified the analgesic responses to morphine. 3. Administration of pertussis toxin (0.25 microg per mouse, i.c.v.) 6 days before the analgesic test blocked the ability of the I(2)-imidazoline ligands to potentiate morphine antinociception. 4. The increased effect of morphine induced by I(2)-imidazoline ligands (agonists) was completely reversed by idazoxan and BU 224. Identical results were obtained with IBI, which alkylates I(2)-imidazoline binding sites. Thus, both agonist and antagonist properties of imidazoline ligands at the I(2)-imidazoline receptors were observed. 5. Pre-treatment (30 min) with deprenyl, an irreversible inhibitor of monoamine oxidase B (IMAO-B), produced an increase of morphine antinociception. Clorgyline, an irreversible IMAO-A, given 30 min before morphine did not alter the effect of the opioid. At longer intervals (24 h) a single dose of either clorgyline or deprenyl reduced the density of I(2)-imidazoline receptors and prevented the I(2)-mediated potentiation of morphine analgesia. 6. These results demonstrate functional interaction between I(2)-imidazoline and opioid receptors. The involvement of G(i)-G(o) transducer proteins in this modulatory effect is also suggested.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Institute of Neurobiology Santiago Ramón y Cajal, CSIC, Madrid, Spain
- Author for correspondence:
| | - M Assumpció Boronat
- Laboratory of Neuropharmacology, Associate Unit of the Institute Cajal, Department of Biology, University of the Balearic Islands, Spain
| | - Gabriel Olmos
- Laboratory of Neuropharmacology, Associate Unit of the Institute Cajal, Department of Biology, University of the Balearic Islands, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Associate Unit of the Institute Cajal, Department of Biology, University of the Balearic Islands, Spain
| | - Javier Garzón
- Neuropharmacology, Institute of Neurobiology Santiago Ramón y Cajal, CSIC, Madrid, Spain
| |
Collapse
|
36
|
Farsang C, Kapocsi J. Imidazoline receptors: from discovery to antihypertensive therapy (facts and doubts). Brain Res Bull 1999; 49:317-31. [PMID: 10452352 DOI: 10.1016/s0361-9230(99)00057-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hypothesis and indirect evidence of imidazoline receptors has been promoted since some 15 years ago and it gave a substantial impetus for research in this field, resulting in a better understanding of neuronal and cardiovascular regulatory processes. The nomenclature of the imidazoline receptors has been accepted by international forums but no direct proof for the existence of these receptors has been published. Authors summarise the most important available data, including facts and doubts as far as the discovery, characterisation, and function of imidazoline receptors and their subtypes, the differences between imidazoline receptors and alpha-2 adrenoceptors, and also on their participation in regulatory processes.
Collapse
Affiliation(s)
- C Farsang
- First Department of Internal Medicine, St. Imre Teaching Hospital, Budapest, Hungary
| | | |
Collapse
|
37
|
King PR, Gundlach AL, Louis WJ. Identification of imidazoline-receptor binding sites in cortex and medulla of the bovine adrenal gland. Colocalization with MAO-A and MAO-B. Ann N Y Acad Sci 1999; 881:161-70. [PMID: 10415911 DOI: 10.1111/j.1749-6632.1999.tb09355.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution and relative densities of imidazoline-receptor binding sites (I-RBS) in bovine adrenal gland were determined using [3H]clonidine, [3H]2-(2-benzofuranyl)-2-imidazoline ([3H]2-BFI), and [3H]rilmenidine. In light of strong evidence that I-RBS and monoamine amine oxidase enzymes are linked, the selective radioligands [3H]RO41-1049 and [3H]RO19-6327 were used to label the distribution of MAO-A and -B enzymes, respectively. [3H]Clonidine (12 nM) labeled sites in two discrete regions of the bovine adrenal gland, the zona glomerulosa (39 +/- 7 fmol/mg tissue equivalent) and inner medulla (34 +/- 1 fmol/mg tissue). Binding was nonadrenergic (i.e., not inhibited by 100 nM methoxyidazoxan) and inhibited by 60-70% by 100 nM 2-BFI, the selective I2-RBS, suggesting binding predominantly to an I2-RBS. [3H]2-BFI (5 nM), the selective I2-RBS ligand, also labeled a high density of binding sites in the zona glomerulosa (57 +/- 9 fmol/mg) and chromaffin cells in the inner medulla (53 +/- 4 fmol/mg). These sites, however, were insensitive to clonidine (100 nM). By contrast, [3H]rilmenidine (40 nM) labeled I-RBS in all regions of the adrenal gland, that is, the zonae glomerulosa (59 +/- 10 fmol/mg), fasciculata (78 +/- 10 fmol/mg) and reticularis (63 +/- 7 fmol/mg), and outer and inner medullary chromaffin cells (42 +/- 1 and 55 +/- 2 fmol/mg, respectively). Binding to sites in the zona glomerulosa was partially inhibited (16%) by 100 nM 2-BFI. These results are consistent with previous studies indicating that [3H]rilmenidine labels an I2-RBS and additional I-RBS in rat brain and kidney. The distribution of [3H]RO19-6327 (5 nM) binding resembled that of [3H]2-BFI and [3H]clonidine binding with high densities of MAO-B enzyme located in the zona glomerulosa and chromaffin cells of the inner medulla (55 +/- 7 and 76 +/- 6 fmol/mg tissue, respectively), suggesting the colocalization of MAO-B enzyme with I2-RBS. [3H]RO41-1049 (20 nM) binding to MAO-A was highest in the zona reticularis (196 +/- 7 fmol/mg tissue) compared to the zonae glomerulosa and fasciculata (90 +/- 12 and 116 +/- 14 fmol/mg tissue) and inner medulla (149 +/- 38 fmol/mg tissue). Although the existence of I-RBS in bovine adrenal chromaffin cells is well established, this is the first description of I-RBS in the adrenal cortex. Further investigations are now required to determine whether imidazolines can affect adrenal function via actions at these sites.
Collapse
Affiliation(s)
- P R King
- Department of Clinical Pharmacology and Therapeutics, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia.
| | | | | |
Collapse
|
38
|
Abstract
Major depression, opioid addiction, neurodegenerative diseases, and glial tumors are associated with disturbances of imidazoline receptors (IR) in the human brain. In depression, the level of a 45-kD IR protein (putative I1-IR) is increased in the brain of suicide victims (51%) and in platelets of depressed patients (40%). The density of platelet I1-IR ([125I]-p-iodoclonidine binding) is also increased in depression (135%). The 29/30-kD IR protein (putative I2B-IR) is downregulated (19%) in suicide victims in parallel with a reduction (40%) in the density of I2B-IR ([3H]idazoxan binding). Antidepressant drugs induce downregulation of 45-kD IR protein and I1-sites in platelets of depressed patients and upregulation of I2-sites in rat brain. The densities of I2B-IR and the related 29/30-kD IR protein are decreased (39% and 28%) in the brain of heroin addicts. The density of I2B-IR is increased in Alzheimer's disease (63%) and decreased in Huntington's disease (56%). Brain I2B-IR is not altered in Parkinson's disease. The level of I2-IR in glial tumors is increased (two-fivefold) in parallel with the abundance of the related 29/30-kD IR protein (39%), whereas the level of 45-kD IR protein is decreased (39%). The possible functional relevance of these findings in the context of the pathogenesis of these disorders remains to be elucidated.
Collapse
Affiliation(s)
- J A García-Sevilla
- Institute of Neurobiology Ramón y Cajal/CSIC, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | | |
Collapse
|
39
|
Steinberg MI, Wiest SA, Pickard RT, Chen K, Shih JC. Binding of the imidazoline ligand 3H-2-benzofuranyl-2-imidazoline (BFI) to human brain and platelets. Potentiation by tranylcypromine and role of MAO isoforms. Ann N Y Acad Sci 1999; 881:193-8. [PMID: 10415915 DOI: 10.1111/j.1749-6632.1999.tb09359.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M I Steinberg
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | |
Collapse
|
40
|
Barturen F, Ventayol P, Ozaita A, Escribá PV, Meana JJ, García-Sevilla JA. Densities of I2-imidazoline receptors, imidazoline receptor proteins, and MAO-B sites in human gliomas and pituitary adenomas. Ann N Y Acad Sci 1999; 881:203-7. [PMID: 10415917 DOI: 10.1111/j.1749-6632.1999.tb09361.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F Barturen
- Institute of Neurobiology Ramón y Cajal/CSIC, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Soto J, Ulibarri I, Jauregui JV, Ballesteros J, Meana JJ. Dissociation between I2-imidazoline receptors and MAO-B activity in platelets of patients with Alzheimer's type dementia. J Psychiatr Res 1999; 33:251-7. [PMID: 10367991 DOI: 10.1016/s0022-3956(98)00065-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The I2-imidazoline receptor is expressed in brain and platelets and could represent a new binding domain on MAO-B enzyme. Brain I2-imidazoline receptors and MAO-B sites have been found to be increased in Alzheimer's disease. The study sought to evaluate I2-imidazoline receptors and MAO-B activity in platelets from patients with Alzheimer's type dementia (ATD) and matched controls. Preliminary saturation experiments of [3H]idazoxan binding to platelet purified mitochondrial membranes were performed to determine the maximal number of binding sites (Bmax) and the apparent dissociation constant (Kd). Afterwards, the I2-imidazoline receptor density ([3H]idazoxan at 8 and 20 nM in the presence of 2 x 10(-6) M efaroxan) was evaluated in 20 patients with ATD and 17 controls. MAO-B activity was quantified by [14C]PEA oxidation. All subjects were screened for cognitive evaluation by the Mini-Mental State Examination. The density of I2-imidazoline receptors was similar in ATD patients (8.4 and 14.3 fmol/mg protein) and controls (8.3 and 14.0 fmol/mg protein). MAO-B activity was 22% higher in ATD subjects. Significant correlations between I2-imidazoline receptors and MAO-B activity were observed. No relationships between I2-imidazoline receptors or MAO-B activity and the cognitive score were observed. In conclusion, platelet I2-imidazoline receptors do not show the increase of I2-imidazoline receptors previously observed in brain of subjects with ATD. The dissociation between I2-imidazoline receptors and MAO-B in platelets suggests that the enzyme contributes to but not exclusively represents the I2-imidazoline receptor.
Collapse
Affiliation(s)
- J Soto
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
42
|
Hosseini AR, Jackman GP, King PR, Louis WJ, Gundlach AL. Pharmacology and subcellular distribution of [3H]rilmenidine binding sites in rat brain. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 72:129-36. [PMID: 9851561 DOI: 10.1016/s0165-1838(98)00097-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that in rat brain membranes, [3H]rilmenidine, in addition to labelling alpha2-adrenoceptors and the I2B-subtype of imidazoline receptor binding site (I2B-RBS), may label an additional I-RBS population, distinct from previously classified I1-RBS and I2-RBS. In this study, using crude or fractionated rat brain membranes we examined the possible association of [3H]rilmenidine-labelled I-RBS with the A- and B-isoforms of monoamine oxidase (MAO) by studying the inhibition of [3H]rilmenidine binding by a number of MAO inhibitors; and comparing the maximal binding density (Bmax) and subcellular distribution of [3H]rilmenidine binding sites with that of MAO-A and MAO-B catalytic sites labelled by [3H]RO41-1049 and [3H]RO19-6327 and 12-RBS labelled by [3H]2-BFI. Inhibition of [3H]rilmenidine binding by all MAO inhibitors tested produced very shallow curves (slope 0.29-0.56). Clorgyline and moclobemide (selective MAO-A inhibitors) displayed moderate affinities (60-140 nM), while pargyline (non-selective MAO-inhibitor), RO41-1049 (selective MAO-A inhibitor) and RO19-6327 (selective MAO-B inhibitor) exhibited very low affinities (> 2 microM) for 50-75% of [3H]rilmenidine-labelled I-RBS in crude brain membranes and even lower affinity for the remaining binding. Under identical buffer conditions, the Bmax of [3H]rilmenidine-labelled I-RBS (1.45+/-0.14 pmol/mg protein) was considerably lower than those of MAO-A (13.10+/-0.15 pmol/mg) and MAO-B (10.35+/-0.50 pmol/mg) sites. These results suggest that [3H]rilmenidine does not interact directly with the active catalytic site of either MAO enzyme and could at best only associate with a subpopulation of MAO molecules. Binding studies on five fractions of rat cortex homogenates-nuclear (N), heavy (M) and light (L) mitochondrial, microsomal non-mitochondrial (P), and soluble cytosolic (S) fractions-revealed that 45% of total [3H]rilmenidine binding was present in the P fraction cf. 20 and 23% in the M and L fractions, in contrast to [3H]RO19-6327 and [3H]2-BFI which bound 11-13% in the P fraction and 36-38% and 35-44% in the M and L fractions, respectively. Binding of all ligands in the N fraction was 6-15% of total. These studies reveal that [3H]rilmenidine-labelled I-RBS, unlike the I2-RBS, are not predominantly associated with mitochondrial fractions containing the MAO enzymes (and cytochrome oxidase activity), but appear to be distributed in both the mitochondrial and plasma membrane fractions in rat cerebral cortex.
Collapse
Affiliation(s)
- A R Hosseini
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
King PR, Suzuki S, Hosseini AR, Iakovidis D, Nero TL, Jackman GP, Louis WJ, Gundlach AL. [3H]Rilmenidine-labelled imidazoline-receptor binding sites co-localize with [3H]2-(benzofuranyl)-2-imidazoline-labelled imidazoline-receptor binding sites and monoamine oxidase-B in rabbit, but not rat, kidney. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 72:118-28. [PMID: 9851560 DOI: 10.1016/s0165-1838(98)00096-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The distribution and relative densities of imidazoline-receptor binding sites (I-RBS) and monoamine oxidase (MAO)-A and -B enzyme(s) in rat and rabbit kidney were compared autoradiographically using fixed nanomolar concentrations of [3H]rilmenidine and [3H]2-(benzofuranyl)-2-imidazoline ([3H]2-BFI) to label I-RBS, and [3H]RO41-1049 and [3H]RO19-6327 to label MAO-A and -B isoenzymes, respectively. In rat kidney, high densities of I-RBS labelled by [3H]rilmenidine were observed in the cortex and outer stripe (120-280 fmol/mg tissue), in contrast to low I-RBS densities labelled by [3H]2-BFI (<4 fmol/mg). A relatively high density of [3H]RO41-1049 binding to MAO-A enzyme was present in all regions of the rat kidney (160-210 fmol/mg) compared with a low density of [3H]RO19-6327 binding to MAO-B (< 25 fmol/mg). Comparison of MAO-A and -B distributions with that of [3H]rilmenidine-labelled I-RBS strongly suggests a lack of association in rat kidney. Similarly, the extremely low densities of [3H]2-BFI-labelled I2-RBS in rat kidney contrasts with the density of MAO-A, but is consistent with the low density of MAO-B. Rabbit kidney cortex and outer stripe contained high relative densities of [3H]rilmenidine-labelled I-RBS (200-215 fmol/mg) and [3H]2-BFI-labelled I2-RBS (45-60 fmol/mg) with lower densities in the inner stripe and inner medulla (< or = 100 and 30 fmol/mg respectively). A high density of MAO-A binding was observed in the inner stripe (515 fmol/mg) with lower levels in the cortex and outer stripe (100-240 fmol/mg), while high densities of MAO-B binding were observed in the cortex and outer stripe (290-450 fmol/mg) with lower levels in the inner stripe (65 fmol/mg). The correlation between the localization of [3H]rilmenidine-labelled I-RBS and [3H]RO19-6327-labelled MAO-B in rabbit kidney (r = 0.87, P = 0.057) suggest that [3H]rilmenidine may label a binding site co-existent with MAO-B, but not MAO-A (n.s.), in this tissue, but rilmenidine did not inhibit [3H]RO41-1049 or [3H]RO19-6327 binding. The distribution of [3H]2-BFI-labelled I2-RBS overlapped the combined distributions of both MAO-A and -B isoenzymes, suggesting that [3H]2-BFI may label sites on both enzymes in the rabbit, but [3H]2-BFI binding only correlated with [3H]RO19-6327 (r = 0.84, P = 0.07), not [3H]RO41-1049 binding (n.s.). Moreover, 2-BFI only inhibited [3H]RO19-6327, not [3H]RO41-1049 binding. These data are consistent with reports that I2-RBS are located on MAO-B and allosterically influence the catalytic site. The relationship of [3H]rilmenidine- and [3H]2-BFI-labelled I-RBS and the identity of non-MAO-associated [3H]rilmenidine-labelled I-RBS requires further investigation.
Collapse
Affiliation(s)
- P R King
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
García-Sevilla JA, Escribá PV, Walzer C, Bouras C, Guimón J. Imidazoline receptor proteins in brains of patients with Alzheimer's disease. Neurosci Lett 1998; 247:95-8. [PMID: 9655601 DOI: 10.1016/s0304-3940(98)00265-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Imidazoline receptors (29/30- and 45-kDa proteins) were quantitated in postmortem brains of patients with Alzheimer's disease (AD) by using immunoblotting techniques and a specific antiserum. Increased levels of the 29/30-kDa protein (30%), 45-kDa protein (36%) and glial fibrillary acidic protein (88%) were found in the frontal cortex of AD patients. These findings are in line with the reported higher density of imidazoline receptors labelled by [3H]idazoxan in AD brains, suggesting that these imidazoline receptor proteins are related to the I2-imidazoline receptor located in mitochondria of glial (astrocyte) cells.
Collapse
Affiliation(s)
- J A García-Sevilla
- Department of Psychiatry, Faculty of Medicine, University of Geneva, H.U.G., Chêne-Bourg, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Ivanov TR, Feng Y, Wang H, Regunathan S, Reis DJ, Chikkala DN, Gupta P, Jones JC, Piletz JE. Imidazoline receptor proteins are regulated in platelet-precursor MEG-01 cells by agonists and antagonists. J Psychiatr Res 1998; 32:65-79. [PMID: 9694002 DOI: 10.1016/s0022-3956(98)00006-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The I1-imidazoline receptor is a novel brainstem modulator of sympathetic outflow that is elevated on platelets and in brains of depressed patients. A positive correlation has been reported (accompanying manuscript) between plasma norepinephrine (NE) concentrations and the densities (Bmax) of platelet I1 binding sites (I1 sites). I1-candidate proteins of 33 kDa and 85 kDa are now identified on Western blots probed with anti-imidazoline receptor antiserum (IRBP antiserum), that correlate with Bmax values for I1 sites. Furthermore, a human megakaryoblastoma cell line (MEG-01) has been used to study the regulation of these proteins on megakaryocytic cells, while bovine adrenal chromaffin cells provide a standard I1 cell type for comparison. Both the 33 kDa and 85 kDa IRBP-immunoreactive bands were enriched in plasma membrane fractions. IRBP antiserum did not cross-react with I2 imidazoline binding sites located on platelet mitochondrial membranes. The 85 kDa band was enhanced under conditions lacking fetal bovine serum (FBS) from the culture medium 6 h prior to harvesting. Conversely, 33 kDa protein was enhanced on MEG-01 cells grown in the presence of 10% FBS; suggesting that a precursor (85 kDa) and product (33 kDa) relationship might be induced by serum. The 85 kDa band was robustly up-regulated in response to imidazoline receptor-sensitive ligands; moxonidine, idazoxan and agmatine (10 microM each for 6 h). NE also up-regulated the 85 kDa IRBP-immunoreactive protein on MEG-01 membranes, but to a lesser extent. Idazoxan, an imidazoline alpha 2-antagonist, off-set its induction of 85 kDa protein by reducing the 33 kDa band. Yohimbine, a non-imidazoline alpha 2-antagonist, was ineffective alone, or in combination with moxonidine (up to 40 microM), but yohimbine blocked NE's induction of the 85 kDa band. Therefore, a rise in either plasma NE and/or endogenous I-site ligands (i.e. agmatine) could explain an elevation of imidazoline receptors observed in depression.
Collapse
Affiliation(s)
- T R Ivanov
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Conway EL, Gundlach AL, Craven JA. Temporal changes in glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience 1998; 82:805-17. [PMID: 9483537 DOI: 10.1016/s0306-4522(97)00321-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunohistochemical studies have demonstrated that following global forebrain ischaemia the selective neuronal loss that occurs in the CA1 pyramidal cell layer of the hippocampus is accompanied by a reactive astrocytosis, characterized by increases in glial fibrillary acidic protein, and activation of microglia. In this study the spatial changes in glial fibrillary acidic protein messenger RNA levels in the hippocampus have been mapped four, eight, 12, 16 and 20 days following 10 min of global forebrain ischaemia in the rat and related to changes in [3H]PK11195 binding to peripheral benzodiazepine receptors, a putative marker of activated microglia. Recent studies have suggested that the imidazoline-I2-receptor, one of a class of non-adrenergic receptors related to, but structurally and functionally distinct from alpha 2-adrenoceptors, may have a functional role in controlling the expression of glial fibrillary acidic protein. To explore this possibility further we have also mapped changes in imidazoline-I2-receptor and alpha 2-adrenoceptor binding sites. Following transient ischaemia there was a marked, biphasic increase in glial fibrillary acidic protein messenger RNA levels throughout the vulnerable CA1 region of the hippocampus, peaking four days after ischaemia and then increasing gradually during the remainder of the study period. There was also a sustained increase in [3H]PK11195 binding, however, in contrast to the initial increase in glial fibrillary acidic protein messenger RNA levels that peaked four days after ischaemia the density of [3H]PK11195 binding increased rapidly in all strata of the CA1 region over the first eight days and then increased more slowly throughout days 12 to 20. Despite the marked increase in glial fibrillary acidic protein messenger RNA levels there was no concomitant alteration in imidazoline-I2-receptor binding sites detected using the specific radioligand, [3H]2-(2-benzofuranyl)-2-imidazoline, although alpha 2-adrenoceptor binding was decreased at eight days after ischaemia and did not recover. The time-course and biphasic nature of the changes in the astrocytic marker, glial fibrillary acidic protein messenger RNA, in the hippocampus following ischaemia may reflect different functions of glial fibrillary acidic protein-reactive astrocytes in the post-ischaemic period. Differences in temporal expression of glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding support the proposed localization of peripheral benzodiazepine receptors on activated microglia, as distinct from reactive astrocytes. There was no evidence in the present study that imidazoline-I2-receptors are functionally linked to glial fibrillary acidic protein expression as the reactive astrocytosis in the hippocampus following ischaemia was not associated with changes in imidazoline-I2-receptor binding site density.
Collapse
Affiliation(s)
- E L Conway
- University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
47
|
Fowler JS, Volkow ND, Wang GJ, Pappas N, Shea C, MacGregor RR, Logan J. Visualization of monoamine oxidase in human brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 42:304-7. [PMID: 9327901 DOI: 10.1016/s1054-3589(08)60750-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J S Fowler
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Maeztu AI, Ballesteros J, Callado LF, Gutierrez M, Meana JJ. The Density of Monoamine Oxidase B Sites Is Not Altered in the Postmortem Brain of Alcoholics. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04479.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Saura J, Andrés N, Andrade C, Ojuel J, Eriksson K, Mahy N. Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging 1997; 18:497-507. [PMID: 9390776 DOI: 10.1016/s0197-4580(97)00113-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Variations of monoamine oxidases (MAO) A and B were studied during aging in 27 human subjects (age range 17-93 years) in 18 brain structures of temporal cortex, frontal gyrus, hippocampal formation, striatum, cerebellum, and brainstem. [3H]Ro41-1049 and [3H]lazabemide were used as selective radioligands to image and quantify MAO-A and MAO-B respectively by enzyme autoradiography. Postmortem delay or time of tissue storage did not affect MAO-A or MAO-B levels. There was, moreover, no evidence of sexual dimorphism. A marked age-related increase in MAO-B was observed in most structures. This increase started at the age of 50-60 years. Before this age, MAO-B levels were constant in all structures studied. MAO-B-rich senile plaques were observed in some cortical areas but they did not significantly influence the age-related MAO-B increase. Surprisingly, no age-related MAO-B changes were observed in the substantia nigra. In contrast to MAO-B, no clear age-related changes in MAO-A were observed, indicating an independent regulation of the two isoenzymes, also suggested by the cross-correlation analysis of these data.
Collapse
Affiliation(s)
- J Saura
- Biochemistry Unit, School of Medicine, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, MacGregor R. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 1997; 18:431-5. [PMID: 9330975 DOI: 10.1016/s0197-4580(97)00037-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several studies of human brain postmortem report that monoamine oxidase B (MAO B) increases with age and it has been proposed that this increase reflects age-associated increases in glial cells. We measured brain MAO B in a group of normal healthy human subjects (n = 21; age range 23-86; 9 females and 12 males; nonsmokers) using [11C]L-deprenyl-D2 and positron emission tomography. Brain glucose metabolism was also measured with 18FDG in 15 of the subjects. MAO B increased (p < 0.004) in all brain regions examined except the cingulate gyrus. In contrast, subjects showed the expected regional age-related decreases in blood flow and metabolism. In the 15 subjects in whom both MAO B and LCMRglu was measured, there was a trend (p < 0.03) toward an inverse association between brain glucose metabolism and MAO B activity in the frontal and parietal cortices. Although the age-related increase in brain MAO B in living subjects is consistent with postmortem reports, the degree of increase is generally lower.
Collapse
Affiliation(s)
- J S Fowler
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | |
Collapse
|